JP4291976B2 - Starting method of brushless / sensorless DC motor - Google Patents

Starting method of brushless / sensorless DC motor Download PDF

Info

Publication number
JP4291976B2
JP4291976B2 JP2002158501A JP2002158501A JP4291976B2 JP 4291976 B2 JP4291976 B2 JP 4291976B2 JP 2002158501 A JP2002158501 A JP 2002158501A JP 2002158501 A JP2002158501 A JP 2002158501A JP 4291976 B2 JP4291976 B2 JP 4291976B2
Authority
JP
Japan
Prior art keywords
rotor
magnetic pole
positioning process
phase
pole position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002158501A
Other languages
Japanese (ja)
Other versions
JP2004007872A (en
Inventor
誠 元吉
敦志 細川
直幾 服部
裕一郎 高宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2002158501A priority Critical patent/JP4291976B2/en
Publication of JP2004007872A publication Critical patent/JP2004007872A/en
Application granted granted Critical
Publication of JP4291976B2 publication Critical patent/JP4291976B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ブラシレス・センサレスDCモータの起動方法に関する。
【0002】
【従来の技術】
ブラシレス・センサレスDCモータは、永久磁石を組込んだ回転子と界磁巻線を組込んだ固定子からなり、界辞巻線に誘起した電圧波形を比較、若しくは演算処理を行うことにより回転子磁極位置を検出し、固定子への通電位相の制御を行っている。
【0003】
ブラシレス・センサレスDCモータは、回転数が非常に低い起動時では界磁巻線に誘起した電圧波形から回転子磁極位置の検出を行うことが困難であるので、インバータ回路により強制的に転流タイミングを決めて固定子への通電位相を制御する同期運転を行って回転子を回転・加速し、その後、回転子の位置検出が可能な速度に達すると、回転子位置を検出して通電位相を制御する位置検出回転に切換える起動方法が用いられている。
【0004】
上記同期運転時には、回転子磁極位置が検出出来ない為、インバータ回路から出力される周波数と電圧は、負荷に応じて適切な値になる様に予め設定してある。
【0005】
慣性が大きい負荷を駆動する場合など、回転子磁極位置によっては同期運転が円滑に行えないことがあり、同期運転前に回転子の磁極位置を予め定めた位置まで移動させておく位置決め処理を行う。この位置決め処理は、通常、同期運転の通電開始相のみを通電して行う。
【0006】
【発明が解決しようとする課題】
通電開始相のみ通電して位置決め処理を行うと、回転子にトルクが作用し、回転子磁極位置は位置決め位置(その範囲内では回転子に作用するトルクが小さく回転子はその場に留まるが、回転子がその範囲から電気角で遅れ、若しくは進み方向に僅かでも移動すると、回転子に作用するトルクによりその範囲まで回転子が戻るような範囲を示す)まで移動するが、位置決め位置から電気角で180°進んだ位置でも、位置決め処理により回転子磁極位置が移動出来ないという問題がある。この状態で同期運転を開始すると、起動開始後1回目の転流時点で回転子に負トルクが作用し、以降加速途中で振動することがあり、同期運転から外れてしまうこともあり円滑な起動が出来ない。
本発明では、回転子磁極位置を位置決め位置に確実に移動させること、若しくはそれと同等の効果を得ることを目的とする。
【0007】
【課題を解決するための手段】
(第1の発明)
位置決め処理前に、通電開始相から電気角で60°、120°、240°、300°進んだ何れかの相を位置決め処理と同じ電圧で同じ時間通電することを特徴とする。
(第2の発明)
位置決め処理時に、固定子の通電開始相と電気角で60度遅れた相を時間的にずらして、交互に少なくとも各1回以上通電することを特徴とする。
【0008】
【発明の実施の形態】
以下、図面を参照して本発明の実施例を説明する。
【0009】
図1は、ブラシレス・センサレスDCモータの駆動方法を示す構成図である。図1に示すように、インバータ回路1は、スイッチング素子Tu、Tv、Tw、Tx、Ty、Tz及び整流素子Du、Dv、Dz、Dx、Dy、Dvからなり、ブラシレス・センサレスDCモータ2(以下DCモータ2)を駆動する。このインバータ回路1において、直流電源の+側に接続されている各素子を「上アーム部5」、−側に接続されている各素子を下アーム部6と呼ぶ。このDCモータ2は、永久磁石を組込んだ回転子と界磁巻線を組込んだ固定子から構成されている。そして、DCモータ2の界磁巻線の端子電圧は、位置検出回路3へ送られる。この位置検出回路3は、上記界磁巻線の端子電圧を比較処理して回転子の位置を検出し、その検出信号を制御回路4へ出力する。
【0010】
制御回路4は、位置検出回路3からの回転子位置信号に基づいてインバータ回路1の各スイッチング素子に制御信号を供給し、インバータ回路1の動作を制御する。上記制御回路4は、回転子の位置検出が困難なモータの起動時には、インバータ回路1の転流タイミングを強制的に切替える同期運転を行ってDCモータ2を回転・加速し、その後位置検出回路3により回転子の位置検出が可能な状態に達すると、この位置検出信号に従って通電位相を制御する位置検出回転に切換える。
【0011】
又、制御回路4は、慣性が大きい負荷を駆動する場合など、回転子磁極位置によっては 「同期運転」が円滑に行えないことがあり、同期運転前にインバータ回路1の特定の相(通常は同期運転時の通電開始相)のみ通電し、同期運転前に回転子の磁極位置を予め定めた位置まで移動させておく「位置決め処理」を行う。
【0012】
図2は、インバータ回路1のスイッチング素子の通電順序を説明したものである。図2の7は上アーム部5の通電タイミングを、8は図1の下アーム部6の通電タイミングを示す。記号9は各スイッチング素子の通電相を示す。「同期運転」を始める相をT1(上アームTu相、下アームTZ相)とし、以下T2、T3〜T6と順に通電相を変えて(転流して)いくものとする。
【0013】
図3は、T1〜T6それぞれの通電相における回転子磁極位置と回転子へ作用するトルクの関係をグラフ化したものであり、各グラフの右上に通電相を示している。
【0014】
図3の縦軸は、回転子に作用するトルクを示し、横軸との交点をトルク0の位置とし矢印方向を正とする。正トルクとは、回転子に対し電気角で進み方向に作用するトルクとする。図3の横軸は、回転子磁極位置を電気角で示しており、通電相がT1の状態で位置決めされる範囲(位置決め位置)をA1として一転鎖線で示し、その中で回転子に作用するトルクが0となる点を0°としている。A1から電気角で60°進んだ範囲をA2とし、以下同様に60°ずつ進んだ範囲をA3〜A6と表わす。
【0015】
位置決め処理の際に界磁巻線に印可する電圧は、位置決め処理により回転子が回転し続けたり、位置決め位置を往復振動し続けることなく、回転子磁極位置が位置決め位置に速やかに静止出来る大きさとし、回転子磁極位置が位置決め位置に移動するには充分な値とする。又通電時間は、回転子磁極位置を位置決め位置に移動後静止させる為に充分な時間とする。
【0016】
通常、位置決め処理は同期運転の通電開始相(通電相T1)でを行う為、図3の左上段のグラフにて位置決め処理を説明する。
【0017】
位置決め処理前に回転子磁極位置がA1より遅れ位置(0°〜−180°でA4を除く範囲)にある場合、位置決め処理により回転子は正トルクを受ける為、A1まで移動する。又、位置決め処理前に回転子磁極位置がA1より進み位置(0°〜180°でA4を除く範囲)にある場合、回転子は負トルクを受ける為、同様にA1まで移動する。回転子の位置がA1にある場合は、回転子に作用するトルクは0若しくは微少である為、A1に留まる。位置決め処理前に回転子磁極位置がA4の範囲にある場合、A1にある場合と同様に回転子磁極位置はA4に留まる。
【0018】
回転子磁極位置がA1にある状態で同期運転を始めた場合、通電開始相(T1)では、回転子に作用するトルクは0若しくは微少なので、回転子はその位置に留まるか僅かに移動する。通電相がT2に転流すると、正トルクを受け回転子は電気角で進み方向に回転する。以降、次の転流時に回転子が適切なトルクを得る様に電圧と通電時間を設定し、円滑な同期運転を行う。
【0019】
しかしながら、位置決め処理時に回転子磁極がA4にある状態で同期運転を行うと、通電相がT1では回転子に作用するトルクが0若しくは微少であり、回転子はその場に留まるか僅かに移動する。通電相がT2では逆方向のトルクが作用し電気角で遅れ方向に移動してしまう。同期運転の制御仕様は、回転子磁極がA1にあり進み方向へ回転・加速して行くことを前提に決めている為、A4からの起動には適応しておらず、同期運転の際に大きく振動してしまってり同期外れを起こすなど円滑な起動が出来ない場合がある。
【0020】
第1の発明は、位置決め処理の前に位置決め処理と同じ電圧、同じ時間で、T2、T3、T5、T6の何れかの相に予め通電する位置決め前処理を行うものである。以下、図3のグラフを用いて説明する。例えばT2で位置決め前処理を行った場合、図3の2段目に示すようなトルクが作用し、回転子磁極位置は、A2に移動するかA5に留まる為、A4位置に留まることは無い。同様に通電相T3で位置決め前処理を行えばA3に移動若しくはA6に留まり、T5で位置決め前処理を行えばA5に移動若しくはA2に留まり、T6で位置決め前処理を行えばA6に移動若しくはA3に留まる為、いずれもA4位置に留まることはない。以上の通り、位置決め前処理を行うことで、回転子の磁極位置をA4以外の位置に移動させる為、位置決め処理により確実に回転子磁極位置をA1位置に移動出来る。
【0021】
第2の発明は、通電相がT1及びT2による位置決め処理を時間的にずらして交互に行うものである。以下、図3のグラフを用いて説明する。例えばT1で通電を始めた場合、回転子磁極位置はA1に移動、若しくはA4に留まる。次にT2で通電することで回転子磁極位置がA4位置にある場合は、逆方向トルクを受けてA2位置まで移動し、A1にある場合もA2に移動する。再び回転子磁極位置がA1の状態で通電した場合、回転子磁極位置はA2にある為、A1に移動する。これを繰返せば回転子磁極位置はA1、A2を交互に移動することになり、位置決め処理を止めればA1、若しくはA2に停止する。
【0022】
回転子磁極位置がA1にある状態で同期運転を始めた場合、回転子に作用するトルクは0若しくは微少であり、その場に留まるか僅かに移動する。A2に転流すると、正トルクを受け電気角で進み方向に回転する。
【0023】
回転子磁極位置がA2にある状態で同期運転を始めた場合、通電開始相T1で正トルクを受けるが、このトルクの大きさは回転子磁極位置がA1で同期運転を始めた場合のT2時に作用するトルクと大きさ、方向共に同じである。このことから、A1、A2どちらで同期運転を始めても全く同じ条件で起動出来ることになる。交互に通電する合計時間を充分長くすれば、回転子磁極位置は徐々にA1、A2位置に移動することになる為、 T1、T2への1回の通電時間が短い場合でも、又、非通電時間を設けたと場合でも、本発明の効果には特に問題は無い。
【0024】
【発明の効果】
本発明の方法で位置決め処理を行うことで、同期運転が円滑に行え、確実に起動出来るようになり、製品の信頼性が向上した。更に、慣性が大きい負荷を駆動することも容易となった。又、同期運転失敗時に、再度同期運転を行うことが無くなり、システム全体の処理時間が短縮でき、商品性も向上した。
【0025】
【図面の簡単な説明】
【図1】ブラシレス・センサレスDCモータ駆動回路の構成図である。
【図2】スイッチング素子に通電するタイミングを示す図である。
【図3】回転子の磁極位置と回転子に作用するトルクの関係を示す図である。
【符号の説明】
1…インバータ回路、2…ブラシレス・センサレスDCモータ、3…位置検出回路、4…インバータ制御回路、5…インバータ回路の上アーム部、6…インバータ回路の下アーム部、7…上アーム部の通電タイミング、8…下アーム部の通電タイミング、9…通電相を表わす記号、
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for starting a brushless sensorless DC motor.
[0002]
[Prior art]
A brushless / sensorless DC motor is composed of a rotor incorporating a permanent magnet and a stator incorporating a field winding. The rotor is obtained by comparing the voltage waveforms induced in the field winding or performing arithmetic processing. The magnetic pole position is detected and the energization phase to the stator is controlled.
[0003]
Brushless and sensorless DC motors are difficult to detect the rotor magnetic pole position from the voltage waveform induced in the field winding at the time of start-up with very low rotation speed. Rotate and accelerate the rotor by performing synchronous operation to control the energization phase to the stator and then reach the speed at which the rotor position can be detected. A start-up method for switching to the position detection rotation to be controlled is used.
[0004]
Since the rotor magnetic pole position cannot be detected during the synchronous operation, the frequency and voltage output from the inverter circuit are set in advance so as to be appropriate values according to the load.
[0005]
Depending on the rotor magnetic pole position, such as when driving a load with high inertia, synchronous operation may not be performed smoothly, and positioning processing is performed to move the rotor magnetic pole position to a predetermined position before synchronous operation. . This positioning process is normally performed by energizing only the energization start phase of the synchronous operation.
[0006]
[Problems to be solved by the invention]
When energizing only the energization start phase and performing positioning processing, torque acts on the rotor, and the rotor magnetic pole position is the positioning position (within that range, the torque acting on the rotor is small and the rotor stays in place, If the rotor is delayed by an electrical angle from that range, or even if it moves slightly in the advance direction, it will move to the range where the rotor returns to that range due to the torque acting on the rotor). Thus, there is a problem that the rotor magnetic pole position cannot be moved by the positioning process even at a position advanced by 180 °. If synchronous operation is started in this state, negative torque will act on the rotor at the first commutation after start-up, and it may vibrate in the middle of acceleration thereafter, and it may be out of synchronous operation, so smooth start-up I can't.
An object of the present invention is to reliably move the rotor magnetic pole position to the positioning position, or to obtain the same effect.
[0007]
[Means for Solving the Problems]
(First invention)
Before the positioning process, one of the phases advanced by 60 °, 120 °, 240 °, and 300 ° in electrical angle from the energization start phase is energized for the same time at the same voltage as the positioning process.
(Second invention)
In the positioning process, the energization start phase of the stator and the phase delayed by 60 degrees in electrical angle are shifted in time, and energized alternately at least once each.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0009]
FIG. 1 is a configuration diagram showing a method of driving a brushless / sensorless DC motor. As shown in FIG. 1, the inverter circuit 1 is composed of switching elements Tu, Tv, Tw, Tx, Ty, Tz and rectifying elements Du, Dv, Dz, Dx, Dy, Dv. The DC motor 2) is driven. In this inverter circuit 1, each element connected to the + side of the DC power source is referred to as “upper arm part 5”, and each element connected to the − side is referred to as lower arm part 6. The DC motor 2 includes a rotor incorporating a permanent magnet and a stator incorporating a field winding. The terminal voltage of the field winding of the DC motor 2 is sent to the position detection circuit 3. The position detection circuit 3 compares the terminal voltages of the field windings to detect the position of the rotor, and outputs a detection signal to the control circuit 4.
[0010]
The control circuit 4 supplies a control signal to each switching element of the inverter circuit 1 based on the rotor position signal from the position detection circuit 3 and controls the operation of the inverter circuit 1. The control circuit 4 rotates and accelerates the DC motor 2 by performing a synchronous operation for forcibly switching the commutation timing of the inverter circuit 1 at the time of starting the motor, where it is difficult to detect the position of the rotor, and then the position detection circuit 3 Thus, when a state where the position of the rotor can be detected is reached, the position detection rotation for controlling the energization phase is switched according to the position detection signal.
[0011]
In addition, the control circuit 4 may not be able to perform “synchronous operation” smoothly depending on the rotor magnetic pole position, such as when driving a load with high inertia. “Positioning processing” is performed in which only the energization start phase during synchronous operation is energized and the magnetic pole position of the rotor is moved to a predetermined position before the synchronous operation.
[0012]
FIG. 2 explains the energization order of the switching elements of the inverter circuit 1. 2 in FIG. 2 indicates the energization timing of the upper arm portion 5, and 8 indicates the energization timing of the lower arm portion 6 in FIG. Symbol 9 indicates the energized phase of each switching element. The phase that starts “synchronous operation” is T1 (upper arm Tu phase, lower arm TZ phase), and the energized phases are changed (commutated) in the order of T2, T3 to T6.
[0013]
FIG. 3 is a graph showing the relationship between the rotor magnetic pole position and the torque acting on the rotor in each energized phase of T1 to T6, and the energized phase is shown in the upper right of each graph.
[0014]
The vertical axis in FIG. 3 indicates the torque acting on the rotor, and the intersection with the horizontal axis is the position of torque 0, and the arrow direction is positive. The positive torque is a torque that acts on the rotor in an advancing direction at an electrical angle. The horizontal axis of FIG. 3 indicates the rotor magnetic pole position in electrical angle, and the range (positioning position) in which the energized phase is positioned in the state of T1 is indicated by A1 with a one-dot chain line, among which the rotor acts on the rotor. The point where the torque becomes 0 is defined as 0 °. A range advanced by 60 ° in electrical angle from A1 is A2, and similarly, a range advanced by 60 ° is expressed as A3 to A6.
[0015]
The voltage applied to the field winding during the positioning process is such that the rotor magnetic pole position can be quickly stopped at the positioning position without causing the rotor to continue to rotate or continue to reciprocate in the positioning position. The rotor magnetic pole position is set to a value sufficient to move to the positioning position. The energization time is set to a time sufficient for the rotor magnetic pole position to move to the positioning position and then remain stationary.
[0016]
Normally, since the positioning process is performed in the energization start phase (energization phase T1) of the synchronous operation, the positioning process will be described with the upper left graph of FIG.
[0017]
If the rotor magnetic pole position is behind the position A1 (range of 0 ° to -180 ° excluding A4) before the positioning process, the rotor receives a positive torque due to the positioning process, and moves to A1. Further, when the rotor magnetic pole position is in a position advanced from A1 (range of 0 ° to 180 ° excluding A4) before the positioning process, the rotor receives a negative torque and similarly moves to A1. When the position of the rotor is at A1, since the torque acting on the rotor is 0 or very small, it remains at A1. When the rotor magnetic pole position is in the range of A4 before the positioning process, the rotor magnetic pole position remains at A4 as in the case of A1.
[0018]
When synchronous operation is started with the rotor magnetic pole position at A1, in the energization start phase (T1), the torque acting on the rotor is 0 or very small, so the rotor stays at that position or moves slightly. When the energized phase commutates to T2, the rotor receives a positive torque and rotates in the forward direction at an electrical angle. Thereafter, the voltage and energization time are set so that the rotor obtains an appropriate torque at the next commutation, and smooth synchronous operation is performed.
[0019]
However, if the synchronous operation is performed with the rotor magnetic pole at A4 during the positioning process, the torque acting on the rotor is 0 or very small when the energized phase is T1, and the rotor stays in place or moves slightly. . When the energized phase is T2, the torque in the reverse direction acts and moves in the delay direction by the electrical angle. The control specifications for synchronous operation are based on the assumption that the rotor magnetic poles are at A1 and rotate and accelerate in the forward direction. Smooth startup may not be possible due to vibration and loss of synchronization.
[0020]
In the first invention, before the positioning process, a pre-positioning process is performed in which current is supplied to any of T2, T3, T5, and T6 in advance at the same voltage and the same time as the positioning process. Hereinafter, a description will be given using the graph of FIG. For example, when the pre-positioning process is performed at T2, torque as shown in the second stage of FIG. 3 is applied, and the rotor magnetic pole position moves to A2 or stays at A5, so it does not stay at the A4 position. Similarly, if the pre-positioning process is performed in the energized phase T3, the process moves to A3 or stays at A6. If the pre-positioning process is performed in T5, the process moves to A5 or stays in A2. Neither stays in the A4 position because they stay. As described above, by performing the pre-positioning process, the magnetic pole position of the rotor is moved to a position other than A4. Therefore, the rotor magnetic pole position can be reliably moved to the A1 position by the positioning process.
[0021]
In the second aspect of the invention, the energization phase alternately performs the positioning process by T1 and T2 while shifting in time. Hereinafter, a description will be given using the graph of FIG. For example, when energization is started at T1, the rotor magnetic pole position moves to A1 or stays at A4. Next, when the rotor magnetic pole position is at the A4 position by energizing at T2, it receives the reverse torque and moves to the A2 position, and when it is at A1, it also moves to A2. When power is supplied again with the rotor magnetic pole position at A1, the rotor magnetic pole position is at A2, so that the rotor moves to A1. If this is repeated, the rotor magnetic pole position moves alternately between A1 and A2, and when the positioning process is stopped, it stops at A1 or A2.
[0022]
When the synchronous operation is started with the rotor magnetic pole position at A1, the torque acting on the rotor is 0 or very small, and remains on the spot or moves slightly. When commutating to A2, it receives a positive torque and rotates in the forward direction at an electrical angle.
[0023]
When synchronous operation is started with the rotor magnetic pole position at A2, a positive torque is received at the energization start phase T1, but the magnitude of this torque is at T2 when the rotor magnetic pole position starts synchronous operation with A1. The applied torque is the same in magnitude and direction. From this, it can be started under exactly the same conditions regardless of which of A1 and A2 starts synchronous operation. If the total time of alternating energization is made sufficiently long, the rotor magnetic pole position will gradually move to the A1 and A2 positions. Therefore, even if the energization time for one time to T1 and T2 is short, it is not energized. Even when time is provided, the effect of the present invention is not particularly problematic.
[0024]
【The invention's effect】
By performing the positioning process by the method of the present invention, the synchronous operation can be performed smoothly and can be reliably started, and the reliability of the product is improved. Furthermore, it becomes easy to drive a load having a large inertia. In addition, when the synchronous operation fails, the synchronous operation is not performed again, the processing time of the entire system can be shortened, and the merchantability is improved.
[0025]
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a brushless and sensorless DC motor driving circuit.
FIG. 2 is a diagram illustrating timing for energizing a switching element.
FIG. 3 is a diagram showing a relationship between a magnetic pole position of a rotor and a torque acting on the rotor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Inverter circuit, 2 ... Brushless sensorless DC motor, 3 ... Position detection circuit, 4 ... Inverter control circuit, 5 ... Upper arm part of inverter circuit, 6 ... Lower arm part of inverter circuit, 7 ... Current supply to upper arm part Timing, 8 ... energization timing of the lower arm, 9 ... symbol representing the energization phase,

Claims (1)

複数のスイッチング素子と整流素子で構成されたインバータ回路と、ブラシレス・DCモータの誘起電圧を検出してその回転子磁極位置を検出する位置検出回路とインバータ制御部とで構成されるブラシレス・センサレスDCモータの駆動システムにおいて、
位置決め処理前に、位置決め処理時に通電する相と電気角度で60°、120°、240°、300°進んだ何れかの相を「位置決め処理」と同じトルクで同じ時間通電することを特徴とするブラシレス・センサレスDCモータの起動方法。
Brushless sensorless DC comprising an inverter circuit composed of a plurality of switching elements and rectifying elements, a position detection circuit for detecting the rotor magnetic pole position by detecting the induced voltage of the brushless DC motor, and an inverter control unit. In the motor drive system,
Before the positioning process, the phase that is energized during the positioning process and the phase that is advanced by 60 °, 120 °, 240 °, and 300 ° in electrical angle are energized for the same time with the same torque as the “positioning process”. How to start a brushless / sensorless DC motor.
JP2002158501A 2002-05-31 2002-05-31 Starting method of brushless / sensorless DC motor Expired - Fee Related JP4291976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002158501A JP4291976B2 (en) 2002-05-31 2002-05-31 Starting method of brushless / sensorless DC motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002158501A JP4291976B2 (en) 2002-05-31 2002-05-31 Starting method of brushless / sensorless DC motor

Publications (2)

Publication Number Publication Date
JP2004007872A JP2004007872A (en) 2004-01-08
JP4291976B2 true JP4291976B2 (en) 2009-07-08

Family

ID=30428718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002158501A Expired - Fee Related JP4291976B2 (en) 2002-05-31 2002-05-31 Starting method of brushless / sensorless DC motor

Country Status (1)

Country Link
JP (1) JP4291976B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102215022B (en) * 2010-04-09 2013-03-06 建准电机工业股份有限公司 Sensorless starting method of brushless direct current motor
CN105305896B (en) * 2015-11-25 2018-01-02 南京快轮智能科技有限公司 The on-line identification system and its discrimination method of a kind of brushless DC motor rotor position
JP6681541B2 (en) * 2016-05-27 2020-04-15 パナソニックIpマネジメント株式会社 Washing machine

Also Published As

Publication number Publication date
JP2004007872A (en) 2004-01-08

Similar Documents

Publication Publication Date Title
US20200028456A1 (en) Motor drive control device, motor, and blower apparatus
US7190131B2 (en) Device and method for starting brushless direct current motor
JP3204644B2 (en) Driving device and driving method for electric motor
CN1300933C (en) Apparatus for driving brushless motor and method of controlling the motor
KR100288770B1 (en) Rectifier Circuit for Sensorless Three-Phase Bieldi Motors
US20170163183A1 (en) Motor control system, control method and vacuum cleaner
JP3731105B2 (en) Motor system, air conditioner equipped with the motor system, and motor starting method
JP4291976B2 (en) Starting method of brushless / sensorless DC motor
JP4531180B2 (en) Synchronous motor and method for starting synchronous motor
JPH09327194A (en) Control method for brushless motor
CN107040174B (en) Motor drive control device and motor drive control method thereof
JP4085818B2 (en) DC motor driving method and DC motor driving apparatus
JP2020198750A (en) Control method and controller for brushless dc motor
JPH07308092A (en) Synchronous starting device for d.c. motor
JP4291977B2 (en) Brushless and sensorless DC motor drive system
JP4079385B2 (en) Brushless DC motor drive device
JP4269920B2 (en) Brushless motor drive device
US20190379309A1 (en) Brushless dc motor control method and control device
JPH11113281A (en) Driving method of dc brushless motor
JP2022047079A (en) Motor control device and motor control method
JP3811955B2 (en) Brushless DC motor driving apparatus and driving method, and brushless DC motor rotor speed or rotor phase detection method
JPH0670578A (en) Brushless motor control circuit
JP4312115B2 (en) Motor drive device
JP4078964B2 (en) DC motor driving method and DC motor driving apparatus
JP2001211684A (en) Brushless motor controller and compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050603

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060510

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060510

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees