JP4640380B2 - Mounting method of semiconductor device - Google Patents

Mounting method of semiconductor device Download PDF

Info

Publication number
JP4640380B2
JP4640380B2 JP2007162070A JP2007162070A JP4640380B2 JP 4640380 B2 JP4640380 B2 JP 4640380B2 JP 2007162070 A JP2007162070 A JP 2007162070A JP 2007162070 A JP2007162070 A JP 2007162070A JP 4640380 B2 JP4640380 B2 JP 4640380B2
Authority
JP
Japan
Prior art keywords
semiconductor device
resin
substrate
electrode
thermosetting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007162070A
Other languages
Japanese (ja)
Other versions
JP2009004462A (en
Inventor
義之 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007162070A priority Critical patent/JP4640380B2/en
Publication of JP2009004462A publication Critical patent/JP2009004462A/en
Application granted granted Critical
Publication of JP4640380B2 publication Critical patent/JP4640380B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]

Landscapes

  • Wire Bonding (AREA)

Description

本発明は、半導体装置と基板とをフリップチップ接合させる半導体装置の実装方法に関するものである。   The present invention relates to a semiconductor device mounting method in which a semiconductor device and a substrate are flip-chip bonded.

ICチップ等の半導体装置と基板とを接合させる技術としてフリップチップ接合が知られている。フリップチップ接合では、半導体装置に形成したバンプ電極と基板の回路面に形成した電極パッドとを半田を介して接触させたうえで、専用の熱圧着ツールによって半導体装置を基板に押し付けつつ加熱し、半田を溶融させて両電極(バンプ電極と電極パッド)を接合させる。しかし、バンプ電極と電極パッドの半田接合だけでは半導体装置と基板との間の接合強度は弱いものであり、その後に温度が下がったときに半導体装置と基板の熱膨張係数の違いによって熱応力が生じ、電極の接合部が剥がれてしまうことがある。このため、フリップチップ接合を行う前に、基板の回路面に予め熱硬化性の樹脂を塗布しておき、両電極を接触させて熱圧着する際に樹脂も同時に熱硬化させて半導体装置と基板とを強固に結合させる方法も行われている(特許文献1)。   Flip chip bonding is known as a technique for bonding a semiconductor device such as an IC chip and a substrate. In flip chip bonding, the bump electrode formed on the semiconductor device and the electrode pad formed on the circuit surface of the substrate are brought into contact via solder, and then heated while pressing the semiconductor device against the substrate with a dedicated thermocompression tool, Solder is melted to join both electrodes (bump electrode and electrode pad). However, the bonding strength between the semiconductor device and the substrate is weak only by the solder bonding of the bump electrode and the electrode pad, and when the temperature subsequently decreases, the thermal stress is caused by the difference in the thermal expansion coefficient between the semiconductor device and the substrate. This may cause the electrode joint to peel off. Therefore, before flip-chip bonding, a thermosetting resin is applied in advance to the circuit surface of the substrate, and when both electrodes are brought into contact and thermocompression bonded, the resin is also thermally cured at the same time so that the semiconductor device and the substrate There is also a method of firmly bonding the two (Patent Document 1).

ところが、フリップチップ接合の前に基板に樹脂を先塗りする半導体装置の実装方法では、バンプ電極と電極パッドを接触させる際に半導体装置と樹脂との間に空気が入り込むこと等によって樹脂内にボイド(気泡)が生じることがあり、このボイドが原因となって熱硬化後の樹脂にクラックが発生したり、基板から滲み出した水がボイド内に溜まって隣接する電極間が短絡したりすることがある。このようなことから、熱硬化後の樹脂内のボイドは少なくかつ小さいことが望ましく、このような観点から、両電極の熱圧着と樹脂の熱硬化を高圧雰囲気下で行うことによって樹脂の熱硬化中にボイドを小さくする方法が考案されている(特許文献2)。
特開平11−54559号公報 特開2004−311709号公報
However, in the mounting method of the semiconductor device in which the resin is pre-coated on the substrate before the flip chip bonding, when the bump electrode and the electrode pad are brought into contact with each other, air enters between the semiconductor device and the resin, etc. (Bubble) may occur, and the void may cause cracks in the resin after thermosetting, or water that has exuded from the substrate may accumulate in the void and cause a short circuit between adjacent electrodes. There is. For this reason, it is desirable that the voids in the resin after thermosetting are small and small. From this point of view, the thermosetting of the resin is performed by performing thermocompression bonding of both electrodes and thermosetting of the resin in a high pressure atmosphere. A method for reducing the voids has been devised (Patent Document 2).
Japanese Patent Laid-Open No. 11-54559 JP 2004-311709 A

しかしながら、上記方法によってボイドを小さくするには限界があり、より一層ボイドを小さくできる方法が求められている。   However, there is a limit to reducing the voids by the above method, and a method capable of further reducing the voids is required.

そこで本発明は、樹脂内に生じたボイドをより一層小さくすることができ、熱硬化後の樹脂におけるクラックの発生と電極間の短絡を防止することができる半導体装置の実装方法を提供することを目的とする。   Therefore, the present invention provides a method for mounting a semiconductor device that can further reduce voids generated in the resin, and can prevent generation of cracks in the resin after thermosetting and short circuit between electrodes. Objective.

請求項1に記載の半導体装置の実装方法は、ペリフェラル配置された複数のバンプ電極を備えた半導体装置とこの半導体装置の複数のバンプ電極に対応して配置された複数の電極パッドを備えた基板とをフリップチップ接合させる半導体装置の実装方法であって、基板に熱硬化性の樹脂を塗布する樹脂塗布工程と、半導体装置のバンプ電極と樹脂が塗布された基板の電極パッドとを間に半田を介在させて接触させ、半導体装置の上面に接触させた熱圧着ツールで半導体装置を基板に押し付けつつ加熱して半導体装置の中央部の樹脂の温度がバンプ電極近傍部の樹脂の温度よりも高くなるような温度分布を樹脂内に形成し、バンプ電極と電極パッドの間に介在させた半田を溶融させてバンプ電極と電極パッドとを半田接合させるとともに、バンプ電極近傍部の樹脂は熱硬化がほとんど進行していない未硬化状態のままで、半導体装置の中央部直下に位置する樹脂を半導体装置と基板との仮接合に十分な接着強度を得る程度まで熱硬化を進行させて半導体装置と基板とを仮接合させる第1の加熱工程と、第1の加熱工程により仮接合された半導体装置及び基板から成る仮接合体の冷却を行う冷却工程と、冷却後の仮接合体を加圧雰囲気下で加熱し、樹脂全体を完全に熱硬化させる第2の加熱工程とを含む。 The semiconductor device mounting method according to claim 1, wherein a semiconductor device including a plurality of bump electrodes arranged in a peripheral manner and a substrate including a plurality of electrode pads arranged corresponding to the plurality of bump electrodes of the semiconductor device A method of mounting a semiconductor device by flip-chip bonding between a resin coating step of applying a thermosetting resin to a substrate and a bump electrode of the semiconductor device and an electrode pad of the substrate coated with the resin The temperature of the resin in the center of the semiconductor device is higher than the temperature of the resin in the vicinity of the bump electrode by heating while pressing the semiconductor device against the substrate with a thermocompression bonding tool in contact with the upper surface of the semiconductor device. the becomes such a temperature distribution is formed in the resin, causes soldered to the bump electrodes and the electrode pads of the solder interposed between the bump electrodes and the electrode pads is melted, vans Resin near the electrodes portion remains uncured thermosetting is hardly progressed, the heat to the extent of obtaining a sufficient adhesive strength of the resin located immediately below the central portion to the temporary joining between the semiconductor device and the substrate of the semiconductor device A first heating step in which curing is advanced and the semiconductor device and the substrate are temporarily joined; a cooling step in which the temporary joined body including the semiconductor device and the substrate temporarily joined in the first heating step is cooled; And a second heating step in which the entire resin is completely cured by heating in a pressurized atmosphere.

本発明の半導体装置の実装方法によれば、樹脂内に生じたボイドは、第1の加熱工程の後に樹脂が冷却されることによって縮小され、その後の第2の加熱工程において樹脂が加圧圧縮されることによって更に収縮されるので、樹脂内に生じたボイドは極めて小さいものとなり、熱硬化後におけるクラックの発生と電極間の短絡を防止することができる。また、第1の加熱工程ではバンプ電極と電極パッドが半田接合されるだけでなく、熱硬化進行した一部の樹脂によって半導体装置と基板が仮接合されるので、仮接合された半導体装置及び基板(仮接合体)は容易に移動させることができる。このため、第1の加熱工程、冷却工程及び第2の加熱工程はそれぞれ別の装置内で行うことができ、一部の工程をバッチ処理するなど、多用な手順で処理を行うことが可能となる。   According to the semiconductor device mounting method of the present invention, voids generated in the resin are reduced by cooling the resin after the first heating step, and the resin is compressed and compressed in the subsequent second heating step. As a result, the voids generated in the resin are extremely small, and the occurrence of cracks and short-circuiting between the electrodes after thermosetting can be prevented. Further, in the first heating step, not only the bump electrode and the electrode pad are solder-bonded, but also the semiconductor device and the substrate are temporarily bonded by a part of the resin that has undergone thermosetting. (Temporary joined body) can be easily moved. For this reason, the first heating process, the cooling process, and the second heating process can be performed in separate apparatuses, and it is possible to perform processing in various procedures such as batch processing of some processes. Become.

以下、図面を参照して本発明の実施の形態について説明する。図1は本発明の一実施の形態における半導体装置実装構造体の一部断面正面図、図2は本発明の一実施の形態における実装装置の構成を示すブロック図、図3は本発明の一実施の形態における熱圧着装置の正面図、図4(a),(b)は本発明の一実施の形態における熱圧着ツールに吸着された状態の半導体装置の側面図及び下面図、図5は本発明の一実施の形態における半導体装置の実装方法の工程の流れを示すフローチャート、図6(a),(b),(c)及び図7(a),(b),(c)は本発明の一実施の形態における半導体装置の実装方法の工程説明図、図8は本発明の一実施の形態における第1の加熱工程中の樹脂内の温度分布の一例を示すグラフである。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a partial cross-sectional front view of a semiconductor device mounting structure according to an embodiment of the present invention, FIG. 2 is a block diagram showing the configuration of the mounting device according to an embodiment of the present invention, and FIG. FIGS. 4A and 4B are a side view and a bottom view of a semiconductor device in a state of being adsorbed by a thermocompression bonding tool according to an embodiment of the present invention, and FIG. FIG. 6A, FIG. 6B, FIG. 6C and FIG. 7A, FIG. 7B, and FIG. 7C show the flow of the steps of the semiconductor device mounting method according to the embodiment of the present invention. Process explanatory drawing of the mounting method of the semiconductor device in one embodiment of the invention, FIG. 8 is a graph showing an example of the temperature distribution in the resin during the first heating process in one embodiment of the present invention.

図1に示す半導体装置実装構造体1は、半導体装置2と基板3がフリップチップ接合(実装)されて成るものであり、半導体装置2の下面2aにペリフェラル配置(外周配置)された複数のバンプ電極4と、基板3の上面(回路面)3aに半導体装置2の複数のバンプ電極4に対応して配置された複数の電極パッド5が半田6によって機械的に接合されるとともに電気的に接続されている。また、半導体装置2と基板3は熱硬化性の樹脂7(図6(a)参照)が熱硬化した樹脂硬化体7aによって強固に結合されている。ここではバンプ電極4は金、銀或いは銅から構成されているものとする。   A semiconductor device mounting structure 1 shown in FIG. 1 is formed by flip-chip bonding (mounting) a semiconductor device 2 and a substrate 3, and a plurality of bumps having peripheral arrangement (peripheral arrangement) on the lower surface 2 a of the semiconductor device 2. The electrode 4 and a plurality of electrode pads 5 arranged corresponding to the plurality of bump electrodes 4 of the semiconductor device 2 on the upper surface (circuit surface) 3a of the substrate 3 are mechanically joined by solder 6 and electrically connected. Has been. Further, the semiconductor device 2 and the substrate 3 are firmly bonded by a cured resin body 7a obtained by thermosetting a thermosetting resin 7 (see FIG. 6A). Here, it is assumed that the bump electrode 4 is made of gold, silver or copper.

半導体装置2を基板3に実装する実装装置10は、図2に示すように、熱圧着装置11、冷却用載置台12及び加圧炉13を備えている。図3に示すように、熱圧着装置11は、基台21に対して水平方向に(矢印A)移動自在に設けられたステージ22と、ステージ22の上方に基台21に対して上下方向(矢印B)に移動自在に設けられたヘッド部23とを備えている。ステージ22の内部にはステージ22の上面に開口した真空管路24が設けられており、この真空管路24はステージ22の外部に設けられた外部管路25を介して真空源26に繋がっている。外部管路25には制御バルブ27が介装されており、ステージ22の上面に基板3を載置した状態で制御バルブ27を作動させることにより、基板3をステージ22上に設置(真空吸着)させることができる。   As shown in FIG. 2, the mounting device 10 that mounts the semiconductor device 2 on the substrate 3 includes a thermocompression bonding device 11, a cooling mounting table 12, and a pressure furnace 13. As shown in FIG. 3, the thermocompression bonding apparatus 11 includes a stage 22 provided so as to be movable in the horizontal direction (arrow A) with respect to the base 21, and a vertical direction with respect to the base 21 above the stage 22 ( And a head portion 23 provided movably in the direction of arrow B). Inside the stage 22, a vacuum line 24 opened on the upper surface of the stage 22 is provided. The vacuum line 24 is connected to a vacuum source 26 via an external line 25 provided outside the stage 22. A control valve 27 is interposed in the external conduit 25, and the substrate 3 is placed on the stage 22 by operating the control valve 27 with the substrate 3 placed on the upper surface of the stage 22 (vacuum suction). Can be made.

ヘッド部23は基台21に対して上下方向に移動自在な昇降部28と、昇降部28の下端に取り付けられた熱圧着ツール29を備えており、熱圧着ツール29の内部にはヒータ30が設けられている。熱圧着ツール29の内部には熱圧着ツール29の下面29aに開口した真空管路31が設けられており、真空管路31は熱圧着ツール29の外部に設けられた外部管路32を介して上記真空源26に繋がっている。外部管路32には制御バルブ33が介装されており、熱圧着ツール29の下面29aに半導体装置2を接触させた状態
で制御バルブ33を作動させることにより、半導体装置2を熱圧着ツール29の下面29aに真空吸着させることができる。ヒータ30は熱圧着ツール29の外部に設けられたヒータ電源34からの電力供給を受けて発熱し、これにより熱圧着ツール29が昇温する。
The head unit 23 includes an elevating unit 28 that is movable in the vertical direction with respect to the base 21, and a thermocompression bonding tool 29 attached to the lower end of the elevating unit 28. Is provided. Inside the thermocompression bonding tool 29, there is provided a vacuum line 31 that opens to the lower surface 29a of the thermocompression bonding tool 29. The vacuum line 31 passes through the external line 32 provided outside the thermocompression bonding tool 29 and the above vacuum line 31 is provided. Connected to source 26. A control valve 33 is interposed in the external pipe line 32. By operating the control valve 33 with the semiconductor device 2 in contact with the lower surface 29a of the thermocompression bonding tool 29, the semiconductor device 2 is attached to the thermocompression bonding tool 29. The lower surface 29a can be vacuum-adsorbed. The heater 30 receives heat from a heater power supply 34 provided outside the thermocompression bonding tool 29 and generates heat, whereby the thermocompression bonding tool 29 rises in temperature.

図4(a)に示すように、熱圧着ツール29の下面29aは半導体装置2の上面2bと接触するが、熱圧着ツール29の下面29aは半導体装置2の上面2b全域と接触する大きさを有しているのではなく、図4(b)に示すように、半導体装置2の下面2a側にペリフェラル配置された複数のバンプ電極4によって囲まれる矩形の領域Rとほぼ同じかそれよりもやや小さい大きさを有したものとなっている。このため、熱圧着ツール29と半導体装置2の中心が上下方向に合致し、かつ、熱圧着ツール29の下面29aの矩形の外縁29bが半導体装置2の複数のバンプ電極4の列に沿うように半導体装置2に対する熱圧着ツール29の向きを調整して熱圧着ツール29に半導体装置2を真空吸着させるようにすれば、半導体装置2を下方から見たときには(図4(b))、熱圧着ツール29の下面29aの外縁29bは、複数のバンプ電極4によって囲まれる領域R内に収まった状態となり、半導体装置2の複数のバンプ電極4の直上付近に熱圧着ツール29の下面29aの外縁29bが位置することとなる。   As shown in FIG. 4A, the lower surface 29a of the thermocompression bonding tool 29 is in contact with the upper surface 2b of the semiconductor device 2, but the lower surface 29a of the thermocompression bonding tool 29 has a size in contact with the entire upper surface 2b of the semiconductor device 2. 4B, as shown in FIG. 4B, the rectangular region R surrounded by the plurality of bump electrodes 4 disposed on the lower surface 2a side of the semiconductor device 2 is almost the same as or slightly more than that. It has a small size. For this reason, the center of the thermocompression bonding tool 29 and the semiconductor device 2 are aligned vertically, and the rectangular outer edge 29b of the lower surface 29a of the thermocompression bonding tool 29 is along the row of the plurality of bump electrodes 4 of the semiconductor device 2. When the direction of the thermocompression bonding tool 29 with respect to the semiconductor device 2 is adjusted so that the semiconductor device 2 is vacuum-sucked by the thermocompression bonding tool 29, when the semiconductor device 2 is viewed from below (FIG. 4B), the thermocompression bonding is performed. The outer edge 29b of the lower surface 29a of the tool 29 is within the region R surrounded by the plurality of bump electrodes 4, and the outer edge 29b of the lower surface 29a of the thermocompression bonding tool 29 is located immediately above the plurality of bump electrodes 4 of the semiconductor device 2. Will be located.

冷却用載置台12はテーブル状の部材であり、平らな載置面12a(図7(b)参照)を有している。加圧炉13は密閉状態で加圧雰囲気を生成することができ、内部に平らな載置面13a(図7(c)参照)を有している。   The cooling mounting table 12 is a table-like member, and has a flat mounting surface 12a (see FIG. 7B). The pressurizing furnace 13 can generate a pressurized atmosphere in a sealed state, and has a flat mounting surface 13a (see FIG. 7C) inside.

次に、図5のフローチャート及び図6、図7の工程説明図を用いて上記実装装置10を用いた半導体装置2の基板3への実装(半導体装置実装構造体1の製造)手順を説明する。半導体装置2を基板3へ実装するには、先ず、各電極パッド5に半田6をプリコートした基板3を上面3aが上を向くように熱圧着装置11のステージ22上に設置する(図5のステップS1)。   Next, a procedure of mounting the semiconductor device 2 on the substrate 3 using the mounting apparatus 10 (manufacturing the semiconductor device mounting structure 1) will be described using the flowchart of FIG. 5 and the process explanatory diagrams of FIGS. . In order to mount the semiconductor device 2 on the substrate 3, first, the substrate 3 having the electrode pads 5 pre-coated with the solder 6 is placed on the stage 22 of the thermocompression bonding apparatus 11 so that the upper surface 3a faces upward (see FIG. 5). Step S1).

基板3をステージ22上に真空吸着させたら、熱硬化性の樹脂7をディスペンサ35等によって基板3の上面3aに塗布する(ステップS2及び図6(a)。樹脂塗布工程)。このとき、基板3上の全ての電極パッド5が樹脂7によって覆われるようにする。   After the substrate 3 is vacuum-adsorbed on the stage 22, the thermosetting resin 7 is applied to the upper surface 3a of the substrate 3 by the dispenser 35 or the like (step S2 and FIG. 6 (a), resin application step). At this time, all the electrode pads 5 on the substrate 3 are covered with the resin 7.

樹脂塗布工程が終了したら、実装しようとする半導体装置2を前述の要領で熱圧着ツール29の下面29aに真空吸着させたうえで、半導体装置2と基板3を相対移動させて、半導体装置2と基板3を上下に対向させる(ステップS3及び図6(b))。そして、半導体装置2と基板3とを相対的に近づけ、半導体装置2のバンプ電極4と基板3の電極パッド5を電極パッド5にプリコートした(バンプ電極4と電極パッド5との間に介在させた)半田6を介して接触させ、熱圧着ツール29で半導体装置2を基板3に押し付けつつ、半導体装置2を介して樹脂7を加熱する(ステップS4及び図6(c)。第1の加熱工程)。   When the resin coating process is completed, the semiconductor device 2 to be mounted is vacuum-sucked on the lower surface 29a of the thermocompression bonding tool 29 in the manner described above, and the semiconductor device 2 and the substrate 3 are moved relative to each other. The board | substrate 3 is made to oppose up and down (step S3 and FIG.6 (b)). Then, the semiconductor device 2 and the substrate 3 are relatively brought close to each other, and the bump electrode 4 of the semiconductor device 2 and the electrode pad 5 of the substrate 3 are precoated on the electrode pad 5 (interposed between the bump electrode 4 and the electrode pad 5). The resin 7 is contacted via the solder 6 and the resin 7 is heated via the semiconductor device 2 while pressing the semiconductor device 2 against the substrate 3 with the thermocompression bonding tool 29 (step S4 and FIG. 6C). Process).

この第1の加熱工程では、前述のように、熱圧着ツール29の下面29aの外縁29bが半導体装置2の複数のバンプ電極4の直上付近に位置しており、また、熱圧着ツール29の外縁29b付近は外気に晒されていることから、熱圧着ツール29の周辺部分(外縁29bに近い部分)の温度は熱圧着ツール29の中央部の温度よりも低くなる。このため樹脂7には、半導体装置2の中央部の温度がバンプ電極4近傍部の温度よりも高くなるような温度分布が形成され、その結果、樹脂7の熱硬化の進行度は半導体装置2の中央部に近いほど高く、周辺部(バンプ電極4近傍部)に近いほど遅くなる。但し、この第1の加熱工程でバンプ電極4と電極パッド5との間に介在する半田6が溶融してバンプ電極4と電極パッド5が半田接合されるようにするため、バンプ電極4近傍部における最低温度は半田融点温度よりも高くなるようにする必要がある。図8は、この第1の加熱工程中の樹
脂7内の温度分布の一例を示すグラフを示している。
In the first heating step, as described above, the outer edge 29b of the lower surface 29a of the thermocompression bonding tool 29 is located in the vicinity immediately above the plurality of bump electrodes 4 of the semiconductor device 2, and the outer edge of the thermocompression bonding tool 29 is also provided. Since the vicinity of 29b is exposed to the outside air, the temperature of the peripheral portion of the thermocompression bonding tool 29 (portion close to the outer edge 29b) is lower than the temperature of the central portion of the thermocompression bonding tool 29. Therefore, a temperature distribution is formed in the resin 7 such that the temperature of the central portion of the semiconductor device 2 is higher than the temperature in the vicinity of the bump electrode 4. As a result, the degree of progress of thermosetting of the resin 7 is the semiconductor device 2. The closer to the central part, the higher, and the closer to the peripheral part (near the bump electrode 4), the slower. However, in this first heating step, the solder 6 interposed between the bump electrode 4 and the electrode pad 5 is melted so that the bump electrode 4 and the electrode pad 5 are soldered together. It is necessary to make the minimum temperature at the temperature higher than the solder melting point temperature. FIG. 8 shows a graph showing an example of the temperature distribution in the resin 7 during the first heating step.

上記のような温度分布(半導体装置2の中央部の樹脂7の温度がバンプ電極4近傍部の樹脂7の温度よりも高くなるような温度分布)が確実に形成されるようにするため、ヒータ30の発熱量が熱圧着ツール29の周辺部よりも中央部に集中するような構成にしたり、加熱中の樹脂7の周囲に冷風を供給することによって、バンプ電極4近傍部の樹脂7の熱が外に放散されるようにしたりすることが好ましい。なお、半導体装置2の中央部の温度の最高値の温度とバンプ電極4近傍部における平均的な温度との差(図8においてΔTで示す温度差)は30℃以上であることが好ましい。   In order to ensure that the above temperature distribution (a temperature distribution in which the temperature of the resin 7 in the central portion of the semiconductor device 2 is higher than the temperature of the resin 7 in the vicinity of the bump electrode 4) is reliably formed. The heat generated from the resin 7 near the bump electrode 4 can be obtained by adopting a configuration in which the amount of heat generated by 30 is concentrated in the central portion rather than the peripheral portion of the thermocompression bonding tool 29 or by supplying cold air around the resin 7 being heated. Is preferably diffused to the outside. The difference between the maximum temperature at the center of the semiconductor device 2 and the average temperature in the vicinity of the bump electrode 4 (temperature difference indicated by ΔT in FIG. 8) is preferably 30 ° C. or more.

この第1の加熱工程では、半田6が溶融して両電極(半導体装置2のバンプ電極4と基板3の電極パッド5)が半田接合されるタイミング(熱圧着時間にして約0.5秒程度)で熱圧着ツール29を半導体装置2から離間させた状態では(図7(a))、バンプ電極4近傍部の樹脂7は熱硬化がほとんど進行していない未硬化(液状)状態(加圧雰囲気において樹脂7に含まれる下記のボイド(気泡)Vの収縮が可能な状態)のままであり、半導体装置2の中央部直下に位置する樹脂7(図6(c)、図7(a)及び図7(b)において間隔の小さい斜線を付して示す領域の樹脂7b)は、半導体装置2と基板3とを仮接合するのに十分な接着強度を得るところまで熱硬化が進行している。これにより半導体装置2と基板3が仮接合された状態となる。なお、第1の加熱工程では、樹脂7は半導体装置2によって押しのけられて横方向に広がり、半導体装置2の下面2aの全域に密着するようになるが、この際、半導体装置2と樹脂7との間に空気が入り込んだりして樹脂7内にボイドVが生じることがある(図7(a)中の拡大図参照)。 In this first heating process, the solder 6 is melted and the two electrodes (the bump electrode 4 of the semiconductor device 2 and the electrode pad 5 of the substrate 3) are soldered together (the thermocompression bonding time is about 0.5 seconds). ) In the state where the thermocompression bonding tool 29 is separated from the semiconductor device 2 (FIG. 7A), the resin 7 in the vicinity of the bump electrode 4 is in an uncured (liquid) state in which the thermosetting hardly proceeds (pressurization). Resin 7 (FIG. 6 (c), FIG. 7 (a)) located directly under the center of semiconductor device 2 remains in a state where the following voids (bubbles) V contained in resin 7 can be contracted in the atmosphere. In FIG. 7B, the resin 7b in the region indicated by hatching with a small interval is subjected to thermosetting until a sufficient adhesive strength is obtained to temporarily bond the semiconductor device 2 and the substrate 3. Yes. As a result, the semiconductor device 2 and the substrate 3 are temporarily joined. In the first heating step, the resin 7 is pushed away by the semiconductor device 2 and spreads in the lateral direction, and comes into close contact with the entire lower surface 2a of the semiconductor device 2. At this time, the semiconductor device 2 and the resin 7 During this time, air may enter and voids V may be generated in the resin 7 (see an enlarged view in FIG. 7A).

第1の加熱工程が終了したら、仮接合された半導体装置2及び基板3から成る仮接合体1aをステージ22の真空吸着を解除して取り外す。そして、ステージ22から取り外した仮接合体1aを冷却用載置台12の載置面12aに載置し、上記所定温度T1よりも低い温度T3(好ましくは100℃以下。常温でよい)の雰囲気下で冷却する(ステップS5及び図7(b)。冷却工程)。この冷却工程ではバンプ電極4近傍の樹脂7が第1の加熱工程において一旦加熱された後、未硬化(液状)のままで冷却されることから、ボイドV内の水蒸気成分が凝結するとともに、樹脂7内に発生したボイドV(ボイドVの占める空間)そのものが大幅に縮小する(図7(b)の拡大図参照)。   When the first heating step is completed, the temporary bonded body 1a including the temporarily bonded semiconductor device 2 and the substrate 3 is released after the vacuum suction of the stage 22 is released. Then, the temporary joined body 1a removed from the stage 22 is placed on the placement surface 12a of the cooling placement table 12, and the atmosphere is at a temperature T3 lower than the predetermined temperature T1 (preferably 100 ° C. or less, which may be room temperature). (Step S5 and FIG. 7B. Cooling step). In this cooling step, the resin 7 in the vicinity of the bump electrode 4 is once heated in the first heating step, and then cooled in an uncured (liquid) state, so that the water vapor component in the void V is condensed and the resin is condensed. The void V (the space occupied by the void V) itself generated in 7 is significantly reduced (see the enlarged view of FIG. 7B).

冷却工程が終了したら、冷却用載置台12から仮接合体1aを移動させて加圧炉13内に入れ、加圧炉13内の載置面13aに載置する。そして、加圧炉13を密閉して加圧雰囲気を生成し、仮接合体1aをその加圧雰囲気下で100〜180℃程度にまで加熱する。これにより仮接合体1aの樹脂7は完全に硬化して樹脂硬化体7aとなるので、半導体装置2と基板3は結合(強固に接合)される(ステップS6及び図7(c)。第2の加熱工程)。   When the cooling step is completed, the temporary joined body 1a is moved from the cooling mounting table 12, placed in the pressurizing furnace 13, and mounted on the mounting surface 13a in the pressurizing furnace 13. And the pressurization furnace 13 is sealed, a pressurization atmosphere is produced | generated, and the temporary joined body 1a is heated to about 100-180 degreeC under the pressurization atmosphere. As a result, the resin 7 of the temporary bonded body 1a is completely cured to become the cured resin body 7a, so that the semiconductor device 2 and the substrate 3 are bonded (solidly bonded) (step S6 and FIG. 7C). Heating step).

この第2の加熱工程では、加圧炉13内の圧力は10気圧以下、好ましくは3〜5気圧程度とし、加熱は少なくとも加圧の開始前には行わないこととする。   In this second heating step, the pressure in the pressure furnace 13 is 10 atm or less, preferably about 3 to 5 atm, and heating is not performed at least before the start of pressurization.

この第2の加熱工程では、加圧炉13内の圧力が樹脂7に均等に伝わってその全体が圧縮されるが、それまで未硬化(液状)であった樹脂7が加圧圧縮されることから、樹脂7内のボイドVも樹脂7と一緒になって大幅に縮小する(図7(c)の拡大図参照)。   In this second heating step, the pressure in the pressurizing furnace 13 is evenly transmitted to the resin 7 and is compressed as a whole, but the uncured (liquid) resin 7 is pressurized and compressed so far. Therefore, the void V in the resin 7 is also significantly reduced together with the resin 7 (see the enlarged view of FIG. 7C).

第2の加熱工程が終了したら、加圧炉13内の温度を常温程度まで下げるとともに、加圧炉13内の圧力を大気圧程度に戻し、加圧炉13から完成した半導体装置実装構造体1を取り出す(ステップS7)。これにより半導体装置2の基板3への実装(半導体装置実装構造体1の製造)が完了する。   When the second heating step is finished, the temperature in the pressurizing furnace 13 is lowered to about room temperature, the pressure in the pressurizing furnace 13 is returned to about atmospheric pressure, and the semiconductor device mounting structure 1 completed from the pressurizing furnace 13 is completed. Is taken out (step S7). Thereby, mounting of the semiconductor device 2 on the substrate 3 (manufacture of the semiconductor device mounting structure 1) is completed.

このように、本実施の形態における半導体装置の実装方法では、樹脂7内に生じたボイドVは、第1の加熱工程の後に樹脂7が冷却されることによって縮小され、その後の第2の加熱工程において樹脂7が加圧圧縮されることによって更に収縮されるので、樹脂7内に生じたボイドVは極めて小さいものとなり、熱硬化後における樹脂7(樹脂硬化体7a)にクラックが発生しにくく、基板3から滲み出した水がボイドVに溜まった場合であっても、隣接する電極間に短絡が生じにくい。   As described above, in the semiconductor device mounting method according to the present embodiment, the void V generated in the resin 7 is reduced by cooling the resin 7 after the first heating step, and the second heating thereafter. Since the resin 7 is further shrunk by being compressed and compressed in the process, the void V generated in the resin 7 becomes extremely small, and cracks are hardly generated in the resin 7 (resin cured body 7a) after thermosetting. Even when the water exuding from the substrate 3 accumulates in the void V, a short circuit is unlikely to occur between adjacent electrodes.

また、第1の加熱工程ではバンプ電極4と電極パッド5が半田接合されるだけでなく、半導体装置2の中央部直下に位置する熱硬化が進行した樹脂7(7b)によって半導体装置2と基板3とが仮接合されるので、仮接合体1aを移動させても、移動時の衝撃等でバンプ電極4と電極パッド5を電気的に接続する半田接合部が破壊されたり半導体装置2が基板3から脱落したりすることを防止できる。このため、第1の加熱工程、冷却工程及び第2の加熱工程はそれぞれ別の装置(熱圧着装置11、冷却用載置台12及び加圧炉13)を用いて行うことができ、一部の工程(上記実施の形態では例えば冷却工程及び第2の加熱工程)をバッチ処理するなど、多用な手順で処理を行うことが可能となる。   Further, in the first heating step, not only the bump electrode 4 and the electrode pad 5 are soldered but also the semiconductor device 2 and the substrate by the resin 7 (7b) which is located immediately below the center of the semiconductor device 2 and has undergone thermosetting. 3 is temporarily bonded, so even if the temporary bonded body 1a is moved, the solder bonded portion that electrically connects the bump electrode 4 and the electrode pad 5 is destroyed by the impact during movement or the semiconductor device 2 is mounted on the substrate. 3 can be prevented from falling off. For this reason, the first heating process, the cooling process, and the second heating process can be performed using different apparatuses (thermocompression bonding apparatus 11, cooling mounting table 12, and pressure furnace 13), respectively. It is possible to perform the process by various procedures such as batch processing of the process (for example, the cooling process and the second heating process in the above embodiment).

上述の実施の形態では、樹脂7には半田粒子は含まれておらず、金、銀或いは銅から構成されたバンプ電極4と電極パッド5とが、電極パッド5にプリコートされた半田6を介して接触され、その後の第1の加熱工程において、プリコートされた半田6が溶融されることによって、バンプ電極4と電極パッド5が電気的に接続される構成であったが、樹脂7に半田粒子を含有したものを用いるとともに、バンプ電極4が金、銀、銅或いは半田から成るものとすることによって、バンプ電極4と電極パッド5とが樹脂7に含有された半田を介して接触されるようにし、その後の第1の加熱工程において、樹脂7に含有された半田が溶融されることによって、バンプ電極4と電極パッド5が電気的に接続される構成としてもよい。但し、バンプ電極4に半田を用いる場合には、第1の加熱工程によってバンプ電極4が溶融しないようにするため、バンプ電極4に用いる半田は樹脂7に含有される半田粒子よりも高融点のものを用いる必要がある。また、バンプ電極4が銅から構成される場合には、バンプ電極4と電極パッド5とを半田接合させるための半田をバンプ電極4の表面にめっきしておくこともできる。   In the above-described embodiment, the resin 7 does not contain solder particles, and the bump electrode 4 and the electrode pad 5 made of gold, silver, or copper are interposed via the solder 6 precoated on the electrode pad 5. The bump electrode 4 and the electrode pad 5 are electrically connected by melting the pre-coated solder 6 in the subsequent first heating step. In addition, the bump electrode 4 is made of gold, silver, copper or solder so that the bump electrode 4 and the electrode pad 5 are brought into contact with each other through the solder contained in the resin 7. The bump electrode 4 and the electrode pad 5 may be electrically connected by melting the solder contained in the resin 7 in the subsequent first heating step. However, when solder is used for the bump electrode 4, the solder used for the bump electrode 4 has a melting point higher than that of the solder particles contained in the resin 7 so that the bump electrode 4 is not melted by the first heating process. It is necessary to use something. When the bump electrode 4 is made of copper, the surface of the bump electrode 4 can be plated with solder for solder-bonding the bump electrode 4 and the electrode pad 5 to each other.

これまで本発明の実施の形態について説明してきたが、本発明は上述の実施の形態に示したものに限定されない。例えば、上述の実施の形態では、熱圧着装置11で第1の加熱工程を行った後、得られた仮接合体1aを熱圧着装置11から取り外して冷却用載置台12に移動し、そこで冷却工程を行うようにしていたが、熱圧着装置11により第1の加熱工程を行った後、仮接合体1aを熱圧着装置11から取り外すことなくしばらくそのまま放置するなどして第1の加熱工程と冷却工程を同じ装置で行うようにしてもよい。   Although the embodiments of the present invention have been described so far, the present invention is not limited to those shown in the above-described embodiments. For example, in the above-described embodiment, after the first heating step is performed by the thermocompression bonding apparatus 11, the obtained temporary joined body 1 a is removed from the thermocompression bonding apparatus 11 and moved to the mounting table 12 for cooling. However, after the first heating process is performed by the thermocompression bonding apparatus 11, the temporary bonded body 1 a is left as it is for a while without being removed from the thermocompression bonding apparatus 11. You may make it perform a cooling process with the same apparatus.

樹脂内に生じたボイドをより一層小さくすることができ、熱硬化後の樹脂におけるクラックの発生と電極間の短絡を防止することができる。   Voids generated in the resin can be further reduced, and generation of cracks in the resin after thermosetting and a short circuit between the electrodes can be prevented.

本発明の一実施の形態における半導体装置実装構造体の一部断面正面図1 is a partial cross-sectional front view of a semiconductor device mounting structure according to an embodiment of the present invention. 本発明の一実施の形態における実装装置の構成を示すブロック図The block diagram which shows the structure of the mounting apparatus in one embodiment of this invention 本発明の一実施の形態における熱圧着装置の正面図The front view of the thermocompression bonding apparatus in one embodiment of this invention (a),(b)本発明の一実施の形態における熱圧着ツールに吸着された状態の半導体装置の側面図及び下面図(A), (b) The side view and bottom view of the semiconductor device of the state adsorbed to the thermocompression bonding tool in one embodiment of the present invention 本発明の一実施の形態における半導体装置の実装方法の工程の流れを示すフローチャートThe flowchart which shows the flow of the process of the mounting method of the semiconductor device in one embodiment of this invention (a),(b),(c)本発明の一実施の形態における半導体装置の実装方法の工程説明図(A), (b), (c) Process explanatory drawing of the mounting method of the semiconductor device in one embodiment of this invention (a),(b),(c)本発明の一実施の形態における半導体装置の実装方法の工程説明図(A), (b), (c) Process explanatory drawing of the mounting method of the semiconductor device in one embodiment of this invention 本発明の一実施の形態における第1の加熱工程中の樹脂内の温度分布の一例を示すグラフThe graph which shows an example of the temperature distribution in resin in the 1st heating process in one embodiment of this invention

符号の説明Explanation of symbols

1a 仮接合体
2 半導体装置
3 基板
4 バンプ電極
5 電極パッド
6 半田
7 樹脂
29 熱圧着ツール
DESCRIPTION OF SYMBOLS 1a Temporary joined body 2 Semiconductor device 3 Board | substrate 4 Bump electrode 5 Electrode pad 6 Solder 7 Resin 29 Thermocompression-bonding tool

Claims (1)

ペリフェラル配置された複数のバンプ電極を備えた半導体装置とこの半導体装置の複数のバンプ電極に対応して配置された複数の電極パッドを備えた基板とをフリップチップ接合させる半導体装置の実装方法であって、基板に熱硬化性の樹脂を塗布する樹脂塗布工程と、半導体装置のバンプ電極と樹脂が塗布された基板の電極パッドとを間に半田を介在させて接触させ、半導体装置の上面に接触させた熱圧着ツールで半導体装置を基板に押し付けつつ加熱して半導体装置の中央部の樹脂の温度がバンプ電極近傍部の樹脂の温度よりも高くなるような温度分布を樹脂内に形成し、バンプ電極と電極パッドの間に介在させた半田を溶融させてバンプ電極と電極パッドとを半田接合させるとともに、バンプ電極近傍部の樹脂は熱硬化がほとんど進行していない未硬化状態のままで、半導体装置の中央部直下に位置する樹脂を半導体装置と基板との仮接合に十分な接着強度を得る程度まで熱硬化を進行させて半導体装置と基板とを仮接合させる第1の加熱工程と、第1の加熱工程により仮接合された半導体装置及び基板から成る仮接合体の冷却を行う冷却工程と、冷却後の仮接合体を加圧雰囲気下で加熱し、樹脂全体を完全に熱硬化させる第2の加熱工程とを含むことを特徴とする半導体装置の実装方法。 A semiconductor device mounting method in which a semiconductor device having a plurality of peripherally arranged bump electrodes and a substrate having a plurality of electrode pads arranged corresponding to the plurality of bump electrodes of the semiconductor device are flip-chip bonded. Then, the resin application process for applying a thermosetting resin to the substrate and the bump electrode of the semiconductor device and the electrode pad of the substrate on which the resin is applied are brought into contact with each other with solder interposed therebetween to contact the upper surface of the semiconductor device The semiconductor device is heated while pressing it against the substrate with the thermocompression tool, and a temperature distribution is formed in the resin so that the temperature of the resin at the center of the semiconductor device is higher than the temperature of the resin near the bump electrode. with a solder is interposed between the electrode and the electrode pad is melted to solder bonding the bump electrode and the electrode pad, the resin bump electrode vicinity progression mostly thermosetting Not remain uncured, and a central portion is allowed to proceed a thermosetting semiconductor device and the substrate to a degree to obtain sufficient adhesive strength of the resin located temporary joining between the semiconductor device and the substrate directly under the semiconductor device provisionally A first heating step to be bonded, a cooling step for cooling the temporary bonded body composed of the semiconductor device and the substrate temporarily bonded in the first heating step, and the cooled temporary bonded body is heated in a pressurized atmosphere. And a second heating step of completely thermosetting the entire resin.
JP2007162070A 2007-06-20 2007-06-20 Mounting method of semiconductor device Active JP4640380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007162070A JP4640380B2 (en) 2007-06-20 2007-06-20 Mounting method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007162070A JP4640380B2 (en) 2007-06-20 2007-06-20 Mounting method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2009004462A JP2009004462A (en) 2009-01-08
JP4640380B2 true JP4640380B2 (en) 2011-03-02

Family

ID=40320552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007162070A Active JP4640380B2 (en) 2007-06-20 2007-06-20 Mounting method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4640380B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024849A1 (en) 2012-08-06 2014-02-13 積水化学工業株式会社 Method for manufacturing semiconductor device and adhesive for mounting flip chip

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5273017B2 (en) * 2009-11-19 2013-08-28 大日本印刷株式会社 Method for manufacturing flip mounted body
CN105308730A (en) 2013-08-22 2016-02-03 积水化学工业株式会社 Semiconductor adhesive

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176933A (en) * 1999-12-20 2001-06-29 Pfu Ltd Equipment for mounting bare chip component and its mounting method
JP2004247531A (en) * 2003-02-14 2004-09-02 Misuzu Kogyo:Kk Mounting method of electronic component
JP2006041145A (en) * 2004-07-27 2006-02-09 Matsushita Electric Ind Co Ltd Method for mounting pressing device, and semiconductor bare chip

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176933A (en) * 1999-12-20 2001-06-29 Pfu Ltd Equipment for mounting bare chip component and its mounting method
JP2004247531A (en) * 2003-02-14 2004-09-02 Misuzu Kogyo:Kk Mounting method of electronic component
JP2006041145A (en) * 2004-07-27 2006-02-09 Matsushita Electric Ind Co Ltd Method for mounting pressing device, and semiconductor bare chip

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024849A1 (en) 2012-08-06 2014-02-13 積水化学工業株式会社 Method for manufacturing semiconductor device and adhesive for mounting flip chip
KR20150040784A (en) 2012-08-06 2015-04-15 세키스이가가쿠 고교가부시키가이샤 Method for manufacturing semiconductor device and adhesive for mounting flip chip
US9209155B2 (en) 2012-08-06 2015-12-08 Sekisui Chemical Co., Ltd. Method for manufacturing semiconductor device and adhesive for mounting flip chip
US9748195B2 (en) 2012-08-06 2017-08-29 Sekisui Chemical Co., Ltd. Adhesive for mounting flip chip for use in a method for producing a semiconductor device

Also Published As

Publication number Publication date
JP2009004462A (en) 2009-01-08

Similar Documents

Publication Publication Date Title
TWI514487B (en) Thermal compression bonding of semiconductor chips
JP4983181B2 (en) Manufacturing method of semiconductor device
CN109103117B (en) Apparatus for bonding semiconductor chips and method of bonding semiconductor chips
JP5892682B2 (en) Joining method
KR101034166B1 (en) Mounting method using thermocompression head
TWI662671B (en) Joining device
JP2005093838A (en) Manufacturing method of semiconductor integrated circuit device
JP4692101B2 (en) Part joining method
KR20140094086A (en) Device and method for bonding semiconductor chip
JP6234277B2 (en) Crimping head, mounting apparatus and mounting method using the same
US6966964B2 (en) Method and apparatus for manufacturing semiconductor device
JP4640380B2 (en) Mounting method of semiconductor device
JP5796249B2 (en) Joining apparatus and joining method
US7687314B2 (en) Electronic apparatus manufacturing method
TW201312664A (en) Manufacturing method of flip-chip package
KR100936781B1 (en) Flip chip bonding apparatus and bonding method using the same
JP3947502B2 (en) Manufacturing method of sealing member made of anisotropic conductive film
JP5098939B2 (en) Bonding apparatus and bonding method
TW201712827A (en) Heating header of semiconductor mounting apparatus and bonding method for semiconductor
JP2002026250A (en) Manufacturing method of laminated circuit module
JP2008288622A (en) Method for manufacturing semiconductor integrated circuit device
JP4200090B2 (en) Manufacturing method of semiconductor device
JPH11288975A (en) Bonding method and device
JP3960076B2 (en) Electronic component mounting method
JP3906130B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090225

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

R151 Written notification of patent or utility model registration

Ref document number: 4640380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3