JP4289779B2 - Semiconductor mounting method and semiconductor mounting apparatus - Google Patents

Semiconductor mounting method and semiconductor mounting apparatus Download PDF

Info

Publication number
JP4289779B2
JP4289779B2 JP2000338415A JP2000338415A JP4289779B2 JP 4289779 B2 JP4289779 B2 JP 4289779B2 JP 2000338415 A JP2000338415 A JP 2000338415A JP 2000338415 A JP2000338415 A JP 2000338415A JP 4289779 B2 JP4289779 B2 JP 4289779B2
Authority
JP
Japan
Prior art keywords
electrode
electrodes
printed circuit
semiconductor element
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000338415A
Other languages
Japanese (ja)
Other versions
JP2002141373A (en
Inventor
道朗 吉野
能彦 八木
浩二郎 中村
博之 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000338415A priority Critical patent/JP4289779B2/en
Publication of JP2002141373A publication Critical patent/JP2002141373A/en
Application granted granted Critical
Publication of JP4289779B2 publication Critical patent/JP4289779B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/118Post-treatment of the bump connector
    • H01L2224/1182Applying permanent coating, e.g. in-situ coating
    • H01L2224/11822Applying permanent coating, e.g. in-situ coating by dipping, e.g. in a solder bath
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75251Means for applying energy, e.g. heating means in the lower part of the bonding apparatus, e.g. in the apparatus chuck
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75252Means for applying energy, e.g. heating means in the upper part of the bonding apparatus, e.g. in the bonding head

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Wire Bonding (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子とプリント回路基板を電気的に接合する半導体実装方法および装置に関するものである。
【0002】
【従来の技術】
近年、電子機器の小型化、軽量化の要求に伴い、搭載される電子部品にも小型化が要求されるようになってきた。これを実現する手段として、従来のリード付き電子部品に変わりリードのない表面実装型の電子部品が採用されるようになった。また、さらに電子部品の占有面積を縮小するためにICパッケージにかわり半導体素子を直接プリント回路基板上に搭載する半導体実装の分野の進展が著しい。
【0003】
半導体実装においては電極部が形成された面を上にして基板に搭載し、半導体素子上の電極とプリント回路基板を金線やアルミ線で接続するワイヤボンディング方式と、電極面を下側にして搭載するフリップチップ実装方式がある。
【0004】
後者のフリップチップ実装工法は、図6(a)に示すように、半導体素子1に設けられた電極2と、プリント回路基板5に設けられた電極6との電気的接合を得るために、半導体素子1の表面に形成された電極2上に接合用の突起電極(以下スタッドバンプと呼ぶ)3を形成する。そして、タッドバンプ形成後、図6(b)に示すように、半導体素子1のスタッドバンプ3の形成面を下側にして下降させ、転写台8に設けられた導電性接着剤4の膜にスタッドバンプ3の中央突起部が浸漬するように接触させる。次いで半導体素子1を引き上げると、表面張力により導電性接着剤4がスタッドバンプ3に転写される。
【0005】
次に、図6(c)に示すように、常温下で半導体素子1をプリント回路基板5の所定の位置に正確に位置決めして、スタッドバンプ3がプリント基板5の電極6に当接するように配置し、プリント回路基板5全体を適切な温度で加熱して導電性接着剤4を硬化させる。硬化させた後、プリント回路基板5全体を常温に冷却する。
【0006】
次に再び、プリント回路基板5全体を適切な温度に加熱し、エポキシ等の熱硬化性樹脂からなる封止樹脂7を半導体素子1とプリント回路基板5の間に注入する。注入した後、プリント回路基板5全体を適切な温度に加熱し、封止樹脂7を硬化させる。これにより、フリップチップ実装工法が完了する。
【0007】
【発明が解決しようとする課題】
しかしながら、上記従来方法では、半導体素子の電極とプリント回路基板の電極との接合部における導電性接着剤の硬化と、注入された封止樹脂7の硬化のために、2度の熱履歴が加わってしまう。それに加えて、導電性接着剤の接着強度は非常に小さい。
【0008】
このため、2度の硬化工程で半導体素子とプリント回路基板との接合部への熱付加による熱ストレスが生じ、接合部の導電性接着剤にクラックが発生して、電気的接合が損なわれることがあった。
【0009】
また、2度の硬化工程に要する時間が約1.5〜6時間と長いため、品質のフィードバックが遅いということも問題となっている。
そこで本発明は、上記の問題を解決できる半導体実装方法および半導体実装装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記課題を解決するために本発明は、半導体素子をプリント回路基板に配置してそれぞれの電極同士を電気的に接続するに際して、半導体素子の電極に形成された突起電極にのみ電極接合用の絶縁性の熱硬化性樹脂を転写供給し、プリント回路基板の所定の位置に設置して前記熱硬化性樹脂を加熱して硬化させ電極同士を接合するものである。
【0011】
本発明によれば、工程中の温度付加工程を最小限にできて接合部への熱ストレスを抑制し、かつリードタイムを短縮することができて、高品質な半導体実装を実現することができる。
【0012】
【発明の実施の形態】
本発明に係る請求項1記載の半導体実装方法は、半導体素子をプリント回路基板に配置してそれぞれの電極同士を電気的に接続するに際して、半導体素子の電極に形成された突起電極にのみ電極接合用の絶縁性の熱硬化性樹脂を転写供給し、プリント回路基板の所定の位置に設置し前記熱硬化性樹脂を加熱して硬化させ極同士を接合するものである。上記方法によれば、導電性接着剤を用いず、熱硬化性樹脂を直接突起電極へ転写供給することで、温度付加工程を、熱硬化性樹脂の硬化に要する短時間とすることができて、接合部への熱ストレス(内部応力)を抑制し、接合部の導電性を低下させることなく実装工程を簡素化でき、リードタイムを短縮することが可能となるので、信頼性の高い高品質な半導体実装を実現することができる。
【0013】
請求項2記載の半導体実装方法は、請求項1の方法において、半導体素子をプリント回路基板に配置した時に、電極の接合部を所定温度に加熱するとともに、所定荷重を付加して電極同士を圧接するものである。上記方法によれば、請求項1の作用効果に加えて、適切な温度と荷重の付加により接合を完了するため、熱硬化性樹脂の硬化反応を短時間で行えると共に、適正な加圧力でスタッドバンプと電極とを圧接接合するので、接合部における熱ストレスを抑制できて、接合部の導電性を安定して確保することができ、信頼性の高い半導体実装を実現することができる。
【0014】
請求項3記載の半導体実装方法は、請求項2の方法において、接合部に超音波エネルギーを付加して電極同士を拡散接合するものである。上記方法によれば、請求項2の作用効果に加えて、超音波エネルギーを付加し、接合部の電極を溶融しない程度に加熱して塑性変形を生じない程度に加圧することにより、接合面に生じる原子の拡散を利用して電極同士をより強固に安定した拡散接合することができる。したがって、接合部への熱ストレスを抑制して、さらに安定した高品質な半導体実装を実現することができる。
【0015】
請求項4記載の半導体実装装置は、半導体素子をプリント回路基板に設置してそれぞれの電極同士を電気的に接続する半導体実装装置において、半導体素子を保持して転写台に接近させ電極に形成された突起電極にのみ電極接合用の絶縁性の熱硬化性樹脂を転写供給するとともに、この半導体素子をプリント回路基板上の所定位置にに配置して電極同士を圧接し接合する作業装置を設け、前記作業装置に、熱硬化性樹脂を硬化させる加熱手段を設けたものである。上記構成によれば、熱硬化性樹脂供給用の転写台および熱硬化性樹脂を硬化させる加熱手段を有する作業装置により、半導体素子の電極上に形成された突起電極への熱硬化性樹脂の供給、半導体素子のプリント回路基板への設置、熱硬化性樹脂の硬化が1台の装置で可能となり、実装工程を簡素化し、リードタイムを短縮することが可能となり、高品質な半導体実装を実現することができる。
【0016】
請求項5記載の半導体実装装置は、請求項4記載の構成に加えて、電極の接合部に超音波エネルギーを付加して電極同士を拡散接合する超音波照射手段を設けたものである。上記構成によれば、超音波照射手段により超音波エネルギーを接合部に付加し、接合部の電極が溶融しない程度に加熱して塑性変形を生じない程度に加圧することで、接合面に生じる原子の拡散を利用してより強固に安定して電極同士を拡散接合することができる。したがって、接合部への熱ストレスを抑制して、さらに安定した高品質な半導体実装を実現することができる。
【0017】
以下、本発明の実施の形態を図に基づいて説明する。なお、従来例と同一部材には同一符号を付して説明は省略する。
(実施の形態1)
図1および図2は本発明に係る半導体実装方法および装置の第1の実施の形態を示すものである。
【0018】
この実装装置は、図2に示すように、樹脂供給部22と実装部23とに共通する作業装置(作業ツールともいう)21を具備し、この作業装置21により、図1(a),(b)に示すように、樹脂供給部22では、半導体素子1の電極2に形成されたスタッドバンプ3に電極接合用の熱硬化性樹脂7を転写供給し、実装部23では、プリント回路基板5の所定の位置に半導体素子1を正確に位置決めして配置し(以下実装という)、半導体素子1の電極3とプリント回路基板5の電極6とを接合するものである。
【0019】
前記作業装置21は、樹脂供給部22と実装部23との間でガイド装置24を介して移動自在に設けられており、内蔵された昇降駆動装置により昇降自在な昇降ツール25を具備している。この昇降ツール25には、加熱手段である第1加熱装置26が内蔵されるとともに、下面に保持具(図示せず)を介して半導体素子1を保持する保持プレート27が設けられて所定の圧力で加圧することができる。
【0020】
前記樹脂供給部22には、転写台9に熱硬化性樹脂7が保持されている。また実装部23には、プリント回路基板5を支持する支持テーブル28が配置され、第2の加熱手段である第2加熱装置29が内蔵されている。
【0021】
上記構成の実装装置による実装方法を図1を参照して説明する。
樹脂供給部21では、昇降ツール25に保持プレート27を介して半導体素子1が接合する電極2が下面となるように保持される。そして、昇降ツール25が下降されて、半導体素子1の電極2上に形成されたスタッドバンプ3に熱硬化性樹脂7が転写供給される。そして、作業装置21が実装部23に移動され、支持テーブル28上に保持されたプリント回路基板5に対応して、半導体素子1が接合位置に正確に位置決めされる。次いで昇降ツール25が下降されてスタッドバンプ3がプリント回路基板5の電極6に所定の加圧力で圧接され、熱硬化性樹脂7が硬化されて実装が完了する。
【0022】
この接合に際して、第1加熱装置26と第2加熱装置29により、接合部となる両電極2,6および熱硬化性樹脂7が所定の温度範囲180℃〜250℃に加熱される。これにより、熱硬化性樹脂7を短時間(たとえば10秒以内)で硬化させて接合されるので、また半導体素子1やプリント回路基板5に内部応力が発生することがない。ここで接合部の加熱温度を180℃〜250℃の範囲としたのは、180℃未満では、熱硬化性樹脂7の硬化反応が遅く、硬化に長時間を要するためであり、また250℃を越えると半導体素子1に内部応力が発生して接合部の電気抵抗値が増大する恐れがあるからである。
【0023】
また昇降駆動装置により、昇降ツール25を介して接合部には、196〜784N(20〜80kgf)の加圧力(荷重)が付与される。これにより、これらの接合部でスタッドバンプ3と電極6との接触する面積が安定して確保されるので、接合部の電気抵抗値のバラツキが抑制されて安定した接合ができる。ここで、接合時に付加される加圧力を1個のスタッドバンプ当たり196〜784Nの範囲としたのは、196N未満では、電極2(3),6間の接触面積が不足して電気抵抗が高くなったり、接触面積にバラツキが生じて電気抵抗値が変化し、接合部の品質が安定しないからであり、また784Nを越えると、プリント回路基板5と半導体素子1のギャップが狭くなって信頼性が低下するからである。
【0024】
上記実施の形態1によれば、導電性接着剤を用いず、熱硬化性樹脂7を直接スタッドバンプ3へ転写供給することで、熱硬化性樹脂による硬化接合に要する時間を極めて短縮することができて、半導体素子1やプリント回路基板5の熱ストレス(内部応力)の発生を防止することができる。また接合部における導電性が低下することなく、電極2,6を安定して接続することができる。これにより、実装工程を簡素化できるとともに、リードタイムを数秒(たとえば10秒以内)に短縮することが可能となり、信頼性の高い高品質な半導体実装を実現することができる。
【0025】
また適切な温度と加圧力の付加により接合を行うため、熱硬化性樹脂の硬化を短時間で行え、かつ接合部に熱ストレスが発生するのを防止することができる。また接合部の電気抵抗値を適正にかつ安定して確保することができて、信頼性の高い半導体実装を実現することができる。
【0026】
さらに上記実装装置によれば、熱硬化性樹脂供給用の転写台および熱硬化性樹脂を硬化させる第1,第2加熱装置26,29を有する作業装置21を設けたことで、樹脂供給部22における半導体素子1の電極2上に形成されたスタッドバンプ3への熱硬化性樹脂7の供給、実装部23における半導体素子1のプリント回路基板5への設置、熱硬化性樹脂7の硬化が1台の装置で可能となり、実装工程を簡素化し、リードタイムを短縮することが可能となり、高品質な半導体実装を実現することができる。
【0027】
(実施の形態2)
実施の形態2は、図3に示すように、実装時に熱硬化性樹脂7が半導体素子1の回路形成面およびプリント回路基板5の電極6周囲の回路形成面に広がるように、熱硬化性樹脂7の転写量を多くし、さらに荷重を制御することで、接合部の強度を大きく確保したものである。実施の形態2によれば、熱硬化性樹脂7の転写量を多くすることで、より高品質な半導体実装を実現することができる。
【0028】
(実施の形態3)
実施の形態3は、図4に示すように、熱硬化性樹脂7を硬化して接合後、半導体素子1とプリント回路基板5の間にエポキシ樹脂等の補強剤11を注入するもものである。この実施の形態3によれば、接合部の強度をより大きくして、さらに高品質な半導体実装を実現することができる。もちろん、補強剤11のための加熱、硬化時間も必要となるが、熱履歴や硬化工程に要する時間も、従来に比較して半減させることができる。
(実施の形態4)
この実施の形態4は、先の実施の形態1に加えて、昇降ツール25に超音波照射手段である超音波発振装置12を設けて、実装時に接合部に超音波を所定範囲の照射量だけ供給するように構成したものである。この超音波発振装置12から接合部に供給される超音波エネルギーは、スタッドバンプ1個当たり50〜200mWの範囲に設定され、超音波エネルギーにより接合部の電極3(2),6を溶融しない程度に加熱するとともに、昇降駆動装置により昇降ツール25を介して塑性変形を生じない程度にスタッドバンプ3を加圧することで、接合面に生じる原子の拡散を利用してより強固に安定して電極3,6同士を拡散接合することができる。
【0029】
ここで超音波エネルギーの照射範囲を、スタッドバンプ1個当たり50〜200mWとしたのは、50mW未満では拡散接合が不可能であり、また200mWを越えると、プリント回路基板5や熱硬化性樹脂7にクラックが発生して破損しやすくなるためである。
【0030】
上記実施の形態4によれば、超音波発振装置12から接合部に向かって超音波エネルギーを、接合部の電極3,6が溶融しない程度に供給加熱するとともに、塑性変形を生じない程度に加圧することにより、半導体素子1の電極2のスタッドバンプ3とプリント回路基板5の電極6の接合面に生じる原子の拡散を利用して電極同士を拡散接合することができ、より強固に安定して接合することができる。したがって、接合部への熱ストレスをより効果的に抑制すると共に、リードタイムを短縮して、さらに安定した高品質な半導体実装を実現することができる。
【0031】
なお、上記実施の形態1で示した実装装置は、作業装置21を樹脂供給部22と実装部23との間で移動するように構成したが、作業装置21を固定しておき、樹脂供給部22の転写台9と実装部23の支持テーブル28とを作業装置21の対応位置に往復移動する形式のものでもよい。
【0032】
【発明の効果】
以上のように請求項1記載の半導体実装方法によれば、導電性接着剤を用いず、熱硬化性樹脂を直接突起電極へ転写供給することで、温度付加工程を、熱硬化性樹脂の硬化に要する短時間とすることができて、接合部への熱ストレス(内部応力)を抑制し、接合部の導電性を低下させることなく実装工程を簡素化でき、リードタイムを短縮することが可能となるので、信頼性の高い高品質な半導体実装を実現することができる。
【0033】
請求項2記載の半導体実装方法によれば、請求項1の作用効果に加えて、適切な温度と荷重の付加により接合を完了するため、熱硬化性樹脂の硬化反応を短時間で行えると共に、適正な加圧力でスタッドバンプと電極とを圧接接合するので、接合部における熱ストレスを抑制できて、接合部の導電性を安定して確保することができ、信頼性の高い半導体実装を実現することができる。
【0034】
請求項3記載の半導体実装方法によれば、請求項2の作用効果に加えて、超音波エネルギーを付加し、接合部の電極を溶融しない程度に加熱して塑性変形を生じない程度に加圧することにより、接合面に生じる原子の拡散を利用して電極同士をより強固に安定した拡散接合することができる。したがって、接合部への熱ストレスを抑制して、さらに安定した高品質な半導体実装を実現することができる。
【0035】
請求項4記載の半導体実装装置によれば、熱硬化性樹脂供給用の転写台および熱硬化性樹脂を硬化させる加熱手段を有する作業装置により、半導体素子の電極上に形成された突起電極への熱硬化性樹脂の供給、半導体素子のプリント回路基板への設置、熱硬化性樹脂の硬化が1台の装置で可能となり、実装工程を簡素化し、リードタイムを短縮することが可能となり、高品質な半導体実装を実現することができる。
【0036】
請求項5記載の半導体実装装置によれば、超音波供給手段により超音波エネルギーを接合部に付加し、接合部の電極が溶融しない程度に加熱して塑性変形を生じない程度に加圧することで、接合面に生じる原子の拡散を利用してより強固に安定して電極同士を拡散接合することができる。したがって、接合部への熱ストレスを抑制して、さらに安定した高品質な半導体実装を実現することができる。
【図面の簡単な説明】
【図1】本発明に係る半導体実装装置による実装方法の実施の形態1を示し、(a)は樹脂供給作業の説明図、(b)は実装作業を示す説明図である。
【図2】同半導体実装装置を示す構成図である。
【図3】本発明に係る実装方法の実施の形態2を示す実装作業の説明図である。
【図4】本発明に係る実装方法の実施の形態3を示す実装作業の説明図である。
【図5】本発明に係る実装方法および装置の実施の形態4を示す実装作業の説明図である。
【図6】従来の実装方法を示し、(a)は半導体素子の側面図、(b)は樹脂供給作業を示す説明図、(c)は実装作業を示す説明図、(d)は補強作業を示す説明図である。
【符号の説明】
1 半導体素子
2 電極
3 スタッドバンプ
5 プリント回路基板
6 電極
7 熱硬化性樹脂
9 熱硬化性樹脂の転写台
11 補強剤
21 作業装置
22 樹脂供給部
23 実装部
25 昇降ツール
26 第1加熱装置
27 保持プレート
28 支持テーブル
29 第2加熱装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor mounting method and apparatus for electrically joining a semiconductor element and a printed circuit board.
[0002]
[Prior art]
In recent years, along with demands for downsizing and weight reduction of electronic devices, downsizing of electronic components to be mounted has been demanded. As means for realizing this, surface-mounted electronic components without leads have been adopted instead of conventional electronic components with leads. Further, in order to further reduce the area occupied by electronic components, the progress of the semiconductor mounting field in which a semiconductor element is directly mounted on a printed circuit board instead of an IC package is remarkable.
[0003]
In semiconductor mounting, the surface on which the electrode part is formed is mounted on the substrate, the wire bonding method in which the electrode on the semiconductor element and the printed circuit board are connected with gold wire or aluminum wire, and the electrode surface is on the lower side There is a flip chip mounting method to be mounted.
[0004]
As shown in FIG. 6A, the latter flip-chip mounting method uses a semiconductor to obtain an electrical connection between the electrode 2 provided on the semiconductor element 1 and the electrode 6 provided on the printed circuit board 5. A protruding electrode (hereinafter referred to as a stud bump) 3 for bonding is formed on the electrode 2 formed on the surface of the element 1. After scan Taddobanpu formed, as shown in FIG. 6 (b), the forming surface of the stud bumps 3 of the semiconductor device 1 is lowered to the lower, the conductive film of the adhesive 4 provided on the transfer platform 8 Contact is made so that the central protrusion of the stud bump 3 is immersed. Next, when the semiconductor element 1 is pulled up, the conductive adhesive 4 is transferred to the stud bump 3 by surface tension.
[0005]
Next, as shown in FIG. 6C, the semiconductor element 1 is accurately positioned at a predetermined position on the printed circuit board 5 at room temperature so that the stud bump 3 comes into contact with the electrode 6 of the printed board 5. Then, the entire printed circuit board 5 is heated at an appropriate temperature to cure the conductive adhesive 4. After curing, the entire printed circuit board 5 is cooled to room temperature.
[0006]
Next, the entire printed circuit board 5 is again heated to an appropriate temperature, and a sealing resin 7 made of a thermosetting resin such as epoxy is injected between the semiconductor element 1 and the printed circuit board 5. After the injection, the entire printed circuit board 5 is heated to an appropriate temperature to cure the sealing resin 7. Thereby, the flip chip mounting method is completed.
[0007]
[Problems to be solved by the invention]
However, in the above conventional method, two thermal histories are added to cure the conductive adhesive at the junction between the electrode of the semiconductor element and the electrode of the printed circuit board and cure the injected sealing resin 7. End up. In addition, the adhesive strength of the conductive adhesive is very small.
[0008]
For this reason, thermal stress occurs due to heat applied to the joint between the semiconductor element and the printed circuit board in the two curing steps, and a crack is generated in the conductive adhesive at the joint, thereby impairing the electrical joint. was there.
[0009]
In addition, since the time required for the two curing steps is as long as about 1.5 to 6 hours, there is also a problem that quality feedback is slow.
Therefore, an object of the present invention is to provide a semiconductor mounting method and a semiconductor mounting apparatus that can solve the above-described problems.
[0010]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides an insulating material for electrode bonding only to a protruding electrode formed on an electrode of a semiconductor element when a semiconductor element is arranged on a printed circuit board and the respective electrodes are electrically connected to each other. transferring supplies sexual thermosetting resin is installed at a predetermined position of the printed circuit board which joined the electrodes to each other is cured by heating the thermosetting resin.
[0011]
According to the present invention, it is possible to minimize the temperature application step in the process, suppress the thermal stress on the joint, reduce the lead time, and realize high-quality semiconductor mounting. .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the semiconductor mounting method according to the first aspect of the present invention, when the semiconductor element is arranged on the printed circuit board and the respective electrodes are electrically connected to each other, the electrode bonding is performed only to the protruding electrode formed on the electrode of the semiconductor element. an insulating thermosetting resin use was transferred supplying, in which was set at a predetermined position of the printed circuit board by heating the thermosetting resin to join the are not conductive poles curing. According to the above method, the thermosetting resin can be transferred and supplied directly to the protruding electrode without using a conductive adhesive, so that the temperature addition step can be made a short time required for curing the thermosetting resin. , Which suppresses thermal stress (internal stress) to the joint, simplifies the mounting process without reducing the conductivity of the joint, and shortens the lead time, resulting in high reliability and high quality Semiconductor mounting can be realized.
[0013]
According to a second aspect of the present invention, there is provided the semiconductor mounting method according to the first aspect, wherein when the semiconductor element is disposed on the printed circuit board, the electrode joint is heated to a predetermined temperature and a predetermined load is applied to press the electrodes together. To do. According to the above method, in addition to the effect of claim 1, since the joining is completed by applying an appropriate temperature and load, the curing reaction of the thermosetting resin can be performed in a short time and the stud can be applied with an appropriate pressure. Since the bump and the electrode are pressure-bonded and bonded, thermal stress at the bonded portion can be suppressed, the conductivity of the bonded portion can be secured stably, and highly reliable semiconductor mounting can be realized.
[0014]
According to a third aspect of the present invention, in the method of the second aspect, the ultrasonic energy is applied to the bonding portion to diffuse and bond the electrodes to each other. According to the above method, in addition to the operation and effect of claim 2, by applying ultrasonic energy, heating the electrode of the joint part to such an extent that it does not melt and pressurizing it to the extent that plastic deformation does not occur, It is possible to perform diffusion bonding more firmly and stably between the electrodes by utilizing the diffusion of the generated atoms. Therefore, it is possible to suppress the thermal stress on the joint and realize more stable and high-quality semiconductor mounting.
[0015]
Semiconductor mounting apparatus according to claim 4 is formed in the semiconductor mounting device for electrically connecting the respective electrodes to each other by installing a semiconductor element on a printed circuit board, the electrode is brought close to the rolling Utsushidai holding the semiconductor element An insulating thermosetting resin for electrode joining is transferred and supplied only to the projected electrodes, and a work device is provided in which this semiconductor element is placed at a predetermined position on the printed circuit board and the electrodes are pressed and joined together. The working device is provided with heating means for curing the thermosetting resin. According to the above configuration, the thermosetting resin is supplied to the protruding electrode formed on the electrode of the semiconductor element by the working device having the transfer table for supplying the thermosetting resin and the heating unit for curing the thermosetting resin. The installation of semiconductor elements on a printed circuit board and the curing of thermosetting resin can be done with a single device, which simplifies the mounting process and shortens the lead time, realizing high-quality semiconductor mounting. be able to.
[0016]
According to a fifth aspect of the present invention, in addition to the configuration according to the fourth aspect, an ultrasonic irradiation unit is provided that applies ultrasonic energy to the joint portion of the electrode to diffuse and bond the electrodes together. According to the above configuration, the ultrasonic energy is applied to the bonded portion by the ultrasonic irradiation means, heated to such an extent that the electrode of the bonded portion does not melt, and pressurized to such an extent that plastic deformation does not occur, whereby atoms generated on the bonded surface It is possible to diffuse and join the electrodes more firmly and stably by utilizing the diffusion of. Therefore, it is possible to suppress the thermal stress on the joint and realize more stable and high-quality semiconductor mounting.
[0017]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the same members as those in the conventional example are denoted by the same reference numerals and description thereof is omitted.
(Embodiment 1)
1 and 2 show a first embodiment of a semiconductor mounting method and apparatus according to the present invention.
[0018]
As shown in FIG. 2, the mounting apparatus includes a working device (also referred to as a working tool) 21 common to the resin supply unit 22 and the mounting unit 23. As shown in b), the resin supply unit 22 transfers and supplies the thermosetting resin 7 for electrode bonding to the stud bump 3 formed on the electrode 2 of the semiconductor element 1, and the mounting unit 23 prints the printed circuit board 5. The semiconductor element 1 is accurately positioned and arranged at a predetermined position (hereinafter referred to as mounting), and the electrode 3 of the semiconductor element 1 and the electrode 6 of the printed circuit board 5 are joined.
[0019]
The working device 21 is movably provided between a resin supply unit 22 and a mounting unit 23 via a guide device 24, and includes a lifting tool 25 that can be lifted and lowered by a built-in lifting drive device. . The elevating tool 25 includes a first heating device 26 that is a heating means, and a holding plate 27 that holds the semiconductor element 1 via a holding tool (not shown) on the lower surface. Can be pressurized.
[0020]
The thermosetting resin 7 is held on the transfer table 9 in the resin supply unit 22. The mounting unit 23 includes a support table 28 that supports the printed circuit board 5 and a second heating device 29 that is a second heating unit.
[0021]
A mounting method by the mounting apparatus having the above configuration will be described with reference to FIG.
In the resin supply unit 21 , the electrode 2 to which the semiconductor element 1 is bonded is held by the elevating tool 25 via the holding plate 27 so as to be the lower surface. Then, the elevating tool 25 is lowered, and the thermosetting resin 7 is transferred and supplied to the stud bump 3 formed on the electrode 2 of the semiconductor element 1. Then, the working device 21 is moved to the mounting portion 23, and the semiconductor element 1 is accurately positioned at the bonding position corresponding to the printed circuit board 5 held on the support table 28. Next, the lifting tool 25 is lowered, the stud bump 3 is pressed against the electrode 6 of the printed circuit board 5 with a predetermined pressure, the thermosetting resin 7 is cured, and the mounting is completed.
[0022]
During this joining, the first heating device 26 and the second heating device 29 heat both the electrodes 2 and 6 and the thermosetting resin 7 to be joined to a predetermined temperature range of 180 ° C. to 250 ° C. Thereby, the thermosetting resin 7 is cured and bonded in a short time (for example, within 10 seconds), and internal stress is not generated in the semiconductor element 1 and the printed circuit board 5. Here, the reason why the heating temperature of the bonded portion is set in the range of 180 ° C. to 250 ° C. is that when the temperature is less than 180 ° C., the curing reaction of the thermosetting resin 7 is slow and requires a long time for curing. This is because if it exceeds, internal stress may be generated in the semiconductor element 1 and the electrical resistance value of the joint may increase.
[0023]
Further, a pressure (load) of 196 to 784 N (20 to 80 kgf) is applied to the joint portion by the lifting drive device via the lifting tool 25. Thereby, since the area which the stud bump 3 and the electrode 6 contact is stably ensured in these joining parts, the dispersion | variation in the electrical resistance value of a joining part is suppressed, and stable joining can be performed. Here, the pressure applied at the time of joining is in the range of 196 to 784 N per stud bump. If it is less than 196 N, the contact area between the electrodes 2 (3) and 6 is insufficient and the electric resistance is high. This is because the contact area varies and the electrical resistance value changes, and the quality of the joint is not stable. When the value exceeds 784 N, the gap between the printed circuit board 5 and the semiconductor element 1 becomes narrower and the reliability is increased. This is because of a decrease.
[0024]
According to the first embodiment, the time required for the curing and joining with the thermosetting resin can be greatly shortened by transferring and supplying the thermosetting resin 7 directly to the stud bump 3 without using the conductive adhesive. Thus, the occurrence of thermal stress (internal stress) of the semiconductor element 1 and the printed circuit board 5 can be prevented. In addition, the electrodes 2 and 6 can be stably connected without lowering the conductivity at the joint. As a result, the mounting process can be simplified and the lead time can be shortened to a few seconds (for example, within 10 seconds), and a highly reliable and high-quality semiconductor mounting can be realized.
[0025]
In addition, since the bonding is performed by applying an appropriate temperature and pressure, the thermosetting resin can be cured in a short time, and thermal stress can be prevented from occurring at the bonded portion. In addition, the electrical resistance value of the junction can be ensured appropriately and stably, and a highly reliable semiconductor mounting can be realized.
[0026]
Furthermore, according to the mounting device, the resin supply unit 22 is provided by providing the transfer device for supplying the thermosetting resin and the working device 21 having the first and second heating devices 26 and 29 for curing the thermosetting resin. The supply of the thermosetting resin 7 to the stud bump 3 formed on the electrode 2 of the semiconductor element 1 in FIG. 1, the installation of the semiconductor element 1 on the printed circuit board 5 in the mounting portion 23 , and the curing of the thermosetting resin 7 are 1 This is possible with a single device, simplifies the mounting process, shortens the lead time, and realizes high-quality semiconductor mounting.
[0027]
(Embodiment 2)
In the second embodiment, as shown in FIG. 3, the thermosetting resin 7 spreads over the circuit forming surface of the semiconductor element 1 and the circuit forming surface around the electrodes 6 of the printed circuit board 5 at the time of mounting. By increasing the transfer amount of No. 7 and further controlling the load, the strength of the joint portion is ensured to be large. According to the second embodiment, a higher quality semiconductor mounting can be realized by increasing the transfer amount of the thermosetting resin 7.
[0028]
(Embodiment 3)
In the third embodiment, as shown in FIG. 4, after the thermosetting resin 7 is cured and bonded, a reinforcing agent 11 such as an epoxy resin is injected between the semiconductor element 1 and the printed circuit board 5. . According to the third embodiment, it is possible to increase the strength of the joint and realize higher-quality semiconductor mounting. Of course, heating and curing time for the reinforcing agent 11 are also required, but the heat history and the time required for the curing process can also be halved compared to the prior art.
(Embodiment 4)
In the fourth embodiment, in addition to the first embodiment, the lifting tool 25 is provided with the ultrasonic oscillation device 12 that is an ultrasonic irradiation means, and ultrasonic waves are applied to the joint at a predetermined range during the mounting. It is comprised so that it may supply. The ultrasonic energy supplied from the ultrasonic oscillator 12 to the joint is set in the range of 50 to 200 mW per stud bump, and the ultrasonic energy does not melt the electrodes 3 (2) and 6 at the joint. The stud bump 3 is pressurized to the extent that plastic deformation does not occur through the lifting tool 25 by the lifting drive device, and the electrode 3 is more firmly and stably utilized by utilizing the diffusion of atoms generated on the joint surface. , 6 can be diffusion bonded together.
[0029]
Here, the irradiation range of the ultrasonic energy is set to 50 to 200 mW per stud bump. If less than 50 mW, diffusion bonding is impossible, and if it exceeds 200 mW, the printed circuit board 5 and the thermosetting resin 7 are used. This is because cracks are likely to occur and are easily damaged.
[0030]
According to the fourth embodiment, the ultrasonic energy is supplied and heated from the ultrasonic oscillator 12 toward the bonded portion to such an extent that the electrodes 3 and 6 of the bonded portion do not melt, and is applied to the extent that plastic deformation does not occur. By applying pressure, the electrodes can be diffused and bonded by utilizing the diffusion of atoms generated on the bonding surfaces of the stud bumps 3 of the electrodes 2 of the semiconductor element 1 and the electrodes 6 of the printed circuit board 5, and more firmly and stably. Can be joined. Therefore, it is possible to more effectively suppress the thermal stress on the joint portion, shorten the lead time, and realize more stable and high-quality semiconductor mounting.
[0031]
Although the mounting apparatus shown in the first embodiment is configured to move the work device 21 between the resin supply unit 22 and the mounting unit 23, the work device 21 is fixed and the resin supply unit is fixed. The transfer table 9 of 22 and the support table 28 of the mounting portion 23 may be reciprocated to the corresponding position of the work device 21.
[0032]
【The invention's effect】
As described above, according to the semiconductor mounting method of the first aspect, the thermosetting resin is cured by directly supplying the thermosetting resin to the protruding electrodes without using the conductive adhesive. It is possible to shorten the lead time by reducing the thermal stress (internal stress) to the joint, simplifying the mounting process without lowering the conductivity of the joint. Therefore, highly reliable and high quality semiconductor mounting can be realized.
[0033]
According to the semiconductor mounting method of claim 2, in addition to the effects of claim 1, in order to complete the joining by adding an appropriate temperature and load, the curing reaction of the thermosetting resin can be performed in a short time, Since the stud bump and the electrode are pressure-bonded with an appropriate pressure, thermal stress at the joint can be suppressed, the conductivity of the joint can be secured stably, and a highly reliable semiconductor mounting is realized. be able to.
[0034]
According to the semiconductor mounting method of the third aspect, in addition to the function and effect of the second aspect, ultrasonic energy is applied, and the electrodes at the joint are heated to such an extent that they do not melt and are pressurized to the extent that plastic deformation does not occur. Thus, the electrodes can be more firmly and stably diffusion-bonded using the diffusion of atoms generated on the bonding surface. Therefore, it is possible to suppress the thermal stress on the joint and realize more stable and high-quality semiconductor mounting.
[0035]
According to the semiconductor mounting apparatus of claim 4, the working device having the transfer table for supplying the thermosetting resin and the heating unit for curing the thermosetting resin is used to apply the protrusion to the protruding electrode formed on the electrode of the semiconductor element. High quality because it is possible to supply thermosetting resin, place semiconductor elements on printed circuit boards, and cure thermosetting resin with a single device, simplify the mounting process and shorten the lead time. Semiconductor mounting can be realized.
[0036]
According to the semiconductor mounting apparatus of the fifth aspect, the ultrasonic energy is applied to the joint portion by the ultrasonic supply means, and heated to such an extent that the electrode of the joint portion is not melted and pressurized so as not to cause plastic deformation. The electrodes can be diffusion-bonded more firmly and stably by utilizing the diffusion of atoms generated on the bonding surface. Therefore, it is possible to suppress the thermal stress on the joint and realize a more stable and high-quality semiconductor mounting.
[Brief description of the drawings]
1A and 1B show a first embodiment of a mounting method using a semiconductor mounting apparatus according to the present invention, in which FIG. 1A is an explanatory view of a resin supply operation, and FIG. 1B is an explanatory view showing a mounting operation;
FIG. 2 is a configuration diagram showing the semiconductor mounting apparatus.
FIG. 3 is an explanatory diagram of a mounting operation showing a second embodiment of the mounting method according to the present invention.
FIG. 4 is an explanatory diagram of a mounting operation showing Embodiment 3 of the mounting method according to the present invention.
FIG. 5 is an explanatory diagram of a mounting operation showing Embodiment 4 of the mounting method and apparatus according to the present invention.
6A and 6B show a conventional mounting method, where FIG. 6A is a side view of a semiconductor element, FIG. 6B is an explanatory diagram showing a resin supply operation, FIG. 6C is an explanatory diagram showing a mounting operation, and FIG. It is explanatory drawing which shows.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Semiconductor element 2 Electrode 3 Stud bump 5 Printed circuit board 6 Electrode 7 Thermosetting resin 9 Thermosetting resin transfer stand 11 Reinforcing agent 21 Work device 22 Resin supply part 23 Mounting part 25 Lifting tool 26 First heating device 27 Holding Plate 28 Support table 29 Second heating device

Claims (5)

半導体素子をプリント回路基板に配置してそれぞれの電極同士を電気的に接続するに際して、
半導体素子の電極に形成された突起電極にのみ電極接合用の絶縁性の熱硬化性樹脂を転写供給し、
プリント回路基板の所定の位置に設置し前記熱硬化性樹脂を加熱して硬化させ電極同士を接合する
ことを特徴とする半導体実装方法。
When placing each semiconductor element on a printed circuit board and electrically connecting each electrode,
Transfer and supply an insulating thermosetting resin for electrode bonding only to the protruding electrodes formed on the electrodes of the semiconductor element,
A semiconductor mounting method, comprising: installing at a predetermined position of a printed circuit board, heating and curing the thermosetting resin, and bonding electrodes together.
半導体素子をプリント回路基板に配置した時に、電極の接合部を所定温度に加熱するとともに、所定荷重を付加して電極同士を圧接する
ことを特徴とする請求項1記載の半導体実装方法。
The semiconductor mounting method according to claim 1, wherein when the semiconductor element is disposed on the printed circuit board, the electrode joint is heated to a predetermined temperature and a predetermined load is applied to press the electrodes together.
接合部に超音波エネルギーを付加して電極同士を拡散接合する
ことを特徴とする請求項2記載の半導体実装方法。
The semiconductor mounting method according to claim 2, wherein ultrasonic energy is applied to the joint and the electrodes are diffusion-bonded together.
半導体素子をプリント回路基板に設置してそれぞれの電極同士を電気的に接続する半導体実装装置において、
半導体素子を保持して転写台に接近させ電極に形成された突起電極にのみ電極接合用の絶縁性の熱硬化性樹脂を転写供給するとともに、この半導体素子をプリント回路基板上の所定位置に配置して電極同士を圧接し接合する作業装置を設け、
前記作業装置に、熱硬化性樹脂を硬化させる加熱手段を設けた
ことを特徴とする半導体実装装置。
In a semiconductor mounting apparatus in which a semiconductor element is installed on a printed circuit board and each electrode is electrically connected to each other,
Thereby transferring supplies insulating thermosetting resin for electrode bonding only the protruding electrodes formed on the electrode is brought close to the rolling Utsushidai holding the semiconductor element, the semiconductor element at a predetermined position on the printed circuit board Provide a working device to arrange and press-contact the electrodes together,
A semiconductor mounting device, wherein the working device is provided with heating means for curing the thermosetting resin.
電極の接合部に超音波エネルギーを付加して電極同士を拡散接合する超音波照射手段を設けた
ことを特徴とする請求項4記載の半導体実装装置。
The semiconductor mounting apparatus according to claim 4, further comprising: an ultrasonic irradiation unit that applies ultrasonic energy to a bonding portion of the electrodes to diffuse and bond the electrodes to each other.
JP2000338415A 2000-11-07 2000-11-07 Semiconductor mounting method and semiconductor mounting apparatus Expired - Fee Related JP4289779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000338415A JP4289779B2 (en) 2000-11-07 2000-11-07 Semiconductor mounting method and semiconductor mounting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000338415A JP4289779B2 (en) 2000-11-07 2000-11-07 Semiconductor mounting method and semiconductor mounting apparatus

Publications (2)

Publication Number Publication Date
JP2002141373A JP2002141373A (en) 2002-05-17
JP4289779B2 true JP4289779B2 (en) 2009-07-01

Family

ID=18813626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000338415A Expired - Fee Related JP4289779B2 (en) 2000-11-07 2000-11-07 Semiconductor mounting method and semiconductor mounting apparatus

Country Status (1)

Country Link
JP (1) JP4289779B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20030833A0 (en) * 2003-06-04 2003-06-04 Rafsec Oy Smart sticker and method for making a smart sticker
JP4589266B2 (en) * 2006-05-22 2010-12-01 パナソニック株式会社 Semiconductor ultrasonic bonding method
JP4948930B2 (en) * 2006-07-28 2012-06-06 京セラ株式会社 Piezoelectric oscillator
JP2012079876A (en) * 2010-09-30 2012-04-19 Fujitsu Ltd Method of manufacturing electronic device, and electronic device
US11024595B2 (en) 2017-06-16 2021-06-01 Micron Technology, Inc. Thermocompression bond tips and related apparatus and methods
JP6812919B2 (en) * 2017-07-12 2021-01-13 昭和電工マテリアルズ株式会社 Semiconductor package

Also Published As

Publication number Publication date
JP2002141373A (en) 2002-05-17

Similar Documents

Publication Publication Date Title
JP3150347B2 (en) Method and apparatus for mounting electronic components on circuit board
JP5066935B2 (en) Method for manufacturing electronic component and electronic device
KR20010092458A (en) Electronic parts mounting method and device therefor
JP2001313314A (en) Semiconductor device using bump, its manufacturing method, and method for forming bump
JP3326382B2 (en) Method for manufacturing semiconductor device
JP4289779B2 (en) Semiconductor mounting method and semiconductor mounting apparatus
US6966964B2 (en) Method and apparatus for manufacturing semiconductor device
JP3030271B2 (en) How to mount semiconductor components
JP2000286302A (en) Method and device for assembling semiconductor chip
JP2004335916A (en) Method for manufacturing semiconductor device
JP3532450B2 (en) Mounting structure of BGA type semiconductor package and mounting method thereof
JP4640380B2 (en) Mounting method of semiconductor device
JP3923248B2 (en) Method of mounting electronic component on circuit board and circuit board
JPH11340278A (en) Resin sheet for mounting semiconductor device, flip chip mounting method and circuit board
JP2000260826A (en) Heater for mounting semiconductor chip
JP3348830B2 (en) Solder bump bonding apparatus and solder bump bonding method
JP3960076B2 (en) Electronic component mounting method
JP2000058597A (en) Method of mounting electronic component
JP4016557B2 (en) Electronic component mounting structure and mounting method
JPH11288975A (en) Bonding method and device
JP2002033349A (en) Method for mounting semiconductor element and circuit board
JP2002170850A (en) Electronic component packaging structure and manufacturing method thereof
JP2000277566A (en) Electronic part unit and its manufacture
JP2002289644A (en) Method for joining semiconductor element and joining apparatus
JPH0567639A (en) Method of packaging semiconductor element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090331

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees