JP2004007872A - Starting method for brushless sensorless dc motor - Google Patents

Starting method for brushless sensorless dc motor Download PDF

Info

Publication number
JP2004007872A
JP2004007872A JP2002158501A JP2002158501A JP2004007872A JP 2004007872 A JP2004007872 A JP 2004007872A JP 2002158501 A JP2002158501 A JP 2002158501A JP 2002158501 A JP2002158501 A JP 2002158501A JP 2004007872 A JP2004007872 A JP 2004007872A
Authority
JP
Japan
Prior art keywords
motor
rotor
magnetic pole
brushless
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002158501A
Other languages
Japanese (ja)
Other versions
JP4291976B2 (en
Inventor
Makoto Motoyoshi
元吉 誠
Atsushi Hosokawa
細川 敦志
Naoki Hattori
服部 直幾
Yuichiro Takamune
高宗 裕一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Home and Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Home and Life Solutions Inc filed Critical Hitachi Home and Life Solutions Inc
Priority to JP2002158501A priority Critical patent/JP4291976B2/en
Publication of JP2004007872A publication Critical patent/JP2004007872A/en
Application granted granted Critical
Publication of JP4291976B2 publication Critical patent/JP4291976B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for smoothly starting a brushless sensorless DC motor by improving the positioning of the DC motor. <P>SOLUTION: A drive system of this brushless sensorless DC motor, comprising an inverter circuit constituted of a plurality of switching devices and rectifying elements, a position detection circuit for detecting the induced voltage of the brushless DC motor and a rotor pole position, and an inverter control part, is configured so as to energize, before positioning, any of phases advanced by 60, 120, 240, and 300 degrees at an electrical angle from a phase energized during positioning for the same duration with the same torque as for positioning. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ブラシレス・センサレスDCモータの起動方法に関する。
【0002】
【従来の技術】
ブラシレス・センサレスDCモータは、永久磁石を組込んだ回転子と界磁巻線を組込んだ固定子からなり、界辞巻線に誘起した電圧波形を比較、若しくは演算処理を行うことにより回転子磁極位置を検出し、固定子への通電位相の制御を行っている。
【0003】
ブラシレス・センサレスDCモータは、回転数が非常に低い起動時では界磁巻線に誘起した電圧波形から回転子磁極位置の検出を行うことが困難であるので、インバータ回路により強制的に転流タイミングを決めて固定子への通電位相を制御する同期運転を行って回転子を回転・加速し、その後、回転子の位置検出が可能な速度に達すると、回転子位置を検出して通電位相を制御する位置検出回転に切換える起動方法が用いられている。
【0004】
上記同期運転時には、回転子磁極位置が検出出来ない為、インバータ回路から出力される周波数と電圧は、負荷に応じて適切な値になる様に予め設定してある。
【0005】
慣性が大きい負荷を駆動する場合など、回転子磁極位置によっては同期運転が円滑に行えないことがあり、同期運転前に回転子の磁極位置を予め定めた位置まで移動させておく位置決め処理を行う。この位置決め処理は、通常、同期運転の通電開始相のみを通電して行う。
【0006】
【発明が解決しようとする課題】
通電開始相のみ通電して位置決め処理を行うと、回転子にトルクが作用し、回転子磁極位置は位置決め位置(その範囲内では回転子に作用するトルクが小さく回転子はその場に留まるが、回転子がその範囲から電気角で遅れ、若しくは進み方向に僅かでも移動すると、回転子に作用するトルクによりその範囲まで回転子が戻るような範囲を示す)まで移動するが、位置決め位置から電気角で180°進んだ位置でも、位置決め処理により回転子磁極位置が移動出来ないという問題がある。この状態で同期運転を開始すると、起動開始後1回目の転流時点で回転子に負トルクが作用し、以降加速途中で振動することがあり、同期運転から外れてしまうこともあり円滑な起動が出来ない。
本発明では、回転子磁極位置を位置決め位置に確実に移動させること、若しくはそれと同等の効果を得ることを目的とする。
【0007】
【課題を解決するための手段】
(第1の発明)
位置決め処理前に、通電開始相から電気角で60°、120°、240°、300°進んだ何れかの相を位置決め処理と同じ電圧で同じ時間通電することを特徴とする。
(第2の発明)
位置決め処理時に、固定子の通電開始相と電気角で60度遅れた相を時間的にずらして、交互に少なくとも各1回以上通電することを特徴とする。
【0008】
【発明の実施の形態】
以下、図面を参照して本発明の実施例を説明する。
【0009】
図1は、ブラシレス・センサレスDCモータの駆動方法を示す構成図である。図1に示すように、インバータ回路1は、スイッチング素子Tu、Tv、Tw、Tx、Ty、Tz及び整流素子Du、Dv、Dz、Dx、Dy、Dvからなり、ブラシレス・センサレスDCモータ2(以下DCモータ2)を駆動する。このインバータ回路1において、直流電源の+側に接続されている各素子を「上アーム部5」、−側に接続されている各素子を下アーム部6と呼ぶ。このDCモータ2は、永久磁石を組込んだ回転子と界磁巻線を組込んだ固定子から構成されている。そして、DCモータ2の界磁巻線の端子電圧は、位置検出回路3へ送られる。この位置検出回路3は、上記界磁巻線の端子電圧を比較処理して回転子の位置を検出し、その検出信号を制御回路4へ出力する。
【0010】
制御回路4は、位置検出回路3からの回転子位置信号に基づいてインバータ回路1の各スイッチング素子に制御信号を供給し、インバータ回路1の動作を制御する。上記制御回路4は、回転子の位置検出が困難なモータの起動時には、インバータ回路1の転流タイミングを強制的に切替える同期運転を行ってDCモータ2を回転・加速し、その後位置検出回路3により回転子の位置検出が可能な状態に達すると、この位置検出信号に従って通電位相を制御する位置検出回転に切換える。
【0011】
又、制御回路4は、慣性が大きい負荷を駆動する場合など、回転子磁極位置によっては「同期運転」が円滑に行えないことがあり、同期運転前にインバータ回路1の特定の相(通常は同期運転時の通電開始相)のみ通電し、同期運転前に回転子の磁極位置を予め定めた位置まで移動させておく「位置決め処理」を行う。
【0012】
図2は、インバータ回路1のスイッチング素子の通電順序を説明したものである。図2の7は上アーム部5の通電タイミングを、8は図1の下アーム部6の通電タイミングを示す。記号9は各スイッチング素子の通電相を示す。「同期運転」を始める相をT1(上アームTu相、下アームTZ相)とし、以下T2、T3〜T6と順に通電相を変えて(転流して)いくものとする。
【0013】
図3は、T1〜T6それぞれの通電相における回転子磁極位置と回転子へ作用するトルクの関係をグラフ化したものであり、各グラフの右上に通電相を示している。
【0014】
図3の縦軸は、回転子に作用するトルクを示し、横軸との交点をトルク0の位置とし矢印方向を正とする。正トルクとは、回転子に対し電気角で進み方向に作用するトルクとする。図3の横軸は、回転子磁極位置を電気角で示しており、通電相がT1の状態で位置決めされる範囲(位置決め位置)をA1として一転鎖線で示し、その中で回転子に作用するトルクが0となる点を0°としている。A1から電気角で60°進んだ範囲をA2とし、以下同様に60°ずつ進んだ範囲をA3〜A6と表わす。
【0015】
位置決め処理の際に界磁巻線に印可する電圧は、位置決め処理により回転子が回転し続けたり、位置決め位置を往復振動し続けることなく、回転子磁極位置が位置決め位置に速やかに静止出来る大きさとし、回転子磁極位置が位置決め位置に移動するには充分な値とする。又通電時間は、回転子磁極位置を位置決め位置に移動後静止させる為に充分な時間とする。
【0016】
通常、位置決め処理は同期運転の通電開始相(通電相T1)でを行う為、図3の左上段のグラフにて位置決め処理を説明する。
【0017】
位置決め処理前に回転子磁極位置がA1より遅れ位置(0°〜−180°でA4を除く範囲)にある場合、位置決め処理により回転子は正トルクを受ける為、A1まで移動する。又、位置決め処理前に回転子磁極位置がA1より進み位置(0°〜180°でA4を除く範囲)にある場合、回転子は負トルクを受ける為、同様にA1まで移動する。回転子の位置がA1にある場合は、回転子に作用するトルクは0若しくは微少である為、A1に留まる。位置決め処理前に回転子磁極位置がA4の範囲にある場合、A1にある場合と同様に回転子磁極位置はA4に留まる。
【0018】
回転子磁極位置がA1にある状態で同期運転を始めた場合、通電開始相(T1)では、回転子に作用するトルクは0若しくは微少なので、回転子はその位置に留まるか僅かに移動する。通電相がT2に転流すると、正トルクを受け回転子は電気角で進み方向に回転する。以降、次の転流時に回転子が適切なトルクを得る様に電圧と通電時間を設定し、円滑な同期運転を行う。
【0019】
しかしながら、位置決め処理時に回転子磁極がA4にある状態で同期運転を行うと、通電相がT1では回転子に作用するトルクが0若しくは微少であり、回転子はその場に留まるか僅かに移動する。通電相がT2では逆方向のトルクが作用し電気角で遅れ方向に移動してしまう。同期運転の制御仕様は、回転子磁極がA1にあり進み方向へ回転・加速して行くことを前提に決めている為、A4からの起動には適応しておらず、同期運転の際に大きく振動してしまってり同期外れを起こすなど円滑な起動が出来ない場合がある。
【0020】
第1の発明は、位置決め処理の前に位置決め処理と同じ電圧、同じ時間で、T2、T3、T5、T6の何れかの相に予め通電する位置決め前処理を行うものである。以下、図3のグラフを用いて説明する。例えばT2で位置決め前処理を行った場合、図3の2段目に示すようなトルクが作用し、回転子磁極位置は、A2に移動するかA5に留まる為、A4位置に留まることは無い。同様に通電相T3で位置決め前処理を行えばA3に移動若しくはA6に留まり、T5で位置決め前処理を行えばA5に移動若しくはA2に留まり、T6で位置決め前処理を行えばA6に移動若しくはA3に留まる為、いずれもA4位置に留まることはない。以上の通り、位置決め前処理を行うことで、回転子の磁極位置をA4以外の位置に移動させる為、位置決め処理により確実に回転子磁極位置をA1位置に移動出来る。
【0021】
第2の発明は、通電相がT1及びT2による位置決め処理を時間的にずらして交互に行うものである。以下、図3のグラフを用いて説明する。例えばT1で通電を始めた場合、回転子磁極位置はA1に移動、若しくはA4に留まる。次にT2で通電することで回転子磁極位置がA4位置にある場合は、逆方向トルクを受けてA2位置まで移動し、A1にある場合もA2に移動する。再び回転子磁極位置がA1の状態で通電した場合、回転子磁極位置はA2にある為、A1に移動する。これを繰返せば回転子磁極位置はA1、A2を交互に移動することになり、位置決め処理を止めればA1、若しくはA2に停止する。
【0022】
回転子磁極位置がA1にある状態で同期運転を始めた場合、回転子に作用するトルクは0若しくは微少であり、その場に留まるか僅かに移動する。A2に転流すると、正トルクを受け電気角で進み方向に回転する。
【0023】
回転子磁極位置がA2にある状態で同期運転を始めた場合、通電開始相T1で正トルクを受けるが、このトルクの大きさは回転子磁極位置がA1で同期運転を始めた場合のT2時に作用するトルクと大きさ、方向共に同じである。このことから、A1、A2どちらで同期運転を始めても全く同じ条件で起動出来ることになる。交互に通電する合計時間を充分長くすれば、回転子磁極位置は徐々にA1、A2位置に移動することになる為、T1、T2への1回の通電時間が短い場合でも、又、非通電時間を設けたと場合でも、本発明の効果には特に問題は無い。
【0024】
【発明の効果】
本発明の方法で位置決め処理を行うことで、同期運転が円滑に行え、確実に起動出来るようになり、製品の信頼性が向上した。更に、慣性が大きい負荷を駆動することも容易となった。又、同期運転失敗時に、再度同期運転を行うことが無くなり、システム全体の処理時間が短縮でき、商品性も向上した。
【0025】
【図面の簡単な説明】
【図1】ブラシレス・センサレスDCモータ駆動回路の構成図である。
【図2】スイッチング素子に通電するタイミングを示す図である。
【図3】回転子の磁極位置と回転子に作用するトルクの関係を示す図である。
【符号の説明】
1…インバータ回路、2…ブラシレス・センサレスDCモータ、3…位置検出回路、4…インバータ制御回路、5…インバータ回路の上アーム部、6…インバータ回路の下アーム部、7…上アーム部の通電タイミング、8…下アーム部の通電タイミング、9…通電相を表わす記号、
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for starting a brushless sensorless DC motor.
[0002]
[Prior art]
A brushless / sensorless DC motor consists of a rotor incorporating a permanent magnet and a stator incorporating a field winding. The rotor compares the voltage waveforms induced in the field windings or performs arithmetic processing. The position of the magnetic pole is detected and the phase of energization to the stator is controlled.
[0003]
In a brushless / sensorless DC motor, it is difficult to detect the position of the rotor magnetic pole from the voltage waveform induced in the field winding at the time of startup when the number of rotations is extremely low. The rotor is rotated and accelerated by performing a synchronous operation to control the energization phase to the stator and then, when the rotor reaches a speed at which the rotor position can be detected, the rotor position is detected and the energization phase is adjusted. A starting method for switching to the position detection rotation to be controlled is used.
[0004]
Since the rotor magnetic pole position cannot be detected during the synchronous operation, the frequency and voltage output from the inverter circuit are set in advance so as to have appropriate values according to the load.
[0005]
In some cases, such as when driving a load with a large inertia, the synchronous operation cannot be performed smoothly depending on the rotor magnetic pole position. Before the synchronous operation, the rotor performs a positioning process of moving the magnetic pole position of the rotor to a predetermined position. . This positioning process is usually performed by energizing only the energization start phase of the synchronous operation.
[0006]
[Problems to be solved by the invention]
When the positioning process is performed by energizing only the energization start phase, torque acts on the rotor, and the rotor magnetic pole position changes to the positioning position (within this range, the torque acting on the rotor is small and the rotor stays in place. If the rotor moves backward or forward in electrical direction from that range, the rotor moves back to that range due to the torque acting on the rotor if the rotor moves even slightly in the forward direction). However, there is a problem that the rotor magnetic pole position cannot be moved by the positioning process even at a position advanced by 180 °. If synchronous operation is started in this state, a negative torque acts on the rotor at the time of the first commutation after the start of startup, and the rotor may vibrate during acceleration thereafter, and may be deviated from the synchronous operation and smoothly start. Can not do.
An object of the present invention is to reliably move a rotor magnetic pole position to a positioning position, or to obtain an effect equivalent thereto.
[0007]
[Means for Solving the Problems]
(First invention)
Before the positioning process, any phase advanced by 60 °, 120 °, 240 °, or 300 ° in electrical angle from the energization start phase is energized with the same voltage and the same time as the positioning process.
(Second invention)
At the time of the positioning process, the current is supplied at least once alternately at least one time by staggering the phase that is delayed by 60 degrees in the electrical angle from the current application start phase of the stator.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0009]
FIG. 1 is a configuration diagram showing a method of driving a brushless / sensorless DC motor. As shown in FIG. 1, the inverter circuit 1 includes switching elements Tu, Tv, Tw, Tx, Ty, Tz and rectifying elements Du, Dv, Dz, Dx, Dy, Dv. The DC motor 2) is driven. In the inverter circuit 1, each element connected to the + side of the DC power supply is called “upper arm section 5”, and each element connected to the − side is called lower arm section 6. The DC motor 2 includes a rotor incorporating a permanent magnet and a stator incorporating a field winding. Then, the terminal voltage of the field winding of the DC motor 2 is sent to the position detection circuit 3. The position detection circuit 3 compares the terminal voltages of the field windings to detect the position of the rotor, and outputs a detection signal to the control circuit 4.
[0010]
The control circuit 4 supplies a control signal to each switching element of the inverter circuit 1 based on the rotor position signal from the position detection circuit 3, and controls the operation of the inverter circuit 1. The control circuit 4 performs a synchronous operation for forcibly switching the commutation timing of the inverter circuit 1 to start and rotate the DC motor 2 when the motor whose rotor position is difficult to detect is started. When the position of the rotor can be detected by the above, the rotation is switched to the position detection rotation for controlling the energization phase according to the position detection signal.
[0011]
Further, the control circuit 4 may not be able to smoothly perform “synchronous operation” depending on the position of the rotor magnetic pole, such as when driving a load having a large inertia. Only the energization start phase during synchronous operation) is performed, and a “positioning process” is performed in which the magnetic pole position of the rotor is moved to a predetermined position before the synchronous operation.
[0012]
FIG. 2 illustrates the order of energizing the switching elements of the inverter circuit 1. 2 indicates the energization timing of the upper arm 5 and 8 indicates the energization timing of the lower arm 6 in FIG. Symbol 9 indicates the energized phase of each switching element. The phase in which the "synchronous operation" starts is T1 (upper arm Tu phase, lower arm TZ phase), and the energizing phase is changed (commutated) in the order of T2, T3 to T6.
[0013]
FIG. 3 is a graph showing the relationship between the rotor magnetic pole position and the torque acting on the rotor in each energized phase of T1 to T6, and the energized phase is shown at the upper right of each graph.
[0014]
The vertical axis in FIG. 3 indicates the torque acting on the rotor, the intersection with the horizontal axis is the position of torque 0, and the direction of the arrow is positive. The positive torque is a torque that acts on the rotor in the forward direction at an electrical angle. The horizontal axis in FIG. 3 indicates the rotor magnetic pole position in electric angle, and the range (positioning position) in which the energized phase is positioned in the state of T1 is indicated by A1 and a chain line, and acts on the rotor therein. The point where the torque becomes 0 is defined as 0 °. A range advanced by 60 electrical degrees from A1 is denoted as A2, and similarly, a range advanced by 60 ° is denoted as A3 to A6.
[0015]
The voltage applied to the field winding during the positioning process should be large enough to allow the rotor magnetic pole position to quickly stop at the positioning position without the rotor continuing to rotate during the positioning process or continuing to reciprocate the positioning position. , The rotor magnetic pole position is set to a sufficient value to move to the positioning position. The energization time is set to a time sufficient for stopping the rotor magnetic pole position after moving to the positioning position.
[0016]
Normally, since the positioning process is performed in the energization start phase (energization phase T1) of the synchronous operation, the positioning process will be described with reference to the upper left graph of FIG.
[0017]
If the rotor magnetic pole position is at a position delayed from A1 before the positioning process (a range from 0 ° to -180 ° excluding A4), the rotor receives a positive torque by the positioning process and moves to A1. In addition, if the rotor magnetic pole position is at a position ahead of A1 (a range excluding A4 from 0 ° to 180 °) before the positioning process, the rotor receives negative torque and moves to A1 similarly. When the position of the rotor is at A1, the torque acting on the rotor is 0 or very small, so that the torque remains at A1. If the rotor magnetic pole position is in the range of A4 before the positioning process, the rotor magnetic pole position remains at A4 as in the case of A1.
[0018]
When the synchronous operation is started in a state where the rotor magnetic pole position is at the position A1, the torque acting on the rotor is 0 or very small in the energization start phase (T1), so that the rotor stays at that position or moves slightly. When the energized phase is commutated to T2, the rotor receives a positive torque and rotates in the forward direction at an electrical angle. Thereafter, the voltage and the energizing time are set so that the rotor obtains an appropriate torque at the next commutation, and a smooth synchronous operation is performed.
[0019]
However, if the synchronous operation is performed in the state where the rotor magnetic pole is at the position A4 during the positioning process, the torque acting on the rotor is 0 or small when the energized phase is T1, and the rotor stays there or moves slightly. . When the energized phase is T2, a reverse torque acts and moves in a delay direction by an electrical angle. The control specifications for synchronous operation are based on the assumption that the rotor magnetic pole is at A1 and rotate and accelerate in the advancing direction. In some cases, smooth startup may not be possible, such as vibration or loss of synchronization.
[0020]
According to a first aspect of the present invention, a pre-positioning process is performed in which any one of phases T2, T3, T5, and T6 is energized in advance at the same voltage and the same time as the positioning process before the positioning process. Hereinafter, description will be made with reference to the graph of FIG. For example, when the pre-positioning process is performed at T2, a torque as shown in the second stage of FIG. 3 is applied, and the rotor magnetic pole position moves to A2 or remains at A5, and therefore does not remain at the A4 position. Similarly, if the pre-positioning process is performed in the energized phase T3, the process moves to A3 or remains at A6, if the pre-positioning process is performed at T5, the process moves to A5 or remains at A2, and if the pre-positioning process is performed at T6, the process moves to A6 or A3. Neither stays at the A4 position because it stays. As described above, by performing the pre-positioning process, the magnetic pole position of the rotor is moved to a position other than A4. Therefore, the rotor magnetic pole position can be reliably moved to the A1 position by the positioning process.
[0021]
According to a second aspect of the present invention, the energized phases alternately perform the positioning process by T1 and T2 with a time lag. Hereinafter, description will be made with reference to the graph of FIG. For example, when energization is started at T1, the rotor magnetic pole position moves to A1 or remains at A4. Next, by energizing at T2, when the rotor magnetic pole position is at the A4 position, the rotor magnetic pole is moved to the A2 position by receiving a reverse torque, and when the rotor magnetic pole position is at the A1, it also moves to the A2. When power is supplied again in the state where the rotor magnetic pole position is A1, the rotor magnetic pole position is at A2, so that the rotor magnetic pole moves to A1. If this operation is repeated, the rotor magnetic pole position moves alternately between A1 and A2. If the positioning process is stopped, the rotor magnetic pole position stops at A1 or A2.
[0022]
When the synchronous operation is started in a state where the rotor magnetic pole position is at the position A1, the torque acting on the rotor is zero or very small and stays there or moves slightly. When commutated to A2, it receives positive torque and rotates in the leading direction at an electrical angle.
[0023]
When the synchronous operation is started in the state where the rotor magnetic pole position is at A2, a positive torque is received in the energization start phase T1, but the magnitude of this torque is T2 when the rotor magnetic pole position is A1 and the synchronous operation is started. The magnitude and direction of the applied torque are the same. From this, it can be started under exactly the same conditions regardless of whether synchronous operation is started in either A1 or A2. If the total time for alternately energizing is made sufficiently long, the rotor magnetic pole position will gradually move to the positions A1 and A2. Even if time is provided, there is no particular problem in the effect of the present invention.
[0024]
【The invention's effect】
By performing the positioning process according to the method of the present invention, the synchronous operation can be performed smoothly, the starting operation can be reliably performed, and the reliability of the product is improved. Further, it is easy to drive a load having a large inertia. In addition, when the synchronous operation fails, the synchronous operation is not performed again, so that the processing time of the entire system can be shortened and the commercial value is improved.
[0025]
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a brushless / sensorless DC motor drive circuit.
FIG. 2 is a diagram showing the timing of energizing a switching element.
FIG. 3 is a diagram illustrating a relationship between a magnetic pole position of a rotor and a torque acting on the rotor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Inverter circuit, 2 ... Brushless / sensorless DC motor, 3 ... Position detection circuit, 4 ... Inverter control circuit, 5 ... Inverter circuit upper arm, 6 ... Inverter circuit lower arm, 7 ... Upper arm Timing, 8: energizing timing of the lower arm portion, 9: symbol representing energized phase,

Claims (2)

複数のスイッチング素子と整流素子で構成されたインバータ回路と、ブラシレス・DCモータの誘起電圧を検出してその回転子磁極位置を検出する位置検出回路とインバータ制御部とで構成されるブラシレス・センサレスDCモータの駆動システムにおいて、
位置決め処理前に、位置決め処理時に通電する相と電気角度で60°、120°、240°、300°進んだ何れかの相を「位置決め処理」と同じトルクで同じ時間通電することを特徴とするブラシレス・センサレスDCモータの起動方法。
Inverter circuit composed of a plurality of switching elements and rectifier elements, brushless sensorless DC composed of a brushless DC motor, a position detection circuit for detecting an induced voltage of a DC motor to detect a rotor magnetic pole position, and an inverter control unit In the motor drive system,
Before the positioning process, any phase advanced by 60 °, 120 °, 240 °, or 300 ° in electrical angle with the phase energized during the positioning process is energized with the same torque and the same time as the “positioning process”. How to start brushless / sensorless DC motor.
複数のスイッチング素子と整流素子で構成されたインバータ回路と、ブラシレス・DCモータの誘起電圧を検出してその回転子磁極位置を検出する位置検出回路とインバータ制御部とで構成されるブラシレス・センサレスDCモータの駆動システムにおいて、
位置決め処理前に、通電開始相とその相から電気角で60°遅れた相とを時間的にずらして、交互に少なくとも各1回以上通電することを特徴とするブラシレス・センサレスDCモータの起動方法。
Inverter circuit composed of a plurality of switching elements and rectifier elements, brushless sensorless DC composed of a brushless DC motor, a position detection circuit for detecting an induced voltage of a DC motor to detect a rotor magnetic pole position, and an inverter control unit In the motor drive system,
A method for starting a brushless / sensorless DC motor, characterized in that, before the positioning process, the energization start phase and the phase delayed by 60 ° in electrical angle from the phase are time-shifted and energized alternately at least once each. .
JP2002158501A 2002-05-31 2002-05-31 Starting method of brushless / sensorless DC motor Expired - Fee Related JP4291976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002158501A JP4291976B2 (en) 2002-05-31 2002-05-31 Starting method of brushless / sensorless DC motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002158501A JP4291976B2 (en) 2002-05-31 2002-05-31 Starting method of brushless / sensorless DC motor

Publications (2)

Publication Number Publication Date
JP2004007872A true JP2004007872A (en) 2004-01-08
JP4291976B2 JP4291976B2 (en) 2009-07-08

Family

ID=30428718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002158501A Expired - Fee Related JP4291976B2 (en) 2002-05-31 2002-05-31 Starting method of brushless / sensorless DC motor

Country Status (1)

Country Link
JP (1) JP4291976B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102215022A (en) * 2010-04-09 2011-10-12 建准电机工业股份有限公司 Sensorless starting method of brushless direct current motor
CN105305896A (en) * 2015-11-25 2016-02-03 南京快轮智能科技有限公司 System and method for online identifying rotor position of brushless DC motor
JP2017209407A (en) * 2016-05-27 2017-11-30 パナソニックIpマネジメント株式会社 Washing machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102215022A (en) * 2010-04-09 2011-10-12 建准电机工业股份有限公司 Sensorless starting method of brushless direct current motor
CN105305896A (en) * 2015-11-25 2016-02-03 南京快轮智能科技有限公司 System and method for online identifying rotor position of brushless DC motor
CN105305896B (en) * 2015-11-25 2018-01-02 南京快轮智能科技有限公司 The on-line identification system and its discrimination method of a kind of brushless DC motor rotor position
JP2017209407A (en) * 2016-05-27 2017-11-30 パナソニックIpマネジメント株式会社 Washing machine

Also Published As

Publication number Publication date
JP4291976B2 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
JP5410690B2 (en) Brushless motor control device and brushless motor
US7190131B2 (en) Device and method for starting brushless direct current motor
JP3204644B2 (en) Driving device and driving method for electric motor
KR100288770B1 (en) Rectifier Circuit for Sensorless Three-Phase Bieldi Motors
CN1300933C (en) Apparatus for driving brushless motor and method of controlling the motor
JP2008022678A (en) Electric motor drive unit and electric motor braking method
US20170163183A1 (en) Motor control system, control method and vacuum cleaner
US7479755B2 (en) Drive circuit for a synchronous electric motor
JP3731105B2 (en) Motor system, air conditioner equipped with the motor system, and motor starting method
US6741046B1 (en) Method for starting a sensor- and brushless d.c. motor
JP4291976B2 (en) Starting method of brushless / sensorless DC motor
CN108075690B (en) Motor driving system and operation recovery method thereof
JP2011030385A (en) Motor drive and method of determining relative position of rotor equipped in motor
JP2020198750A (en) Control method and controller for brushless dc motor
KR20210019077A (en) How to control a brushless permanent magnet motor
JP4291977B2 (en) Brushless and sensorless DC motor drive system
JP3531563B2 (en) Brushless motor control device, brushless motor control method, and compressor
JP2007174747A (en) Sensorless control method for brushless motor, and sensorless controller for brushless motor
US20190379309A1 (en) Brushless dc motor control method and control device
KR100715998B1 (en) Driving apparqatus of BLDC motor and Starting method of BLDC motor
JP4079385B2 (en) Brushless DC motor drive device
JP2005269719A (en) Sensorless control method for brushless motor, sensorless controller for brushless motor, and electric pump
JPH0515179A (en) Starting method for synchronous motor
JP2022047079A (en) Motor control device and motor control method
JP2004229360A (en) Driving method and device for dc motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050603

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060510

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060510

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees