JP4294680B2 - Refrigerant distributor and air conditioner equipped with refrigerant distributor - Google Patents

Refrigerant distributor and air conditioner equipped with refrigerant distributor Download PDF

Info

Publication number
JP4294680B2
JP4294680B2 JP2006308003A JP2006308003A JP4294680B2 JP 4294680 B2 JP4294680 B2 JP 4294680B2 JP 2006308003 A JP2006308003 A JP 2006308003A JP 2006308003 A JP2006308003 A JP 2006308003A JP 4294680 B2 JP4294680 B2 JP 4294680B2
Authority
JP
Japan
Prior art keywords
refrigerant
flow
inlet pipe
pipe
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006308003A
Other languages
Japanese (ja)
Other versions
JP2008122010A (en
Inventor
亮一 高藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2006308003A priority Critical patent/JP4294680B2/en
Priority to CN2007101696551A priority patent/CN101182965B/en
Publication of JP2008122010A publication Critical patent/JP2008122010A/en
Application granted granted Critical
Publication of JP4294680B2 publication Critical patent/JP4294680B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • F25B41/45Arrangements for diverging or converging flows, e.g. branch lines or junctions for flow control on the upstream side of the diverging point, e.g. with spiral structure for generating turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Description

本発明は、例えば家庭用ルームエアコンなどに適用される空気調和機用熱交換器の冷媒分配器に係り、特に、熱交換器を効率的に作用させるものに関する。   The present invention relates to a refrigerant distributor of a heat exchanger for an air conditioner that is applied to, for example, a room air conditioner for home use, and more particularly, to a component that efficiently operates the heat exchanger.

図1は一般的な家庭用空気調和機の冷凍サイクルの構成を示す図である。図1において、1は圧縮機、2は四方弁、3は電動弁等の絞り装置、4は室内熱交換器、5は室外熱交換器である。家庭用空気調和機では、四方弁2を切替えることで室内熱交換器4を蒸発器、室外熱交換器5を凝縮器として使う冷房運転(実線矢印)と、室内熱交換器4を凝縮器、室外熱交換器5を蒸発器として使う暖房運転(破線矢印)を行なうことができる。   FIG. 1 is a diagram showing a configuration of a refrigeration cycle of a general household air conditioner. In FIG. 1, 1 is a compressor, 2 is a four-way valve, 3 is a throttle device such as an electric valve, 4 is an indoor heat exchanger, and 5 is an outdoor heat exchanger. In the home air conditioner, by switching the four-way valve 2, the cooling operation (solid arrow) using the indoor heat exchanger 4 as an evaporator and the outdoor heat exchanger 5 as a condenser, and the indoor heat exchanger 4 as a condenser, Heating operation (broken arrows) using the outdoor heat exchanger 5 as an evaporator can be performed.

例えば、冷房運転では圧縮機1で圧縮された高温高圧の冷媒が、四方弁2を通過して室外熱交換器5に流入し、空気との熱交換により放熱し凝縮する。そして、電動弁等の絞り装置3により等エンタルピ膨張した後、低温低圧でガスと液が混在した気液二相流となって室内熱交換器4へ流入する。室内熱交換器4では、空気からの吸熱作用により冷媒が入口から出口にかけて乾き度χを増しながら蒸発する。そして、室内熱交換器4を出た冷媒は圧縮機1へ戻り、サイクルを構成する。因みに、乾き度χとは、冷媒ガス質量流量を冷媒全質量流量で除した値であり、すなわち、乾き度χ=冷媒ガス質量流量/冷媒全質量流量である。   For example, in the cooling operation, the high-temperature and high-pressure refrigerant compressed by the compressor 1 passes through the four-way valve 2 and flows into the outdoor heat exchanger 5, and releases and condenses by heat exchange with air. And after carrying out an isoenthalpy expansion | swell by the expansion | swelling apparatus 3, such as a motor operated valve, it flows into the indoor heat exchanger 4 as a gas-liquid two-phase flow in which gas and liquid are mixed at low temperature and low pressure. In the indoor heat exchanger 4, the refrigerant evaporates while increasing the dryness χ from the inlet to the outlet by an endothermic action from the air. And the refrigerant | coolant which came out of the indoor heat exchanger 4 returns to the compressor 1, and comprises a cycle. Incidentally, the dryness χ is a value obtained by dividing the refrigerant gas mass flow rate by the refrigerant total mass flow rate, that is, dryness χ = refrigerant gas mass flow rate / refrigerant total mass flow rate.

ここで、蒸発器として作用する室内熱交換器4内部では、熱交換器を構成する配管内の流動抵抗による損失が、蒸発器としての性能低下に大きく影響する。この損失を押さえるため、一般的に室内熱交換器4内で数本のパス11,12のように並列に分岐して冷媒を流すように構成される。これら複数のパスに気液二相流の冷媒を分配する冷媒分配器31が必要となる。   Here, in the indoor heat exchanger 4 acting as an evaporator, the loss due to the flow resistance in the piping constituting the heat exchanger greatly affects the performance degradation as the evaporator. In order to suppress this loss, generally, the indoor heat exchanger 4 is configured to branch in parallel like several paths 11 and 12 and to flow the refrigerant. A refrigerant distributor 31 that distributes the gas-liquid two-phase flow refrigerant to the plurality of paths is required.

気液二相流である冷媒は、ガス冷媒と液冷媒で数十倍の密度比があるため、流速が大きく異なり、気液の界面が乱れて冷媒の流動は不安定なものとなる。また、冷媒分配器上流の接続管の曲がり(湾曲部)による遠心力や、入口管の傾きによる重力の作用もこの冷媒の流動バラつきに影響を与える。あるいは、冷媒分配器上流にある接続管の曲がりの曲率が小さい場合や、二方弁など流れの方向が急激に変わる場合には、その直後の流れは、液膜が乱れ、気相が流れる管断面中心部に多数の液滴を伴うような流動状態となり、前記と同様に冷媒の流動バラつきに影響を与える。   A refrigerant that is a gas-liquid two-phase flow has a density ratio that is several tens of times that of a gas refrigerant and a liquid refrigerant, so that the flow rates are greatly different, the gas-liquid interface is disturbed, and the refrigerant flow becomes unstable. Further, the centrifugal force due to the bending (curved portion) of the connection pipe upstream of the refrigerant distributor and the action of gravity due to the inclination of the inlet pipe also affect the flow variation of the refrigerant. Alternatively, when the curvature of the connection pipe upstream of the refrigerant distributor is small, or when the flow direction changes rapidly, such as a two-way valve, the liquid film is disturbed and the gas phase flows through the flow immediately after that. A flow state with a large number of droplets at the center of the cross section is caused, and the flow variation of the refrigerant is affected in the same manner as described above.

更に、圧縮機回転数が可変であるインバータ駆動式ルームエアコンのように冷媒流量が小流量から大流量まで広範囲に変化する場合や、冷媒分配器31の加工精度がバラついている場合には、冷媒分配器31に流入する液冷媒の管断面における分布が大きく異なり、または大きく冷媒の流動がバラつくと言える。   Furthermore, when the refrigerant flow rate varies in a wide range from a small flow rate to a large flow rate as in an inverter-driven room air conditioner with a variable compressor rotation speed, or when the processing accuracy of the refrigerant distributor 31 varies, It can be said that the distribution of the liquid refrigerant flowing into the distributor 31 in the pipe cross section is greatly different or the refrigerant flow varies greatly.

このため、熱交換器において蒸発に寄与する液冷媒が十分に流れるパスと、不十分にしか流れず液冷媒が枯渇するパスが発生する。液冷媒がパス途中で枯渇した場合、その部位以降の熱交換器では熱交換ができず、十分な性能を発揮できない。つまり冷媒を十分に活用することができず、その不足分を冷媒流量の増加、すなわち圧縮機回転数を上げて冷媒流量を増加させ、必要な能力を得る必要がある。このようなことでは、圧縮機へ投入する無駄な仕事が増加するので省電力化できない。   For this reason, a path in which the liquid refrigerant contributing to evaporation in the heat exchanger sufficiently flows and a path in which the liquid refrigerant flows only insufficiently and is depleted are generated. When the liquid refrigerant is depleted during the pass, heat exchange cannot be performed in the heat exchangers subsequent to that part, and sufficient performance cannot be exhibited. That is, the refrigerant cannot be fully utilized, and it is necessary to obtain the necessary capacity by increasing the refrigerant flow rate by increasing the refrigerant flow rate by increasing the refrigerant flow rate. In such a case, useless work to be input to the compressor increases, so that it is not possible to save power.

更に、液冷媒が十分に流れるパスで十分冷却され潜熱が奪われた空気と、液冷媒が枯渇したパスでほとんど冷却されず潜熱が残った空気とが熱交換器下流で合流すると、室内ファンや風路で結露が生じ、吹出す空気に水滴が混じってしまう。このような室内ユニットの露付は、使用者の不快の原因となる。   Furthermore, if the air that has been sufficiently cooled and deprived of latent heat in the path where the liquid refrigerant flows sufficiently and the air that is hardly cooled and remains in the path where the liquid refrigerant is depleted merges downstream of the heat exchanger, Condensation occurs in the air passage, and water drops mix with the air that blows out. Such exposure of the indoor unit causes discomfort for the user.

また、室内機の吹出し温度を下げないようにした再熱除湿方式などを採用した場合、冷凍サイクルの構成は図2のようになる。すなわち、絞り装置33を室内熱交換器4の冷媒パスの間に設け、この絞り装置により冷媒を減圧することで、パス21,22の部分を凝縮器、パス11,12の部分を蒸発器として作用させ、それぞれの出口温度を混合することにより、上述の再熱除湿方式を実現している。このとき、室内熱交換器4のパスの途中に冷媒分配器32を設ける必要がある。冷房運転の際、この分配器32では冷媒分配器31よりも冷媒入口乾き度が高くなるため、極めて少量の液冷媒を分配しなければならない。このような高乾き度での液冷媒の分配は、低乾き度での分配に比べ入口の管形状や重力の影響を受けやすいので、難しい課題となっている。   Moreover, when the reheat dehumidification system etc. which did not lower the blowing temperature of an indoor unit are employ | adopted, the structure of a refrigerating cycle will become like FIG. That is, the expansion device 33 is provided between the refrigerant paths of the indoor heat exchanger 4, and the refrigerant is decompressed by this expansion device, so that the portions of the paths 21 and 22 are the condenser and the portions of the paths 11 and 12 are the evaporator. The above-mentioned reheat dehumidification method is realized by acting and mixing the respective outlet temperatures. At this time, it is necessary to provide the refrigerant distributor 32 in the middle of the path of the indoor heat exchanger 4. During the cooling operation, the distributor 32 has a higher refrigerant inlet dryness than the refrigerant distributor 31, and therefore, a very small amount of liquid refrigerant must be distributed. Distribution of liquid refrigerant at such a high dryness is a difficult problem because it is more susceptible to the shape of the inlet tube and gravity than the distribution at low dryness.

このような冷媒分配に関する課題に対して、さまざまな対策が考えられてきた。   Various countermeasures have been considered for such problems related to refrigerant distribution.

例えば、冷房運転時に蒸発器として作用する室内熱交換器4の入口に冷媒分配器を設置する場合、一般の家庭用空気調和機では冷媒入口乾き度χは比較的小さく、0.2前後である。このような場合、特許文献1に開示されているように、冷媒流に旋回成分を与え、重力よりも大きな遠心力を与えることで、重力の影響を少なくし冷媒分配の改善を図るものが従来提案されている。 For example, when a refrigerant distributor is installed at the inlet of the indoor heat exchanger 4 that acts as an evaporator during cooling operation, the refrigerant inlet dryness χ is relatively small in a general home air conditioner and is around 0.2. . In such a case, as disclosed in Patent Document 1, a swirl component is given to the refrigerant flow, and centrifugal force larger than gravity is applied to reduce the influence of gravity and improve refrigerant distribution. Proposed.

しかし、液冷媒に旋回成分を与えるには大きな運動量が必要となり、冷媒流量が少ない場合には必要な運動量を確保することができない。また、再熱除湿方式を採用した場合など熱交換器の配管途中に冷媒分配器を設ける場合には、冷媒の乾き度が高く、旋回成分を与えるための液冷媒が極めて少量のため、旋回流を発生させることができない。このため、特許文献2に開示されているように、微細な溝による表面張力を作用させることで、重力の影響を少なくし冷媒分配の改善を図るものが従来提案されている。
特開2000−105026号公報 特開2003−014337号公報
However, a large momentum is required to give the swirl component to the liquid refrigerant, and the necessary momentum cannot be secured when the refrigerant flow rate is small. In addition, when a refrigerant distributor is installed in the middle of the heat exchanger piping, such as when the reheat dehumidification method is adopted, the dryness of the refrigerant is high and the amount of liquid refrigerant to give the swirling component is extremely small. Cannot be generated. For this reason, as disclosed in Patent Document 2, it has been proposed to improve the refrigerant distribution by reducing the influence of gravity by applying a surface tension due to fine grooves.
JP 2000-105026 A JP 2003-014337 A

上記特許文献1に示すように、冷媒流に旋回成分を与えることにより、入口管の傾きによる重力の作用をある程度低減することは可能であるが、冷媒流量が少ない場合や入口管の冷媒乾き度が高い場合などに、液冷媒の管断面方向の偏りを低減することができなかった。   As shown in the above-mentioned Patent Document 1, it is possible to reduce the action of gravity due to the inclination of the inlet pipe to some extent by giving a swirling component to the refrigerant flow, but when the refrigerant flow rate is small or the refrigerant dryness of the inlet pipe However, the deviation of the liquid refrigerant in the tube cross-sectional direction could not be reduced.

一方、上記特許文献2に示すように、微細な溝による表面張力を作用させることで、冷媒流量が少ない場合や入口管の冷媒乾き度が高い場合などでも、重力や遠心力の影響による液冷媒の偏りを低減可能である。   On the other hand, as shown in Patent Document 2, by applying surface tension due to fine grooves, liquid refrigerant caused by the influence of gravity or centrifugal force can be used even when the refrigerant flow rate is low or the refrigerant dryness of the inlet pipe is high. Can be reduced.

しかし、冷媒分配器上流にある接続管の曲がりの曲率半径が小さい場合や、二方弁など流れの方向が急激に変わる場合には、その直後の流れは、液膜が乱れ、気相が流れる管断面中心部に多数の液滴を伴うような流動状態となり、微細な溝の効果を十分に得ることができない。すなわち、上述した場合には、分配する部分で安定した環状流にならず、分配比を保つことができない。更に、液冷媒の偏り方が流量の大小により異なるため、動作範囲が小流量から大流量というような広い流量範囲で分配比を保つことができないという課題が生じていた。   However, when the curvature radius of the bending of the connecting pipe upstream of the refrigerant distributor is small, or when the flow direction changes abruptly, such as a two-way valve, the liquid film is disturbed and the gas phase flows immediately after that. A flow state with a large number of droplets in the center of the cross section of the tube is obtained, and the effect of the fine groove cannot be sufficiently obtained. That is, in the case described above, a stable annular flow is not produced in the portion to be distributed, and the distribution ratio cannot be maintained. Furthermore, since the way of biasing the liquid refrigerant varies depending on the flow rate, there has been a problem that the distribution ratio cannot be maintained in a wide flow range such as a small flow rate to a large flow rate.

本発明の目的は、管内面に複数の溝を有する入口管の入口近傍に、冷媒流の液滴偏向手段(本発明は、気液二相流の液相(特に、液滴)の流れ制御を特徴とするものであるが、気液二相流の冷媒流の整流制御であるので、以下、本願において冷媒流整流手段と称することとする)を、その出口側が前記入口管の溝に対面して空間を形成するように設けることで、入口管に流入する気液二相流が乱れて液滴を含む冷媒流流れであっても、気液分離を確実に図り複数の出口管に安定した気液二相流の冷媒分配を行う冷媒分配器を提供することにある。 An object of the present invention is to control the flow of a liquid phase (particularly, a droplet) of a liquid-liquid two-phase flow in the vicinity of the inlet of an inlet pipe having a plurality of grooves on the inner surface of the pipe. However, since it is rectification control of the refrigerant flow of the gas-liquid two-phase flow, it is hereinafter referred to as refrigerant flow rectification means in this application), and its outlet side faces the groove of the inlet pipe. by providing so as to form a space, and even refrigerant flow stream containing droplets gas-liquid two-phase flow flowing into the inlet pipe is disturbed, stable plurality of outlet tubes aims to ensure gas-liquid separator Another object of the present invention is to provide a refrigerant distributor that performs a gas-liquid two-phase flow refrigerant distribution.

前記課題を解決するために、本発明は次のような構成を採用する。
気液二相冷媒流が送り込まれる入口管と、前記入口管の下流側で前記冷媒流を分配させる複数の出口管と、を備えた冷媒分配器において、前記入口管は管内面に液冷媒を流すように複数の溝を有し、前記入口管の入口近傍に、前記冷媒流に含まれる液滴を偏向させる筒状の液滴偏向手段を、その出口側が前記入口管の溝に対面して空間を形成するように内設し、前記液滴偏向手段の内側空間と、前記液滴偏向手段の外周部と前記入口管の内面との間の空間が、冷媒流の流路を形成する構成とする。
In order to solve the above problems, the present invention adopts the following configuration.
A refrigerant distributor comprising: an inlet pipe into which a gas-liquid two-phase refrigerant flow is fed; and a plurality of outlet pipes that distribute the refrigerant flow downstream of the inlet pipe. A cylindrical droplet deflecting means for deflecting droplets contained in the refrigerant flow is provided in the vicinity of the inlet of the inlet pipe so that the outlet side faces the groove of the inlet pipe. A configuration in which a space is formed, and an inner space of the droplet deflecting unit and a space between the outer peripheral portion of the droplet deflecting unit and the inner surface of the inlet pipe form a flow path of the refrigerant flow. And

また、前記冷媒分配器において、前記筒状の液滴偏向手段は上流側端部にテーパ形状を形成し、前記液滴が前記テーパ形状に衝突することによって、その流れ方向が前記入口管の管内面に向けられる構成とする。 Further, in the refrigerant distributor, the cylindrical droplet deflecting means forms a taper shape at an upstream end, and the liquid droplet collides with the taper shape so that the flow direction thereof is in the pipe of the inlet pipe. The structure is directed to the surface.

気液二相冷媒流が送り込まれる入口管と、前記入口管の下流側で前記冷媒流を分配させる複数の出口管と、を備えた冷媒分配器において、前記入口管は管内面に液冷媒を流すように複数の溝を有し、前記入口管の入口近傍に、前記冷媒流に含まれる液滴を偏向させる格子状の液滴偏向手段を、その出口側が前記入口管の溝に対面して空間を形成するように設け、前記格子状の液滴偏向手段は、中央部で格子の粗密が密構造を形成し、外周部で格子の粗密が粗構造を形成する構成とする。 A refrigerant distributor comprising: an inlet pipe into which a gas-liquid two-phase refrigerant flow is fed; and a plurality of outlet pipes that distribute the refrigerant flow downstream of the inlet pipe. A lattice-shaped droplet deflecting means for deflecting droplets contained in the refrigerant flow is provided in the vicinity of the inlet of the inlet pipe, and the outlet side thereof faces the groove of the inlet pipe. The lattice-shaped droplet deflecting means is provided so as to form a space, and has a structure in which the density of the lattice forms a dense structure in the central portion and the density of the lattice forms a coarse structure in the outer peripheral portion.

また、前記冷媒分配器において、前記液滴偏向手段下流側に、前記入口管と前記出口管の間に内側管を設け、前記内側管は前記入口管の内径よりも小さい外径を有し、断面積の異なる穴の開いたフランジを前記内側管と前記出口管の間に設ける構成とする。
In the refrigerant distributor, an inner pipe is provided between the inlet pipe and the outlet pipe on the downstream side of the droplet deflecting means , and the inner pipe has an outer diameter smaller than the inner diameter of the inlet pipe. A flange having a hole with a different cross-sectional area is provided between the inner pipe and the outlet pipe .

本発明によれば、管内面に溝のある入口管に流入する気液二相流に液滴を含んだ乱れがあっても、気液分離が確実に図られて安定した気液二相流の冷媒流を複数の出口管に冷媒分配することができる。   According to the present invention, even if the gas-liquid two-phase flow flowing into the inlet pipe having a groove on the inner surface of the pipe has a turbulence including droplets, the gas-liquid separation is ensured and a stable gas-liquid two-phase flow is achieved. The refrigerant flow can be distributed to a plurality of outlet pipes.

本発明の第1、第2及び第3の実施形態に係る冷媒分配器について図面を参照しながら以下詳細に説明する。   The refrigerant distributor according to the first, second and third embodiments of the present invention will be described in detail below with reference to the drawings.

「第1の実施形態」
本発明の第1実施形態に係る冷媒分配器について、図3〜図7を参照しながら以下説明する。図3は本発明の第1の実施形態に係る冷媒分配器の全体構成を示す図である。図3において、40は冷媒流、41は接続管、42は入口管、43は出口管、44は溝、45は内側管、46はフランジ、46aは分離された液の分配流路、46bは分離された液の分配流路、47はフランジの断面図、60は整流手段61の設置位置における断面図、61は第1の実施形態における整流手段、62は整流手段固定手段、をそれぞれ表す。
“First Embodiment”
The refrigerant distributor according to the first embodiment of the present invention will be described below with reference to FIGS. FIG. 3 is a diagram showing an overall configuration of the refrigerant distributor according to the first embodiment of the present invention. In FIG. 3, 40 is a refrigerant flow, 41 is a connecting pipe, 42 is an inlet pipe, 43 is an outlet pipe, 44 is a groove, 45 is an inner pipe, 46 is a flange, 46a is a separated liquid distribution channel, and 46b is The separated liquid distribution channel, 47 is a sectional view of the flange, 60 is a sectional view at the installation position of the rectifying means 61, 61 is the rectifying means in the first embodiment, and 62 is the rectifying means fixing means.

図3において、本発明の第1の実施形態に係る冷媒分配器は、気液二相状態の冷媒流40が流入する接続管41と、入口管42と、複数の出口管43を備え、接続管41と入口管42の間には環状の整流手段61を設け、入口管42の内面には複数の微細な螺旋溝44が設けられている。   In FIG. 3, the refrigerant distributor according to the first embodiment of the present invention includes a connection pipe 41 into which a gas-liquid two-phase refrigerant flow 40 flows, an inlet pipe 42, and a plurality of outlet pipes 43. An annular rectifying means 61 is provided between the pipe 41 and the inlet pipe 42, and a plurality of fine spiral grooves 44 are provided on the inner surface of the inlet pipe 42.

60は整流手段61の設置位置であるA−A’断面で切断した図である。整流手段61は、整流手段固定手段62により入口管42の管断面中心に固定される。このとき、接続管41の内周と整流手段61の外周の間を液膜が流れるように、整流手段61の外径は入口管42の最小内径よりも小さくする。本実施形態では、例えば図3に示すように整流手段61の外周の一部分に複数の突起部62を設けて螺旋溝の頂部と整流手段61の外周の間を固定している。   60 is a cross-sectional view taken along the A-A ′ section where the rectifying means 61 is installed. The rectifying means 61 is fixed to the center of the cross section of the inlet pipe 42 by the rectifying means fixing means 62. At this time, the outer diameter of the rectifying means 61 is made smaller than the minimum inner diameter of the inlet pipe 42 so that the liquid film flows between the inner periphery of the connection pipe 41 and the outer periphery of the rectifying means 61. In this embodiment, for example, as shown in FIG. 3, a plurality of protrusions 62 are provided on a part of the outer periphery of the rectifying means 61 to fix the top of the spiral groove and the outer periphery of the rectifying means 61.

また、入口管42の出口部分に入口管42の最小内径よりも小さい外径の内側管45を設けることで、二重管部X(入口管42の出口部分と内側管45とからなる)を構成している。46は内側管45を固定するためのフランジであり、47はフランジをB−B’断面で切断した図である。   Further, by providing an inner pipe 45 having an outer diameter smaller than the minimum inner diameter of the inlet pipe 42 at the outlet portion of the inlet pipe 42, the double pipe portion X (consisting of the outlet portion of the inlet pipe 42 and the inner pipe 45) is provided. It is composed. 46 is a flange for fixing the inner tube 45, and 47 is a view of the flange cut along a B-B 'section.

図4は本実施形態における入口管上流側の接続管に流入する気液二相状態の冷媒流流動状態を示す図である。図5は本実施形態における接続管上流側に配置されたベント(曲がり管)と二方弁の冷媒流流動状態を示す図である。   FIG. 4 is a diagram showing a refrigerant flow flow state in a gas-liquid two-phase state flowing into the connection pipe upstream of the inlet pipe in the present embodiment. FIG. 5 is a view showing a refrigerant flow state of a vent (bent pipe) and a two-way valve arranged on the upstream side of the connecting pipe in the present embodiment.

本実施形態に係る冷媒分配器が、例えば空気調和機に用いられる際、接続管41上流側が十分な長さの直管部分であれば、接続管41に流入する気液二相状態の冷媒流40の流動状態は図4(a)のようになる。すなわち、管内壁に液相が膜状に流れ、管断面中心部に気相が流れる環状流(ドーナツ状流れ)である。しかし、実際には図5に示すように接続管41の上流に、ベント(曲がり管)や二方弁が設置される場合が多く、この場合には、図4(b)に示すような、接続管41における冷媒流の流動状態となる。   When the refrigerant distributor according to the present embodiment is used, for example, in an air conditioner, if the upstream side of the connecting pipe 41 is a sufficiently long straight pipe portion, the refrigerant flow in a gas-liquid two-phase state that flows into the connecting pipe 41 The flow state of 40 is as shown in FIG. That is, it is an annular flow (doughnut-shaped flow) in which the liquid phase flows in a film shape on the inner wall of the tube and the gas phase flows in the central portion of the tube cross section. However, in practice, as shown in FIG. 5, a vent (bent pipe) or a two-way valve is often installed upstream of the connection pipe 41. In this case, as shown in FIG. The refrigerant flow in the connecting pipe 41 is brought into a flow state.

図5(a)はベント管内部、図5(b)は二方弁内部の状態である。図5(b)では弁体は省略してある。図5は水平な流れから垂直下向きへの流れを示している。図5に示すようにベントや二方弁などを通過した直後の冷媒は、流れの方向が急激に変わるために、液膜が乱れ、気相が流れる管断面中心部に多数の液滴を伴うような流動状態となる。このような流動状態で入口管に流入すると、螺旋溝部44のみでは気液分離が完全に行なわれず、分離効率が低下し分配比がばらついてしまう。   FIG. 5A shows the inside of the vent pipe, and FIG. 5B shows the inside of the two-way valve. In FIG. 5B, the valve body is omitted. FIG. 5 shows a flow from a horizontal flow to a vertical downward direction. As shown in FIG. 5, the refrigerant immediately after passing through a vent, a two-way valve, etc. has a sudden change in the direction of flow, so that the liquid film is disturbed and a large number of droplets are accompanied at the center of the cross section of the pipe through which the gas phase flows. It becomes such a fluid state. When flowing into the inlet pipe in such a flow state, the gas-liquid separation is not performed completely only by the spiral groove 44, and the separation efficiency is lowered and the distribution ratio varies.

図6は第1の実施形態における入口管の入口近傍に整流手段を設けることによる冷媒流動状態を模式的に表す図である。図6において、気液二相状態の冷媒流れ40が整流手段61を通過し、入口管42へ流入する際、図6に示すように管断面中心を気相に伴って流れる液滴の一部が整流手段61の上端部に衝突する。この衝突により管外周方向へ向かう液滴は、入口管41内壁を流れる液膜へ直接付着する。また、管断面中心方向へ向かう液滴は管断面中心部の流れに合流する。そして、管断面中心部の流れは、管断面が接続管41から整流手段61で縮小し(整流手段の内径が接続管41の内径より小さい)、次いで入口管42で拡大する流路になっていることから、整流手段61内部で縮流した後に入口管42へ流入する際に拡大する流れとなる(図6に示す矢印を参照)。その流れに伴う液滴は入口管42内壁を流れる液滴へ付着する。したがって、入口管42へ流入する冷媒は安定した環状流となる。   FIG. 6 is a diagram schematically showing a refrigerant flow state by providing a rectifying means in the vicinity of the inlet of the inlet pipe in the first embodiment. In FIG. 6, when the refrigerant flow 40 in the gas-liquid two-phase state passes through the rectifying means 61 and flows into the inlet pipe 42, as shown in FIG. Collides with the upper end of the rectifying means 61. The liquid droplets traveling toward the outer periphery of the tube by this collision directly adhere to the liquid film flowing on the inner wall of the inlet tube 41. Further, the liquid droplets traveling toward the center of the tube cross section join the flow at the center of the tube cross section. The flow in the central portion of the pipe cross section becomes a flow path in which the pipe cross section is reduced from the connecting pipe 41 by the rectifying means 61 (the inner diameter of the rectifying means is smaller than the inner diameter of the connecting pipe 41) and then enlarged by the inlet pipe. Therefore, the flow expands when it flows into the inlet pipe 42 after being contracted inside the rectifying means 61 (see the arrow shown in FIG. 6). The droplet accompanying the flow adheres to the droplet flowing on the inner wall of the inlet tube 42. Therefore, the refrigerant flowing into the inlet pipe 42 becomes a stable annular flow.

本実施形態における整流手段61は、管肉厚が厚いほど、液滴の液膜への付着する量は多くなるが、流れの抵抗となるため流動損失は増加する。このため、本実施形態を適用する入口乾き度、接続管41までの管形状により整流手段61の最適な寸法を定める必要がある。例えば、入口乾き度が高いほど管断面に存在する液相が少ないため液膜の厚さが薄く、液滴量が少ない。すなわち、本実施形態を適用する際の入口乾き度が高いほど管肉厚を薄くすることができ、整流手段による流動損失を大幅に増加させることなく、液滴は付着し、入口管42へ流入する冷媒は安定した環状流(ドーナツ状流れ)となる。   In the rectifying means 61 in the present embodiment, as the tube thickness increases, the amount of droplets adhering to the liquid film increases, but the flow loss increases because of the flow resistance. For this reason, it is necessary to determine the optimal dimension of the rectification means 61 by the dryness of the inlet to which the present embodiment is applied and the pipe shape up to the connection pipe 41. For example, the higher the inlet dryness, the smaller the liquid phase present in the cross section of the tube, so that the liquid film is thinner and the amount of droplets is smaller. That is, the higher the inlet dryness when the present embodiment is applied, the thinner the tube thickness, and the droplets adhere and flow into the inlet pipe 42 without significantly increasing the flow loss due to the rectifying means. The refrigerant to be turned becomes a stable annular flow (doughnut-shaped flow).

また、整流手段61下流における液滴の付着が十分に行なわれるように整流手段61と二重管部Xとの距離を流量範囲に応じて、最適に配置する必要がある。すなわち、整流手段61と二重管部Xとの距離は、整流手段通過後の液滴が液膜へ付着する範囲以上とする必要がある。流量が多いほど管断面中心部の気相の流速は速く、それに伴う液滴の流速も速くなり、整流手段通過後の液膜への付着範囲が広くなるため、整流手段61と二重管部Xまでの距離を長くする必要がある。   Further, it is necessary to optimally arrange the distance between the rectifying means 61 and the double pipe portion X in accordance with the flow rate range so that the droplets are sufficiently attached downstream of the rectifying means 61. That is, the distance between the rectifying means 61 and the double tube portion X needs to be equal to or greater than the range in which the droplets after passing through the rectifying means adhere to the liquid film. As the flow rate increases, the flow velocity of the gas phase at the center of the cross section of the tube increases, and the flow velocity of the droplets associated therewith increases, so that the range of adhesion to the liquid film after passing through the rectifying device increases. It is necessary to increase the distance to X.

上述したように、整流手段61を通過した冷媒流40は、入口管42内を流動する際、内面に設けられた微細な螺旋溝44部分での表面張力作用により、液冷媒が溝内に引き込まれる。ここで、液冷媒は溝間の隙間の間隔が細かいほど表面張力の作用を受けるため、微細な溝である方が好ましい。また、図3においてA−A’断面で切断した図の斜線で示した溝部分の周方向の全断面積が単位時間、単位断面積当たりの液冷媒の体積流量よりも大きくなければならない。溝部の断面積が液冷媒の体積流量より小さいと溝部から液冷媒が溢れてしまい、溝による効果が小さくなってしまう。   As described above, when the refrigerant flow 40 that has passed through the rectifying means 61 flows in the inlet pipe 42, the liquid refrigerant is drawn into the groove by the surface tension action at the fine spiral groove 44 provided on the inner surface. It is. Here, since the liquid refrigerant is affected by the surface tension as the gap between the grooves is finer, the liquid refrigerant is preferably a fine groove. Further, the total cross-sectional area in the circumferential direction of the groove portion indicated by oblique lines in FIG. 3 cut along the A-A ′ cross-section must be larger than the volume flow rate of the liquid refrigerant per unit cross-sectional area. If the cross-sectional area of the groove is smaller than the volume flow rate of the liquid refrigerant, the liquid refrigerant overflows from the groove and the effect of the groove is reduced.

冷媒流40は、液冷媒が外周部(入口管42の内壁)の溝内に引き込まれているため、入口管42の管断面中心部分にガス冷媒が流れ、溝内44を液冷媒が流れる環状流となる。   In the refrigerant flow 40, the liquid refrigerant is drawn into the groove in the outer peripheral portion (inner wall of the inlet pipe 42), so that the gas refrigerant flows in the central portion of the cross section of the inlet pipe 42 and the liquid refrigerant flows in the groove 44. It becomes a flow.

入口管42の出口部分に到達した冷媒流40は、内側管45を有する二重管部Xを流動する。このとき冷媒流40の中心部分のガス冷媒は内側管45の内側X1へと流れ、外周部の液冷媒は溝部44と内側管45外周に挟まれた空間X2へと流れ、ガスと液とがほぼ分離される(図3を参照)。これは、溝部44での表面張力により、液冷媒が溝部44内に保持されるためである。従って、この表面張力により、入口管42の重力方向の傾きによる影響を低減し得る(入口管42が鉛直配置されていなくとも)。   The refrigerant flow 40 that has reached the outlet portion of the inlet pipe 42 flows through the double pipe portion X having the inner pipe 45. At this time, the gas refrigerant in the central portion of the refrigerant flow 40 flows to the inner side X1 of the inner tube 45, the liquid refrigerant in the outer peripheral portion flows to the space X2 sandwiched between the outer periphery of the groove portion 44 and the inner tube 45, and the gas and liquid are mixed. Almost separated (see FIG. 3). This is because the liquid refrigerant is held in the groove 44 due to the surface tension in the groove 44. Therefore, this surface tension can reduce the influence of the inclination of the inlet pipe 42 in the direction of gravity (even if the inlet pipe 42 is not vertically arranged).

内側管45内部X1のガス冷媒に作用する圧力損失より内側管45外周部X2の液冷媒に作用する圧力損失が大きい場合、冷媒が空間X2部分に溜まることとなり、冷媒液は内側管45外周部の隙間X2より溢れる場合がある。こうなると溢れた液冷媒が内側管内部X1に入り込んでしまい、液冷媒とガス冷媒との分離がうまく行かなくなる。逆に、内側管45内部X1のガス冷媒に作用する圧力損失より内側管45外周部X2の液冷媒に作用する圧力損失が小さい場合、ガス冷媒が空間X2部分に入り込んでしまい、液冷媒とガス冷媒との分離がうまく行かなくなる。   When the pressure loss acting on the liquid refrigerant in the outer peripheral portion X2 of the inner tube 45 is larger than the pressure loss acting on the gas refrigerant in the inner tube 45 inside the X1, the refrigerant accumulates in the space X2 portion. May overflow from the gap X2. In this case, the overflowing liquid refrigerant enters the inside X1 of the inner tube, and the liquid refrigerant and the gas refrigerant cannot be separated successfully. Conversely, when the pressure loss acting on the liquid refrigerant in the outer peripheral portion X2 of the inner tube 45 is smaller than the pressure loss acting on the gas refrigerant inside the inner tube 45 X1, the gas refrigerant enters the space X2 portion, and the liquid refrigerant and gas Separation from the refrigerant does not work.

したがって、内側管45の外径は、螺旋溝44内を流れる液冷媒を確実に外周部の隙間X2へ導くため、入口管の中心から溝の頂点までを半径とする径となる。また、内側管45の長さは、その内部X1を流れるガス冷媒と外周部の隙間X2を流れる液冷媒の合流部までの圧力損失の差が0となる長さとなる。このように、内側管45は、出口管43の入口側に設置され、整流手段61によって液冷媒とガス冷媒とを分離した冷媒流をその状態で保持したままそれぞれの出口管に送給する機能を有している。換言すると、内側管が存在しないと、液冷媒とガス冷媒が出口管の入口側でぶつかって再び混合状態となり得、規定された気液の割合で夫々の出口管に分配されないことが起こり得る。   Therefore, the outer diameter of the inner pipe 45 is a diameter having a radius from the center of the inlet pipe to the apex of the groove in order to reliably guide the liquid refrigerant flowing in the spiral groove 44 to the gap X2 in the outer peripheral portion. Further, the length of the inner tube 45 is such that the difference in pressure loss between the gas refrigerant flowing through the inside X1 and the liquid refrigerant flowing through the gap X2 between the outer peripheral portions becomes zero. In this way, the inner pipe 45 is installed on the inlet side of the outlet pipe 43 and functions to feed the refrigerant flow obtained by separating the liquid refrigerant and the gas refrigerant by the rectifying means 61 to each outlet pipe while maintaining the state. have. In other words, if the inner pipe is not present, the liquid refrigerant and the gas refrigerant may collide with each other on the inlet side of the outlet pipe and be mixed again, and may not be distributed to the respective outlet pipes at a prescribed gas-liquid ratio.

図3に示す本実施形態の構造、特にフランジ46の流路穴構造では、液とガスとを分離して分配するので適切に分配することができる。分配比は、液冷媒の分配によってのみ制御すれば良く、ガス冷媒は気液合流後の流路の圧力損失により自動的に分配される。分配比を変えたいときは、分配する流路各々の総面積を変えるようにすれば良い。   In the structure of this embodiment shown in FIG. 3, particularly the flow path hole structure of the flange 46, the liquid and the gas are separated and distributed, so that they can be distributed appropriately. The distribution ratio may be controlled only by the distribution of the liquid refrigerant, and the gas refrigerant is automatically distributed due to the pressure loss of the flow path after the gas-liquid merge. When it is desired to change the distribution ratio, the total area of each of the distribution channels may be changed.

図3では、穴46a,46bは互いに同一のものであるとしている。内側管45を有する二重管部Xを通過した冷媒流40は、フランジ46に貫通している穴46a,46bから出口管43に等分配される。なお、図3に示すフランジ断面図47に示されている中央部の大きい穴からはそれぞれの出口管にガス冷媒が分配される。本実施形態では、フランジに貫通した穴により液冷媒を分配しているが、液冷媒の流路を径や長さを変えて流動抵抗を定めた別々の管路で構成しても良い。   In FIG. 3, the holes 46a and 46b are the same as each other. The refrigerant flow 40 that has passed through the double pipe portion X having the inner pipe 45 is equally distributed to the outlet pipe 43 from the holes 46 a and 46 b that penetrate the flange 46. In addition, gas refrigerant is distributed to each outlet pipe from the large hole at the center shown in the flange sectional view 47 shown in FIG. In the present embodiment, the liquid refrigerant is distributed by the holes penetrating the flange. However, the flow path of the liquid refrigerant may be configured by separate pipes in which the flow resistance is determined by changing the diameter and length.

図7は第1の実施形態に係る冷媒分配器を家庭用空気調和機の室内熱交換器の冷媒回路に適用した冷媒配管を示す図である。次に、図7を参照して、本実施形態に係る冷媒分配器を適用した家庭用空気調和機の室内熱交換器の構成と動作について説明する。図7において、本実施形態に係る冷媒分配器31,32は冷媒配管の途中に設けられている。   FIG. 7 is a diagram illustrating a refrigerant pipe in which the refrigerant distributor according to the first embodiment is applied to a refrigerant circuit of an indoor heat exchanger of a domestic air conditioner. Next, with reference to FIG. 7, the structure and operation | movement of the indoor heat exchanger of the domestic air conditioner to which the refrigerant distributor which concerns on this embodiment is applied are demonstrated. In FIG. 7, the refrigerant distributors 31 and 32 according to the present embodiment are provided in the middle of the refrigerant pipe.

室内熱交換器は、空気と冷媒とを熱交換させるため、折り曲げられて配設された熱交換器200,201,202がケーシング114内に配置されている。熱交換器201,202にはそれぞれ冷媒分配器31,32が設けられている。112は再熱除湿を行うための除湿弁、113は熱交換のための風量を供給する貫流ファンである。熱交換器200,201,202はそれぞれ複数のフィンが紙面の垂直方向に重ねられており、このフィンを複数の伝熱管が貫通している。更に複数の伝熱管は、例えばU字状の接続管により接続され冷媒パスを構成する。   In the indoor heat exchanger, in order to exchange heat between air and the refrigerant, heat exchangers 200, 201, and 202 that are bent and disposed are disposed in the casing 114. The heat exchangers 201 and 202 are provided with refrigerant distributors 31 and 32, respectively. Reference numeral 112 denotes a dehumidifying valve for performing reheat dehumidification, and reference numeral 113 denotes a cross-flow fan that supplies an air volume for heat exchange. In each of the heat exchangers 200, 201, and 202, a plurality of fins are stacked in the direction perpendicular to the paper surface, and a plurality of heat transfer tubes pass through the fins. Further, the plurality of heat transfer tubes are connected by, for example, a U-shaped connection tube to form a refrigerant path.

冷媒分配器31は一つのパスを二つのパスへ分配する分配器であり、冷媒パス310は冷媒分配器31により冷媒パス311,312の2パスに分配される。冷媒パス311,312は、熱交換器200,201を通過後に合流して1パスとなり、除湿弁112が設けられている冷媒パス320に接続され、連続した冷媒回路を構成する。   The refrigerant distributor 31 is a distributor that distributes one path into two paths, and the refrigerant path 310 is distributed by the refrigerant distributor 31 into two paths of refrigerant paths 311 and 312. The refrigerant paths 311 and 312 join after passing through the heat exchangers 200 and 201 to form one path, and are connected to the refrigerant path 320 provided with the dehumidifying valve 112 to form a continuous refrigerant circuit.

また、冷媒分配器32も冷媒分配器31と同様に一つのパスを二つのパスへ分配する分配器であり、冷媒パス320を冷媒パス321,322の2パスに分配する。冷媒パス321,322は、熱交換器202を通過後に合流して1パスとなり、冷媒パス323に接続され、連続した冷媒回路を構成する。そして、冷媒パス323は図示しない室外機へと導かれ、圧縮機、室外熱交換器、減圧手段を経て、冷媒パス310として図7に戻ってくる。   Similarly to the refrigerant distributor 31, the refrigerant distributor 32 is a distributor that distributes one path to two paths, and distributes the refrigerant path 320 into two paths of refrigerant paths 321 and 322. The refrigerant paths 321 and 322 merge after passing through the heat exchanger 202 to form one path, and are connected to the refrigerant path 323 to form a continuous refrigerant circuit. Then, the refrigerant path 323 is guided to an outdoor unit (not shown), and returns to FIG. 7 as the refrigerant path 310 through the compressor, the outdoor heat exchanger, and the pressure reducing means.

次に、室内熱交換器の動作について説明する。冷房運転時、冷媒は図示しない室外機から、冷媒パス310へ流入する(実線矢印の方向)。流入した冷媒は冷媒分配器31により冷媒パス311,312の2パスに分配され熱交換器200,201で空気と熱交換する。その後冷媒パス320で1パスに合流し、除湿弁112を通過して冷媒分配器32へ流入する。そして、再び冷媒パス321,322の2パスに分配され、熱交換器202で空気と熱交換する。   Next, the operation of the indoor heat exchanger will be described. During the cooling operation, the refrigerant flows from an outdoor unit (not shown) into the refrigerant path 310 (in the direction of the solid arrow). The refrigerant that has flowed in is distributed to the two paths of the refrigerant paths 311 and 312 by the refrigerant distributor 31 and exchanges heat with air by the heat exchangers 200 and 201. Thereafter, the refrigerant passes through the refrigerant path 320 and passes through the dehumidifying valve 112 and flows into the refrigerant distributor 32. Then, the refrigerant is again distributed to the refrigerant paths 321 and 322, and exchanges heat with air by the heat exchanger 202.

本実施形態に係る冷媒分配器を図2に示す冷媒分配器32に適用した場合、冷媒パス320を通過する高乾き度(χ=0.7前後)の気液二相冷媒は、接続管41、整流手段61および入口管42の溝部44で環状流化し、更に内側管45で構成される二重管部X(X1,X2)で気液に分離される。その後、321,322の2パスに均等に分配され、熱交換器202で空気と熱交換する。   When the refrigerant distributor according to this embodiment is applied to the refrigerant distributor 32 shown in FIG. 2, the gas-liquid two-phase refrigerant having a high dryness (around χ = 0.7) passing through the refrigerant path 320 is connected to the connecting pipe 41. The rectification means 61 and the groove portion 44 of the inlet pipe 42 are made into an annular flow, and further separated into gas and liquid by the double pipe portion X (X1, X2) constituted by the inner tube 45. Then, it is equally distributed to the two paths 321 and 322, and heat exchange with the air is performed by the heat exchanger 202.

このとき、除湿弁112と冷媒分配器32を結ぶ接続管41内が短く、液膜が乱れ、管断面中心に液滴が流れるような状態でも、整流手段61により液滴が液膜に付着するため、冷媒の流れの乱れによる影響が低減し、安定した環状流が入口管42へ流入する。ついで、入口管42へ流入した冷媒流は、溝部44側の空間X2と内側管45の内側X1とで、主に表面張力を用いることにより、液冷媒とガス冷媒を分離するため、入口管42の重力方向の傾きや、接続管の曲がり(湾曲部)での遠心力による影響を低減できる。   At this time, even when the inside of the connection pipe 41 connecting the dehumidifying valve 112 and the refrigerant distributor 32 is short, the liquid film is disturbed, and the liquid droplet flows in the center of the pipe cross section, the liquid droplets adhere to the liquid film by the rectifying means 61. Therefore, the influence of the disturbance of the refrigerant flow is reduced, and a stable annular flow flows into the inlet pipe 42. Next, the refrigerant flow that has flowed into the inlet pipe 42 separates the liquid refrigerant and the gas refrigerant mainly by using surface tension in the space X2 on the groove 44 side and the inner side X1 of the inner pipe 45. The influence of the centrifugal force at the inclination of the gravity direction and the bending (curved portion) of the connecting pipe can be reduced.

従って、微細な溝を有する入口管の上流の冷媒流が、環状流の気相側に液滴が飛散するような乱れた流動状態であっても、幅広い流量範囲で最適な分配比で冷媒分配を行うことが可能となる。ひいては、必要以上に圧縮機を運転する必要がなくなり電気入力が低減する。更に、分配比の悪化による室内ユニットへの露付などの不具合が解消される。   Therefore, even if the refrigerant flow upstream of the inlet pipe having a fine groove is in a turbulent flow state in which droplets are scattered on the gas phase side of the annular flow, the refrigerant is distributed with an optimum distribution ratio in a wide flow range. Can be performed. As a result, it is not necessary to operate the compressor more than necessary, and the electric input is reduced. In addition, problems such as exposure to indoor units due to deterioration of the distribution ratio are eliminated.

以上の説明では、本実施形態として、1パスを2パスに分ける分配器についてその動作を説明したが、出口管が3パス、4パスと多パスになった場合においても同様の効果が得られる。また、本実施形態においては室内熱交換器の冷媒配管の途中に冷媒分配器を適用した場合を説明したが、例えば再熱除湿を行わない場合についても適用できる。このとき、除湿弁は不要となるため、室内熱交換器の入口から出口までの全てが2パスの場合のように、入口の冷媒の乾き度が低い場合(湿り度が高い場合)においても、整流手段61の外径、肉厚、長さと、入口管42の溝部44の形状および内径と、内側管45の外径および肉厚とを入口冷媒状態に応じて最適化することにより、同様の効果が得られる。   In the above description, the operation of the distributor that divides 1 path into 2 paths has been described as this embodiment, but the same effect can be obtained even when the exit pipe has multiple paths such as 3 paths and 4 paths. . Moreover, although the case where the refrigerant distributor was applied in the middle of the refrigerant pipe of the indoor heat exchanger was described in the present embodiment, the present invention can also be applied to a case where reheat dehumidification is not performed, for example. At this time, since the dehumidification valve becomes unnecessary, even when the dryness of the refrigerant at the inlet is low (when the wetness is high), as in the case of all two passes from the inlet to the outlet of the indoor heat exchanger, By optimizing the outer diameter, thickness, and length of the rectifying means 61, the shape and inner diameter of the groove 44 of the inlet pipe 42, and the outer diameter and thickness of the inner pipe 45 according to the inlet refrigerant state, An effect is obtained.

「第2の実施形態」
本発明の第2の実施形態に係る冷媒分配器における整流手段について、図8を参照しながら以下説明する。図8は本発明の第2の実施形態に係る冷媒分配器における他の整流手段の構成を示す図である。
“Second Embodiment”
The rectifying means in the refrigerant distributor according to the second embodiment of the present invention will be described below with reference to FIG. FIG. 8 is a diagram showing a configuration of another rectifying means in the refrigerant distributor according to the second embodiment of the present invention.

図8に示す整流手段71は、気液二相状態の冷媒流40が流入する接続管41と、入口管42の間の管断面中心に設置される(図3に示す配置と同様)。接続管41と、入口管42および入口管42下流側の形態は第1の実施形態と同様である。また、その気液分離の効果および熱交換器に組み込んだ際の効果も第1の実施形態と同様である。   The rectifying means 71 shown in FIG. 8 is installed at the center of the pipe cross section between the connection pipe 41 into which the gas-liquid two-phase refrigerant flow 40 flows and the inlet pipe 42 (similar to the arrangement shown in FIG. 3). The connection pipe 41, the inlet pipe 42, and the downstream side of the inlet pipe 42 are the same as in the first embodiment. Further, the effect of the gas-liquid separation and the effect when incorporated in the heat exchanger are the same as those of the first embodiment.

図8に示す整流手段71の流れの上流側端部は流れの上流側に向けて、管外周から管断面中心方向へテーパ状となっている。気液二相状態の冷媒流40が接続管41から整流手段71に達すると、整流手段71の上流側端部に衝突して管外周方向へ向かい、入口管41内壁を流れる液膜へ付着する。   The upstream end portion of the flow of the rectifying means 71 shown in FIG. 8 is tapered from the outer periphery of the tube toward the center of the tube cross section toward the upstream side of the flow. When the refrigerant flow 40 in the gas-liquid two-phase state reaches the rectifying means 71 from the connection pipe 41, it collides with the upstream end of the rectifying means 71 toward the outer periphery of the pipe and adheres to the liquid film flowing on the inner wall of the inlet pipe 41. .

また、管断面中心部の液滴は、管断面が接続管41から整流手段71で縮小し、入口管42で拡大する流路になっていることから、整流手段71内部で縮流した後、入口管42へ流入する際に拡大する流れとなる。その流れに伴う液滴は入口管41内壁を流れる液滴へ付着する(入口管42の内面には第1の実施形態と同様に溝が形成されている)。したがって、入口管42へ流入する冷媒は安定した環状流となる。   Further, since the liquid droplet at the center of the tube cross section is a flow path in which the tube cross section is reduced by the rectifying means 71 from the connection pipe 41 and enlarged by the inlet pipe 42, The flow expands when flowing into the inlet pipe 42. The droplet accompanying the flow adheres to the droplet flowing on the inner wall of the inlet tube 41 (a groove is formed on the inner surface of the inlet tube 42 as in the first embodiment). Therefore, the refrigerant flowing into the inlet pipe 42 becomes a stable annular flow.

本実施形態における整流手段71は、管肉厚が厚いほど、液滴の付着する量は多くなるが、流れの抵抗となるため整流手段による流動損失は増加する。このため、使用する入口乾き度、接続管41までの管形状により整流手段71の最適な寸法を定める必要がある。例えば、第1の実施形態と同様に入口乾き度が高いほど管断面に存在する液相が少ないため液膜の厚さが薄く、液滴量が少ない。すなわち、本実施形態を適用する際の入口乾き度が高いほど管肉厚を薄くすることができ、整流手段による流動損失を大幅に増加させることなく、液滴は付着し、入口管42へ流入する冷媒は安定した環状流となる。   In the rectifying means 71 in this embodiment, as the tube thickness increases, the amount of droplets attached increases, but the flow resistance due to the rectifying means increases because of the flow resistance. For this reason, it is necessary to determine the optimal dimension of the rectifying means 71 according to the dryness of the inlet used and the pipe shape up to the connecting pipe 41. For example, as in the first embodiment, the higher the inlet dryness, the smaller the liquid phase present in the cross section of the tube, and thus the thinner the liquid film and the smaller the amount of droplets. That is, the higher the inlet dryness when the present embodiment is applied, the thinner the tube thickness, and the droplets adhere and flow into the inlet pipe 42 without significantly increasing the flow loss due to the rectifying means. The refrigerant is a stable annular flow.

また、整流手段71下流における液滴の付着が十分に行なわれるように整流手段71と二重管部Xとの距離を流量範囲に応じて、最適な配置にする必要がある。すなわち、整流手段71と二重管部Xとの距離は、整流手段通過後の液滴が液膜へ付着する範囲以上とする必要がある。流量が多いほど管断面中心部の気相の流速は速く、それに伴う液滴の流速も速くなり、整流手段通過後の液膜への付着範囲が広くなるため、整流手段71と二重管部Xまでの距離を長くする必要がある。   In addition, the distance between the rectifying unit 71 and the double pipe portion X needs to be optimally arranged according to the flow rate range so that the droplets are sufficiently attached downstream of the rectifying unit 71. That is, the distance between the rectifying means 71 and the double tube portion X needs to be equal to or greater than the range in which the droplets after passing through the rectifying means adhere to the liquid film. As the flow rate increases, the flow velocity of the gas phase at the center of the tube cross section increases and the flow velocity of the droplets accompanying it increases, and the adhesion range to the liquid film after passing through the rectifying device becomes wider. It is necessary to increase the distance to X.

上述したように整流手段71を構成することで第1の実施形態のメリットに加え、管肉厚が厚くても、テーパ部を設けることで管断面中心部の気相の流れを大きく乱すことなく、液滴の一部を外周側へ導くことができるので、整流手段による流動損失を低減し、入口管の上流の冷媒流が、環状流の気相側に液滴が飛散するような乱れた流動状態であっても、幅広い流量範囲で最適な分配比で冷媒分配を行うことが可能となる。   By configuring the rectifying means 71 as described above, in addition to the merit of the first embodiment, even if the tube thickness is thick, by providing the tapered portion, the gas phase flow at the center of the tube cross section is not greatly disturbed. Since a part of the droplet can be guided to the outer peripheral side, the flow loss due to the rectifying means is reduced, and the refrigerant flow upstream of the inlet pipe is disturbed such that the droplet is scattered on the gas phase side of the annular flow Even in a flowing state, it is possible to perform refrigerant distribution at an optimal distribution ratio in a wide flow rate range.

「第3の実施形態」
本発明の第3の実施形態に係る冷媒分配器における整流手段について、図9を参照しながら以下説明する。図9は本発明の第3の実施形態に係る冷媒分配器における整流手段の別の構成を示す図である。
“Third Embodiment”
The rectifying means in the refrigerant distributor according to the third embodiment of the present invention will be described below with reference to FIG. FIG. 9 is a diagram showing another configuration of the rectifying means in the refrigerant distributor according to the third embodiment of the present invention.

図9に示す整流手段81は、気液二相状態の冷媒流40が流入する接続管41と入口管42の間の管断面に設置される。接続管41と、入口管42および入口管42下流側の形態は第1の実施形態と同様である。また、その気液分離の効果および、熱交換器に組み込んだ際の効果も第1の実施形態と同様である。   The rectifying means 81 shown in FIG. 9 is installed on the pipe cross section between the connection pipe 41 and the inlet pipe 42 into which the gas-liquid two-phase refrigerant flow 40 flows. The connection pipe 41, the inlet pipe 42, and the downstream side of the inlet pipe 42 are the same as in the first embodiment. Moreover, the effect of the gas-liquid separation and the effect at the time of incorporating in a heat exchanger are the same as those of the first embodiment.

第3の実施形態における整流手段は、図3に示す円筒体構造とは異なり、管内面に螺旋状溝を設けた入口管42の入口近傍に全断面に亘った格子状構造体からなり、さらに、この格子には粗密を形成し、管中央部の開口率は管外周部のそれよりも小さくする。すなわち、中央部は密にし外周部にかけて粗にする。このような整流手段の構造によって、格子状構造体の中央部ではその密格子形状によって液滴を含んだガス冷媒流はその流速が外周部との比較で遅くなり、中央部の格子に衝突した液滴は、流速の速い外周部に引き寄せられ、次いで入口管内面の螺旋溝を流れる液滴に付着することとなる。したがって、入口管42へ流入する冷媒は安定した環状流となる。   The rectifying means in the third embodiment is different from the cylindrical structure shown in FIG. 3 and comprises a lattice-like structure over the entire cross section in the vicinity of the inlet of the inlet pipe 42 provided with a spiral groove on the inner surface of the pipe. In this lattice, the density is formed so that the opening ratio of the central portion of the tube is smaller than that of the outer peripheral portion of the tube. That is, the central part is dense and roughened to the outer peripheral part. Due to the structure of the rectifying means, the flow rate of the gas refrigerant flow containing droplets in the central part of the lattice structure is slow compared to the outer peripheral part due to the dense lattice shape, and collides with the lattice in the central part. The droplets are attracted to the outer peripheral portion having a high flow velocity, and then adhere to the droplets flowing through the spiral groove on the inner surface of the inlet tube. Therefore, the refrigerant flowing into the inlet pipe 42 becomes a stable annular flow.

整流手段81の格子間隔が小さいほど、格子の太さが太いほど、大流量時の液滴の付着量は多くなるが、整流手段による流動損失は増加する。このため、使用する入口乾き度、流量範囲により格子の粗密程度や太さを定める必要がある。また、使用する流量範囲に応じて整流手段81下流における液滴の付着が十分に行なわれるよう整流手段81と二重管部Xとの距離をとる必要がある。   The smaller the lattice spacing of the rectifier 81 and the thicker the lattice, the greater the amount of droplets deposited at a large flow rate, but the flow loss due to the rectifier increases. For this reason, it is necessary to determine the density and thickness of the grid depending on the dryness of the inlet used and the flow rate range. Further, it is necessary to take a distance between the rectifying means 81 and the double tube portion X so that the droplets are sufficiently attached downstream of the rectifying means 81 according to the flow rate range to be used.

例えば、第1の実施形態と同様に入口乾き度が高いほど管断面に存在する液相が少ないため液膜の厚さが薄く、液滴量が少ない。すなわち、本実施形態を適用する際の入口乾き度が高いほど格子の密度を粗にすることができ、整流手段による流動損失を大幅に増加させることなく、液滴は付着し、入口管42へ流入する冷媒は安定した環状流となる。   For example, as in the first embodiment, the higher the inlet dryness, the smaller the liquid phase present in the cross section of the tube, and thus the thinner the liquid film and the smaller the amount of droplets. That is, the higher the inlet dryness when applying this embodiment, the coarser the density of the lattice, and the droplets adhere to the inlet pipe 42 without significantly increasing the flow loss due to the rectifying means. The refrigerant flowing in becomes a stable annular flow.

また、整流手段81下流における液滴の付着が十分に行なわれるよう整流手段81と二重管部Xとの距離を流量範囲に応じて、最適な配置にする必要がある。すなわち、整流手段81と二重管部Xとの距離は、整流手段通過後の液滴が液膜へ付着する範囲以上とする必要がある。流量が多いほど管断面中心部の気相の流速は速く、それに伴う液滴の流速も速くなり、整流手段通過後の液膜への付着範囲が広くなるため、整流手段81と二重管部Xまでの距離を長くする必要がある。   In addition, the distance between the rectifying unit 81 and the double pipe portion X needs to be optimally arranged according to the flow rate range so that the droplets are sufficiently attached downstream of the rectifying unit 81. That is, the distance between the rectifying means 81 and the double tube portion X needs to be equal to or greater than the range in which the droplets after passing through the rectifying means adhere to the liquid film. As the flow rate increases, the flow velocity of the gas phase at the center of the tube cross-section increases, and the flow velocity of the droplets accompanying it increases, so that the range of adhesion to the liquid film after passing through the rectifying device becomes wider. It is necessary to increase the distance to X.

図9に示すように整流手段81を構成することで第1の実施形態のメリットに加え、より簡単な構造で、入口管の上流の冷媒流が環状流の気相側に液滴が飛散するような乱れた流動状態であっても、幅広い流量範囲で最適な分配比で冷媒分配を行うことが可能となる。   As shown in FIG. 9, in addition to the merits of the first embodiment by configuring the rectifying means 81, droplets are scattered on the gas phase side of the annular flow of the refrigerant flow upstream of the inlet pipe with a simpler structure. Even in such a turbulent flow state, the refrigerant can be distributed with an optimal distribution ratio in a wide flow rate range.

図9に示すように、入口管の入口近傍に粗密形状の格子状整流手段を設けることで、液滴を含んだ気液二相流の乱れた冷媒流が送られてきた場合においても、第1と第2の実施形態と同様に、微細な溝を有する入口管の上流の冷媒流が環状流の気相側に液滴が飛散するような乱れた流動状態であっても、幅広い流量範囲で最適な分配比で冷媒分配を行うことが可能となる。   As shown in FIG. 9, by providing a coarse and dense grid-like rectification means in the vicinity of the inlet of the inlet pipe, even when a refrigerant flow in which a gas-liquid two-phase flow containing droplets is disturbed is sent, As in the first and second embodiments, a wide flow rate range is possible even when the refrigerant flow upstream of the inlet pipe having a fine groove is in a turbulent flow state in which droplets are scattered on the gas phase side of the annular flow. Thus, refrigerant distribution can be performed with an optimal distribution ratio.

以上説明したように、本発明の実施形態に係る冷媒分配器は、次のような構成を備え、機能乃至効果を奏することを特徴とするものである。すなわち、入口管と、この入口管から分岐する複数の出口管を備え、入口管の内面に複数の微細な溝を設けた冷媒分配器において、入口管の最小内径よりも小さい外径の内側管を有する二重管部を、入口管と出口管の間に、入口管出口側で複数の出口管入口に接するように設けるとともに、入口管の入口付近に構成された入口管内壁付近と中心付近が流路である筒状(環状)の整流手段、または、流れの上流側端部に管外周から管断面中心方向へテーパ状である筒状(環状)の整流手段、あるいは粗密形成だれた格子状の整流手段を設けたことを特徴とする。   As described above, the refrigerant distributor according to the embodiment of the present invention has the following configuration, and has functions and effects. That is, in a refrigerant distributor having an inlet pipe and a plurality of outlet pipes branched from the inlet pipe, and having a plurality of fine grooves on the inner surface of the inlet pipe, the inner pipe having an outer diameter smaller than the minimum inner diameter of the inlet pipe A double pipe portion having an inlet pipe and an outlet pipe is provided between the inlet pipe and the outlet pipe so as to be in contact with a plurality of outlet pipe inlets on the inlet pipe outlet side, near the inlet pipe inner wall and near the center. Is a cylindrical (annular) rectifier that is a flow path, or a cylindrical (annular) rectifier that is tapered from the outer periphery of the pipe to the center of the cross section of the pipe at the upstream end of the flow, or a densely packed grid It is characterized in that a rectifying means is provided.

本実施形態に係る冷媒分配器が上述のような特徴を具備することによって、気液二相流が乱れた流れであっても、入口管の入口付近に構成された冷媒流の整流手段に液滴が通過することで液膜に付着し、安定した環状流とする。さらに、溝付管の内面溝により環状流化した気液二相流を、二重管部により外周側に溝部内の液冷媒を流し、内周側に中心を流れるガス冷媒を流すように維持形成する。   Since the refrigerant distributor according to the present embodiment has the above-described characteristics, even if the gas-liquid two-phase flow is turbulent, the liquid flow is rectified in the refrigerant flow rectifier configured near the inlet of the inlet pipe. As the droplets pass, the droplets adhere to the liquid film and form a stable annular flow. Furthermore, the gas-liquid two-phase flow that has been circulated by the inner groove of the grooved tube is maintained so that the liquid refrigerant in the groove portion flows to the outer peripheral side by the double tube portion, and the gas refrigerant flowing in the center flows to the inner peripheral side. Form.

このように、入口管の上流の冷媒流が環状流の気相側に液滴が飛散するような乱れた流動状態であっても、溝付管による旋回成分が支配的な高流量・低乾き度の領域だけでなく、溝付管により旋回成分が生じない低流量・高乾き度の領域においても、入口管上流の接続管の曲がり(湾曲部)での遠心力による液冷媒の偏りや重力の影響を低減し、幅広い流量範囲で最適な分配比で冷媒分配を行うことが可能となる。ひいては、必要以上に圧縮機を運転する必要がなくなり電気入力が低減する。更に、分配比の悪化による室内ユニットへの露付などの不具合が解消される。また、気液を分離する作用を利用して、本実施形態に係る冷媒分配器を空気調和機に適用することによって、冷媒分配器で主として液冷媒だけを回収して室内熱交換器に導入し、ガス冷媒は室内熱交換器を通さずに圧縮機に戻すようにすれば、空気調和機を高効率で、信頼性を確保しつつ(圧縮機に余分な液が混入しないので)運転することができる。   In this way, even if the refrigerant flow upstream of the inlet pipe is in a turbulent flow state where droplets are scattered on the gas phase side of the annular flow, the swirl component by the grooved pipe is dominant and the high flow rate and low dryness are dominant. Liquid refrigerant bias and gravity due to the centrifugal force at the bending (curved part) of the connecting pipe upstream of the inlet pipe not only in the area of high temperature but also in the low flow and high dryness area where the swirling component is not generated by the grooved pipe Thus, refrigerant distribution can be performed with an optimal distribution ratio in a wide flow rate range. As a result, it is not necessary to operate the compressor more than necessary, and the electric input is reduced. In addition, problems such as exposure to indoor units due to deterioration of the distribution ratio are eliminated. Further, by utilizing the action of separating the gas and liquid, the refrigerant distributor according to the present embodiment is applied to an air conditioner, so that only the liquid refrigerant is mainly collected by the refrigerant distributor and introduced into the indoor heat exchanger. If the gas refrigerant is returned to the compressor without passing through the indoor heat exchanger, the air conditioner is operated with high efficiency and reliability (because no excess liquid is mixed into the compressor). Can do.

一般的な家庭用空気調和機の冷凍サイクルの構成を示す図である。It is a figure which shows the structure of the refrigerating cycle of a general household air conditioner. 一般的な家庭用空気調和機の再熱除湿に対応した冷凍サイクルの構成を示す図である。It is a figure which shows the structure of the refrigerating cycle corresponding to the reheat dehumidification of a general household air conditioner. 本発明の第1の実施形態に係る冷媒分配器の全体構成を示す図である。It is a figure showing the whole refrigerant distributor composition concerning a 1st embodiment of the present invention. 第1の実施形態における入口管上流側の接続管に流入する気液二相状態の冷媒流流動状態を示す図である。It is a figure which shows the refrigerant | coolant flow flow state of the gas-liquid two-phase state which flows in into the connecting pipe of the inlet pipe upstream in 1st Embodiment. 第1の実施形態における接続管上流側に配置されたベント(曲がり管)と二方弁の冷媒流流動状態を示す図である。It is a figure which shows the refrigerant | coolant flow flow state of the vent (bending pipe | tube) arrange | positioned in the connection pipe upstream in 1st Embodiment, and a two-way valve. 第1の実施形態における入口管の入口近傍に整流手段を設けることによる冷媒流動状態を模式的に表す図である。It is a figure which represents typically the refrigerant | coolant flow state by providing a rectification | straightening means in the entrance vicinity of the inlet pipe in 1st Embodiment. 第1の実施形態に係る冷媒分配器を家庭用空気調和機の室内熱交換器の冷媒回路に適用した冷媒配管を示す図である。It is a figure which shows the refrigerant | coolant piping which applied the refrigerant distributor which concerns on 1st Embodiment to the refrigerant circuit of the indoor heat exchanger of a domestic air conditioner. 本発明の第2の実施形態に係る冷媒分配器における整流手段の他の構成を示す図である。It is a figure which shows the other structure of the rectification | straightening means in the refrigerant distributor which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る冷媒分配器における整流手段の別の構成を示す図である。It is a figure which shows another structure of the rectification | straightening means in the refrigerant distributor which concerns on the 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1 圧縮機
2 四方弁
3 電動弁等の絞り装置
4 室内熱交換器
5 室外熱交換器
11,12,21,22 冷媒パス
31,32 冷媒分配器
40 冷媒流
41 接続管
42 入口管
43 出口管
44 溝
45 内側管
46 フランジ
46a 分離された液の分配流路
46b 分離された液の分配流路
47 フランジの断面図
60 整流手段61の設置位置における断面図
61 第1の実施形態における整流手段
62 整流手段固定手段
71 第2の実施形態における整流手段
81 第3の実施形態における整流手段
112 除湿弁
113 貫流ファン
114 室内機筐体
200,201,202 熱交換器
310,311,312,320,321,322,323 冷媒パス
DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way valve 3 Throttling devices, such as a motor operated valve 4 Indoor heat exchanger 5 Outdoor heat exchanger 11, 12, 21, 22 Refrigerant path 31, 32 Refrigerant distributor 40 Refrigerant flow 41 Connection pipe 42 Inlet pipe 43 Outlet pipe 44 Groove 45 Inner tube 46 Flange 46a Separated liquid distribution flow path 46b Separated liquid distribution flow path 47 Cross sectional view of the flange 60 Cross sectional view at the installation position of the rectifying means 61 61 Rectifying means 62 in the first embodiment Rectifying means fixing means 71 Rectifying means in the second embodiment 81 Rectifying means in the third embodiment 112 Dehumidifying valve 113 Cross-flow fan 114 Indoor unit casing 200, 201, 202 Heat exchanger 310, 311, 312, 320, 321 , 322,323 Refrigerant path

Claims (5)

気液二相冷媒流が送り込まれる入口管と、前記入口管の下流側で前記冷媒流を分配させる複数の出口管と、を備えた冷媒分配器において、
前記入口管は管内面に液冷媒を流すように複数の溝を有し、
前記入口管の入口近傍に、前記冷媒流に含まれる液滴を偏向させる筒状の液滴偏向手段を、その出口側が前記入口管の溝に対面して空間を形成するように内設し、
前記液滴偏向手段の内側空間と、前記液滴偏向手段の外周部と前記入口管の内面との間の空間が、冷媒流の流路を形成する
ことを特徴とする冷媒分配器。
In a refrigerant distributor comprising an inlet pipe into which a gas-liquid two-phase refrigerant flow is sent, and a plurality of outlet pipes that distribute the refrigerant flow downstream of the inlet pipe,
The inlet pipe has a plurality of grooves so that the liquid refrigerant flows on the inner surface of the pipe,
In the vicinity of the inlet of the inlet pipe, a cylindrical liquid droplet deflecting means for deflecting liquid droplets contained in the refrigerant flow is provided so that the outlet side faces the groove of the inlet pipe and forms a space ,
A refrigerant distributor, wherein an inner space of the droplet deflecting unit and a space between an outer peripheral portion of the droplet deflecting unit and an inner surface of the inlet pipe form a flow path of the refrigerant flow.
請求項1において、
前記筒状の液滴偏向手段は上流側端部にテーパ形状を形成し、
前記液滴が前記テーパ形状に衝突することによって、その流れ方向が前記入口管の管内面に向けられる
ことを特徴とする冷媒分配器。
In claim 1,
The cylindrical droplet deflecting means forms a tapered shape at the upstream end,
The refrigerant distributor is characterized in that, when the droplet collides with the tapered shape, the flow direction thereof is directed toward the inner surface of the inlet pipe.
気液二相冷媒流が送り込まれる入口管と、前記入口管の下流側で前記冷媒流を分配させる複数の出口管と、を備えた冷媒分配器において、
前記入口管は管内面に液冷媒を流すように複数の溝を有し、
前記入口管の入口近傍に、前記冷媒流に含まれる液滴を偏向させる格子状の液滴偏向手段を、その出口側が前記入口管の溝に対面して空間を形成するように設け、
前記格子状の液滴偏向手段は、中央部で格子の粗密が密構造を形成し、外周部で格子の粗密が粗構造を形成する
ことを特徴とする冷媒分配器。
In a refrigerant distributor comprising an inlet pipe into which a gas-liquid two-phase refrigerant flow is sent, and a plurality of outlet pipes that distribute the refrigerant flow downstream of the inlet pipe,
The inlet pipe has a plurality of grooves so that the liquid refrigerant flows on the inner surface of the pipe,
In the vicinity of the inlet of the inlet pipe, a lattice-like liquid droplet deflecting means for deflecting liquid droplets contained in the refrigerant flow is provided so that the outlet side thereof faces the groove of the inlet pipe and forms a space ,
The lattice-shaped droplet deflecting means is characterized in that the density of the lattice forms a dense structure in the central portion, and the density of the lattice forms a coarse structure in the outer peripheral portion.
請求項1、2または3において、
前記液滴偏向手段下流側に、前記入口管と前記出口管の間に内側管を設け、
前記内側管は前記入口管の内径よりも小さい外径を有し、
断面積の異なる穴の開いたフランジを前記内側管と前記出口管の間に設ける
ことを特徴とする冷媒分配器。
In claim 1, 2 or 3,
On the downstream side of the droplet deflecting means, an inner pipe is provided between the inlet pipe and the outlet pipe,
The inner tube has an outer diameter smaller than the inner diameter of the inlet tube;
A refrigerant distributor, wherein a flange with a hole having a different cross-sectional area is provided between the inner pipe and the outlet pipe .
請求項1、2、3または4に記載の冷媒分配器を室内熱交換器の冷媒経路に適用することを特徴とする空気調和機。   An air conditioner, wherein the refrigerant distributor according to claim 1, 2, 3, or 4 is applied to a refrigerant path of an indoor heat exchanger.
JP2006308003A 2006-11-14 2006-11-14 Refrigerant distributor and air conditioner equipped with refrigerant distributor Expired - Fee Related JP4294680B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006308003A JP4294680B2 (en) 2006-11-14 2006-11-14 Refrigerant distributor and air conditioner equipped with refrigerant distributor
CN2007101696551A CN101182965B (en) 2006-11-14 2007-11-13 Refrigerant dispenser and air conditioner having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006308003A JP4294680B2 (en) 2006-11-14 2006-11-14 Refrigerant distributor and air conditioner equipped with refrigerant distributor

Publications (2)

Publication Number Publication Date
JP2008122010A JP2008122010A (en) 2008-05-29
JP4294680B2 true JP4294680B2 (en) 2009-07-15

Family

ID=39448327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006308003A Expired - Fee Related JP4294680B2 (en) 2006-11-14 2006-11-14 Refrigerant distributor and air conditioner equipped with refrigerant distributor

Country Status (2)

Country Link
JP (1) JP4294680B2 (en)
CN (1) CN101182965B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101655298B (en) * 2008-08-18 2012-01-11 海尔集团公司 Gaseous refrigerant reflux apparatus in refrigerant circulating system
JP5381201B2 (en) * 2009-03-18 2014-01-08 セイコーエプソン株式会社 Liquid column body of liquid tank, liquid tank and droplet discharge device
CN102478331B (en) * 2010-11-24 2013-12-04 珠海格力电器股份有限公司 Liquid distributor and air conditioner comprising same
JP5562879B2 (en) * 2011-02-01 2014-07-30 日立アプライアンス株式会社 Refrigerant distributor and refrigeration cycle apparatus including the same
WO2013190617A1 (en) * 2012-06-18 2013-12-27 三菱電機株式会社 Heat exchanger
CN103673419B (en) * 2012-09-12 2016-06-01 珠海格力电器股份有限公司 A kind of air-conditioning and air conditioner diverter thereof
CN104654678B (en) * 2015-01-15 2017-06-16 华中科技大学 A kind of coolant flow divider with gas-liquid separation
CN106247705A (en) * 2016-08-20 2016-12-21 常州麟喃热处理厂 Flow guiding type metal heat treatmet reservoir

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304722A (en) * 2000-04-26 2001-10-31 Daikin Ind Ltd Refrigerant distributor and method of manufacturing it
JP2003090646A (en) * 2001-09-20 2003-03-28 Hitachi Cable Ltd Heat exchanger for air conditioner
CN1611871A (en) * 2003-10-30 2005-05-04 乐金电子(天津)电器有限公司 Refrigeraut distributor for heat exchanger and its manufacturing method
CN100375875C (en) * 2003-10-30 2008-03-19 乐金电子(天津)电器有限公司 Refrigerant distributor for heat exchanger and its assembling method

Also Published As

Publication number Publication date
JP2008122010A (en) 2008-05-29
CN101182965A (en) 2008-05-21
CN101182965B (en) 2010-06-02

Similar Documents

Publication Publication Date Title
JP4294680B2 (en) Refrigerant distributor and air conditioner equipped with refrigerant distributor
JP2013148309A (en) Coolant distributor and refrigeration cycle device including the same
JP6545277B2 (en) Outdoor unit of air conditioner
JP6104893B2 (en) Heat exchanger, refrigeration cycle apparatus, air conditioner, and heat exchange method
US11543185B2 (en) Air-conditioning apparatus
WO2008073108A1 (en) Refrigerant distribution improvement in parallel flow heat exchanger manifolds
EP3805687B1 (en) Refrigerant distributor, heat exchanger, and air conditioner
JP2008267689A (en) Refrigerant distributor
WO2016121123A1 (en) Refrigeration cycle device
JP7470909B2 (en) Microchannel heat exchanger and air conditioner
JP2018194251A (en) Heat exchanger
JP2008542677A (en) Parallel flow evaporator with liquid trap for good flow distribution
JP2014081149A (en) Refrigerant distributor and refrigeration cycle device including the same
JP2012068012A (en) Refrigerating device for air conditioner or the like
US20060144051A1 (en) Evaporator designs for achieving high cooling performance at high superheats
JP2008145030A (en) Multi-chamber type air conditioner
JPH06257892A (en) Parallel flow heat exchanger for heat pump
CN219390151U (en) Heat exchanger structure, refrigerant system and refrigeration equipment
JP2012098007A (en) Refrigerant distributor, heat exchanger, and refrigeration cycle device
CN219063829U (en) Heat exchanger structure, refrigerant system and refrigeration equipment
CN219063811U (en) Heat exchanger structure, refrigerant system and refrigeration equipment
JP2008039278A (en) Heat exchanger and indoor unit of air conditioner
JP5562879B2 (en) Refrigerant distributor and refrigeration cycle apparatus including the same
JP2008133994A (en) Heat exchanger
JP2003314930A (en) Multi-chamber air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4294680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees