JP4292612B2 - Surface resistance measuring device - Google Patents

Surface resistance measuring device Download PDF

Info

Publication number
JP4292612B2
JP4292612B2 JP03156099A JP3156099A JP4292612B2 JP 4292612 B2 JP4292612 B2 JP 4292612B2 JP 03156099 A JP03156099 A JP 03156099A JP 3156099 A JP3156099 A JP 3156099A JP 4292612 B2 JP4292612 B2 JP 4292612B2
Authority
JP
Japan
Prior art keywords
eddy current
conductive film
surface resistance
interval
detection result
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03156099A
Other languages
Japanese (ja)
Other versions
JP2000230950A (en
Inventor
裕次 柿田
隆弘 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP03156099A priority Critical patent/JP4292612B2/en
Publication of JP2000230950A publication Critical patent/JP2000230950A/en
Application granted granted Critical
Publication of JP4292612B2 publication Critical patent/JP4292612B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は表面抵抗測定装置に関し、詳しくは、導電膜の表面抵抗をインラインで測定する表面抵抗測定装置に関する。
【0002】
【従来の技術】
ガラス、セラミックあるいは高分子フィルムなどの表面に電気抵抗の低い金属被膜または金属酸化物被膜を付着させた導電基板は、その導電性を利用した用途、たとえば液晶ディスプレイ、ELディスプレイ、プラズマディスプレイといったフラットパネルディスプレイや、大陽電池などの透明電極、プラウン管の窓の透明静電シールド板、または透明電磁シールド板、発熱体などの電気・電子分野の用途に広く使用されている。
【0003】
また、このような導電膜の中で光の選択透過性を有するものは、その赤外光反射特性を利用して、大陽エネルギ利用のための窓材や、建物・自動車などの熱線反射用材料として利用されている。
【0004】
従来、上記のような導電基板の導電膜の表面抵抗は、二端子もしくは二探針または四端子もしくは四探針などの接触式表面抵抗測定法により測定されるのが一般的であった。
【0005】
【発明が解決しようとする課題】
しかしながら、上記の接触式表面抵抗測定法は破壊測定であり、産業的には製品の導電膜表面での傷の発生による性能劣化あるいは品位の劣化が起こるという問題があった。
【0006】
上記のような導電膜表面での傷の発生を防止するため、電磁誘導コイルと導電膜との結合インダクタンスを測定する方法(磁界を印加して発生する渦電流を測定する方法)が知られている。
【0007】
この方法は、100Ω/□程度以上の表面抵抗値を持つ導電膜を測定するには印加磁界の強度をかなり上げる必要があるために、磁束の広がりが大きくなり、インラインの連続測定では製造プロセスでの基板のパスライン変動(基板面の法線方向の振動)により、センサ部と測定対象である導電膜との間隔が変動し、結合インダクタンスが一定とならず、結果として測定誤差が大きくなるという問題がある。
【0008】
本発明は上記の実情に鑑みてなされたもので、その目的は、導電膜の性能劣化あるいは品位の劣化を防止できながら、パスライン変動による測定誤差を抑制できて、インライン連続測定を精度良く行うことができる表面抵抗測定装置を提供する点にある。
【0009】
【課題を解決するための手段】
請求項1による発明の構成・作用・効果は次の通りである。
【0010】
[構成]
ポリエチレンテレフタレートフィルム上に表面抵抗値が6〜2000Ω/□のITO皮膜を付着させた導電膜に設定間隔を空けて対向させてその導電膜に渦電流を流す渦電流発生部と、前記導電膜に流れる渦電流を前記導電膜とは離間した状態で検出する渦電流検出部と、前記渦電流発生部と導電膜の間隔を検出するレーザー式変位センサーからなる間隔検出部とを所定数づつ設け、前記渦電流発生部に印加する電圧を一定にした状態で、前記渦電流検出部の検出結果と前記間隔検出部の検出結果とに基づいて、前記導電膜の表面抵抗を前記導電膜の製造プロセスにおいて連続的に算出する算出手段を設け、前記算出手段は、予め作成しておいた渦電流と前記間隔との関係についての校正曲線に基づき、前記間隔検出部の検出結果が前記設定間隔から外れていると、前記設定間隔から外れたことに起因する渦電流の増減量を求めるとともに、前記渦電流の増減量を前記渦電流検出部の検出結果から減じあるいは加える補正を行い、その補正した渦電流の値に基づいて、前記導電膜の表面抵抗を算出するよう構成してある。
【0011】
[作用]
導電膜に設定間隔を空けて対向させた渦電流発生部で導電膜に渦電流を流す。例えば、渦電流発生部としてのフェライトコアコイルなどのコイルに高周波電圧を印加し、前記コイルを導電膜に近づけることで、導電膜に高周波誘導結合による渦電流を流す。
【0012】
電圧を一定にしておくと、導電膜に流れる渦電流と導電膜の表面抵抗が逆比例(反比例)することから、渦電流を検出することで、渦電流発生部と導電膜を前記設定間隔空けた状態(基準点)での表面抵抗を求めることができる。
【0013】
この場合、予め渦電流と表面抵抗との関係について校正曲線(検量線)を作成しておくと、表面抵抗を求めやすくすることができる。
【0014】
渦電流は、原理的に導電膜と渦電流発生部との間隔が大きくなるにつれて小さくなる傾向がある。
【0015】
そこで、前記間隔検出部の検出結果が前記設定間隔から外れていると、算出手段が、前記設定間隔から外れたことに起因する渦電流の増減量を求めるとともに、前記渦電流の増減量を渦電流検出部の検出結果から減じあるいは加える補正を行い、その補正した渦電流の値に基づいて、導電膜の表面抵抗を算出する。
【0016】
このようにして導電膜の表面抵抗を算出するから、導電膜と渦電流発生部との間隔が変わっても、導電膜の表面抵抗の測定値に誤差が生じにくくなる。
【0017】
また、導電膜の表面抵抗を導電膜に接触することなく測定するから、導電膜に傷がつくのを防止することができる。
【0018】
そして、例えば渦電流発生部と渦電流検出部とを導電膜の製造プロセスの幅方向に複数配置することで、表面抵抗の前記幅方向における分布や表面抵抗の流れ方向のトレンド(経時的変化)を求めることができる。
【0019】
[効果]
従って、導電膜の性能劣化あるいは品位の劣化を防止できながら、パスライン変動による測定誤差を抑制できて、インライン連続測定を精度良く行うことができる表面抵抗測定装置を提供することができた。
【0020】
請求項2による発明の構成・作用・効果は次の通りである。
【0021】
[構成]
請求項1による発明の構成において、前記間隔検出部の数を前記渦電流発生部の数よりも少なくしてある。
【0022】
[作用]
請求項1の構成による作用と同様の作用を奏することができるのに加え、次の作用を奏することができる。
【0023】
例えば、導電膜の製造ライン速度が1m/min程度以下の低速では、パスライン変動は幅方向にほぼ均等に生じると考えることができる。
【0024】
このような場合は、渦電流発生部の数よりも少ない数(例えば1個)の間隔検出部の検出結果と各渦電流検出部の検出結果とに基づいて、算出手段で導電膜の表面抵抗を算出する。
【0025】
これにより、間隔検出部の個数を少なくすることができて、間隔検出部に要するコストを低廉化することができる。
【0026】
[効果]
従って、請求項1の構成による効果と同様の効果を奏することができるのに加え、安価に製作できる表面抵抗測定装置を提供することができた。
【0027】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0028】
図1に、本発明にかかる非接触式の表面抵抗測定装置の構成を示してある。
【0029】
この表面抵抗測定装置は、基板1上の導電膜2に設定間隔を空けて対向させてその導電膜2に渦電流を流す渦電流発生部3Aと、導電膜2に流れる渦電流を導電膜2とは離間した状態で検出する渦電流検出部3B(渦電流発生部3Aとは一体である)とから成る複数(n個)の渦電流センサー3を設け、渦電流発生部3Aと導電膜2の間隔を検出する複数(n個)の変位センサー4(間隔検出部に相当)を前記渦電流センサー3と一体に設け、渦電流検出部3Bの検出結果と変位センサー4の検出結果とに基づいて、導電膜2の表面抵抗を算出するコンピュータ7(算出手段に相当)を設けて構成してある。
【0030】
前記渦電流発生部3Aはフェライトコアコイルなどのコイルで構成してあり、このコイルに高周波電圧を印加し、コイルを導電膜2に近づけることで導電膜2に高周波誘導結合による渦電流を流す。
【0031】
前記渦電流センサー3と変位センサー4とは、それらに対するセンサーアンプ6にセンサーケーブル5を介して接続してある。また、測定結果を表示するCRT8と、測定結果を印字出力するプリンタ9と、測定された表面抵抗値が規定された範囲外になったことや異常をオペレータに報知する警報装置10とを設けてある。
【0032】
前記センサーアンプ6には、高周波発振器と、渦電流のアナログ信号をデジタル信号に変換する第1A/D変換器と、前記間隔に応じたアナログ信号をデジタル信号に変換する第2A/D変換器とを設けてある。
【0033】
前記複数の渦電流センサー3と変位センサー4は、導電膜2の製造プロセスにおいて導電膜2の幅方向に配置して、表面抵抗の幅方向の分布や表面抵抗の流れ方向のトレンド(経時的な変化)をコンピュータ7により求めることができるようにしてある。
【0034】
前記コンピュータ7は、前記第1及び第2A/D変換器によって得られたデジタル信号に基づいてデータ処理し、変位センサー4の検出結果が前記設定間隔から外れていると、設定間隔から外れたことに起因する渦電流の増減量を求めるとともに、前記渦電流の増減量を渦電流検出部3Bの検出結果から減じあるいは加える補正を行い、その補正した渦電流の値に基づいて、導電膜2の表面抵抗を算出するよう構成してある。この算出方法については後で詳しく説明する。
【0035】
次に、上記構造の表面抵抗測定装置の動作について説明する。
【0036】
1) 前記渦電流発生部3Aが基板1上の導電膜2と数mmの設定間隔を空けて対向する状態に、渦電流センサー3と変位センサー4を配置する。
【0037】
2) センサーアンプ6から渦電流センサー3の渦電流発生部3Aに高周波を印加して、高周波誘導結合により導電膜2に渦電流を発生させる。
【0038】
3) 前記印加する高周波電圧を一定に制御していれば、導電膜2に流れる渦電流と導電膜2の表面抵抗が逆比例(反比例)することから、図2に示すように、予め渦電流と表面抵抗との関係について校正曲線(検量線)を作成しておくことで、導電膜2と渦電流発生部3Aとを前記設定間隔空けた状態(基準点)での未知の導電膜2の表面抵抗を求めることができる。
【0039】
4) 渦電流は、原理的に導電膜2と渦電流発生部3Aとの間隔が大きくなるにつれて小さくなる傾向があるため、予め作成しておいた渦電流と前記間隔(渦電流発生部3Aと導電膜2の間隔)との関係についての校正曲線(検量線)(図3参照)に基づいて、渦電流検出部3Bの検出結果を補正する。
【0040】
5) 次に、上記の補正の方法について説明する。
【0041】
例えば、表面抵抗が6Ω/□の導電膜の場合、基準点での渦電流は66%であるが、インラインにおいてパスライン変動により、前記間隔が−1mm、すなわち(渦電流センサー3の)渦電流発生部3Aと導電膜2との間隔が1mm小さくなった場合、渦電流は78%となって、実際の表面抵抗よりも測定値が12%大きくなる。
【0042】
そこで、この場合は渦電流センサー3の渦電流検出部3Bが検出した渦電流の値から12%減算する補正を行う。
【0043】
逆に、前記間隔が+1mm、すなわち渦電流発生部3Aと導電膜2との間隔が1mm大きくなった場合、渦電流の値は54%となって実際の表面抵抗よりも測定値が12%小さくなる。
【0044】
そこで、この場合は渦電流検出部3Bが検出した渦電流に12%加算する補正を行う。このような補正をすれば、パスライン変動があっても表面抵抗測定の誤差を抑制できる。
【0045】
このように、表面抵抗が既知の導電膜2について、図3に示すような校正曲線を予め作成しておくことで、補正値を正しく求めやすくすることができる。
【0046】
前記コンピュータ7により表示される表面抵抗は任意の作成ソフトウエアにより、測定値やグラフとしてデータ処理を行い、インラインでの表面抵抗連続測定を行う。
【0047】
導電膜2の表面抵抗の算出は、コンピュータ7の演算周期により導電膜2の製造プロセスにおいて連続的に行うことができる。
【0048】
表面抵抗の測定結果を警報装置10や製造プロセスにフィードバックすることで、製造の際に表面抵抗を制御することができ、製造工程における品質の向上・生産性向上を図ることができる。
【0049】
前記渦電流センサー3と変位センサー4を一体に設けたことで、導電膜の製造ライン速度が1m/min程度以上の高速では、ほぼ同一点での渦電流と前記間隔の測定を行うことができ、測定精度を向上させることができる。
【0050】
〔別実施形態〕
前記導電膜2の製造ライン速度が1m/min程度以下の低速では、パスライン変動は幅方向にほぼ均等に生じると考えることもでき、このような低速で導電膜2を製造する場合、複数の渦電流センサー3に対して前記変位センサー4を1個だけ設けた構造に構成することもできる。
【0051】
つまり、前記変位センサー4の数を前記渦電流発生部3Aの数よりも少なく設定する。これにより、変位センサー4にかかるコストを低く抑えることができる。
【0052】
前記変位センサー4は分解能が高くて精度がよい方がよく、分解能が10μm、精度が±5%以下であれば、より正確な測定結果を得ることができる。
【0053】
前記渦電流センサー3と変位センサー4とを別体に形成してあってもよい。
【0054】
前記設定間隔は上記の実施形態の数値に限られないが、3mm以下に設定すると、より正確な測定結果を得ることができる。
【0055】
前記変位センサー4は、静電容量式・超音波式・レーザ式・光電式などの変位センサーで構成することができる。
【0056】
前記コンピューター7は、パーソナルコンピュータ・ファクトリーコンピュータ等で構成することができる。
【0057】
前記渦電流発生部3Aと渦電流検出部3Bと変位センサー4との数は上記の実施形態における数に限られるものではなく、適宜変更することができる。
【0058】
【実施例】
本発明の実施例を説明する。
【0059】
本実施例において使用した非接触式表面抵抗測定装置を以下に示す。
高周波渦電流センサー(フェライトコアコイル内臓)として、測定範囲1Ω/□〜2000Ω/□を使用し、高周波発信器で2MHzを印加した。
【0060】
導電膜として、PET(Poly Ethylene Terephthalate)フィルム上のITO(Indium Tin 0xide)被膜を付着させたもので、6〜2000Ω/□の範囲で表面抵抗値の異なるものを数枚使用した。
【0061】
前記変位センサーとしてレーザ式変位センサーを使用し、仕様として測定範囲は0〜3mm、分解能10μm、測定精度は±3%である。
【0062】
センサーアンプには16ビットA/D変換器を含めた。表面抵抗の補正演算器としてパーソナルコンピュータを使用した。
【0063】
なお、本実施例による測定結果の妥当性を評価するため、本実施例にて使用する導電膜について予めJIS K7194規格の四探針法にて表面抵抗値を測定した。
【0064】
本実施例による非接触式表面抵抗測定結果と前記JIS K7194規格の四探針法による表面抵抗測定結果との比較を図4に示す。
【0065】
また、本実施例によるパスライン変動と測定結果との関係を図5に示す。本実施例によるパスライン変動に対する測定精度の向上について図6に示す。
【0066】
この結果、本実施例により測定した表面抵抗値はJIS K7194規格の四探針法により測定した表面抵抗値と相関係数0.99以上で一致した。また、パスライン変動が±3mm以内では非接触式表面抵抗測定を精度±5%以下で測定できる。
【図面の簡単な説明】
【図1】表面抵抗測定装置の概略図
【図2】渦電流と表面抵抗との関係についての校正曲線(検量線)を示す図
【図3】渦電流と離隔距離の関係についての校正曲線(検量線)を示す図
【図4】表面抵抗測定結果の比較を示す図
【図5】パスライン変動と測定結果との関係を示す図
【図6】測定精度の向上を示す図
【符号の説明】
2 導電膜
3A 渦電流発生部
3B 渦電流検出部
4 間隔検出部
7 算出手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surface resistance measuring apparatus, and more particularly to a surface resistance measuring apparatus that measures the surface resistance of a conductive film in-line.
[0002]
[Prior art]
A conductive substrate in which a metal or metal oxide film having a low electrical resistance is attached to the surface of glass, ceramic or polymer film is used for applications utilizing the conductivity, such as flat panels such as liquid crystal displays, EL displays and plasma displays. Widely used in electrical and electronic applications such as displays, transparent electrodes such as Taiyo batteries, transparent electrostatic shield plates in window of prawn tubes, transparent electromagnetic shield plates and heating elements.
[0003]
In addition, among these conductive films, those that have selective light transmission are used for window materials for the use of Taiyo energy, and for heat ray reflection in buildings, automobiles, etc., using their infrared light reflection characteristics. It is used as a material.
[0004]
Conventionally, the surface resistance of the conductive film of the conductive substrate as described above is generally measured by a contact-type surface resistance measurement method such as two-terminal or two-probe or four-terminal or four-probe.
[0005]
[Problems to be solved by the invention]
However, the contact surface resistance measurement method described above is a destructive measurement, and industrially, there has been a problem that performance degradation or quality degradation occurs due to generation of scratches on the conductive film surface of the product.
[0006]
A method for measuring the coupling inductance between the electromagnetic induction coil and the conductive film (a method for measuring an eddy current generated by applying a magnetic field) is known in order to prevent the occurrence of scratches on the conductive film surface as described above. Yes.
[0007]
In this method, in order to measure a conductive film having a surface resistance value of about 100Ω / □ or more, it is necessary to considerably increase the strength of the applied magnetic field. The substrate pass line fluctuation (vibration in the normal direction of the board surface) causes the gap between the sensor unit and the conductive film to be measured to fluctuate, and the coupling inductance is not constant, resulting in a large measurement error. There's a problem.
[0008]
The present invention has been made in view of the above circumstances, and its purpose is to perform measurement in line continuously with high accuracy by suppressing measurement errors due to fluctuations in the pass line while preventing deterioration in performance or quality of the conductive film. It is in the point of providing a surface resistance measuring device that can be used.
[0009]
[Means for Solving the Problems]
The structure, operation, and effect of the invention according to claim 1 are as follows.
[0010]
[Constitution]
An eddy current generator for causing an eddy current to flow through the conductive film having an ITO film having a surface resistance of 6 to 2000 Ω / □ adhered on a polyethylene terephthalate film, facing the conductive film with a set interval, and the conductive film A predetermined number of eddy current detectors that detect flowing eddy currents in a state of being separated from the conductive film, and a gap detection unit that includes a laser displacement sensor that detects a gap between the eddy current generator and the conductive film, Based on the detection result of the eddy current detection unit and the detection result of the interval detection unit in a state where the voltage applied to the eddy current generation unit is constant, the surface resistance of the conductive film is determined based on the manufacturing process of the conductive film. calculating means for continuously calculating provided in said calculating unit, based on the calibration curve of the relationship between the eddy current created in advance intervals, said setting the interval detecting unit of the detection result If it is outside the interval, the amount of increase or decrease in eddy current resulting from the deviation from the set interval is obtained, and the amount of increase or decrease in eddy current is corrected or subtracted from the detection result of the eddy current detector, The surface resistance of the conductive film is calculated based on the corrected eddy current value.
[0011]
[Action]
An eddy current is caused to flow through the conductive film at an eddy current generator facing the conductive film with a set interval. For example, by applying a high frequency voltage to a coil such as a ferrite core coil serving as an eddy current generator and bringing the coil close to the conductive film, an eddy current due to high frequency inductive coupling flows through the conductive film.
[0012]
When the voltage is kept constant, the eddy current flowing in the conductive film and the surface resistance of the conductive film are inversely proportional (inversely proportional). Therefore, by detecting the eddy current, the eddy current generator and the conductive film are spaced from each other by the set interval. It is possible to obtain the surface resistance in a state (reference point).
[0013]
In this case, if a calibration curve (calibration curve) is created in advance for the relationship between eddy current and surface resistance, the surface resistance can be easily obtained.
[0014]
In principle, the eddy current tends to decrease as the distance between the conductive film and the eddy current generator increases.
[0015]
Therefore, if the detection result of the interval detection unit deviates from the set interval, the calculation means obtains the increase / decrease amount of the eddy current due to the deviation from the set interval, and the eddy current increase / decrease amount is eddy. Correction that is subtracted or added from the detection result of the current detection unit is performed, and the surface resistance of the conductive film is calculated based on the corrected value of the eddy current.
[0016]
Since the surface resistance of the conductive film is calculated in this way, even if the distance between the conductive film and the eddy current generator changes, an error is less likely to occur in the measured value of the surface resistance of the conductive film.
[0017]
Further, since the surface resistance of the conductive film is measured without contacting the conductive film, it is possible to prevent the conductive film from being damaged.
[0018]
Then, for example, by arranging a plurality of eddy current generation units and eddy current detection units in the width direction of the conductive film manufacturing process, the distribution of the surface resistance in the width direction and the trend in the flow direction of the surface resistance (change over time) Can be requested.
[0019]
[effect]
Accordingly, it is possible to provide a surface resistance measuring apparatus capable of preventing in-line continuous measurement with high accuracy by suppressing measurement errors caused by pass line fluctuations while preventing deterioration in performance or quality of the conductive film.
[0020]
The structure, operation, and effect of the invention according to claim 2 are as follows.
[0021]
[Constitution]
In the configuration of the invention according to claim 1, the number of the interval detection units is smaller than the number of the eddy current generation units.
[0022]
[Action]
In addition to the effects similar to the effects of the configuration of the first aspect, the following effects can be achieved.
[0023]
For example, when the production line speed of the conductive film is a low speed of about 1 m / min or less, it can be considered that the pass line fluctuation occurs almost uniformly in the width direction.
[0024]
In such a case, the surface resistance of the conductive film is calculated by the calculation means based on the detection results of the number of interval detection units smaller than the number of eddy current generation units (for example, one) and the detection results of each eddy current detection unit. Is calculated.
[0025]
As a result, the number of interval detection units can be reduced, and the cost required for the interval detection units can be reduced.
[0026]
[effect]
Therefore, in addition to the effects similar to the effects of the configuration of claim 1, a surface resistance measuring apparatus that can be manufactured at low cost can be provided.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0028]
FIG. 1 shows the configuration of a non-contact type surface resistance measuring apparatus according to the present invention.
[0029]
This surface resistance measuring apparatus is arranged so as to face the conductive film 2 on the substrate 1 with a set interval, and to generate an eddy current generating part 3A for causing an eddy current to flow through the conductive film 2; Are provided with a plurality (n) of eddy current sensors 3 comprising an eddy current detector 3B (integrated with the eddy current generator 3A) that detects the eddy currents 3A and the conductive film 2 A plurality (n) of displacement sensors 4 (corresponding to the interval detector) are provided integrally with the eddy current sensor 3, and based on the detection result of the eddy current detector 3B and the detection result of the displacement sensor 4. Thus, a computer 7 (corresponding to calculation means) for calculating the surface resistance of the conductive film 2 is provided.
[0030]
The eddy current generating portion 3A is constituted by a coil such as a ferrite core coil, and a high frequency voltage is applied to the coil, and an eddy current due to high frequency inductive coupling is caused to flow through the conductive film 2 by bringing the coil close to the conductive film 2.
[0031]
The eddy current sensor 3 and the displacement sensor 4 are connected to a sensor amplifier 6 for them via a sensor cable 5. Further, a CRT 8 for displaying the measurement result, a printer 9 for printing out the measurement result, and an alarm device 10 for notifying the operator that the measured surface resistance value is out of the specified range or abnormality are provided. is there.
[0032]
The sensor amplifier 6 includes a high-frequency oscillator, a first A / D converter that converts an analog signal of eddy current into a digital signal, and a second A / D converter that converts an analog signal corresponding to the interval into a digital signal. Is provided.
[0033]
The plurality of eddy current sensors 3 and the displacement sensors 4 are arranged in the width direction of the conductive film 2 in the manufacturing process of the conductive film 2, and the distribution of the surface resistance in the width direction and the trend in the flow direction of the surface resistance (over time) Change) can be obtained by the computer 7.
[0034]
The computer 7 performs data processing based on the digital signals obtained by the first and second A / D converters, and if the detection result of the displacement sensor 4 deviates from the set interval, the computer 7 has deviated from the set interval. The amount of increase / decrease in the eddy current due to the eddy current is calculated, and the amount of increase / decrease in the eddy current is corrected or subtracted from the detection result of the eddy current detection unit 3B. Based on the corrected value of the eddy current, The surface resistance is calculated. This calculation method will be described in detail later.
[0035]
Next, the operation of the surface resistance measuring apparatus having the above structure will be described.
[0036]
1) The eddy current sensor 3 and the displacement sensor 4 are arranged in a state where the eddy current generator 3A faces the conductive film 2 on the substrate 1 with a set interval of several mm.
[0037]
2) A high frequency is applied from the sensor amplifier 6 to the eddy current generator 3A of the eddy current sensor 3, and an eddy current is generated in the conductive film 2 by high frequency inductive coupling.
[0038]
3) If the applied high-frequency voltage is controlled to be constant, the eddy current flowing in the conductive film 2 and the surface resistance of the conductive film 2 are inversely proportional (inversely proportional). By creating a calibration curve (calibration curve) for the relationship between the surface resistance and the surface resistance, the conductive film 2 and the eddy current generator 3A are separated from the unknown conductive film 2 in the state (reference point) with the set interval therebetween. Surface resistance can be determined.
[0039]
4) Since the eddy current tends to decrease in principle as the distance between the conductive film 2 and the eddy current generator 3A increases, the eddy current and the interval (the eddy current generator 3A The detection result of the eddy current detection unit 3B is corrected based on a calibration curve (calibration curve) (see FIG. 3) regarding the relationship with the distance between the conductive films 2.
[0040]
5) Next, the above correction method will be described.
[0041]
For example, in the case of a conductive film having a surface resistance of 6Ω / □, the eddy current at the reference point is 66%, but the interval is −1 mm, that is, the eddy current (of the eddy current sensor 3) due to the pass line variation in the in-line. When the interval between the generating portion 3A and the conductive film 2 is reduced by 1 mm, the eddy current is 78%, and the measured value is 12% larger than the actual surface resistance.
[0042]
Therefore, in this case, correction is performed by subtracting 12% from the value of the eddy current detected by the eddy current detector 3B of the eddy current sensor 3.
[0043]
On the contrary, when the interval is +1 mm, that is, when the interval between the eddy current generator 3A and the conductive film 2 is increased by 1 mm, the value of the eddy current is 54%, and the measured value is 12% smaller than the actual surface resistance. Become.
[0044]
Therefore, in this case, correction is performed by adding 12% to the eddy current detected by the eddy current detector 3B. By making such corrections, errors in surface resistance measurement can be suppressed even if there is a pass line variation.
[0045]
As described above, by preparing a calibration curve as shown in FIG. 3 in advance for the conductive film 2 having a known surface resistance, the correction value can be easily obtained correctly.
[0046]
The surface resistance displayed by the computer 7 is subjected to data processing as measured values and graphs by arbitrary creation software, and continuous surface resistance measurement is performed in-line.
[0047]
The calculation of the surface resistance of the conductive film 2 can be continuously performed in the manufacturing process of the conductive film 2 by the calculation cycle of the computer 7.
[0048]
By feeding back the measurement result of the surface resistance to the alarm device 10 and the manufacturing process, the surface resistance can be controlled during the manufacturing, and the quality and productivity in the manufacturing process can be improved.
[0049]
Since the eddy current sensor 3 and the displacement sensor 4 are integrally provided, the eddy current and the distance can be measured at substantially the same point when the conductive film production line speed is about 1 m / min or higher. Measurement accuracy can be improved.
[0050]
[Another embodiment]
When the production line speed of the conductive film 2 is a low speed of about 1 m / min or less, it can be considered that the pass line fluctuation occurs almost evenly in the width direction. The eddy current sensor 3 may be configured to have only one displacement sensor 4.
[0051]
That is, the number of the displacement sensors 4 is set to be smaller than the number of the eddy current generators 3A. Thereby, the cost concerning the displacement sensor 4 can be suppressed low.
[0052]
The displacement sensor 4 should have a high resolution and good accuracy. If the resolution is 10 μm and the accuracy is ± 5% or less, a more accurate measurement result can be obtained.
[0053]
The eddy current sensor 3 and the displacement sensor 4 may be formed separately.
[0054]
The set interval is not limited to the numerical value of the above embodiment, but when set to 3 mm or less, a more accurate measurement result can be obtained.
[0055]
The displacement sensor 4 can be constituted by a displacement sensor such as a capacitance type, an ultrasonic type, a laser type, or a photoelectric type.
[0056]
The computer 7 can be a personal computer, a factory computer, or the like.
[0057]
The number of the eddy current generation unit 3A, the eddy current detection unit 3B, and the displacement sensor 4 is not limited to the number in the above embodiment, and can be changed as appropriate.
[0058]
【Example】
Examples of the present invention will be described.
[0059]
The non-contact type surface resistance measuring apparatus used in this example is shown below.
A measurement range of 1Ω / □ to 2000Ω / □ was used as a high-frequency eddy current sensor (built-in ferrite core coil), and 2 MHz was applied with a high-frequency transmitter.
[0060]
As the conductive film, an ITO (Indium Tin Oxide) film on a PET (Poly Ethylene Terephthalate) film was attached, and several films having different surface resistance values in the range of 6 to 2000Ω / □ were used.
[0061]
A laser displacement sensor is used as the displacement sensor, and the measurement range is 0 to 3 mm, the resolution is 10 μm, and the measurement accuracy is ± 3%.
[0062]
The sensor amplifier included a 16-bit A / D converter. A personal computer was used as a calculator for correcting the surface resistance.
[0063]
In order to evaluate the validity of the measurement results of this example, the surface resistance value of the conductive film used in this example was measured in advance by the four-probe method of JIS K7194 standard.
[0064]
FIG. 4 shows a comparison between the non-contact type surface resistance measurement result according to this example and the surface resistance measurement result by the four-probe method of the JIS K7194 standard.
[0065]
FIG. 5 shows the relationship between the pass line fluctuation and the measurement result according to this example. FIG. 6 shows the improvement in measurement accuracy with respect to the pass line fluctuation according to this embodiment.
[0066]
As a result, the surface resistance value measured according to this example coincided with the surface resistance value measured by the four-probe method of JIS K7194 standard with a correlation coefficient of 0.99 or more. Further, when the pass line fluctuation is within ± 3 mm, the non-contact type surface resistance measurement can be measured with an accuracy of ± 5% or less.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a surface resistance measuring device. FIG. 2 is a diagram showing a calibration curve (calibration curve) for the relationship between eddy current and surface resistance. FIG. 3 is a calibration curve for the relationship between eddy current and separation distance. Fig. 4 is a diagram showing a comparison of surface resistance measurement results. Fig. 5 is a diagram showing the relationship between pass line fluctuation and measurement results. Fig. 6 is a diagram showing improvement in measurement accuracy. ]
2 conductive film 3A eddy current generator 3B eddy current detector 4 interval detector 7 calculation means

Claims (2)

ポリエチレンテレフタレートフィルム上に表面抵抗値が6〜2000Ω/□のITO皮膜を付着させた導電膜に設定間隔を空けて対向させてその導電膜に渦電流を流す渦電流発生部と、前記導電膜に流れる渦電流を前記導電膜とは離間した状態で検出する渦電流検出部と、前記渦電流発生部と導電膜の間隔を検出するレーザー式変位センサーからなる間隔検出部とを所定数づつ設け、前記渦電流発生部に印加する電圧を一定にした状態で、前記渦電流検出部の検出結果と前記間隔検出部の検出結果とに基づいて、前記導電膜の表面抵抗を前記導電膜の製造プロセスにおいて連続的に算出する算出手段を設け、前記算出手段は、予め作成しておいた渦電流と前記間隔との関係についての校正曲線に基づき、前記間隔検出部の検出結果が前記設定間隔から外れていると、前記設定間隔から外れたことに起因する渦電流の増減量を求めるとともに、前記渦電流の増減量を前記渦電流検出部の検出結果から減じあるいは加える補正を行い、その補正した渦電流の値に基づいて、前記導電膜の表面抵抗を算出するよう構成してある表面抵抗測定装置。 An eddy current generator for causing an eddy current to flow through the conductive film having an ITO film having a surface resistance of 6 to 2000 Ω / □ adhered on a polyethylene terephthalate film, facing the conductive film with a set interval, and the conductive film A predetermined number of eddy current detectors that detect flowing eddy currents in a state of being separated from the conductive film, and a gap detection unit that includes a laser displacement sensor that detects a gap between the eddy current generator and the conductive film, Based on the detection result of the eddy current detection unit and the detection result of the interval detection unit in a state where the voltage applied to the eddy current generation unit is constant, the surface resistance of the conductive film is determined based on the manufacturing process of the conductive film. calculating means for continuously calculating provided in said calculating unit, based on the calibration curve of the relationship between the eddy current created in advance intervals, said setting the interval detecting unit of the detection result If it is outside the interval, the amount of increase or decrease in eddy current resulting from the deviation from the set interval is obtained, and the amount of increase or decrease in eddy current is corrected or subtracted from the detection result of the eddy current detector, A surface resistance measuring device configured to calculate the surface resistance of the conductive film based on the corrected value of the eddy current. 前記間隔検出部の数を前記渦電流発生部の数よりも少なくしてある請求項1記載の表面抵抗測定装置。  The surface resistance measuring apparatus according to claim 1, wherein the number of the interval detection units is smaller than the number of the eddy current generation units.
JP03156099A 1999-02-09 1999-02-09 Surface resistance measuring device Expired - Lifetime JP4292612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03156099A JP4292612B2 (en) 1999-02-09 1999-02-09 Surface resistance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03156099A JP4292612B2 (en) 1999-02-09 1999-02-09 Surface resistance measuring device

Publications (2)

Publication Number Publication Date
JP2000230950A JP2000230950A (en) 2000-08-22
JP4292612B2 true JP4292612B2 (en) 2009-07-08

Family

ID=12334572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03156099A Expired - Lifetime JP4292612B2 (en) 1999-02-09 1999-02-09 Surface resistance measuring device

Country Status (1)

Country Link
JP (1) JP4292612B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3632574B2 (en) 2000-07-31 2005-03-23 セイコーエプソン株式会社 Environment-adaptive image display system and information storage medium
US7436190B2 (en) 2001-06-21 2008-10-14 Toyo Boseki Kabushiki Kaisha Transparent conductive film roll and production method thereof, touch panel using it, and non-contact surface resistance measuring device
JP2003084020A (en) * 2001-06-21 2003-03-19 Toyobo Co Ltd Non-contact surface resistance measuring device
US6819120B2 (en) * 2002-11-13 2004-11-16 Northrop Grumman Corporation Non-contact surface conductivity measurement probe
US6788050B2 (en) * 2002-12-23 2004-09-07 Lam Research Corp. System, method and apparatus for thin-film substrate signal separation using eddy current
JP2009229337A (en) * 2008-03-25 2009-10-08 Hioki Ee Corp Electrode inspection apparatus
JP2012073132A (en) * 2010-09-29 2012-04-12 Toppan Printing Co Ltd Surface resistance measurement device
CN106771614B (en) * 2016-11-23 2019-06-21 奕瑞影像科技(太仓)有限公司 A kind of flat panel detector resistance test jig

Also Published As

Publication number Publication date
JP2000230950A (en) 2000-08-22

Similar Documents

Publication Publication Date Title
KR100921813B1 (en) Touch Panel Device and contact position search method of it
US10816416B2 (en) Pressure sensor, electronic device, and method for manufacturing pressure sensor
US7812623B2 (en) Transparent conductive film roll and production method thereof, touch panel using the same, and non-contact surface resistance measuring device
US10352799B2 (en) Pressure sensor, electronic device, and method for manufacturing pressure sensor
US20030213624A1 (en) Capacitive touch screen with conductive polymer
CN105318819B (en) The detection device of film thickness
JP4292612B2 (en) Surface resistance measuring device
JP2005308743A (en) Capacitive sensor and method for non-contact measuring of gap and dielectric medium
JP6985196B2 (en) Resistance measuring device, film manufacturing device and method for manufacturing conductive film
TWI777021B (en) Resistance measuring apparatus, film manufacturing apparatus, and manufacturing method of conductive film
JPH01318975A (en) Non-destructively measuring apparatus for ohm resistance of thin layer
JP3922109B2 (en) Method for producing transparent conductive film roll
JP2003084020A (en) Non-contact surface resistance measuring device
JP3984670B2 (en) Coordinate detection device
JP2010169649A (en) Method and device for inspecting defect of conductive film
US10656193B2 (en) Electrostatic detecting system and method
JP6014951B1 (en) Conductor pattern inspection device
JP2000241469A (en) Surface resistance measuring device
JP2000241470A (en) Surface resistance measuring device
CN113260966A (en) Stretchable touch sensor and control method thereof
CN116097073A (en) Temperature pressure sensor and electronic equipment
JP2000284009A (en) Surface resistance measuring device using printed wiring board electrode
JPH1184820A (en) Conductivity measuring method of roller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

EXPY Cancellation because of completion of term