JP4290380B2 - Method for producing high bulk density detergent - Google Patents

Method for producing high bulk density detergent Download PDF

Info

Publication number
JP4290380B2
JP4290380B2 JP2002109256A JP2002109256A JP4290380B2 JP 4290380 B2 JP4290380 B2 JP 4290380B2 JP 2002109256 A JP2002109256 A JP 2002109256A JP 2002109256 A JP2002109256 A JP 2002109256A JP 4290380 B2 JP4290380 B2 JP 4290380B2
Authority
JP
Japan
Prior art keywords
bulk density
base particles
mass
water
high bulk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002109256A
Other languages
Japanese (ja)
Other versions
JP2003301199A (en
Inventor
勉 徳元
和伸 辻岡
弘 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2002109256A priority Critical patent/JP4290380B2/en
Publication of JP2003301199A publication Critical patent/JP2003301199A/en
Application granted granted Critical
Publication of JP4290380B2 publication Critical patent/JP4290380B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Detergent Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は高嵩密度洗剤の製造方法に関する。
【0002】
【従来の技術】
粉末洗剤組成物は、消費者の利便性より、高嵩密度化や低使用量化が強く指向されている。また、環境への負荷の低減として、商品のコンパクト化や包装材料の軽量化が求められており、高嵩密度洗剤は主流を占めるようになっている。粉末洗剤のコンパクト化に際して、在来の低嵩密度洗剤に多量配合されていた増量剤である洗浄効果の小さい芒硝等の無機塩が削減され、主洗浄成分である界面活性剤等の有機物の比率が上昇したことに起因して、吸湿によるケーキング性が助長され、更に洗剤粒子が塑性を増すことで、長期保管時のケーキング問題を引き起こす結果となった。衣料用洗剤に配合される界面活性剤は、様々な種類の汚れに対応し、また、複数の界面活性剤による相乗効果を得るため、通常一種ではなく、数種の界面活性剤を併用して用いることが一般的であり、陰イオン性界面活性剤と非イオン性界面活性剤とを併用することがよく行われ、特に衣料用洗剤用途に好適な洗浄力を有する非イオン性界面活性剤は、常温で液状であることから、洗剤の長期保存時に、液状の非イオン界面活性剤がしみ出すことによるケーキング問題が発生することもあった。
【0003】
特開平11−131100号公報には、ポリオキシエチレン高級脂肪酸モノエタノールアミドを配合し特定の温度条件下で圧密成形または転動造粒を行うことで耐ケーキング性に優れた衣料用の高密度洗剤を製造する方法が記載されている。また、特開2001−172690号公報には、2種類の異なる特性を備えた粒子を混合することによって、溶解性が良好で、保存中の固化などが発生しにくく、流動性が良好な粉末洗剤組成物を製造する方法が記載されている。しかしこれらは、特に保存時の吸湿が原因となり発生するケーキングを十分に解決するものではなかった。
【0004】
【発明が解決しようとする課題】
本発明の課題は、流動性に優れ、保存安定性(特に耐ケーキング性)の向上した高嵩密度洗剤を製造できる方法を提供することである。
【0005】
【課題を解決するための手段】
本発明は、高嵩密度洗剤のベース粒子を、該粒子相互の相対的な位置を変化させながら、前記粒子の平衡相対湿度を超える湿度の雰囲気(以下、調湿雰囲気という)に少なくとも30分以上曝露する工程を有する高嵩密度洗剤の製造方法に関する。また、本発明は、該製造方法によって得られた高嵩密度洗剤に関する。以下、高嵩密度洗剤のベース粒子は、高嵩密度洗剤の前駆粒子である。
【0006】
【発明の実施の形態】
本発明では、上記特定条件でベース粒子を調湿雰囲気に曝露することにより、ベース粒子の表面近傍の水分量が相対的に上昇することになり、吸湿速度が低くなり、直ちに充填されても粒子間の吸湿による擬似接着はおこらない。これに対して、ベース粒子の調湿雰囲気温度において平衡相対湿度より低い湿度の雰囲気に曝露すると、ベース粒子の表面近傍の水分量が相対的に低下することになり、吸湿速度が高くなり、直ちに充填された場合粒子間の吸湿による擬似接着がおこる。一旦充填されると洗剤粒子相互の相対的位置関係は殆ど変化しないため、長期保存によりこの擬似接着がケーキングとなる。本発明において、ベース粒子相互の相対的位置関係を変化させながら、少なくとも30分以上の時間をかけて水分を増加させるのは、擬似接着を防ぎながらベース粒子の表面近傍の水分値を相対的に上昇させるためである。ベース粒子の水分量を上昇させる方法として、水を液体の状態で添加する方法が考えられるが、ベース粒子の表面近傍の水分量が高くなりすぎて、かえって粒子間の接着がおこり易くなり、好ましくない。
【0007】
本発明において、ベース粒子を調湿雰囲気に曝露する時間は30分以上であり、30〜300分、更に40〜250分、特に50〜200分が好ましい。曝露時間が30分以上であれば、粒子内での均一な水分の分布が達成され、粒子表層の水分量も適正となり粒子間の接着も抑制できる。また、300分以内であれば、粒子の水分増加量が適正となり、また設備の負荷も少ない。
【0008】
本発明では、ベース粒子を調湿雰囲気に曝露することによりベース粒子中の水分量を0.1質量%以上増加させることが好ましく、0.1〜100質量%がより好ましく、0.2〜50質量%が更に好ましく、0.5〜30質量%が特に好ましい。水分増加量が0.1質量%以上であれば、十分なケーキング抑制効果が得られ、また、100質量%以下であれば、粒子表層の水分量が適正となり粒子間の接着を抑制できる。
【0009】
本発明において、ベース粒子中の水分量は、JIS K 3362:1998加熱減量法により測定されたものをいう。
【0010】
なお、調湿雰囲気に曝露する前のベース粒子中の水分量は、ベース粒子強度、流動性、ベース粒子の塑性低減の点で10質量%以下が好ましい。より好ましくは6質量%以下であり、更に好ましくは4質量%以下であり、最も好ましくは2質量%以下である。また、後述の表面改質処理の容易さや粒子崩壊による粉立ちの抑制の点で0.1質量%以上が好ましく、0.2質量%以上がより好ましく、0.4質量%以上が更に好ましく、0.6質量%以上が最も好ましい。
【0011】
ベース粒子の平衡相対湿度は、保存安定性の点で、35℃における測定値が15〜50%が好ましく、20〜45%がより好ましい。なお、本発明において、ベース粒子の平衡相対湿度は、以下により定義されるものである。
【0012】
<ベース粒子の平衡相対湿度>
2.4リットルの防湿容器にベース粒子600gと高分子膜湿度センサ(好適にはティアンドディ社製、Thermo Recorder おんどとり RH TR−72SとTR−3110温湿度センサの組み合わせ)を入れ密閉する。これを一定温度に維持し、24時間保存する。その後30分ごとに湿度測定値を読み取り、変化がなくなった値を設定温度の平衡相対湿度とする。
【0013】
本発明において、調湿雰囲気温度におけるベース粒子の平衡相対湿度と調湿雰囲気の湿度との差は、処理時間の点で0.5%以上が好ましく、1%以上がより好ましく、5%以上が更に好ましく、10%以上が特に好ましい。また、粒子間の接着防止の点で50%以下が好ましく、40%以下がより好ましく、30%以下が更に好ましく、20%以下が特に好ましい。
【0014】
ベース粒子を調湿雰囲気に曝露する際の温度は、処理時間、変質防止の点で20〜50℃が好ましく、25〜45℃がより好ましく、30〜40℃が更に好ましい。
【0015】
本発明では、ベース粒子相互の相対的位置関係を変化させながら、調湿雰囲気に曝露する。ベース粒子を均一に混合しながら調湿雰囲気に曝露することが好ましい。そのために使用できる手段として、振動コンベア、スクリューコンベア、空気輸送等の粉体移動手段、流動層、ロッキングミキサー、リボンミキサー、パドルミキサー、V型混合機、スクリュー混合機等の粉体混合手段等が挙げられる。いずれの場合も、造粒がおこらずにベース粒子の状態を維持する程度の弱い力で粒子相互の相対的位置関係を変化させることが望まれ、ベース粒子間で均一に水分量を増加できるものが好ましい。
【0016】
ベース粒子相互の相対的位置関係を変化させる時に、酵素含有粒子、消泡剤粒子、漂白剤粒子、漂白活性化剤粒子、ビルダー粒子等の洗浄補助機能性粒子を混合しても良いし、香料等を添加しても良い。
【0017】
上記工程を経て製造された高嵩密度洗剤は、利便性や廃棄物低減の点で、JIS K 3362により規定された方法で測定する嵩密度は600g/L以上が好ましく、700g/L以上がより好ましく、800g/L以上が更に好ましい。また、溶解性の点で、嵩密度は1600g/L以下が好ましく、1300g/L以下がより好ましく、1000g/L以下が更に好ましい。
【0018】
上記工程を経て製造された高嵩密度洗剤は、洗浄力、溶解性の点で、JIS Z 8801の標準篩を用いて5分間振動させた後、篩目のサイズによる質量分率から求める平均粒径が150〜700μmであることが好ましく、より好ましくは150〜600μm、更に好ましくは180〜500μmである。
【0019】
本発明に係る高嵩密度洗剤は、ベース粒子及び、要すれば、酵素含有粒子、消泡剤粒子、漂白剤粒子、漂白活性化剤粒子、ビルダー粒子等の洗浄補助機能性粒子を含有する。
【0020】
本発明に用いられるベース粒子は、界面活性剤、水不溶性無機物、水溶性ポリマー、水溶性塩類、水等の組み合わせによって得られる。
【0021】
界面活性剤として、陰イオン性界面活性剤、非イオン性界面活性剤、両性界面活性剤、陽イオン性界面活性剤の1種または組み合わせを挙げることが出来るが、洗浄性能の点で好ましくは陰イオン性界面活性剤、非イオン性界面活性剤である。中でも主界面活性剤が陰イオン界面活性剤であることが耐ケーキング性の点で好ましい。ベース粒子中、洗浄性能、溶解性の点で、界面活性剤は10〜50質量%が好ましく、15〜45質量%がより好ましい。
【0022】
陰イオン性界面活性剤としては、炭素数10〜18のアルコールの硫酸エステル塩、炭素数8〜20のアルコールのアルコキシル化物の硫酸エステル塩、アルキルベンゼンスルホン酸塩、パラフィンスルホン酸塩、α−オレフィンスルホン酸塩、α−スルホ脂肪酸塩、α−スルホ脂肪酸アルキルエステル塩又は脂肪酸塩が好ましい。本発明では特に、アルキル鎖の炭素数が10〜14の、より好ましくは12〜14の直鎖アルキルベンゼンスルホン酸塩が好ましく、対イオンとしては、アルカリ金属塩やアミン類が好ましく、特にナトリウム及び/又はカリウム、モノエタノールアミン、ジエタノールアミンが好ましい。
【0023】
非イオン性界面活性剤としては、ポリオキシアルキレンアルキル(炭素数8〜20)エーテル、アルキルポリグリコシド、ポリオキシアルキレンアルキル(炭素数8〜20)フェニルエーテル、ポリオキシアルキレンソルビタン脂肪酸(炭素数8〜22)エステル、ポリオキシアルキレングリコール脂肪酸(炭素数8〜22)エステル、ポリオキシエチレンポリオキシプロピレンブロックポリマーが好ましい。特に、非イオン性界面活性剤としては、炭素数10〜18のアルコールにエチレンオキシドやプロピレンオキシド等のアルキレンオキシドを4〜20モル付加したポリオキシアルキレンアルキルエーテルが好ましい。非イオン性界面活性剤は、HLB値(グリフィン法で算出)が10.5〜15.0、更に11.0〜14.5のものが好ましい。
【0024】
水不溶性無機物としては、1次粒子の平均粒径が0.1〜20μmのものが好ましく、例えば、結晶性もしくは非晶質のアミノ珪酸塩や、二酸化珪素、水和珪酸化合物、パーライト、ベントナイト等の粘土化合物等があるが、結晶性もしくは非晶質のアルミノ珪酸塩や、二酸化珪素、水和珪酸化合物が好適であり、中でも金属イオン封鎖能及び界面活性剤の担持能の点で結晶性アルミノ珪酸塩が好ましい。ベース粒子中、耐ケーキング性、溶解性の点で、水不溶性無機物は5〜50質量%が好ましく、10〜40質量%がより好ましい。
【0025】
水溶性ポリマーとしては、カルボン酸系ポリマー、カルボキシメチルセルロース、可溶性澱粉、糖類等が挙げられるが、中でも金属イオン封鎖能、固体汚れ・粒子汚れの分散能及び再汚染防止能の点で分子量が千〜10万のカルボン酸系ポリマーが好ましい。特に、アクリル酸−マレイン酸コポリマーの塩とポリアクリル酸塩が好ましい。ここで、塩としてはナトリウム塩、カリウム塩、アンモニウム塩が挙げられる。ベース粒子中、耐ケーキング性、溶解性の点で、水溶性ポリマーは0.05〜20質量%が好ましく、0.1〜15質量%がより好ましく、0.3〜10質量%が更に好ましい。
【0026】
水溶性塩類としては、炭酸塩、炭酸水素塩、硫酸塩、硫酸水素塩、塩酸塩、又はリン酸塩等のアルカリ金属塩、アンモニウム塩、又はアミン塩等の水溶性無機塩類や、クエン酸塩やフマル酸塩等の低分子量の水溶性有機酸塩が挙げられる。該水溶性塩類を配合することは、該水溶性塩類と水との反応で生じた水和熱、溶解熱により、洗剤粒子から発生する気泡を熱膨張させ、それにより粒子の崩壊性を促進できる点でより好ましい。ベース粒子中、耐ケーキング性、溶解性の点で、水溶性塩類は10〜50質量%が好ましく、20〜40質量%がより好ましい。
【0027】
本発明のベース粒子は、これらの成分の他に、衣料用洗剤の分野で公知のビルダー、再汚染防止剤(カルボキシメチルセルロース等)、柔軟化剤、還元剤(亜硫酸塩等)、蛍光増白剤、抑泡剤(シリコーン等)、香料、酵素(ペプチナーゼ、アミラーゼ、リパーゼ等)等を含有させることができる。
【0028】
本発明のベース粒子は、流動性及び非ケーキング性の点で、表面被覆剤により表面改質を行うことが好ましい。好ましくは本発明は、ベース粒子を、平均粒径1〜30μmの水不溶性無機物で表面改質する工程を有することである。この表面改質は、ベース粒子を調湿雰囲気に曝露する前、曝露中、曝露した後のいずれで行ってもよい。表面被覆剤の比率はベース粒子中1〜30質量%が好ましく、2〜15質量%がより好ましく、5〜10質量%が更に好ましい。表面被覆剤としては、例えば、アルミノケイ酸塩、ケイ酸カルシウム、二酸化ケイ素、ベントナイト、タルク、クレイ、非晶質シリカ誘導体、結晶性シリケート化合物等のシリケート化合物、金属石鹸、粉末の界面活性剤等の微粉体、カルボキシメチルセルロース、ポリエチレングリコール、ポリアクリル酸ソーダ、アクリル酸とマレイン酸のコポリマー又はその塩等のポリカルボン酸塩等の水溶性ポリマー;脂肪酸が挙げられる。中でも水不溶性無機物が好ましく、特に結晶性アルミノケイ酸塩、非晶質アルミノケイ酸塩、結晶性シリケート化合物が好ましい。
【0029】
本発明のベース粒子の好ましい製造方法の一つとして、陰イオン界面活性剤の前駆体となる酸性液体化合物を、その中和に必要な量以上の固体水溶性アルカリ無機物質と反応させることにより得られた中和生成物を造粒する方法が挙げられる。例えば、陰イオン界面活性剤の酸前駆体と、その中和に必要な量以上のアルカリ剤を含む平均粒径60〜200μmの粉体とを混合し、中和する工程を有する、嵩密度600〜1200g/L、平均粒径250〜800μmのベース粒子群の製造方法が挙げられる。
【0030】
また、本発明のベース粒子の他の好ましい製造方法として、水不溶性無機物並びに、水溶性ポリマー及び水溶性塩類から選ばれる一種以上の水溶性成分を含有するスラリーを噴霧乾燥する方法が挙げられる。
【0031】
【実施例】
実施例1
表1に示す実施例1のベース粒子成分のうち、STPP、炭酸ナトリウム、亜硫酸ナトリウム、蛍光染料を、レディゲミキサーFKM−130D((株)マツボー製)を用いて攪拌羽根を周速3.4m/s、剪断機周速27m/sで1分間混合した。混合物の平均粒径は83μmであった。
【0032】
次に同条件でミキサーを作動させながら、直鎖アルキル(炭素数12〜14)ベンゼンスルホン酸(含水率0.5質量%)と硫酸の混合物を4分間で加え、更に5分間作動させて中和反応を行った。中和反応中、ミキサーのジャケットに25℃水を通して冷却した。最後の5分間は、ミキサー内部に空気を流入させた。同条件でミキサーを作動させながら、パーム核油脂肪酸を1分間で加え、更に5分間作動させて中和反応を行った。中和反応中、ミキサーのジャケットに25℃水を通して冷却し、ミキサー内部に空気を流入させた。
【0033】
次に同条件でミキサーを作動させながら、非イオン界面活性剤、PEG13000、AA/MAコポリマーの40質量%水溶液を1分間で加え、更に2分間作動させて造粒を行った。続いてゼオライトを加え、更に2分間作動させて表面改質処理を行い、2000μmの篩を通過させ、表1に示すベース粒子を得た。得られたベース粒子の35℃における平衡相対湿度は42%、嵩密度820g/L、平均粒径414μmであった。
【0034】
次にベース粒子をリボンミキサーに移し、該粒子相互の相対的な位置を変化させながら、35℃、湿度70%の空気を送風して60分間水分増加処理を行った。
【0035】
更に水分増加処理を行ったベース粒子に酵素、香料を加え、混合して、最終組成の高嵩密度洗剤を得た。これを直ちに保存評価用容器に充填し封緘した。ここで、酵素は、セルラーゼK(特開昭63−264699号公報記載のもの)とリポラーゼ100T(ノボ社製)の3:1(質量比)混合物である。
【0036】
実施例2
表1に示す実施例2のベース粒子成分のうち、炭酸ナトリウム、亜硫酸ナトリウム、蛍光染料を、レディゲミキサーFKM−130D((株)マツボー製)を用いて攪拌羽根を周速3.4m/s、剪断機周速27m/sで1分間混合した。混合物の平均粒径は98μmであった。
【0037】
次に、同条件でミキサーを作動させながら、直鎖アルキル(炭素数12〜14)ベンゼンスルホン酸(含水率0.5%)と硫酸の混合物を4分間で加え、更に5分間作動させて中和反応を行った。中和反応中、ミキサーのジャケットに25℃の水を通して冷却した。最後の5分間は、ミキサー内部に空気を流入させた。
【0038】
次いで、同条件でミキサーを作動させながら、非イオン界面活性剤、ゼオライトの15質量%分を加え、2分間作動させて造粒を行った。次に、同条件でミキサーを作動させながら、ゼオライトを洗剤組成物の7質量%分を加え、PEG13000、AA/MAコポリマーの40質量%水溶液を1分間で加え、更に2分間作動させて造粒を行った。続いて残りのゼオライトを加え、更に2分間作動させて表面改質処理を行い、2000μmの篩を通過させ、表1に示すベース粒子を得た。得られたベース粒子の35℃における平衡相対湿度は42%、嵩密度800g/L、平均粒径349μmであった。
【0039】
次にベース粒子をリボンミキサーに移し、該粒子相互の相対的な位置を変化させながら、35℃、湿度70%の空気を送風して60分間水分増加処理を行った。
【0040】
更に水分増加処理を行ったベース粒子に酵素(実施例1と同じもの)、香料を加え、混合して、最終組成の高嵩密度洗剤を得た。これを直ちに保存評価用容器に充填し封緘した。
【0041】
【表1】

Figure 0004290380
【0042】
・LAS−Na:直鎖アルキル(炭素数12〜14)ベンゼンスルホン酸ナトリウム
・非イオン性界面活性剤:アルキル基の炭素数が12〜14でエチレンオキシド平均付加モル数が7であるポリオキシエチレンアルキルエーテル
・ゼオライト:4A型ゼオライト、平均粒径3μm(東ソー(株)製)
・STPP:トリポリリン酸ナトリウム
・PEG13000:ポリエチレングリコール、重量平均分子量13000
・AA/MAコポリマー:アクリル酸−マレイン酸コポリマー、ナトリウム塩(70モル%中和)、アクリル酸/マレイン酸=3/7(モル比)、重量平均分子量70000
・蛍光染料:チノパールCBS−XとチノパールAMS−GX(共にチバスペシャリティケミカルス社製)の1/1(質量比)混合物。
【0043】
実施例3
ベース粒子中の比率で、直鎖アルキルベンゼンスルホン酸カリウム(炭素数10〜14)12質量%、α−オレフィンスルホン酸カリウム(炭素数14〜18)12質量%、ポリオキシエチレンアルキルエーテル(アルキル基炭素数12〜14、エチレンオキシド平均付加モル数12)7質量%、ポリエチレングリコール(重量平均分子量8500)1質量%、ゼオライト20質量%、アクリル酸−マレイン酸コポリマー(表1と同じもの)0.5質量%、脂肪酸カリウム(パーム核油由来)5質量%、1号ケイ酸塩4質量%、炭酸カリウム8質量%、硫酸ナトリウム2質量%、亜硫酸ナトリウム1質量%、及び蛍光染料(表1と同じもの)0.2質量%となる水スラリー(固形分50質量%)を調製し、噴霧乾燥して噴霧乾燥組成物を得た。これに最終洗剤粒子基準の質量基準で、炭酸ナトリウム13質量%をリボンミキサーに投入して混合を行った。得られた混合物を前押し出し式2軸型押し出し造粒機(ペレッターダブル:不二パウダル(株)製)で直径が10mmの円柱状に押し出し成形して圧密化した。得られたペレット状物を、ゼオライト5質量%とともにフラッシュミル(不二パウダル(株)製)で粉砕造粒して表面被覆を行った。この造粒物から粗大物を取り除いた後、リボンミキサーに移し、ゼオライト6質量%を混合し、水分3.3質量%のベース粒子を得た。ゼオライトは表1と同じものである。得られたベース粒子の35℃における平衡相対湿度は45%、嵩密度820g/L、平均粒径390μmであった。
【0044】
次にベース粒子をリボンミキサーに移し、該粒子相互の相対的な位置を変化させながら、35℃、湿度80%の空気を送風して60分間水分増加処理を行った。処理後のベース粒子の水分は4%であった。
【0045】
更に水分増加処理を行ったベース粒子100質量部に対して、酵素(表1と同じもの)4質量部、香料0.4質量部を加え、混合して、最終組成の高嵩密度洗剤を得た。これを直ちに保存評価用容器に充填し封緘した。
【0046】
実施例4
ポリアクリル酸ナトリウム(平均分子量10000)8質量%、炭酸ナトリウム30質量%、硫酸ナトリウム20質量%、塩化ナトリウム5質量%、蛍光染料0.5質量%、ゼオライト36質量%、水0.5質量%のベース顆粒を、これら成分を含有する固形分濃度48質量%の水スラリーを、熱風温度250℃で噴霧乾燥することにより得た。
【0047】
次に、レディゲミキサー(松阪技研(株)製、容量20L、ジャケット付き)にベース顆粒100質量部投入し、主軸(150rpm)の攪拌下、非イオン界面活性剤18質量部、直鎖アルキル(炭素数10〜13)ベンゼンスルホン酸ナトリウム20質量部、脂肪酸(炭素数14〜18)ナトリウム5質量部、ポリエチレングリコール(重量平均分子量8500)3質量部、水4質量部の混合液を、3分間で投入し、その後5分間攪拌を行った。更に、このミキサーに結晶性シリケート15質量部とゼオライト15質量部を投入し、表面被覆を行いベース粒子を得た。得られたベース粒子の35℃における平衡相対湿度は30%、嵩密度820g/L、平均粒径280μmであった。
【0048】
次にベース粒子をリボンミキサーに移し、該粒子相互の相対的な位置を変化させながら、35℃、湿度60%の空気を送風して60分間水分増加処理を行った。処理後の水分は3%であった。
【0049】
更に水分増加処理を行ったベース粒子100質量部に対して酵素(表1と同じもの)1質量部、香料0.4質量部を加え、混合して、最終組成の高嵩密度洗剤を得た。これを直ちに保存評価用容器に充填し封緘した。
【0050】
なお、本実施例では、蛍光染料としてはチノパールCBS−X(チバガイギー社製)、ゼオライトとしては4A型ゼオライト(東ソー(株)製)、非イオン性界面活性剤は、アルキル基炭素数12〜16、エチレンオキシド平均付加モル数6.0のポリオキシエチレンアルキルエーテル、結晶性シリケートは粉末SKS−6(ヘキストトクヤマ(株)製)を用いた。
【0051】
<耐ケーキング性評価>
・保存評価用容器
透湿度(JIS Z 0208:1976による)35g/m2・24hrである9cm×15cm×13cm(高さ)のカートン容器に、上記実施例で得られた高嵩密度洗剤1.2kgを充填し封緘する。
【0052】
・保存条件
温度は30℃一定とし、(1)湿度40%で16時間保持、(2)16時間かけて湿度を80%に変更、(3)湿度80%で48時間保持、(4)16時間かけて湿度を40%に変更、というサイクルを繰り返し、180日間保存する。
【0053】
・評価方法
保存後、容器上面の封緘を剥がし、容器側面の4つの角を静かに切断する。次に容器側面の4つの面を外側に静かに倒し、内容物の状態を観察する。
評価基準 ○:内容物が山状に崩れ、固化物が殆ど認められない。
【0054】
△:内容物は山状に崩れるが、固化物が認められる。
【0055】
×:内容物全体が固化し、山状に崩れない。
【0056】
・評価結果
実施例1〜4は何れも評価基準○であった。なお、比較例として、実施例1〜4で行った水分増加処理を行わなかったものは、何れも評価基準△であった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a high bulk density detergent.
[0002]
[Prior art]
The powder detergent composition is strongly directed to increase the bulk density and reduce the amount of use for the convenience of consumers. In addition, as a reduction in environmental burden, there is a demand for compact products and light packaging materials, and high bulk density detergents have become the mainstream. When making powder detergents compact, inorganic salt such as salt cake with small cleaning effect, which is a bulking agent blended in large amounts in conventional low bulk density detergents, has been reduced, and the ratio of organic substances such as surfactants that are the main cleaning ingredients As a result, the caking property by moisture absorption was promoted, and the detergent particles increased in plasticity, resulting in caking problems during long-term storage. Surfactants blended in clothing detergents are compatible with various types of stains, and in order to obtain a synergistic effect with a plurality of surfactants, they are usually not a single type but a combination of several types of surfactants. It is generally used, and an anionic surfactant and a nonionic surfactant are often used in combination, and the nonionic surfactant having a detergency suitable for detergent for clothing is particularly Since it is liquid at room temperature, a caking problem may occur due to leaching of the liquid nonionic surfactant during long-term storage of the detergent.
[0003]
Japanese Patent Application Laid-Open No. 11-131100 discloses a high-density detergent for clothing excellent in caking resistance by blending polyoxyethylene higher fatty acid monoethanolamide and compacting or rolling granulation under specific temperature conditions. Is described. Japanese Patent Application Laid-Open No. 2001-172690 discloses a powder detergent that has good solubility, hardly solidifies during storage, and has good fluidity by mixing particles having two different characteristics. A method for producing the composition is described. However, these have not sufficiently solved caking caused by moisture absorption during storage.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a method capable of producing a high bulk density detergent having excellent fluidity and improved storage stability (particularly, resistance to caking).
[0005]
[Means for Solving the Problems]
In the present invention, base particles of a high bulk density detergent are changed to an atmosphere having a humidity exceeding the equilibrium relative humidity of the particles (hereinafter referred to as a humidity-conditioned atmosphere) for at least 30 minutes or more while changing the relative positions of the particles. The present invention relates to a method for producing a high bulk density detergent having an exposing step. Moreover, this invention relates to the high bulk density detergent obtained by this manufacturing method. Hereinafter, the base particles of the high bulk density detergent are precursor particles of the high bulk density detergent.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, by exposing the base particles to the humidity-controlled atmosphere under the above specific conditions, the amount of water near the surface of the base particles is relatively increased, the moisture absorption rate is lowered, and the particles are filled even if they are immediately filled. There is no pseudo-adhesion due to moisture absorption. On the other hand, when exposed to an atmosphere having a humidity lower than the equilibrium relative humidity at the humidity control atmosphere temperature of the base particles, the amount of moisture near the surface of the base particles is relatively decreased, and the moisture absorption rate is increased immediately. When filled, pseudo adhesion occurs due to moisture absorption between particles. Once filled, the relative positional relationship between the detergent particles hardly changes, and this pseudo-adhesion becomes caking by long-term storage. In the present invention, the moisture content is increased over at least 30 minutes while changing the relative positional relationship between the base particles. It is for raising. As a method for increasing the water content of the base particles, a method of adding water in a liquid state is conceivable, but the water content near the surface of the base particles becomes too high, and adhesion between the particles tends to occur. Absent.
[0007]
In the present invention, the time for exposing the base particles to the humidity-controlled atmosphere is 30 minutes or longer, preferably 30 to 300 minutes, more preferably 40 to 250 minutes, and particularly preferably 50 to 200 minutes. If the exposure time is 30 minutes or more, a uniform moisture distribution within the particles is achieved, the moisture content of the particle surface layer is appropriate, and adhesion between the particles can be suppressed. Moreover, if it is less than 300 minutes, the water | moisture content increase amount of particle | grains will become appropriate, and the load of an installation is also small.
[0008]
In the present invention, it is preferable to increase the amount of water in the base particles by 0.1% by mass or more by exposing the base particles to a humidity control atmosphere, more preferably 0.1 to 100% by mass, and 0.2 to 50%. % By mass is more preferable, and 0.5 to 30% by mass is particularly preferable. If the amount of water increase is 0.1% by mass or more, a sufficient caking suppression effect is obtained, and if it is 100% by mass or less, the water content of the particle surface layer becomes appropriate and adhesion between particles can be suppressed.
[0009]
In the present invention, the amount of water in the base particles refers to that measured by the JIS K 3362: 1998 heat loss method.
[0010]
In addition, the amount of water in the base particles before being exposed to the humidity-controlled atmosphere is preferably 10% by mass or less from the viewpoint of base particle strength, fluidity, and plasticity reduction of the base particles. More preferably, it is 6 mass% or less, More preferably, it is 4 mass% or less, Most preferably, it is 2 mass% or less. Further, it is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, still more preferably 0.4% by mass or more in terms of ease of surface modification treatment described later and suppression of powder formation due to particle collapse. 0.6 mass% or more is the most preferable.
[0011]
The equilibrium relative humidity of the base particles is preferably 15 to 50%, more preferably 20 to 45%, at 35 ° C. in terms of storage stability. In the present invention, the equilibrium relative humidity of the base particles is defined as follows.
[0012]
<Equilibrium relative humidity of base particles>
In a 2.4 liter moisture-proof container, 600 g of base particles and a polymer film humidity sensor (preferably a combination of Thermo Recorder Ondori RH TR-72S and TR-3110 temperature and humidity sensor manufactured by T & D) are sealed. This is maintained at a constant temperature and stored for 24 hours. Thereafter, the measured humidity value is read every 30 minutes, and the value at which the change has disappeared is taken as the equilibrium relative humidity at the set temperature.
[0013]
In the present invention, the difference between the equilibrium relative humidity of the base particles at the humidity control atmosphere temperature and the humidity of the humidity control atmosphere is preferably 0.5% or more, more preferably 1% or more, and more preferably 5% or more in terms of processing time. More preferred is 10% or more. Moreover, 50% or less is preferable at the point of adhesion prevention between particle | grains, 40% or less is more preferable, 30% or less is further more preferable, and 20% or less is especially preferable.
[0014]
The temperature at which the base particles are exposed to the humidity-controlled atmosphere is preferably 20 to 50 ° C., more preferably 25 to 45 ° C., and still more preferably 30 to 40 ° C. in terms of processing time and prevention of alteration.
[0015]
In this invention, it exposes to humidity control atmosphere, changing the relative positional relationship between base particles. It is preferable to expose the base particles to a humidity-controlled atmosphere while mixing them uniformly. For this purpose, there are powder conveying means such as vibrating conveyor, screw conveyor, pneumatic transportation, fluidized bed, rocking mixer, ribbon mixer, paddle mixer, V-type mixer, screw mixer, etc. Can be mentioned. In either case, it is desirable to change the relative positional relationship between the particles with a weak force that maintains the state of the base particles without granulation, and the amount of water can be increased uniformly between the base particles. Is preferred.
[0016]
When changing the relative positional relationship between the base particles, enzyme-containing particles, antifoaming agent particles, bleaching agent particles, bleaching activator particles, builder particles, etc. may be mixed with a washing auxiliary functional particle, or a fragrance. Etc. may be added.
[0017]
The bulk density of the high bulk density detergent produced through the above steps is preferably 600 g / L or more, more preferably 700 g / L or more, in terms of convenience and waste reduction, as measured by the method defined by JIS K 3362. Preferably, 800 g / L or more is more preferable. In terms of solubility, the bulk density is preferably 1600 g / L or less, more preferably 1300 g / L or less, and even more preferably 1000 g / L or less.
[0018]
The high bulk density detergent manufactured through the above steps is an average particle size determined from the mass fraction according to the size of the mesh after vibrating for 5 minutes using a standard sieve of JIS Z 8801 in terms of detergency and solubility. The diameter is preferably 150 to 700 μm, more preferably 150 to 600 μm, still more preferably 180 to 500 μm.
[0019]
The high bulk density detergent according to the present invention contains base particles and, if necessary, washing assisting functional particles such as enzyme-containing particles, antifoam particles, bleach particles, bleach activator particles, and builder particles.
[0020]
The base particles used in the present invention are obtained by a combination of a surfactant, a water-insoluble inorganic substance, a water-soluble polymer, a water-soluble salt, water and the like.
[0021]
Examples of the surfactant include one or a combination of an anionic surfactant, a nonionic surfactant, an amphoteric surfactant, and a cationic surfactant. An ionic surfactant and a nonionic surfactant. Of these, the main surfactant is preferably an anionic surfactant from the viewpoint of caking resistance. In the base particles, the surfactant is preferably 10 to 50% by mass, more preferably 15 to 45% by mass in terms of cleaning performance and solubility.
[0022]
Examples of the anionic surfactant include a sulfate ester salt of an alcohol having 10 to 18 carbon atoms, a sulfate ester salt of an alkoxylate of an alcohol having 8 to 20 carbon atoms, an alkylbenzene sulfonate, a paraffin sulfonate, and an α-olefin sulfone. Acid salts, α-sulfo fatty acid salts, α-sulfo fatty acid alkyl ester salts or fatty acid salts are preferred. In the present invention, a linear alkylbenzene sulfonate having an alkyl chain having 10 to 14 carbon atoms, more preferably 12 to 14 carbon atoms is preferable, and an alkali metal salt or an amine is preferable as the counter ion. Or potassium, monoethanolamine, and diethanolamine are preferable.
[0023]
Nonionic surfactants include polyoxyalkylene alkyl (carbon number 8-20) ether, alkyl polyglycoside, polyoxyalkylene alkyl (carbon number 8-20) phenyl ether, polyoxyalkylene sorbitan fatty acid (carbon number 8-8). 22) Ester, polyoxyalkylene glycol fatty acid (carbon number 8 to 22) ester, and polyoxyethylene polyoxypropylene block polymer are preferable. In particular, the nonionic surfactant is preferably a polyoxyalkylene alkyl ether obtained by adding 4 to 20 moles of an alkylene oxide such as ethylene oxide or propylene oxide to an alcohol having 10 to 18 carbon atoms. The nonionic surfactant preferably has an HLB value (calculated by the Griffin method) of 10.5 to 15.0, more preferably 11.0 to 14.5.
[0024]
As the water-insoluble inorganic substance, those having an average primary particle diameter of 0.1 to 20 μm are preferable. For example, crystalline or amorphous aminosilicate, silicon dioxide, hydrated silicate compound, perlite, bentonite, etc. Among these, crystalline or amorphous aluminosilicates, silicon dioxide, and hydrated silicate compounds are preferred. Among these, crystalline aluminosilicates are preferred in terms of sequestering ability and supporting ability of surfactants. Silicates are preferred. In the base particles, the water-insoluble inorganic substance is preferably 5 to 50% by mass, more preferably 10 to 40% by mass in terms of caking resistance and solubility.
[0025]
Examples of the water-soluble polymer include carboxylic acid polymers, carboxymethyl cellulose, soluble starch, saccharides, etc. Among them, molecular weight is 1,000 to 1,000 in terms of sequestering ability, dispersibility of solid dirt / particle dirt and ability to prevent recontamination. 100,000 carboxylic acid polymers are preferred. Particularly preferred are salts of acrylic acid-maleic acid copolymers and polyacrylates. Here, examples of the salt include sodium salt, potassium salt, and ammonium salt. In the base particles, the water-soluble polymer is preferably 0.05 to 20% by mass, more preferably 0.1 to 15% by mass, and still more preferably 0.3 to 10% by mass in terms of caking resistance and solubility.
[0026]
Examples of water-soluble salts include water-soluble inorganic salts such as carbonates, hydrogen carbonates, sulfates, hydrogen sulfates, hydrochlorides, and phosphates, alkali metal salts such as ammonium salts, and amine salts, and citrates. And low molecular weight water-soluble organic acid salts such as fumarate. By blending the water-soluble salts, the bubbles generated from the detergent particles are thermally expanded by the heat of hydration and the heat of dissolution generated by the reaction of the water-soluble salts and water, thereby promoting the disintegration of the particles. More preferable in terms. In the base particles, the water-soluble salts are preferably 10 to 50% by mass, and more preferably 20 to 40% by mass in terms of caking resistance and solubility.
[0027]
In addition to these components, the base particles of the present invention comprise builders known in the field of garment detergents, anti-staining agents (such as carboxymethyl cellulose), softeners, reducing agents (such as sulfites), and optical brighteners. , Foam suppressants (silicone, etc.), fragrances, enzymes (peptinase, amylase, lipase, etc.) and the like can be contained.
[0028]
The base particles of the present invention are preferably subjected to surface modification with a surface coating agent in terms of fluidity and non-caking property. Preferably, the present invention includes a step of surface-modifying the base particles with a water-insoluble inorganic substance having an average particle diameter of 1 to 30 μm. This surface modification may be performed either before, during, or after exposure of the base particles to a humidified atmosphere. The ratio of the surface coating agent is preferably 1 to 30% by mass in the base particles, more preferably 2 to 15% by mass, and still more preferably 5 to 10% by mass. Examples of the surface coating agent include aluminosilicates, calcium silicates, silicon dioxide, bentonite, talc, clay, amorphous silica derivatives, crystalline silicate compounds such as silicate compounds, metal soaps, powder surfactants, etc. Water-soluble polymers such as fine powders, carboxymethylcellulose, polyethylene glycol, sodium polyacrylate, polycarboxylic acid salts such as copolymers of acrylic acid and maleic acid or salts thereof; and fatty acids. Of these, water-insoluble inorganic substances are preferred, and crystalline aluminosilicates, amorphous aluminosilicates, and crystalline silicate compounds are particularly preferred.
[0029]
As a preferred method for producing the base particles of the present invention, an acidic liquid compound serving as a precursor of an anionic surfactant is obtained by reacting with a solid water-soluble alkali-inorganic substance in an amount more than necessary for its neutralization. The method of granulating the obtained neutralization product is mentioned. For example, a bulk density of 600 having a step of mixing and neutralizing an acid precursor of an anionic surfactant and a powder having an average particle diameter of 60 to 200 μm containing an alkali agent in an amount necessary for the neutralization thereof. A production method of a base particle group having ˜1200 g / L and an average particle size of 250 to 800 μm is mentioned.
[0030]
Another preferable production method of the base particles of the present invention includes a method of spray drying a slurry containing a water-insoluble inorganic substance and one or more water-soluble components selected from water-soluble polymers and water-soluble salts.
[0031]
【Example】
Example 1
Among the base particle components of Example 1 shown in Table 1, STPP, sodium carbonate, sodium sulfite, and fluorescent dye were mixed using a Redige mixer FKM-130D (manufactured by Matsubo Co., Ltd.) with a stirring blade at a peripheral speed of 3.4 m. / S, mixing at a shearing machine peripheral speed of 27 m / s for 1 minute. The average particle size of the mixture was 83 μm.
[0032]
Next, while operating the mixer under the same conditions, a mixture of linear alkyl (carbon number 12 to 14) benzenesulfonic acid (water content 0.5 mass%) and sulfuric acid was added over 4 minutes, and the operation was continued for another 5 minutes. A sum reaction was performed. During the neutralization reaction, 25 ° C. water was cooled through the jacket of the mixer. Air was allowed to flow into the mixer for the last 5 minutes. While operating the mixer under the same conditions, palm kernel oil fatty acid was added in 1 minute, and further operated for 5 minutes to carry out a neutralization reaction. During the neutralization reaction, 25 ° C. water was cooled through the jacket of the mixer, and air was introduced into the mixer.
[0033]
Next, while operating the mixer under the same conditions, a 40% by weight aqueous solution of a nonionic surfactant, PEG 13000, and AA / MA copolymer was added in 1 minute, and granulated by operating for an additional 2 minutes. Subsequently, zeolite was added, and the surface modification treatment was performed by further operating for 2 minutes, and the mixture was passed through a 2000 μm sieve to obtain base particles shown in Table 1. The obtained base particles had an equilibrium relative humidity at 35 ° C. of 42%, a bulk density of 820 g / L, and an average particle size of 414 μm.
[0034]
Next, the base particles were transferred to a ribbon mixer, and moisture was increased for 60 minutes by blowing air at 35 ° C. and a humidity of 70% while changing the relative positions of the particles.
[0035]
Furthermore, enzyme and a fragrance | flavor were added and mixed with the base particle which performed the water increase process, and the high bulk density detergent of the final composition was obtained. This was immediately filled into a storage evaluation container and sealed. Here, the enzyme is a 3: 1 (mass ratio) mixture of cellulase K (described in JP-A 63-264699) and lipolase 100T (manufactured by Novo).
[0036]
Example 2
Of the base particle components of Example 2 shown in Table 1, sodium carbonate, sodium sulfite, and fluorescent dye were mixed with a Redige mixer FKM-130D (manufactured by Matsubo Co., Ltd.), and the stirring blade was rotated at a peripheral speed of 3.4 m / s. For 1 minute at a shearing machine peripheral speed of 27 m / s. The average particle size of the mixture was 98 μm.
[0037]
Next, while operating the mixer under the same conditions, a mixture of linear alkyl (carbon number 12 to 14) benzenesulfonic acid (water content 0.5%) and sulfuric acid was added over 4 minutes, and the operation was continued for another 5 minutes. A sum reaction was performed. During the neutralization reaction, water at 25 ° C. was cooled through the mixer jacket. Air was allowed to flow into the mixer for the last 5 minutes.
[0038]
Next, 15% by mass of the nonionic surfactant and zeolite were added while operating the mixer under the same conditions, and granulation was performed by operating for 2 minutes. Next, while operating the mixer under the same conditions, add 7% by mass of zeolite to the detergent composition, add 40% by mass aqueous solution of PEG13000 and AA / MA copolymer in 1 minute, and operate for 2 minutes to granulate. Went. Subsequently, the remaining zeolite was added, and the surface modification treatment was performed by operating for another 2 minutes, and the mixture was passed through a 2000 μm sieve to obtain base particles shown in Table 1. The obtained base particles had an equilibrium relative humidity at 35 ° C. of 42%, a bulk density of 800 g / L, and an average particle size of 349 μm.
[0039]
Next, the base particles were transferred to a ribbon mixer, and moisture was increased for 60 minutes by blowing air at 35 ° C. and a humidity of 70% while changing the relative positions of the particles.
[0040]
Further, an enzyme (the same as in Example 1) and a fragrance were added to the base particles subjected to the moisture increase treatment and mixed to obtain a high bulk density detergent having the final composition. This was immediately filled into a storage evaluation container and sealed.
[0041]
[Table 1]
Figure 0004290380
[0042]
LAS-Na: straight-chain alkyl (carbon number 12-14) sodium benzenesulfonate nonionic surfactant: polyoxyethylene alkyl having an alkyl group with 12-14 carbon atoms and an average number of moles of ethylene oxide added of 7 Ether zeolite: Type 4A zeolite, average particle size 3 μm (manufactured by Tosoh Corporation)
STPP: sodium tripolyphosphate PEG 13000: polyethylene glycol, weight average molecular weight 13000
AA / MA copolymer: acrylic acid-maleic acid copolymer, sodium salt (70 mol% neutralized), acrylic acid / maleic acid = 3/7 (molar ratio), weight average molecular weight 70000
Fluorescent dye: 1/1 (mass ratio) mixture of Tinopearl CBS-X and Tinopearl AMS-GX (both manufactured by Ciba Specialty Chemicals).
[0043]
Example 3
The proportion in the base particles is 12% by mass of linear alkylbenzene sulfonate potassium (10 to 14 carbon atoms), 12% by mass of potassium α-olefin sulfonate (14 to 18 carbon atoms), polyoxyethylene alkyl ether (alkyl group carbon). Number 12-14, ethylene oxide average addition mole number 12) 7 mass%, polyethylene glycol (weight average molecular weight 8500) 1 mass%, zeolite 20 mass%, acrylic acid-maleic acid copolymer (the same as Table 1) 0.5 mass %, Fatty acid potassium (derived from palm kernel oil) 5%, No. 1 silicate 4%, potassium carbonate 8%, sodium sulfate 2%, sodium sulfite 1%, and fluorescent dye (same as Table 1) ) A water slurry (solid content 50% by mass) to be 0.2% by mass was prepared and spray-dried to obtain a spray-dried composition. This was mixed by adding 13% by mass of sodium carbonate into a ribbon mixer on the basis of the mass based on the final detergent particles. The obtained mixture was extruded into a columnar shape having a diameter of 10 mm with a pre-extrusion type twin-screw type extrusion granulator (Peletter Double: manufactured by Fuji Powder Co., Ltd.) to be consolidated. The obtained pellets were pulverized and granulated together with 5% by mass of zeolite with a flash mill (Fuji Powder Co., Ltd.) for surface coating. After removing coarse particles from this granulated product, it was transferred to a ribbon mixer and mixed with 6% by mass of zeolite to obtain base particles having a moisture content of 3.3% by mass. The zeolite is the same as in Table 1. The obtained base particles had an equilibrium relative humidity at 35 ° C. of 45%, a bulk density of 820 g / L, and an average particle size of 390 μm.
[0044]
Next, the base particles were transferred to a ribbon mixer, and moisture was increased for 60 minutes by blowing air at 35 ° C. and a humidity of 80% while changing the relative positions of the particles. The water content of the base particles after the treatment was 4%.
[0045]
Furthermore, 4 parts by mass of enzyme (same as in Table 1) and 0.4 part by mass of perfume are added to 100 parts by mass of the base particles subjected to the moisture increase treatment, and mixed to obtain a high bulk density detergent having the final composition. It was. This was immediately filled into a storage evaluation container and sealed.
[0046]
Example 4
Sodium polyacrylate (average molecular weight 10,000) 8% by mass, sodium carbonate 30% by mass, sodium sulfate 20% by mass, sodium chloride 5% by mass, fluorescent dye 0.5% by mass, zeolite 36% by mass, water 0.5% by mass The base granule was obtained by spray drying an aqueous slurry containing these components and having a solid concentration of 48% by mass at a hot air temperature of 250 ° C.
[0047]
Next, 100 parts by mass of the base granule was put into a Redige mixer (manufactured by Matsusaka Giken Co., Ltd., capacity 20 L, with jacket), and 18 parts by mass of nonionic surfactant, linear alkyl (with a main shaft (150 rpm)) was stirred. A mixed solution of 10 parts by mass of sodium benzenesulfonate 20 parts by mass of sodium benzenesulfonate, 5 parts by mass of sodium fatty acid (14-18 carbon atoms), 3 parts by mass of polyethylene glycol (weight average molecular weight 8500) and 4 parts by mass of water for 3 minutes. And then stirred for 5 minutes. Furthermore, 15 parts by mass of crystalline silicate and 15 parts by mass of zeolite were put into this mixer, and surface coating was performed to obtain base particles. The obtained base particles had an equilibrium relative humidity at 35 ° C. of 30%, a bulk density of 820 g / L, and an average particle size of 280 μm.
[0048]
Next, the base particles were transferred to a ribbon mixer, and while the relative positions of the particles were changed, the moisture was increased for 60 minutes by blowing air at 35 ° C. and a humidity of 60%. The water content after the treatment was 3%.
[0049]
Furthermore, 1 part by mass of enzyme (same as in Table 1) and 0.4 part by mass of perfume were added to 100 parts by mass of base particles subjected to moisture increase treatment, and mixed to obtain a high bulk density detergent of the final composition. . This was immediately filled into a storage evaluation container and sealed.
[0050]
In this example, Tinopearl CBS-X (manufactured by Ciba Geigy) is used as the fluorescent dye, 4A-type zeolite (manufactured by Tosoh Corporation) is used as the zeolite, and the nonionic surfactant is an alkyl group having 12 to 16 carbon atoms. As the polyoxyethylene alkyl ether having an average addition mole number of ethylene oxide of 6.0 and crystalline silicate, powder SKS-6 (manufactured by Hoechst Tokuyama Co., Ltd.) was used.
[0051]
<Caking resistance evaluation>
Container for storage evaluation Water vapor permeability (according to JIS Z 0208: 1976) 35 g / m 2 · 24 hr In a carton container of 9 cm × 15 cm × 13 cm (height), the high bulk density detergent 1. Fill with 2kg and seal.
[0052]
Storage temperature is constant at 30 ° C. (1) Hold for 16 hours at 40% humidity, (2) Change humidity to 80% over 16 hours, (3) Hold for 48 hours at 80% humidity, (4) 16 The cycle of changing the humidity to 40% over time is repeated and stored for 180 days.
[0053]
-Evaluation method After storage, peel off the seal on the top of the container and gently cut the four corners on the side of the container. Next, gently tilt the four sides of the container outward and observe the contents.
Evaluation criteria ○: The content collapses in a mountain shape, and almost no solidified product is observed.
[0054]
(Triangle | delta): Although the content collapses into a mountain shape, the solidified material is recognized.
[0055]
X: The whole content solidifies and does not collapse into a mountain shape.
[0056]
-Evaluation result Examples 1-4 were all evaluation criteria (circle). In addition, as a comparative example, the thing which did not perform the water | moisture-content increase process performed in Examples 1-4 was all evaluation criteria (triangle | delta).

Claims (7)

高嵩密度洗剤の水分量0.1〜4質量%のベース粒子を、該粒子相互の相対的な位置を変化させながら、前記粒子の平衡相対湿度を超える湿度の雰囲気に少なくとも30分以上曝露する工程を有する高嵩密度洗剤の製造方法であって、
前記ベース粒子を前記雰囲気に曝露する工程により、前記ベース粒子中の水分量を0.1〜100質量%以上増加させる、高嵩密度洗剤の製造方法。
The base particles having a moisture content of 0.1 to 4% by mass of the high bulk density detergent are exposed to an atmosphere having a humidity exceeding the equilibrium relative humidity of the particles for at least 30 minutes while changing the relative position of the particles. A method for producing a high bulk density detergent having a step ,
A method for producing a high bulk density detergent, wherein the amount of water in the base particles is increased by 0.1 to 100% by mass or more by exposing the base particles to the atmosphere.
前記ベース粒子の平衡相対湿度と、前記雰囲気の湿度の差が0.5〜50%である請求項1記載の高嵩密度洗剤の製造方法。  The method for producing a high bulk density detergent according to claim 1, wherein the difference between the equilibrium relative humidity of the base particles and the humidity of the atmosphere is 0.5 to 50%. 前記ベース粒子が、水不溶性無機物並びに、水溶性ポリマー及び水溶性塩類から選ばれる一種以上の水溶性成分を含有するスラリーを噴霧乾燥することによって得られたものである請求項1又は2何れか記載の高嵩密度洗剤の製造方法。  The said base particle is obtained by spray-drying the slurry containing 1 or more types of water-soluble components chosen from a water-insoluble inorganic substance and a water-soluble polymer and water-soluble salt. Manufacturing method of high bulk density detergent. 前記ベース粒子が、陰イオン界面活性剤の前駆体となる酸性液体化合物を、その中和に必要な量以上の固体水溶性アルカリ無機物質と反応させることにより得られた中和生成物を造粒して得られたものである請求項1又は2何れか記載の高嵩密度洗剤の製造方法。  The base particles are granulated neutralized products obtained by reacting an acidic liquid compound, which is a precursor of an anionic surfactant, with a solid water-soluble alkaline inorganic substance in an amount more than necessary for neutralization. The method for producing a high bulk density detergent according to any one of claims 1 and 2. 前記ベース粒子を、平均粒径1〜30μmの水不溶性無機物1〜30質量%(ベース粒子中の比率)で表面改質する工程を有する請求項1〜4何れか記載の高嵩密度洗剤の製造方法。  The production of a high bulk density detergent according to any one of claims 1 to 4, further comprising a step of surface-modifying the base particles with a water-insoluble inorganic substance having an average particle diameter of 1 to 30 µm in an amount of 1 to 30% by mass (ratio in the base particles). Method. 前記ベース粒子を曝露する前記雰囲気の温度が20〜50℃である請求項1〜5何れか記載の高嵩密度洗剤の製造方法。  The method for producing a high bulk density detergent according to any one of claims 1 to 5, wherein the temperature of the atmosphere to which the base particles are exposed is 20 to 50 ° C. 請求項1〜何れか記載の高嵩密度洗剤の製造方法によって得られた高嵩密度洗剤。The high bulk density detergent obtained by the manufacturing method of the high bulk density detergent in any one of Claims 1-6 .
JP2002109256A 2002-04-11 2002-04-11 Method for producing high bulk density detergent Expired - Fee Related JP4290380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002109256A JP4290380B2 (en) 2002-04-11 2002-04-11 Method for producing high bulk density detergent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002109256A JP4290380B2 (en) 2002-04-11 2002-04-11 Method for producing high bulk density detergent

Publications (2)

Publication Number Publication Date
JP2003301199A JP2003301199A (en) 2003-10-21
JP4290380B2 true JP4290380B2 (en) 2009-07-01

Family

ID=29392770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002109256A Expired - Fee Related JP4290380B2 (en) 2002-04-11 2002-04-11 Method for producing high bulk density detergent

Country Status (1)

Country Link
JP (1) JP4290380B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5122439B2 (en) * 2006-03-17 2013-01-16 ライオン株式会社 Method for producing anionic surfactant powder and anionic surfactant powder
JP5192156B2 (en) * 2007-01-24 2013-05-08 花王株式会社 Method for producing detergent composition

Also Published As

Publication number Publication date
JP2003301199A (en) 2003-10-21

Similar Documents

Publication Publication Date Title
RU2143998C1 (en) Sodium silicates as structure-forming agent, compound and washing agents or detergents comprising them
US5714451A (en) Powder detergent composition and method of making
KR100416832B1 (en) Method for preparing an amorphous alkali silicate with impregnation
JPH10504349A (en) Preparation of washed or cleaned tablets
SK108493A3 (en) Method of production of concentrated pelletized detergent mixture
CZ284628B6 (en) Loose detergent and process for preparing thereof
EP1317521B1 (en) Method of making detergent compositions comprising alpha-sulfofatty acid esters
WO1994002573A1 (en) Process and compositions for compact detergents
CZ290617B6 (en) Process for the preparation of a granular detergent composition containing zeolite, zeolite MAP, and use thereof
JP3142958B2 (en) Tablet type detergent composition
SK96297A3 (en) Amorphous alkaline silicate compounds, manufacturing process thereof and washing or cleaning agent containing the same
EP0888425B1 (en) Process for making a free-flowing agglomerated surfactant detergent composition
JP2002266000A (en) High bulk density detergent composition and its manufacturing method
ES2224220T3 (en) PROCEDURE TO PREPARE DETERGENT COMPOSITIONS OF HIGH DENSITY APPEARANCE.
JP3371977B2 (en) Tablet detergent manufacturing method
JP3841431B2 (en) Spray-dried detergent or its components
JP4290380B2 (en) Method for producing high bulk density detergent
EP0837123B1 (en) Halogen bleach-containing detergent composition having improved stability, and method of making it
US6177397B1 (en) Free-flowing agglomerated nonionic surfactant detergent composition and process for making same
JP4170079B2 (en) Powder cleaning composition
JP4854922B2 (en) Powder cleaning composition
EP1085080B1 (en) Surfactant composition
JP4889870B2 (en) Powder detergent composition for clothing
KR100334733B1 (en) method for producing high-density powder detergent
EA003404B1 (en) Process for preparing granular detergent compositions

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081114

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees