JP4293774B2 - X-ray equipment - Google Patents

X-ray equipment Download PDF

Info

Publication number
JP4293774B2
JP4293774B2 JP2002293404A JP2002293404A JP4293774B2 JP 4293774 B2 JP4293774 B2 JP 4293774B2 JP 2002293404 A JP2002293404 A JP 2002293404A JP 2002293404 A JP2002293404 A JP 2002293404A JP 4293774 B2 JP4293774 B2 JP 4293774B2
Authority
JP
Japan
Prior art keywords
dark current
ray
image
correction
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002293404A
Other languages
Japanese (ja)
Other versions
JP2004121718A (en
JP2004121718A5 (en
Inventor
正 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2002293404A priority Critical patent/JP4293774B2/en
Publication of JP2004121718A publication Critical patent/JP2004121718A/en
Publication of JP2004121718A5 publication Critical patent/JP2004121718A5/ja
Application granted granted Critical
Publication of JP4293774B2 publication Critical patent/JP4293774B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はX線撮影装置に係わり、特に、半導体を用いた平面型X線検出器の暗電流の変化を検出し、適宜に暗電流補正を行って、暗電流の影響を無くして高画質の画像を得るに好適なX線撮影装置に関する。
【0002】
【従来の技術】
現在、X線検出器として、CsI等の半導体素子を用いた平面型X線検出器(以下、平面検出器と呼ぶ)に注目が集まっている。しかし、平面検出器はその構成上、X線を照射していないときにも、微小ながら検出素子に蓄積される暗電流と呼ばれる成分がある。
【0003】
このため、被検体、撮影部位及び撮影条件が同じでも前記暗電流の変化により得られる画像が変化する。特に、低線量を用いるX線透視においては、暗電流成分の影響が大きく、透視モニター上でも時間的な輝度値の変化が分かる位である。この問題に対して、開示されているように(特許文献1参照)、被検体にX線を照射しないで平面検出器の暗電流を測定しておき、被検体のX線透過データから前記測定しておいた暗電流を差し引くことによって暗電流補正を行なう方法がある。
【0004】
【特許文献1】
特開平2002−159481号公報。
【0005】
この暗電流補正のための暗電流の測定は、一定時間毎に行ったり(被検体の無い状態)、あるいは撮影と撮影のあいまに被検体がX線照射領域に無いことを確認して行っていた。暗電流は検出器内部の温度によって変化するため、特に、平面検出器の電源を入れた直後は、温度が安定するまで、頻繁に暗電流補正を行う必要がある。暗電流補正を行うためには、X線を照射しないときの画像を何枚か取得し、平均値を求めることで、暗電流成分の平均値を作成する。この値を、実際にX線を照射して得られる画像から減算することにより、暗電流成分を取り除くことができる。
【0006】
従来、この暗電流補正を行うためには、画像の変化から暗電流補正の必要性を判断し、処理装置で補正を行う必要があった。更に、暗電流補正の実行中はX線を照射できないため、暗電流の補正を行う判断は、X線撮影装置を扱う術者の判断に任せられていた。上記のように、この暗電流補正を一定時間毎に自動的に行う自動補正もあるが、補正を行うべき間隔は、平面検出器を立ち上げてからの時間・周辺温度によっても変わるため、一定時間毎では、最適な暗電流補正を行うことができなかった。
【0007】
【発明が解決しようとする課題】
しかしながら、長時間連続して透視画像を見ている場合には、暗電流は徐々に変化するため、画像の輝度値が変化しても、気が付かず、補正を行うタイミングを判断できないこともあった。また、術者は、術中に集中力を要求されるため、補正の判断までは気が回らないこともある。
【0008】
更に、カテーテルの交換などで、一定時間X線を照射しない場合には、画像が表示されないため、暗電流の変化具合が確認できず、X線を照射した際に、大きな輝度値の変動がある画像が表示され、見にくくなる場合があった。
そこで本発明は、半導体素子を用いた平面型X線検出器の暗電流が時間の経過に伴って変化しても、これを適宜補正して高画質の画像が得られるX線撮影装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的は以下の手段によって達成される。
【0010】
(1)被検体へX線を照射するX線照射手段と、前記被検体を透過したX線信号を検出しこれを電気信号に変換する半導体素子を用いた平面型X線検出手段と、このX線検出手段の暗電流を検出する暗電流検出手段と、この暗電流検出手段で検出した信号を用いて前記X線検出手段から取得される画像データから暗電流成分を取り除く暗電流補正手段と、この暗電流補正手段で補正した信号を入力して画像処理を施し前記被検体のX線透過画像を生成する画像処理手段と、この画像処理手段で生成された画像を表示する表示手段とを備えたX線撮影装置であって前記X線検出手段の暗電流値の変化分を検出する暗電流変化値検出手段と、前記暗電流の変化値が所定値を超えたときに該暗電流の補正が必要であると判断する判断手段と、該暗電流の補正が必要であることを報知する報知手段とを備えた。
【0011】
(2)上記(1)の暗電流変化値検出手段は、前記X線検出手段で検出した画像データの一部の領域の変化分を用いる。
【0012】
(3)上記(1)の暗電流補正報知手段は、暗電流の補正が必要である旨の警告を上記表示装置に表示して成る。
【0013】
(4)上記(1)の暗電流補正報知手段は、上記表示装置に暗電流の変化度合いを表示して成る。
【0014】
【発明の実施の形態】
以下図面を参照して本発明の実施例を説明する。図1は本発明によるX線撮影装置の構成を示すブロック図である。本発明によるX線撮影装置は、X線を被検体(図示省略)に照射するX線発生装置1、X線発生装置1を制御するX線制御装置19、被検体を透過したX線情報を検出する半導体素子を用いた平面型X線検出器(以下、平面検出器と呼ぶ)2,平面検出器2を制御する平面検出器制御装置21、X線条件や撮影・透視を切り替えるための制御信号を前記X線制御装置19や平面検出器制御装置21に出力する操作卓20、平面検出器からの画像を収集する画像収集部3、暗電流補正を行う補正処理部4、収集された画像から暗電流の変化量を検出する暗電流変化検出部5、この暗電流変化検出部5で検出した暗電流変化量と所定値とを比較して暗電流補正の必要性を判断する暗電流補正判断部23、収集された画像情報にリアルタイムに様々な処理をする画像処理部6、画像処理された画像を表示するCRTモニタ7、暗電流補正指令を入力する補正ボタン22とから構成される。平面検出器2は、図2に示すように、被検体を透過したX線を電荷に変換するX線検出物質層8と、この電荷を読出し電気信号に変換するTFTトランジスタで構成されるX線検出素子アレイ9、TFTトランジスタで変換された電気信号を増幅する増幅回路10、X線の入射により放出された電荷量分を充電する積分回路11、X線検出物質層により変換された電荷をTFTトランジスタにより読み出すタイミングの制御を行うライン制御回路12、アナログ信号をデジタル信号に変換するA/Dコンバーター13から構成される。
X線発生装置1から照射されたX線は、被検体を透過し,X線平面検出器2内のX線検出素子アレイ9に入射する。この際、X線は透過画像情報を持っている。X線検出素子アレイ9に入射したX線は電荷に変換され、ライン制御回路12による読出しタイミングで増幅回路10に読み出され、増幅される。増幅された電荷量は積分回路11によって積分され、A/Dコンバータ13に受け渡される。受け渡されたアナログ信号はデジタル信号に変換され画像収集部3へ逐次転送される。画像収集部13に転送されたデジタル信号は補正処理部4にて暗電流補正等の補正が行われて、画像処理部6へ受け渡される。画像処理部6にて、画像の拡大・縮小、各種フィルター処理が施され、透視あるいは撮影画像がCRTモニタ7上に表示される。
【0015】
次に暗電流補正について説明する。暗電流補正は図3に示すように、補正ボタン22が押されることで実行され、最初に、X線を照射していないことを確認後、X線を照射しない状態での画像(ダーク画像)を数十枚取得し、加算平均することで、ダーク画像の平均画像を作成する。このダーク画像をメモリに保存しておく。以降、平面検出器から取得される画像データから、このダーク画像データを減算することで、暗電流成分を取り除き、暗電流補正が行われる。
【0016】
次に、本発明における暗電流補正の判断に関する第一の実施例を示す。図4に本実施例における構成図を示す。図4は、ダーク画像の平均画像を格納しておくメモリ14、暗電流画像の平均値を算出する平均値算出回路15、補正処理する前の画像(ライブ画像)の平均値を算出する平均値算出回路16、ダーク画像の平均値とライブ画像の平均値を減算する減算器17、減算結果から暗電流補正の必要性を判断する暗電流補正判断部20、暗電流補正を行う暗電流補正部4から構成されている。本発明においては図5に示すように、最初に、X線が照射されない時に、メモリ14に保存されたダーク画像の平均画像を、演算時間を早くするために、別途設けられた平均値算出回路15を用いて、ダーク画像の一部分を、例えば図6に示したように、中央100×100ピクセルの平均値を算出する。X線が照射されないときにも、平面検出器から画像が送られてくるため、このX線を照射しないときのライブ画像の平均値(中央100×100ピクセル)も平均値算出回路16を用いて算出し、減算器17を用いて、ライブ画像の平均値からダーク画像の平均値を減算する。このときの差分値が、暗電流の変化量となる。暗電流が図7に示すように、暗電流補正後の時間に対して変化している場合に、ある時刻tにおいて、変化量が閾値を超えているときには、暗電流の変化が許容を超えたと判断し、暗電流補正を行うように促す。
【0017】
また、中央の平均値を比較する以外にも、増幅器10の出力値の比較を用いて行うことも可能である。増幅器10の内部構成を図8に示す。増幅器10は、複数ライン例えば128本分毎に処理する専用IC18を複数個用いて構成されている。この専用IC18によって、順次各ラインのアナログ信号が増幅されて読み出される。また、透視など低線量を用いる場合には、専用IC18は2ライン毎に加算処理をして読み出すことができる。この専用IC18の出力値の平均値をダーク画像とライブ画像で比較することで暗電流の変化を測定することも有効である。このとき、専用IC18の幾つかのみを対象としてもよい。更に、最大値を示す専用IC18を常に比較の対象としてもよい。
暗電流の補正が必要であることを報知する手段としては、図9に示すように術者が常に観察する透視モニター上に警告文字・記号を表示することが有効である。更に、突然モニター上に警告が表示されると、術者も困惑するため、図10、図11に示すように、閾値までの暗電流の変化をパーセント表示や、グラデーション表示を用いて、暗電流の変化の進行具合を示すことも有効である。
【0018】
暗電流補正を再度行った際には、メモリ14に保存した画像を更新する。
【0019】
【発明の効果】
以上、本発明によれば,半導体を用いた平面型X線検出器の暗電流の変化を常に監視し、この暗電流が一定の変化値を越えた際には、暗電流補正を行うようにしたので、術者の判断なしで、適宜に最適な暗電流補正を行うことができるようになる。これによって、暗電流の影響を受けることなく高画質の画像のX線撮影装置を提供することができる。
【0020】
【図面の簡単な説明】
【図1】本発明によるX線撮影装置の構成を示すブロック図。
【図2】半導体素子を用いた平面型X線検出器の構成図。
【図3】暗電流補正の流れを示す図。
【図4】暗電流の変化量を検出する構成のブロック図。
【図5】暗電流変化量算出のフローチャート。
【図6】暗電流平均値を算出する際の領域の一例を示す図。
【図7】暗電流の時間変動の一例を示す図。
【図8】数ライン毎にまとめて増幅する専用ICの模式図。
【図9】暗電流補正の必要性を促す報知の一例を示す図(警告文の例)。
【図10】暗電流補正の必要性を促す報知の一例を示す図(暗電流の変化量増加の割合を数値で示す例)。
【図11】暗電流補正の必要性を促す報知の一例を示す図(暗電流の変化量増加の進度をグラデーションを用いて示す例)。
【0021】
【符号の説明】
1 X線発生装置、2 平面型X線検出器、3 画像収集部、4 補正処理部、5暗電流変化検出部、6 画像処理部、7 CRT、8 X線検出物質層、9 センサアレイ、10 増幅回路、11 積分回路、12 ライン制御回路、13 A/Dコンバータ、14 暗電流画像保存メモリ、15 暗電流画像平均値算出回路、16 ライブ画像平均値算出回路、17 減算器、18 専用IC 19 X線制御装置、20 操作卓 21 平面検出器制御装置、22 補正ボタン、23 暗電流補正判断部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an X-ray imaging apparatus, and in particular, detects a change in dark current of a planar X-ray detector using a semiconductor, performs dark current correction appropriately, eliminates the influence of dark current, and achieves high image quality. The present invention relates to an X-ray imaging apparatus suitable for obtaining an image.
[0002]
[Prior art]
At present, attention is focused on a planar X-ray detector (hereinafter referred to as a planar detector) using a semiconductor element such as CsI as an X-ray detector. However, the flat detector has a component called dark current that is accumulated in the detection element even though it is not irradiated with X-rays due to its configuration.
[0003]
For this reason, even if the subject, the imaging region, and the imaging conditions are the same, the image obtained by the change in the dark current changes. In particular, in X-ray fluoroscopy using a low dose, the influence of a dark current component is large, and the temporal change in luminance value can be seen even on a fluoroscopic monitor. To solve this problem, as disclosed (see Patent Document 1), the dark current of the flat detector is measured without irradiating the subject with X-rays, and the measurement is performed from the X-ray transmission data of the subject. There is a method of performing dark current correction by subtracting the dark current .
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2002-159481.
[0005]
The dark current measurement for dark current correction is performed at regular intervals (no subject), or it is confirmed that there is no subject in the X-ray irradiation area between imaging. It was. Since the dark current is changed by the temperature inside the detector, in particular, immediately after turning on the flat panel detector, until the temperature is stabilized, it is necessary to correct the frequent dark current. In order to correct the dark current, some images acquires when no X-ray irradiation, by obtaining the average value, to create an average value of the dark current component. By subtracting this value from the image obtained by actually irradiating the X-ray, the dark current component can be removed.
[0006]
Conventionally, in order to perform correction of the dark current, determines the necessity of correction of the dark current from the change in the image, it is necessary to perform a correction processing unit. Furthermore, since X-rays cannot be irradiated while dark current correction is being performed, the determination of correcting the dark current is left to the operator who handles the X-ray imaging apparatus. As described above, since there is also automatically automatic correction performed for each predetermined time correction of the dark current, the interval should perform correction, also vary with time and ambient temperature from a launched a flat panel detector, in every predetermined time, it is impossible to correct the optimum dark current.
[0007]
[Problems to be solved by the invention]
However, when the fluoroscopic image is viewed continuously for a long time, the dark current gradually changes, so even if the luminance value of the image changes, it is not noticed and the timing for correction may not be determined. . In addition, since the surgeon is required to concentrate during the operation, the operator may not be aware of the correction.
[0008]
Further, when X-rays are not irradiated for a certain period of time, such as when a catheter is exchanged, an image is not displayed. Therefore, the change in dark current cannot be confirmed, and when the X-rays are irradiated, there is a large change in luminance value. An image may be displayed, making it difficult to see.
In view of this, the present invention provides an X-ray imaging apparatus capable of obtaining a high-quality image by appropriately correcting the dark current of a planar X-ray detector using a semiconductor element even when the dark current changes with time. The purpose is to do.
[0009]
[Means for Solving the Problems]
The above object is achieved by the following means.
[0010]
(1) X-ray irradiation means for irradiating the subject with X-rays, planar X-ray detection means using a semiconductor element for detecting an X-ray signal transmitted through the subject and converting it into an electrical signal, Dark current detection means for detecting dark current of the X-ray detection means; dark current correction means for removing dark current components from image data acquired from the X-ray detection means using a signal detected by the dark current detection means; An image processing means for inputting a signal corrected by the dark current correction means and performing image processing to generate an X-ray transmission image of the subject, and a display means for displaying an image generated by the image processing means an X-ray imaging apparatus comprising, the dark current change value detecting means for detecting the variation of the dark current value of the X-ray detector, dark current when the variation value of the dark current exceeds a predetermined value Determination means for determining that correction of And a notifying means for notifying that correction of the flow is necessary.
[0011]
(2) The dark current change value detection means of (1) uses a change in a partial area of the image data detected by the X-ray detection means.
[0012]
(3) The dark current correction informing means of (1) displays a warning on the display device that dark current correction is necessary.
[0013]
(4) The dark current correction notifying means of (1) is configured to display a change degree of dark current on the display device.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the configuration of an X-ray imaging apparatus according to the present invention. An X-ray imaging apparatus according to the present invention includes an X-ray generator 1 that irradiates a subject (not shown) with X-rays, an X-ray controller 19 that controls the X-ray generator 1, and X-ray information transmitted through the subject. A planar X-ray detector (hereinafter referred to as a planar detector) 2 using a semiconductor element to be detected, a planar detector control device 21 for controlling the planar detector 2, and a control for switching X-ray conditions and imaging / perspective A console 20 that outputs a signal to the X-ray control device 19 and the flat detector control device 21, an image collecting unit 3 that collects an image from the flat detector, a correction processing unit 4 that performs dark current correction, and a collected image The dark current change detection unit 5 for detecting the change amount of the dark current from the dark current , and the dark current for judging the necessity for correction of the dark current by comparing the dark current change amount detected by the dark current change detection unit 5 with a predetermined value Correction judgment unit 23, the collected image information in real time The image processing unit 6 for the Do treatment, CRT monitor 7 to display the processed image, and a correction button 22 for inputting the dark current correction command. As shown in FIG. 2, the flat detector 2 is an X-ray composed of an X-ray detection material layer 8 that converts X-rays transmitted through a subject into electric charges, and a TFT transistor that converts the electric charges into electric signals. A detection element array 9, an amplification circuit 10 for amplifying the electric signal converted by the TFT transistor, an integration circuit 11 for charging the amount of electric charge released by the incidence of X-rays, and the electric charge converted by the X-ray detection material layer for the TFT The line control circuit 12 controls the timing of reading by the transistor and the A / D converter 13 converts an analog signal into a digital signal.
X-rays irradiated from the X-ray generator 1 pass through the subject and enter the X-ray detection element array 9 in the X-ray flat detector 2. At this time, the X-ray has transmission image information. The X-rays that have entered the X-ray detection element array 9 are converted into electric charges, which are read and amplified by the amplifier circuit 10 at the read timing by the line control circuit 12. The amplified charge amount is integrated by the integration circuit 11 and transferred to the A / D converter 13. The transferred analog signal is converted into a digital signal and sequentially transferred to the image collecting unit 3. The digital signal transferred to the image collecting unit 13 is subjected to correction such as dark current correction in the correction processing unit 4 and is transferred to the image processing unit 6. In the image processing unit 6, image enlargement / reduction and various filter processes are performed, and a fluoroscopic or captured image is displayed on the CRT monitor 7.
[0015]
Next, dark current correction will be described. As shown in FIG. 3, dark current correction is executed by pressing the correction button 22. First, after confirming that X-rays are not irradiated, an image in a state where X-rays are not irradiated (dark image) Dozens of images are acquired and averaged to create an average image of dark images. This dark image is stored in the memory. Thereafter, by subtracting the dark image data from the image data acquired from the flat detector, the dark current component is removed and dark current correction is performed.
[0016]
Next, a first embodiment relating to the determination of the correction of the dark current in the present invention. FIG. 4 shows a configuration diagram in the present embodiment. FIG. 4 shows a memory 14 that stores an average image of dark images, an average value calculation circuit 15 that calculates an average value of dark current images, and an average value that calculates an average value of images (live images) before correction processing. calculation circuit 16, a subtracter 17 for subtracting the average value of the average value and the live image of the dark image, the dark current correction determining unit 20 determines the necessity of correction of the dark current from the subtraction result, the dark current correction to perform dark current correction It consists of part 4. In the present invention, as shown in FIG. 5, first, an average value calculation circuit provided separately in order to shorten the calculation time of the average image of the dark image stored in the memory 14 when X-rays are not irradiated. 15, the average value of the center 100 × 100 pixels is calculated for a part of the dark image as shown in FIG. 6, for example. Since the image is sent from the flat detector even when X-rays are not irradiated, the average value (100 × 100 pixels in the center) of the live image when the X-rays are not irradiated is also calculated using the average value calculation circuit 16. The average value of the dark image is subtracted from the average value of the live image using the subtractor 17. The difference value at this time is the amount of change in dark current. As shown in FIG. 7, when the dark current is changing with respect to the time after dark current correction and the amount of change exceeds a threshold value at a certain time t, the change in dark current exceeds the allowable value. determination, and prompts to perform the correction of the dark current.
[0017]
Further, in addition to comparing the average value at the center, it is also possible to perform the comparison by comparing the output values of the amplifier 10. The internal configuration of the amplifier 10 is shown in FIG. The amplifier 10 is configured by using a plurality of dedicated ICs 18 that process a plurality of lines, for example, every 128 lines. The dedicated IC 18 sequentially amplifies and reads the analog signal of each line. In addition, when a low dose such as fluoroscopy is used, the dedicated IC 18 can read by performing addition processing every two lines. It is also effective to measure the change in dark current by comparing the average value of the output values of the dedicated IC 18 between the dark image and the live image. At this time, only some of the dedicated ICs 18 may be targeted. Further, the dedicated IC 18 showing the maximum value may be always used as a comparison target.
As a means for notifying that dark current correction is necessary, it is effective to display a warning character / symbol on a fluoroscopic monitor that an operator always observes as shown in FIG. Furthermore, when a warning is suddenly displayed on the monitor, the surgeon is also confused. Therefore, as shown in FIGS. 10 and 11, the change in dark current up to the threshold value is displayed as a percentage or gradation display. It is also effective to show the progress of the change.
[0018]
When dark current correction is performed again, the image stored in the memory 14 is updated.
[0019]
【The invention's effect】
As described above, according to the present invention, the change in the dark current of the planar X-ray detector using a semiconductor is constantly monitored, and when the dark current exceeds a certain change value, the dark current is corrected. Therefore, the optimum dark current correction can be appropriately performed without the operator's judgment. Thereby, it is possible to provide an X-ray imaging apparatus for high-quality images without being affected by dark current.
[0020]
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of an X-ray imaging apparatus according to the present invention.
FIG. 2 is a configuration diagram of a planar X-ray detector using a semiconductor element.
FIG. 3 is a diagram showing a flow of dark current correction.
FIG. 4 is a block diagram of a configuration for detecting the amount of change in dark current.
FIG. 5 is a flowchart for calculating a dark current change amount;
FIG. 6 is a diagram showing an example of a region when calculating a dark current average value.
FIG. 7 is a diagram showing an example of time variation of dark current.
FIG. 8 is a schematic diagram of a dedicated IC that amplifies together every several lines.
9 is a view showing an example of a notification that prompts the need for dark current correction (example warning).
[10] (example shown the rate of variation increases in dark current numeric) shows an example of a notification that prompts the need for dark current correction.
[11] (example shown using a gradient of progress of variation increase in dark current) illustrates an example of a notification that prompts the need for dark current correction.
[0021]
[Explanation of symbols]
1 X-ray generator, 2 Planar X-ray detector, 3 Image acquisition unit, 4 Correction processing unit, 5 Dark current change detection unit, 6 Image processing unit, 7 CRT, 8 X-ray detection material layer, 9 Sensor array, 10 amplifying circuit, 11 integrating circuit, 12 line control circuit, 13 A / D converter, 14 dark current image storage memory, 15 dark current image average value calculating circuit, 16 live image average value calculating circuit, 17 subtractor, 18 dedicated IC 19 X-ray control device, 20 console 21 flat panel detector control device, 22 correction button, 23 dark current correction determination unit

Claims (1)

被検体へX線を照射するX線照射手段と、前記被検体を透過したX線信号を検出しこれを電気信号に変換する半導体素子を用いた平面型X線検出手段と、このX線検出手段の暗電流を検出する暗電流検出手段と、この暗電流検出手段で検出した信号を用いて前記X線検出手段から取得される画像データから暗電流成分を取り除く暗電流補正手段と、この暗電流補正手段で補正した信号を入力して画像処理を施し前記被検体のX線透過画像を生成する画像処理手段と、この画像処理手段で生成された画像を表示する表示手段とを備えたX線撮影装置であって前記X線検出手段の暗電流値の変化分を検出する暗電流変化値検出手段と、前記暗電流の変化値が所定値を超えたときに該暗電流の補正が必要であると判断する判断手段と、該暗電流の補正が必要であることを報知する報知手段とを備えたことを特徴とするX線撮影装置。X-ray irradiation means for irradiating a subject with X-rays, planar X-ray detection means using a semiconductor element that detects an X-ray signal transmitted through the subject and converts it into an electrical signal, and this X-ray detection Dark current detection means for detecting dark current of the means, dark current correction means for removing dark current components from image data acquired from the X-ray detection means using a signal detected by the dark current detection means, An image processing unit that inputs a signal corrected by the current correction unit and performs image processing to generate an X-ray transmission image of the subject, and a display unit that displays an image generated by the image processing unit a linear imaging device, a dark current change value detecting means for detecting the variation of the dark current value of the X-ray detecting means, the correction of the dark current when the variation value of the dark current exceeds a predetermined value A determination means for determining the necessity, and the dark current X-ray imaging apparatus characterized by comprising a notification means for notifying that the positive is needed.
JP2002293404A 2002-10-07 2002-10-07 X-ray equipment Expired - Fee Related JP4293774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002293404A JP4293774B2 (en) 2002-10-07 2002-10-07 X-ray equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002293404A JP4293774B2 (en) 2002-10-07 2002-10-07 X-ray equipment

