JP2012098007A - Refrigerant distributor, heat exchanger, and refrigeration cycle device - Google Patents

Refrigerant distributor, heat exchanger, and refrigeration cycle device Download PDF

Info

Publication number
JP2012098007A
JP2012098007A JP2010248428A JP2010248428A JP2012098007A JP 2012098007 A JP2012098007 A JP 2012098007A JP 2010248428 A JP2010248428 A JP 2010248428A JP 2010248428 A JP2010248428 A JP 2010248428A JP 2012098007 A JP2012098007 A JP 2012098007A
Authority
JP
Japan
Prior art keywords
refrigerant
distributor
heat exchanger
liquid
protrusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010248428A
Other languages
Japanese (ja)
Other versions
JP5100818B2 (en
Inventor
Takashi Okazaki
多佳志 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010248428A priority Critical patent/JP5100818B2/en
Publication of JP2012098007A publication Critical patent/JP2012098007A/en
Application granted granted Critical
Publication of JP5100818B2 publication Critical patent/JP5100818B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerant distributor with which a refrigerant is distributed regardless of the influence of gravity, and also a refrigerant is distributed properly corresponding to the difference in the heat load of a heat exchanger.SOLUTION: The refrigerant distributor includes: a refrigerant connection port 1 through which a refrigerant flows in; a plurality of refrigerant connection ports 2 each of which is at the same distance from the refrigerant connection port 1, and through which the refrigerant flown in from the port 1 flows out; a plurality of pillar-shaped projections 5a for providing spaces between the refrigerant connection port 1 and the plurality of refrigerant connection ports 2, and for leading the refrigerant, with a capillary force produced in the refrigerant, from the refrigerant connection port 1 to each of the refrigerant connection ports 2; and grooves 9 for communication among liquid equalization holes 10 formed to fit the shape of the plurality of refrigerant connection ports 2.

Description

本発明は、主として空気調和装置等の冷凍サイクル装置を構成する熱交換器において、例えば気液二相冷媒を分配して複数の伝熱管等に流入させる冷媒分配器等に関するものである。   The present invention relates to a refrigerant distributor that distributes a gas-liquid two-phase refrigerant and flows it into a plurality of heat transfer tubes, for example, in a heat exchanger constituting a refrigeration cycle apparatus such as an air conditioner.

例えば、空気調和装置等の冷凍サイクル装置において、冷媒回路を構成する蒸発器、凝縮器を、冷媒と熱交換対象との熱交換を行う熱交換器で構成する。このような熱交換器において、例えば、冷媒が流入する部分に冷媒分配器を備え、流入する冷媒を複数に分配して、伝熱管等を有する熱交換本体に供給して熱交換をさせる場合がある。このとき、冷媒分配器の分配に重力が影響し、偏りが発生することがあった。   For example, in a refrigeration cycle apparatus such as an air conditioner, an evaporator and a condenser that constitute a refrigerant circuit are configured by a heat exchanger that performs heat exchange between the refrigerant and a heat exchange target. In such a heat exchanger, for example, there is a case where a refrigerant distributor is provided in a portion where the refrigerant flows, and the flowing refrigerant is divided into a plurality of parts and supplied to a heat exchange main body having a heat transfer tube or the like for heat exchange. is there. At this time, gravity affects the distribution of the refrigerant distributor, which may cause bias.

このため、従来の熱交換器では、分配器入口部分の配管に螺旋溝を設け、重力よりも溝形状の作用による表面張力が支配的となるようにすることで、冷媒分配器の設置角度が分配特性に与える影響を小さくするようにしていた(例えば、特許文献1参照)。   For this reason, in the conventional heat exchanger, the installation angle of the refrigerant distributor is set by providing a spiral groove in the pipe at the inlet of the distributor so that the surface tension due to the action of the groove shape is more dominant than gravity. The influence on the distribution characteristic is reduced (for example, see Patent Document 1).

特開2003−14337号公報(請求項1、第7図(b))Japanese Patent Laid-Open No. 2003-14337 (Claim 1, FIG. 7 (b))

上記のような分配を行う場合、例えばロウ付け精度などの製造上の問題で冷媒入口管と冷媒出口管との管端部において、所定寸法の間隙をあけた場合、流動状態が重力の影響を受けて偏流し、分配性能が低下するということがあった。また、設置角度の影響を受けずに均等分配はできるものの、例えば熱交換器の熱負荷に応じた分配調整をすること等が難しいという課題があった。   When the above distribution is performed, for example, when a gap of a predetermined dimension is opened at the pipe end portion of the refrigerant inlet pipe and the refrigerant outlet pipe due to manufacturing problems such as brazing accuracy, the flow state is affected by gravity. In some cases, it drifted and the distribution performance deteriorated. Moreover, although uniform distribution can be performed without being affected by the installation angle, there is a problem that it is difficult to adjust distribution according to the heat load of the heat exchanger, for example.

本発明は上記のような従来の課題を解決するためになされたもので、例えば、重力の影響によらず冷媒の分配を行えるようにし、また、熱交換器の熱負荷の違いにも対応して冷媒を適切に分配できるような冷媒分配器等を提供する。   The present invention has been made in order to solve the above-described conventional problems. For example, the present invention can distribute refrigerant regardless of the influence of gravity, and can cope with a difference in heat load of a heat exchanger. And a refrigerant distributor that can appropriately distribute the refrigerant.

上記課題を解決するため、本発明の冷媒分配器は、冷媒が流入する冷媒流入口と、それぞれ冷媒流入口から等距離にあって、流入した冷媒が流出する複数の冷媒流出口と、冷媒流入口と複数の冷媒流出接続口との間に空間を形成し、さらに冷媒に毛細管力を発生させて冷媒流入口から各冷媒流出口に冷媒を導くための複数の突起と、複数の冷媒流出口に合わせて形成した液穴を連通させる溝とを備え、低圧力損失で、例えば熱交換器の熱負荷に応じた分配調整ができる冷媒分配器を提供する。   In order to solve the above problems, a refrigerant distributor according to the present invention includes a refrigerant inlet into which refrigerant flows, a plurality of refrigerant outlets that are equidistant from the refrigerant inlet and from which the refrigerant flows out, and a refrigerant flow. A plurality of protrusions for forming a space between the inlet and the plurality of refrigerant outflow connection ports, further generating capillary force in the refrigerant and guiding the refrigerant from the refrigerant inlet to each refrigerant outlet; and a plurality of refrigerant outlets And a groove for communicating the liquid holes formed in accordance with the above, and a refrigerant distributor capable of adjusting the distribution according to the heat load of the heat exchanger, for example, with a low pressure loss.

本発明によれば、冷媒の流路となる部分に複数の突起を設け、例えば重力方向(鉛直方向)において高い位置にある冷媒流出口には、突起間の毛細管力(表面張力)を利用して、重力に抗するように冷媒を流すようにしたので、重力の影響によらない冷媒の分配を実現することができる。このとき、毛細管力を利用して冷媒の分配を行うため、冷媒分配器における圧力損失を小さくすることができる。このため、高性能かつ低コストの熱交換器及び冷凍サイクル装置を提供することができる。   According to the present invention, a plurality of protrusions are provided in a portion serving as a refrigerant flow path, and for example, a capillary force (surface tension) between the protrusions is used for a refrigerant outlet at a high position in the gravity direction (vertical direction). Thus, since the refrigerant is allowed to flow against the gravity, the refrigerant distribution independent of the influence of gravity can be realized. At this time, since the refrigerant is distributed using the capillary force, the pressure loss in the refrigerant distributor can be reduced. For this reason, a high-performance and low-cost heat exchanger and refrigeration cycle apparatus can be provided.

この発明の実施の形態1に係る冷媒分配器30の組立図である。It is an assembly drawing of the refrigerant distributor 30 which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る上蓋4aの上面図である。It is a top view of the upper cover 4a which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る分配部3を示す構造図である。It is a structural diagram which shows the distribution part 3 which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る底蓋4bの上面図である。It is a top view of the bottom cover 4b which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る冷媒分配器30の傾斜配置図である。It is an inclination layout of refrigerant distributor 30 concerning Embodiment 1 of this invention. 実施の形態2に係る冷媒分配器30を搭載した熱交換器の構造図である。FIG. 6 is a structural diagram of a heat exchanger equipped with a refrigerant distributor 30 according to Embodiment 2. この発明の実施の形態3に係る冷凍サイクル装置の構成を示す図である。It is a figure which shows the structure of the refrigerating-cycle apparatus which concerns on Embodiment 3 of this invention.

実施の形態1.
図1は、本発明の実施の形態1における冷媒分配器30の構成例を示す模式図である。図1に示すように、本実施の形態に係る冷媒分配器30は、円盤形状の機器であり、大径の冷媒接続口1、小径の冷媒接続口2を有する上蓋(第1のプレート)4a、分配部(第2のプレート)3及び底蓋(第3のプレート)4bにより構成される。冷媒分配器30の内部には分配空間部が存在する。分配空間部は、冷媒接続口1と冷媒接続口2との間の流路となる。
Embodiment 1 FIG.
FIG. 1 is a schematic diagram illustrating a configuration example of a refrigerant distributor 30 according to Embodiment 1 of the present invention. As shown in FIG. 1, the refrigerant distributor 30 according to the present embodiment is a disk-shaped device, and has an upper lid (first plate) 4 a having a large-diameter refrigerant connection port 1 and a small-diameter refrigerant connection port 2. , A distribution unit (second plate) 3 and a bottom lid (third plate) 4b. A distribution space portion exists inside the refrigerant distributor 30. The distribution space portion is a flow path between the refrigerant connection port 1 and the refrigerant connection port 2.

図2は上蓋4aを上面側(冷媒流入出側)からみた図である。上蓋4aは、冷媒接続口1と冷媒接続口2とを有している。冷媒接続口1及び冷媒接続口2は、分配空間部(分配部3)に対して同じ側に設けられており、冷媒配管(図示せず)と接続して冷媒を流入出する。本実施の形態では、円盤形状の上蓋4aの中心部分を開口して冷媒接続口1としている。また、冷媒接続口1は、冷媒分配器30(分配部3)に冷媒を流入させるための流入口となるものとする。一方、冷媒接続口2は、冷媒接続口1を中心として各冷媒接続口2が等距離となるような位置に設けられている。また、本実施の形態では、2つの冷媒接続口2を組として冷媒接続口1(円盤形状中心)に対して点対称の位置に配置しているものとする。図2では8つの冷媒接続口2(4組の冷媒接続口2)を有している。そして、冷媒接続口2は、冷媒の流出口となり、例えば接続する熱交換対象と冷媒との熱交換を行う熱交換器の伝熱管(図示せず)に冷媒を流出するものとする。ここで、本実施の形態においては、重力方向と逆方向を上方向とし、冷媒分配器30の中心にある冷媒接続口1よりも上方向側を上部とする。また、重力方向を下方向とし、冷媒分配器30の中心にある冷媒接続口1よりも下方向側を下部とする。   FIG. 2 is a view of the upper lid 4a as viewed from the upper surface side (the refrigerant inflow / outflow side). The upper lid 4 a has a refrigerant connection port 1 and a refrigerant connection port 2. The refrigerant connection port 1 and the refrigerant connection port 2 are provided on the same side with respect to the distribution space (distribution unit 3), and are connected to a refrigerant pipe (not shown) to flow in and out the refrigerant. In the present embodiment, the central portion of the disc-shaped upper lid 4a is opened to serve as the refrigerant connection port 1. Moreover, the refrigerant | coolant connection port 1 shall become an inflow port for making a refrigerant | coolant flow in into the refrigerant | coolant divider | distributor 30 (distribution part 3). On the other hand, the refrigerant connection port 2 is provided at a position such that each refrigerant connection port 2 is equidistant from the refrigerant connection port 1. In this embodiment, it is assumed that the two refrigerant connection ports 2 are arranged in a point-symmetrical position with respect to the refrigerant connection port 1 (disc shape center) as a set. In FIG. 2, there are eight refrigerant connection ports 2 (four sets of refrigerant connection ports 2). And the refrigerant | coolant connection port 2 becomes an outflow port of a refrigerant | coolant, for example, shall let a refrigerant | coolant flow out into the heat exchanger tube (not shown) of the heat exchanger which performs heat exchange with the heat exchange object and refrigerant | coolant to connect. Here, in the present embodiment, the direction opposite to the direction of gravity is the upward direction, and the upward direction side of the refrigerant connection port 1 at the center of the refrigerant distributor 30 is the upper part. The gravity direction is the downward direction, and the downward direction side of the refrigerant connection port 1 at the center of the refrigerant distributor 30 is the lower part.

また、上蓋4aには、冷媒分配器30の内部に位置し、外部からは見えない柱状突起5aの幅(ピッチ、配置関係)を、外部から判断できるように、上蓋4aの外表面に刻印(マーク)を付している。具体的には、例えば、図1及び図2に実線で示しているように、柱状突起5aのピッチがわかるように、中心から外周に向かって放射状の突起間隔表示20を記している。これにより、冷媒分配器30の設置方向を判断することができる。   Further, the upper lid 4a is engraved on the outer surface of the upper lid 4a so that the width (pitch, arrangement relationship) of the columnar protrusions 5a that are located inside the refrigerant distributor 30 and cannot be seen from the outside can be determined from the outside. Mark). Specifically, for example, as shown by solid lines in FIGS. 1 and 2, a radial projection interval display 20 is written from the center toward the outer periphery so that the pitch of the columnar projections 5a can be seen. Thereby, the installation direction of the refrigerant distributor 30 can be determined.

図3は分配部3及び底蓋4bの内部構造を説明するための図である。図3は上面側から見た場合の図とA−A’断面及びB−B’断面からみた図とを併せて示している。つぎに、分配空間部に存在する柱状突起5a、溝9の形状等について図3に基づき説明する。分配部3は、柱状突起5a、中心突起5b及び均液穴10を有している。中心突起5bは円錐形状をなしており、冷媒接続口1から流入する冷媒を周縁に向けて分散させるものである。   FIG. 3 is a view for explaining the internal structure of the distributor 3 and the bottom cover 4b. FIG. 3 shows a view when viewed from the upper surface side and a view when viewed from the A-A ′ cross section and the B-B ′ cross section. Next, the shape of the columnar protrusion 5a and the groove 9 existing in the distribution space will be described with reference to FIG. The distributor 3 has a columnar protrusion 5a, a central protrusion 5b, and a liquid equalizing hole 10. The central protrusion 5b has a conical shape and disperses the refrigerant flowing from the refrigerant connection port 1 toward the periphery.

柱状突起5aは、中心突起5bの周囲において、円盤中心から周縁に向かって放射状に設けられる。柱状突起5aは、重ね合わせたときに上蓋4aを支持し、壁(仕切り)となって空間を形成すると共に、隣り合う柱状突起5aとの間に流入した冷媒に毛細管力を発生させ、冷媒接続口2(特に上部における冷媒接続口2)に冷媒を導きやすくする。ここで、冷媒接続口2に至るまで、柱状突起5a間の幅(ピッチ)が広がらないようにする(一定にする)ため、円盤中心から周縁に向かって柱状突起5aの幅を広げている(例えば上面から見た場合には三角形となる)。また、上部側ほど(重力方向と反対方向に向かうほど)柱状突起5a間におけるピッチが狭くなるような配置にする。ここで、本実施の形態では、柱状突起5aとしたが、柱状突起5aと同様の機能を実現できれば、柱状に限るものではない。例えば、突起の上蓋4a側が錐状(三角錐)となるような突起としてもよい。また、柱状突起5a間の幅(ピッチ)については、柱状突起5aの幅のみで調整するだけでなく、柱状突起5aを設ける個数、個数と幅等によって調整するようにしてもよい。   The columnar protrusions 5a are provided radially from the center of the disk toward the periphery around the central protrusion 5b. The columnar projections 5a support the upper lid 4a when they are overlapped to form a wall (partition) to form a space, and generate a capillary force in the refrigerant flowing between the adjacent columnar projections 5a to connect the refrigerant. The refrigerant is easily guided to the port 2 (particularly, the refrigerant connection port 2 in the upper part). Here, in order to prevent the width (pitch) between the columnar protrusions 5a from extending to the refrigerant connection port 2, the width of the columnar protrusions 5a is increased from the center of the disk toward the peripheral edge ( For example, when viewed from the top, it becomes a triangle). In addition, the upper side (in the direction opposite to the gravitational direction) is arranged such that the pitch between the columnar protrusions 5a becomes narrower. Here, in the present embodiment, the columnar protrusion 5a is used. However, the columnar protrusion 5a is not limited to the columnar shape as long as the same function as the columnar protrusion 5a can be realized. For example, the protrusion may have a conical shape (triangular pyramid) on the upper lid 4a side. In addition, the width (pitch) between the columnar protrusions 5a may be adjusted not only by the width of the columnar protrusions 5a but also by the number, the number and the width of the columnar protrusions 5a.

均液穴10は冷媒接続口2に合わせて形成し、液体状の冷媒(液冷媒)を通過させる液穴(貫通穴)である。ただ、後述するメカニズムから、重力方向に対して垂直な水平方向に位置する冷媒接続口2には、例えば均液を目的とする均液穴10を設ける必要がないため、本実施の形態では形成していない。ここで、例えば上記のように柱状突起5aの個数により冷媒接続口2と連通するピッチの調整等をすると、冷媒接続口2及び均液穴10と連通しないピッチができる場合がある(図3では左右斜め上部分にある)。そこで、上蓋4aが装着されても、連通しないピッチに流れ込んだ液冷媒が滞留しないようにし、隣り合うピッチ間において連通できるようにする。例えば、上蓋4aの内面側(分配部3との対向面側)と柱状突起5aの上蓋4aとの対向面との間に一定の隙間を設けるようにし、冷媒接続口2と連通するピッチに液冷媒が流れるようにする。   The liquid equalizing hole 10 is a liquid hole (through hole) that is formed in accordance with the refrigerant connection port 2 and allows a liquid refrigerant (liquid refrigerant) to pass therethrough. However, it is not necessary to provide a liquid equalizing hole 10 for the purpose of liquid leveling, for example, in the refrigerant connection port 2 positioned in the horizontal direction perpendicular to the direction of gravity from the mechanism described later. Not done. Here, for example, when the pitch communicating with the refrigerant connection port 2 is adjusted by the number of the columnar protrusions 5a as described above, a pitch that does not communicate with the refrigerant connection port 2 and the liquid equalizing hole 10 may be formed (in FIG. 3). In the diagonally upper left and right). Therefore, even when the upper lid 4a is attached, the liquid refrigerant that has flowed into the pitch that does not communicate does not stay and can communicate between adjacent pitches. For example, a certain gap is provided between the inner surface side of the upper lid 4a (the surface facing the distribution unit 3) and the surface facing the upper lid 4a of the columnar protrusion 5a, and the liquid is connected at a pitch communicating with the refrigerant connection port 2. Allow the refrigerant to flow.

図4は底蓋4bを上面側からみた図である。溝9は、基本的に対応する均液穴10間を液冷媒が流れるようにするために接続(連通)する。水平方向については、前述したように均液穴10を設けていないために溝9もない。ここで、特に限定するものではないが、例えば、重力方向に対する溝9の上下差(高低差)等により、各溝9の幅、深さ等を変化させるようにしてもよい。   FIG. 4 is a view of the bottom lid 4b as viewed from the upper surface side. The groove 9 is basically connected (communication) so that the liquid refrigerant flows between the corresponding liquid leveling holes 10. In the horizontal direction, there is no groove 9 because the liquid equalizing hole 10 is not provided as described above. Here, although not particularly limited, for example, the width, depth, and the like of each groove 9 may be changed depending on the vertical difference (height difference) of the groove 9 with respect to the direction of gravity.

つぎに、この冷媒分配器30の構造によって気液二相冷媒を均一に分配できるメカニズムについて説明する。気体状の冷媒(ガス冷媒)と液冷媒とが混合した気液二相冷媒が冷媒接続口1から分配空間部(分配部3)に流入する。このとき、乾き度や冷媒循環量にも依存するが、一般に、冷媒接続口1に流入する冷媒の流動状態は、上部の液膜が薄く、下部の液膜が厚い半環状流となる場合が多い。   Next, a mechanism by which the gas-liquid two-phase refrigerant can be uniformly distributed by the structure of the refrigerant distributor 30 will be described. A gas-liquid two-phase refrigerant in which a gaseous refrigerant (gas refrigerant) and a liquid refrigerant are mixed flows from the refrigerant connection port 1 into the distribution space (distribution section 3). At this time, although depending on the degree of dryness and the amount of circulating refrigerant, the flow state of the refrigerant flowing into the refrigerant connection port 1 is generally a semi-annular flow in which the upper liquid film is thin and the lower liquid film is thick. Many.

分配部3に流入した液冷媒は、中心突起5bに衝突し、柱状突起5a間の毛細管力に応じて径方向に分散する。このため、柱状突起5a間のピッチが狭い上部においては、毛細管力が強くなり液冷媒が重力に抗して柱状突起5a間に保持される。一方、柱状突起5a間のピッチが広い下部では、重力により液冷媒が重力方向下方に流下しやすくなる。ここで、流速が大きく環状流となる場合、分配空間部では、慣性力が重力より支配的となり、柱状突起5a間に発生する毛細管力の差が相対的に小さくなる。この場合でも、中心突起5bへの衝突により液膜が径方向に破断・分散されるため、均等分配が実現できる。   The liquid refrigerant that has flowed into the distribution unit 3 collides with the central protrusion 5b and is dispersed in the radial direction according to the capillary force between the columnar protrusions 5a. For this reason, in the upper part where the pitch between the columnar protrusions 5a is narrow, the capillary force becomes strong and the liquid refrigerant is held between the columnar protrusions 5a against gravity. On the other hand, in the lower part where the pitch between the columnar protrusions 5a is wide, the liquid refrigerant tends to flow downward in the direction of gravity due to gravity. Here, when the flow velocity is large and an annular flow is generated, the inertial force is more dominant than the gravity in the distribution space portion, and the difference in capillary force generated between the columnar protrusions 5a is relatively small. Even in this case, the liquid film is broken and dispersed in the radial direction due to the collision with the central protrusion 5b, so that even distribution can be realized.

また、下方に流下した液冷媒の一部は、均液穴10を通過し、図3中の点線及び図4中の実線で示される溝9を通じて上部に持ち上げられる。例えば、液冷媒の割合が少なくなる上部では均液穴10周辺の乾き度が大きく、同一流量で比較すると、柱状突起5a間を径方向へ流れる際の冷媒圧力損失が、下方に流下する場合と比較して増大する。従って、上部の均液穴10における冷媒の圧力が低下する。一方、下部の均液穴10は冷媒圧力損失が小さく、また液ヘッドにより圧力が上昇するため、溝9の両端に圧力差が生じる。この圧力差と溝9内の毛細管力によって、下部側の均液穴10から溝9に流れ出た液冷媒が溝9を伝って上部の均液穴10へ引き上げられる。このため、本実施の形態の冷媒分配器30においては、冷媒接続口2の位置(特に上下方向に対する位置)の影響を受けずに等乾き度に近い分配を実現することができる。   Further, a part of the liquid refrigerant flowing downward passes through the liquid equalizing hole 10 and is lifted upward through a groove 9 indicated by a dotted line in FIG. 3 and a solid line in FIG. For example, in the upper part where the ratio of the liquid refrigerant decreases, the dryness around the liquid equalizing hole 10 is large, and when compared with the same flow rate, the refrigerant pressure loss when flowing in the radial direction between the columnar protrusions 5a flows downward. Increases in comparison. Accordingly, the refrigerant pressure in the upper liquid leveling hole 10 is reduced. On the other hand, the lower liquid equalizing hole 10 has a small refrigerant pressure loss, and the pressure is increased by the liquid head, so that a pressure difference is generated at both ends of the groove 9. Due to this pressure difference and the capillary force in the groove 9, the liquid refrigerant that has flowed out from the lower liquid equalizing hole 10 into the groove 9 is pulled up to the upper liquid equalizing hole 10 through the groove 9. For this reason, in the refrigerant distributor 30 according to the present embodiment, it is possible to realize distribution close to the equal dryness without being affected by the position of the refrigerant connection port 2 (particularly, the position with respect to the vertical direction).

このように、本実施の形態の冷媒分配器30では、柱状突起5a間に生じる表面張力を利用して上部に液冷媒を保持させる第1の均液機能と、均液穴10と溝9とにより下部から上部へ液冷媒を引き上げる第2の均液機能により、均等な分配(冷媒中の気液の比率も含めて)を実現することができる。分配により分散された気液二相冷媒は複数の冷媒接続口2から流出し、例えば後述する熱交換器本体22へ流入する。このとき、柱状突起5a間や溝9内の毛細管力を利用するため、内部のオリフィスで噴霧流を形成する従来のディストリビュータに比べ、圧力損失が小さくなる。これにより冷媒回路における膨張弁(絞り装置、流量調整装置)を小型化でき、装置全体の低コスト化が図れる。   As described above, in the refrigerant distributor 30 of the present embodiment, the first liquid leveling function for holding the liquid refrigerant at the upper part using the surface tension generated between the columnar protrusions 5a, the liquid leveling hole 10 and the groove 9 Thus, even distribution (including the ratio of gas and liquid in the refrigerant) can be realized by the second liquid leveling function of pulling up the liquid refrigerant from the lower part to the upper part. The gas-liquid two-phase refrigerant dispersed by distribution flows out from the plurality of refrigerant connection ports 2 and flows into, for example, a heat exchanger body 22 described later. At this time, since the capillary force between the columnar protrusions 5a and in the groove 9 is used, the pressure loss is smaller than that of a conventional distributor that forms a spray flow with an internal orifice. Thereby, the expansion valve (throttle device, flow rate adjusting device) in the refrigerant circuit can be reduced in size, and the cost of the entire device can be reduced.

本実施の形態の冷媒分配器30では、所定の冷媒を表面張力作用により溝9内に保持することから、突起高さや突起数を一定とする条件では、液膜を薄くする必要がある。このため、分配部3の内径Dには最低限の大きさが必要であり、柱状突起5a間の幅Wには最大値(Wmax)が存在する。   In the refrigerant distributor 30 according to the present embodiment, since the predetermined refrigerant is held in the groove 9 by the surface tension action, it is necessary to make the liquid film thin under the condition that the projection height and the number of projections are constant. For this reason, a minimum size is required for the inner diameter D of the distribution portion 3, and a maximum value (Wmax) exists in the width W between the columnar protrusions 5a.

図5は、重力方向に対して傾斜している冷媒分配器30の一例を表す図である。図5に示すように、冷媒分配器30は、重力に対して、傾斜角度θ傾斜しているものとする。図5のような状態で、安定的な冷媒分配を実現するためには、傾斜角度θ、最小内径D、柱状突起5aの間隔(ピッチ)Wの間に適切な関係が成立していなければならない。このような適切な関係を具体的に表すために、重力と表面張力との強さを表す指標として無次元数であるボンド数Boを用いる。ボンド数=重力/表面張力である。このボンド数を、図3〜図5に示した形状寸法及び物性値を用いて表すと、次式(1)のようになる。
Bo=D×g×sinθ×(ρl−ρv)/(σ/W) …(1)
FIG. 5 is a diagram illustrating an example of the refrigerant distributor 30 that is inclined with respect to the direction of gravity. As shown in FIG. 5, the refrigerant distributor 30 is inclined at an inclination angle θ with respect to gravity. In order to achieve stable refrigerant distribution in the state as shown in FIG. 5, an appropriate relationship must be established among the inclination angle θ, the minimum inner diameter D, and the interval (pitch) W between the columnar protrusions 5a. . In order to specifically represent such an appropriate relationship, the bond number Bo, which is a dimensionless number, is used as an index representing the strength between gravity and surface tension. Bond number = gravity / surface tension. The number of bonds is expressed by the following formula (1) using the shape dimensions and physical property values shown in FIGS.
Bo = D × g × sin θ × (ρl−ρv) / (σ / W) (1)

ここで、Boはボンド数、Dは内径、gは重力加速度を表す。また、ρlは液密度、ρvはガス密度、σは液冷媒の表面張力を表す。そして、Wは柱状突起5aの間隔、θは重力方向設置角度を表す。このようにして、(1)式を用いて内径D、間隔W、重力方向設置角度θの関係を表すことができる。また、突起高さH、突起数Nは、ボイド率α(=液体積流量/(液体積流量+ガス体積流量))の関係で決定される。   Here, Bo represents the number of bonds, D represents the inner diameter, and g represents the gravitational acceleration. Ρl represents the liquid density, ρv represents the gas density, and σ represents the surface tension of the liquid refrigerant. W represents the interval between the columnar protrusions 5a, and θ represents the installation angle in the gravity direction. In this way, the relationship among the inner diameter D, the interval W, and the gravity direction installation angle θ can be expressed using the equation (1). The protrusion height H and the protrusion number N are determined by the relationship of the void ratio α (= liquid volume flow rate / (liquid volume flow rate + gas volume flow rate)).

以上のように、実施の形態1の冷媒分配器30によれば、冷媒の流路となる分配空間部に柱状突起5aを設けるようにする。このとき、例えば上部側にいくほど、柱状突起5a間に流入する液冷媒に重力に抗する毛細管力が発生するように、柱状突起5a間の幅(ピッチ)を狭めるようにし、また、周縁部分ほど柱状突起5aが広がる形状として幅が変わらないようにする。そして、冷媒接続口1から流入した冷媒(特に液冷媒)を中心突起5bにより分散させ、例えば冷媒接続口1よりも上部においては、柱状突起5a間に生じる表面張力を利用して液冷媒を保持させるようにすることで、重力の影響によらず、等乾き度の気液二相冷媒の分配を実現することができる。さらに、柱状突起5aとは反対の面側に溝9を設け、重力方向において高低差のある均液穴10を連通させることで、下部側に流下した液冷媒を、上部側へ引き上げるようにすることにより、均等な分配を実現することができる。このようにして、柱状突起5a間や溝9内の毛細管力を利用して冷媒の分配を行うため、内部のオリフィスで噴霧流を形成する従来のディストリビュータ等での冷媒分配器と比較して圧力損失を小さくすることができる。これにより、例えば冷媒回路における膨張弁(絞り装置、流量調整装置)を小型化することができる等、適用範囲の広い冷媒分配器を提供することができる。また、上蓋4aに突起間隔表示20をすることで、例えば熱交換器の製造時に、冷媒分配器30を設置する方向を容易に判断することができ、設置ミス等を防ぐことができる。   As described above, according to the refrigerant distributor 30 of the first embodiment, the columnar protrusions 5a are provided in the distribution space portion serving as the refrigerant flow path. At this time, for example, the width (pitch) between the columnar protrusions 5a is narrowed so that a capillary force that resists gravity is generated in the liquid refrigerant flowing between the columnar protrusions 5a as it goes upward. The width of the columnar protrusion 5a does not change as the shape expands. Then, the refrigerant (especially liquid refrigerant) flowing in from the refrigerant connection port 1 is dispersed by the central projection 5b, and for example, at the upper part of the refrigerant connection port 1, the liquid refrigerant is held by using the surface tension generated between the columnar projections 5a. By doing so, it is possible to realize the distribution of the gas-liquid two-phase refrigerant having the same dryness regardless of the influence of gravity. Furthermore, a groove 9 is provided on the surface opposite to the columnar protrusion 5a, and a liquid leveling hole 10 having a height difference in the direction of gravity is communicated so that the liquid refrigerant flowing down to the lower side is pulled up to the upper side. Thus, an even distribution can be realized. In this way, since the refrigerant is distributed by utilizing the capillary force between the columnar protrusions 5a and in the groove 9, the pressure is higher than that of a refrigerant distributor in a conventional distributor or the like that forms a spray flow with an internal orifice. Loss can be reduced. Thereby, for example, an expansion valve (throttle device, flow rate adjusting device) in the refrigerant circuit can be miniaturized, and a refrigerant distributor having a wide application range can be provided. Further, by displaying the protrusion interval display 20 on the upper lid 4a, for example, when the heat exchanger is manufactured, it is possible to easily determine the direction in which the refrigerant distributor 30 is installed, and it is possible to prevent an installation error or the like.

ここで、本実施の形態では、上蓋4a、分配部3及び底蓋4bの3つのプレートにより冷媒分配器30を構成したが、特にこの構成に限定するものではない。例えば、厚みを有する円盤(円柱)に、外周側から微細ドリル等で穴を開ける等、微細加工を施すことで冷媒分配器を形成するようにしてもよい。   Here, in the present embodiment, the refrigerant distributor 30 is configured by the three plates of the upper lid 4a, the distribution unit 3, and the bottom lid 4b, but is not particularly limited to this configuration. For example, the refrigerant distributor may be formed by subjecting a thick disc (cylinder) to fine processing such as making a hole from the outer peripheral side with a fine drill or the like.

実施の形態2.
図6は冷媒分配器30を搭載した熱交換器21を表す図である。ここでは、蒸発器として動作する例を示している。本発明の冷媒分配器30は熱交換器21の冷媒流入口側に設置され、気液二相冷媒の液冷媒とガス冷媒とを適切に分配する。上述したように、冷媒接続口1から流入した気液二相冷媒は、冷媒分配器30で適正な流量、乾き度で分配されて各冷媒接続口2から流出し、熱交換器本体22に流入する。
Embodiment 2. FIG.
FIG. 6 is a diagram showing the heat exchanger 21 on which the refrigerant distributor 30 is mounted. Here, an example of operating as an evaporator is shown. The refrigerant distributor 30 of the present invention is installed on the refrigerant inlet side of the heat exchanger 21, and appropriately distributes the liquid refrigerant and gas refrigerant of the gas-liquid two-phase refrigerant. As described above, the gas-liquid two-phase refrigerant flowing from the refrigerant connection port 1 is distributed at an appropriate flow rate and dryness by the refrigerant distributor 30, flows out from each refrigerant connection port 2, and flows into the heat exchanger body 22. To do.

熱交換器本体22では、周囲の空気(図示せず)との熱交換を行い、空気から熱を奪って蒸発し、ガス冷媒となって流出する。ガス冷媒は、流出管6、ヘッダ7を通って熱交換器21から流出する。ここで、熱交換器21(熱交換器本体22)の高さ方向において、熱交換に係る空気の風速分布や温度分布が一定にならない場合がある。このような場合には、柱状突起5a間のピッチ、溝9の幅や高さを変化させた冷媒分配器30により、各冷媒接続口2から流出する冷媒において、液冷媒、ガス冷媒の流量比を異ならせるようにするとよい。   The heat exchanger body 22 exchanges heat with surrounding air (not shown), takes heat from the air, evaporates, and flows out as a gas refrigerant. The gas refrigerant flows out from the heat exchanger 21 through the outflow pipe 6 and the header 7. Here, in the height direction of the heat exchanger 21 (heat exchanger main body 22), the wind speed distribution and temperature distribution of the air related to heat exchange may not be constant. In such a case, in the refrigerant flowing out from each refrigerant connection port 2 by the refrigerant distributor 30 in which the pitch between the columnar protrusions 5a and the width and height of the groove 9 are changed, the flow ratio between the liquid refrigerant and the gas refrigerant. It is good to make them different.

以上のように、実施の形態2においては、冷媒分配器30における柱状突起5a間のピッチ、溝9の幅や高さを熱交換器の熱負荷に基づいて変化させることにより、熱負荷に合わせて各冷媒接続口2に対して、適正に気液二相冷媒を分配し、熱交換器本体22の伝熱面積等に応じて有効に熱交換を行うことができる。このため、高い熱交換性能を有する熱交換器21を提供することができる。   As described above, in the second embodiment, the pitch between the columnar protrusions 5a in the refrigerant distributor 30 and the width and height of the groove 9 are changed based on the heat load of the heat exchanger to match the heat load. Thus, the gas-liquid two-phase refrigerant can be properly distributed to each refrigerant connection port 2, and heat exchange can be effectively performed according to the heat transfer area of the heat exchanger body 22. For this reason, the heat exchanger 21 which has high heat exchange performance can be provided.

実施の形態3.
図7は実施の形態3に係る冷凍サイクル装置の構成例を表す図である。ここで、図7では冷凍サイクル装置として空気調和装置を示している。図7において、図1等において説明したものについては、同様の動作を行うものとする。図7の空気調和装置は、室外ユニット(室外機)40と室内ユニット(室内機)50とをガス延長配管16、液延長配管17により配管接続する。室外ユニット40は、圧縮機11、四方弁12、室外熱交換器13及び膨張弁14を有している。また、室内ユニット50は、室内熱交換器15、ディストリビュータ18及び毛細管19を有している。
Embodiment 3 FIG.
FIG. 7 is a diagram illustrating a configuration example of the refrigeration cycle apparatus according to the third embodiment. Here, FIG. 7 shows an air conditioner as the refrigeration cycle apparatus. In FIG. 7, the same operations as those described in FIG. 1 and the like are performed. In the air conditioner of FIG. 7, an outdoor unit (outdoor unit) 40 and an indoor unit (indoor unit) 50 are connected by a gas extension pipe 16 and a liquid extension pipe 17. The outdoor unit 40 includes a compressor 11, a four-way valve 12, an outdoor heat exchanger 13, and an expansion valve 14. The indoor unit 50 includes an indoor heat exchanger 15, a distributor 18, and a capillary tube 19.

圧縮機11は、吸入した冷媒を圧縮して吐出する。ここで、特に限定するものではないが、圧縮機11はたとえばインバータ回路等により、運転周波数を任意に変化させることにより、圧縮機11の容量(単位時間あたりの冷媒を送り出す量)を変化させることができるようにしてもよい。四方弁12は、たとえば冷房運転時と暖房運転時とによって冷媒の流れを切り換えるための弁である。   The compressor 11 compresses and discharges the sucked refrigerant. Here, although not particularly limited, the compressor 11 can change the capacity of the compressor 11 (the amount of refrigerant sent out per unit time) by arbitrarily changing the operating frequency, for example, by an inverter circuit or the like. You may be able to. The four-way valve 12 is a valve for switching the flow of the refrigerant, for example, between the cooling operation and the heating operation.

本実施の形態における室外熱交換器13は、上述した実施の形態2における熱交換器21である。このため、実施の形態1等で説明した冷媒分配器30は室外熱交換器13が有している。室外熱交換器13は、冷媒と空気(室外の空気)との熱交換を行う。たとえば、暖房運転時においては蒸発器として機能し、冷媒を蒸発させ、気化させる。また、冷房運転時においては凝縮器として機能し、冷媒を凝縮して液化させる。このとき、冷媒分配器30は、冷房時における室外熱交換器13の冷媒流出口側(暖房時の室外熱交換器13の冷媒流入口側)に設置される。   The outdoor heat exchanger 13 in the present embodiment is the heat exchanger 21 in the second embodiment described above. Therefore, the outdoor heat exchanger 13 has the refrigerant distributor 30 described in the first embodiment and the like. The outdoor heat exchanger 13 performs heat exchange between the refrigerant and air (outdoor air). For example, it functions as an evaporator during heating operation, evaporating and evaporating the refrigerant. Moreover, it functions as a condenser during the cooling operation, and condenses and liquefies the refrigerant. At this time, the refrigerant distributor 30 is installed on the refrigerant outlet side of the outdoor heat exchanger 13 during cooling (the refrigerant inlet side of the outdoor heat exchanger 13 during heating).

絞り装置(流量制御手段)等の膨張弁14は冷媒を減圧して膨張させるものである。たとえば電子式膨張弁等で構成した場合には、制御手段(図示せず)等の指示に基づいて開度調整を行う。室内熱交換器15は、例えば空調対象となる空気と冷媒との熱交換を行う。暖房運転時においては凝縮器として機能し、冷媒を凝縮して液化させる。また、冷房運転時においては蒸発器として機能し、冷媒を蒸発させ、気化させる。ディストリビュータ18は、冷媒の分配、合流を行う手段である。また、毛細管(キャピラリ)19は、室内熱交換器15における冷媒流量の調整を行う。   An expansion valve 14 such as a throttle device (flow rate control means) expands the refrigerant by decompressing it. For example, in the case of an electronic expansion valve or the like, the opening degree is adjusted based on an instruction from a control means (not shown) or the like. The indoor heat exchanger 15 performs heat exchange between air to be air-conditioned and a refrigerant, for example. During heating operation, it functions as a condenser and condenses and liquefies the refrigerant. Moreover, it functions as an evaporator during cooling operation, evaporating and evaporating the refrigerant. The distributor 18 is a means for distributing and joining the refrigerant. The capillary (capillary) 19 adjusts the refrigerant flow rate in the indoor heat exchanger 15.

最初に、冷凍サイクル装置における冷房運転について冷媒の流れに基づいて説明する。冷房運転においては、実線で示す接続関係となるように四方弁12を切り替える。圧縮機11により圧縮されて吐出した高温、高圧のガス冷媒は、四方弁12を通過し、さらにヘッダ7、流出管6を通り、室外熱交換器13に流入する。そして、室外熱交換器13内を通過して、室外の空気と熱交換することで凝縮、液化した冷媒(液冷媒)は、冷媒分配器30を通過して膨張弁14へ流入する。膨張弁14で減圧されて気液二相状態となった冷媒は室外ユニット40から流出する。ここで、冷房運転時においては、冷媒分配器30は、上述した実施の形態における機能とは異なり、冷媒を合流させる機器として機能することになる。合流する冷媒は液冷媒であり、分配、圧力損失等については、特に考慮しなくてもよい。   First, the cooling operation in the refrigeration cycle apparatus will be described based on the refrigerant flow. In the cooling operation, the four-way valve 12 is switched so as to have a connection relationship indicated by a solid line. The high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 11 passes through the four-way valve 12 and further flows into the outdoor heat exchanger 13 through the header 7 and the outflow pipe 6. The refrigerant (liquid refrigerant) condensed and liquefied by passing through the outdoor heat exchanger 13 and exchanging heat with outdoor air flows through the refrigerant distributor 30 and flows into the expansion valve 14. The refrigerant that has been decompressed by the expansion valve 14 and is in a gas-liquid two-phase state flows out of the outdoor unit 40. Here, during the cooling operation, the refrigerant distributor 30 functions as a device that joins the refrigerant, unlike the function in the above-described embodiment. The refrigerant to be joined is a liquid refrigerant, and distribution, pressure loss, etc. need not be particularly taken into consideration.

室外ユニット40を流出した気液二相冷媒は、液延長配管17を通過して室内ユニット50に流入する。そして、オリフィスが内蔵されたディストリビュータ18と毛細管19とにより分配され、室内熱交換器15に流入する。室内熱交換器15内を通過して、例えば空調対象の空気と熱交換することで蒸発、ガス化した冷媒(ガス冷媒)は、室内ユニット50から流出する。   The gas-liquid two-phase refrigerant that has flowed out of the outdoor unit 40 passes through the liquid extension pipe 17 and flows into the indoor unit 50. And it distributes by the distributor 18 and the capillary 19 in which the orifice was incorporated, and flows into the indoor heat exchanger 15. The refrigerant (gas refrigerant) evaporated and gasified by passing through the indoor heat exchanger 15 and exchanging heat with air to be air-conditioned, for example, flows out of the indoor unit 50.

室内ユニット50から流出したガス冷媒はガス延長配管16を通過して室外ユニット40に流入する。そして、四方弁12を通過して再度圧縮機11に吸入される。以上のようにして空気調和装置の冷媒が循環し、空気調和(冷房)を行う。   The gas refrigerant flowing out from the indoor unit 50 passes through the gas extension pipe 16 and flows into the outdoor unit 40. Then, it passes through the four-way valve 12 and is sucked into the compressor 11 again. As described above, the refrigerant of the air conditioner circulates and performs air conditioning (cooling).

次に暖房運転について冷媒の流れに基づいて説明する。暖房運転においては、点線で示す接続関係となるように四方弁12を切り替える。圧縮機11により圧縮されて吐出した高温、高圧のガス冷媒は、四方弁12を通過して室外ユニット40から流出する。室外ユニット40を流出したガス冷媒は、ガス延長配管16を通過して室内ユニット50に流入する。   Next, the heating operation will be described based on the refrigerant flow. In the heating operation, the four-way valve 12 is switched so as to have a connection relationship indicated by a dotted line. The high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 11 passes through the four-way valve 12 and flows out of the outdoor unit 40. The gas refrigerant flowing out of the outdoor unit 40 passes through the gas extension pipe 16 and flows into the indoor unit 50.

室外熱交換器13内を通過して、例えば空調対象の空気と熱交換することで凝縮、液化した冷媒は、ディストリビュータ18と毛細管19とを通過して室内ユニット50から流出する。   The refrigerant condensed and liquefied by passing through the outdoor heat exchanger 13 and exchanging heat with air to be air-conditioned, for example, passes through the distributor 18 and the capillary tube 19 and flows out of the indoor unit 50.

室内ユニット50から流出した冷媒は液延長配管17を通過して室外ユニット40に流入する。そして、膨張弁14で減圧されて気液二相状態となった冷媒は、実施の形態1等で説明したように、冷媒接続口1を通過して冷媒分配器30へ流入し、適正に分配され、室外熱交換器13に流入する。そして、室外熱交換器13内を通過して、室外の空気と熱交換することで蒸発、ガス化した冷媒(液冷媒)は、流出管6、ヘッダ7を通り、四方弁12を通過して再度圧縮機11に吸入される。以上のようにして空気調和装置の冷媒が循環し、空気調和(暖房)を行う。   The refrigerant flowing out from the indoor unit 50 passes through the liquid extension pipe 17 and flows into the outdoor unit 40. Then, the refrigerant that has been decompressed by the expansion valve 14 and is in a gas-liquid two-phase state passes through the refrigerant connection port 1 and flows into the refrigerant distributor 30 as described in the first embodiment and the like, and is appropriately distributed. And flows into the outdoor heat exchanger 13. Then, the refrigerant (liquid refrigerant) evaporated and gasified by passing through the outdoor heat exchanger 13 and exchanging heat with outdoor air passes through the outflow pipe 6 and the header 7 and passes through the four-way valve 12. It is sucked into the compressor 11 again. As described above, the refrigerant of the air conditioner circulates and performs air conditioning (heating).

以上のように、実施の形態3の空気調和装置(冷凍サイクル装置)においては、上述した冷媒分配器30を室外熱交換器13に設けることにより、例えば暖房運転時に室外熱交換器13に流入する気液二相冷媒を適正に分配することができ、熱交換の効率を向上させることができる。これにより、冷凍サイクル装置の効率を向上させることができる。また、柱状突起5a間や溝9内の表面張力を利用した分配を行うことで、冷媒分配器30における圧力損失を小さくすることができるので、膨張弁14等の小型化をはかることで、製造等のコストを低減することができる。   As described above, in the air-conditioning apparatus (refrigeration cycle apparatus) according to Embodiment 3, the refrigerant distributor 30 described above is provided in the outdoor heat exchanger 13 so as to flow into the outdoor heat exchanger 13 during heating operation, for example. The gas-liquid two-phase refrigerant can be properly distributed, and the efficiency of heat exchange can be improved. Thereby, the efficiency of the refrigeration cycle apparatus can be improved. Moreover, since the pressure loss in the refrigerant distributor 30 can be reduced by performing the distribution using the surface tension between the columnar protrusions 5a and in the groove 9, it is possible to manufacture by reducing the size of the expansion valve 14 and the like. Etc. can be reduced.

1 冷媒接続口(大径)、2 冷媒接続口(小径)、3 分配部、4a 上蓋、4b 底蓋、5a 柱状突起、5b 中心突起、6 流出管、7 ヘッダ、9 溝、10 均液穴、11 圧縮機、12 四方弁、13 室外熱交換器、14 膨張弁、15 室内熱交換器、16 ガス延長配管、17 液延長配管、18 ディストリビュータ、19 毛細管、20 突起間隔表示、21 熱交換器、22 熱交換器本体、30 冷媒分配器、40 室外ユニット、50 室内ユニット。   DESCRIPTION OF SYMBOLS 1 Refrigerant connection port (large diameter) 2 Refrigerant connection port (small diameter) 3 Distribution part, 4a Top cover, 4b Bottom cover, 5a Columnar protrusion, 5b Center protrusion, 6 Outflow pipe, 7 Header, 9 Groove, 10 Liquid equalization hole , 11 Compressor, 12 Four-way valve, 13 Outdoor heat exchanger, 14 Expansion valve, 15 Indoor heat exchanger, 16 Gas extension pipe, 17 Liquid extension pipe, 18 Distributor, 19 Capillary tube, 20 Projection interval display, 21 Heat exchanger , 22 heat exchanger body, 30 refrigerant distributor, 40 outdoor unit, 50 indoor unit.

Claims (7)

冷媒が流入する冷媒流入口と、
それぞれ前記冷媒流入口から等距離にあって、流入した前記冷媒が流出する複数の冷媒流出口と、
冷媒流入口と複数の冷媒流出口との間に流路となる空間を形成し、前記冷媒に毛細管力を発生させて前記冷媒流出口に前記冷媒を導くための複数の突起と、
前記複数の冷媒流出口に合わせて形成した液穴を連通させる溝と
を備えることを特徴とする冷媒分配器。
A refrigerant inlet into which refrigerant flows, and
A plurality of refrigerant outlets that are equidistant from the refrigerant inlet and from which the refrigerant that has flowed out flows;
A plurality of protrusions for forming a space as a flow path between the refrigerant inlet and the plurality of refrigerant outlets, generating a capillary force in the refrigerant and guiding the refrigerant to the refrigerant outlet;
A refrigerant distributor comprising: a groove communicating with a liquid hole formed in accordance with the plurality of refrigerant outlets.
前記突起間の冷媒に発生させる毛細管力に基づいて各突起間の幅を設定することを特徴とする請求項1に記載の冷媒分配器。   The refrigerant distributor according to claim 1, wherein a width between the protrusions is set based on a capillary force generated in the refrigerant between the protrusions. 前記冷媒流入口及び複数の冷媒流出口を有する第1のプレートと、
前記複数の突起及び前記液穴を有する第2のプレートと、
前記溝を有する第3のプレートと
を接合して形成することを特徴とする請求項1又は2に記載の冷媒分配器。
A first plate having the refrigerant inlet and a plurality of refrigerant outlets;
A second plate having the plurality of protrusions and the liquid hole;
The refrigerant distributor according to claim 1 or 2, wherein the refrigerant distributor is formed by joining a third plate having the groove.
前記第2のプレートにおいて前記突起を有する面の裏面側と前記第3のプレートの前記溝を有する面とを接合させることを特徴とする請求項3に記載の冷媒分配器。   4. The refrigerant distributor according to claim 3, wherein a back surface side of a surface having the protrusion in the second plate is joined to a surface having the groove of the third plate. 前記突起の配置関係を示す印を外面に有することを特徴とする請求項1〜4のいずれかに記載の冷媒分配器。   The refrigerant distributor according to any one of claims 1 to 4, further comprising a mark indicating an arrangement relationship of the protrusions on an outer surface. 請求項1〜5のいずれかに記載の冷媒分配器と、
該冷媒分配器の分配に係る気液二相状の冷媒を通過させる複数の伝熱管と
を備えることを特徴とする熱交換器。
The refrigerant distributor according to any one of claims 1 to 5,
A heat exchanger comprising: a plurality of heat transfer tubes through which a gas-liquid two-phase refrigerant related to distribution of the refrigerant distributor is passed.
冷媒を圧縮する圧縮機と、
熱交換により前記冷媒を凝縮させる凝縮器と、
凝縮された冷媒を減圧させるための膨張手段と、
請求項6に記載の熱交換器を有し、減圧した前記冷媒と空気とを熱交換して前記冷媒を蒸発させる蒸発器と、
を配管接続して冷媒を循環させる冷媒回路を構成することを特徴とする冷凍サイクル装置。
A compressor for compressing the refrigerant;
A condenser for condensing the refrigerant by heat exchange;
Expansion means for depressurizing the condensed refrigerant;
An evaporator having the heat exchanger according to claim 6 for exchanging heat between the decompressed refrigerant and air to evaporate the refrigerant.
A refrigeration cycle apparatus comprising a refrigerant circuit for circulating refrigerant by connecting pipes to each other.
JP2010248428A 2010-11-05 2010-11-05 Refrigerant distributor, heat exchanger and refrigeration cycle apparatus Active JP5100818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010248428A JP5100818B2 (en) 2010-11-05 2010-11-05 Refrigerant distributor, heat exchanger and refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010248428A JP5100818B2 (en) 2010-11-05 2010-11-05 Refrigerant distributor, heat exchanger and refrigeration cycle apparatus

Publications (2)

Publication Number Publication Date
JP2012098007A true JP2012098007A (en) 2012-05-24
JP5100818B2 JP5100818B2 (en) 2012-12-19

Family

ID=46390114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010248428A Active JP5100818B2 (en) 2010-11-05 2010-11-05 Refrigerant distributor, heat exchanger and refrigeration cycle apparatus

Country Status (1)

Country Link
JP (1) JP5100818B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103512286A (en) * 2013-09-27 2014-01-15 中国科学院合肥物质科学研究院 Flow scattering device
WO2015076644A1 (en) * 2013-11-25 2015-05-28 삼성전자주식회사 Air conditioner
KR20180123378A (en) * 2017-05-08 2018-11-16 국제냉동(주) cooling purpose evaporator capable of refrigerant distribution equally
US11512908B2 (en) 2020-02-03 2022-11-29 Hamilton Sundstrand Corporation Evaporator with grooved channels
US11808528B2 (en) 2020-02-03 2023-11-07 Hamilton Sundstrand Corporation Evaporator with grooved channels and orifice inserts

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760074U (en) * 1980-09-20 1982-04-09
JPH0861809A (en) * 1994-08-18 1996-03-08 Hitachi Ltd Refrigerant distributor, refrigerant distributing mechanism and air conditioner
JP2010190523A (en) * 2009-02-19 2010-09-02 Mitsubishi Heavy Ind Ltd Refrigerant distributor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760074U (en) * 1980-09-20 1982-04-09
JPH0861809A (en) * 1994-08-18 1996-03-08 Hitachi Ltd Refrigerant distributor, refrigerant distributing mechanism and air conditioner
JP2010190523A (en) * 2009-02-19 2010-09-02 Mitsubishi Heavy Ind Ltd Refrigerant distributor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103512286A (en) * 2013-09-27 2014-01-15 中国科学院合肥物质科学研究院 Flow scattering device
CN103512286B (en) * 2013-09-27 2015-12-09 中国科学院合肥物质科学研究院 A kind of diffusing device
WO2015076644A1 (en) * 2013-11-25 2015-05-28 삼성전자주식회사 Air conditioner
KR20180123378A (en) * 2017-05-08 2018-11-16 국제냉동(주) cooling purpose evaporator capable of refrigerant distribution equally
KR102035521B1 (en) 2017-05-08 2019-10-23 국제냉동(주) cooling purpose evaporator capable of refrigerant distribution equally
US11512908B2 (en) 2020-02-03 2022-11-29 Hamilton Sundstrand Corporation Evaporator with grooved channels
US11808528B2 (en) 2020-02-03 2023-11-07 Hamilton Sundstrand Corporation Evaporator with grooved channels and orifice inserts

Also Published As

Publication number Publication date
JP5100818B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
EP2853843B1 (en) A refrigerant distributing device, and heat exchanger equipped with such a refrigerant distributing device
JP5376010B2 (en) Heat exchanger
WO2020161761A1 (en) Heat exchanger and air-conditioner provided with same
JP5100818B2 (en) Refrigerant distributor, heat exchanger and refrigeration cycle apparatus
WO2018173356A1 (en) Heat exchanger and air conditioner using same
JP6104893B2 (en) Heat exchanger, refrigeration cycle apparatus, air conditioner, and heat exchange method
JP2013137193A (en) Heat exchanger
JP6061994B2 (en) Heat exchanger, refrigeration cycle apparatus and air conditioner equipped with this heat exchanger
WO2015045073A1 (en) Laminate-type header, heat exchanger, and air-conditioning apparatus
WO2015049727A1 (en) Laminated header, heat exchanger, and air-conditioner
JP7102686B2 (en) Heat exchanger
TR201816619T4 (en) Heat exchanger and air conditioning.
JP2018169062A (en) Air conditioner
US11333369B2 (en) Refrigerant distributor, heat exchanger, and air-conditioning apparatus
CN112567193B (en) Heat exchanger and air conditioner
JP7470909B2 (en) Microchannel heat exchanger and air conditioner
JP2014137177A (en) Heat exchanger and refrigerator
JP2012021679A (en) Refrigerant distribution device, heat exchange device with the same, and air conditioning apparatus with the heat exchange device
WO2014155816A1 (en) Expansion valve and cooling cycle device using same
CN114216166B (en) Air conditioner
WO2022264348A1 (en) Heat exchanger and refrigeration cycle device
JP5045252B2 (en) Air conditioner
JP2020165578A (en) Heat exchanger flow divider
JP3016304B2 (en) Refrigerant distributor
WO2017187840A1 (en) Heat exchanger and air conditioner

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5100818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250