Publications (3)

Publication Number Publication Date
JP2004121718A JP2004121718A (en) 2004-04-22
JP2004121718A5 JP2004121718A5 (en) 2005-11-24
JP4293774B2 true JP4293774B2 (en) 2009-07-08

Family

ID=32284320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002293404A Expired - Fee Related JP4293774B2 (en) 2002-10-07 2002-10-07 X-ray equipment

Country Status (1)

Country Link
JP (1) JP4293774B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4615265B2 (en) * 2004-07-22 2011-01-19 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Radiography equipment
JP4744831B2 (en) * 2004-09-09 2011-08-10 株式会社東芝 X-ray diagnostic equipment
JP4557697B2 (en) * 2004-12-08 2010-10-06 キヤノン株式会社 Radiation imaging apparatus and control method thereof
JP4789245B2 (en) * 2006-01-13 2011-10-12 株式会社日立メディコ X-ray diagnostic imaging equipment
JP4907232B2 (en) * 2006-06-12 2012-03-28 株式会社日立メディコ X-ray equipment
JP2009222439A (en) * 2008-03-13 2009-10-01 Shimadzu Corp Nuclear medicine diagnostic equipment
JP5546887B2 (en) * 2010-02-09 2014-07-09 富士フイルム株式会社 Radiographic imaging apparatus and method, and program
JP2014048171A (en) * 2012-08-31 2014-03-17 Tele Systems:Kk Device and method for supplying driving bias voltage to radiation detector
JP6711620B2 (en) * 2015-12-28 2020-06-17 キヤノン株式会社 Radiation imaging apparatus, radiation imaging method and program
JP2020005987A (en) * 2018-07-10 2020-01-16 キヤノン株式会社 Radiation imaging apparatus, radiation imaging system, radiation imaging method, and program

Also Published As

Publication number Publication date
JP2004121718A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
US6201891B1 (en) X-ray imaging apparatus and recording medium therefor
JP4293774B2 (en) X-ray equipment
JP4995193B2 (en) X-ray diagnostic imaging equipment
US20150362601A1 (en) Radiation imaging apparatus, radiation imaging system, and control method of radiation imaging system
JP2002022844A (en) Apparatus and method for x-ray examination forming x-ray image
JP6763185B2 (en) Radiation imaging equipment and radiation imaging system
JP2010042150A (en) Radiographic apparatus
US20160302752A1 (en) Radiation image capturing system and body thickness estimation method
JP6491545B2 (en) Image processing apparatus, radiation imaging apparatus, image processing method, program, and storage medium
WO2004105609A1 (en) X-ray image diagnostic device
JP4258832B2 (en) X-ray diagnostic imaging equipment
WO2004093685A1 (en) Radiographical device
JP2009254660A (en) Radiography apparatus
JP6152894B2 (en) Radiation imaging device
US20130039561A1 (en) Image processing apparatus, image processing method and storage medium
JP3511915B2 (en) Imaging device
JP2011019591A (en) X-ray equipment, interpolating method of lost pixel in x-ray detector, and method of creating deficit map in x-ray detector
JP2007143594A (en) X-ray diagnostic equipment
JP7271209B2 (en) Radiation imaging apparatus, radiation imaging system, and radiation imaging apparatus control method
JP2001238137A (en) Imaging apparatus
JP3603069B2 (en) X-ray imaging device
JP4137453B2 (en) Angiographic X-ray inspection device
JP2007020925A (en) X-ray diagnostic apparatus
JP2011167329A (en) Method for detecting deficient pixel in two-dimensional array x-ray detector, and device for detecting deficient pixel
JP2004194702A (en) Digital radiographic apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051006

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees