JP4288757B2 - Seamless steel pipe manufacturing method - Google Patents

Seamless steel pipe manufacturing method Download PDF

Info

Publication number
JP4288757B2
JP4288757B2 JP16257699A JP16257699A JP4288757B2 JP 4288757 B2 JP4288757 B2 JP 4288757B2 JP 16257699 A JP16257699 A JP 16257699A JP 16257699 A JP16257699 A JP 16257699A JP 4288757 B2 JP4288757 B2 JP 4288757B2
Authority
JP
Japan
Prior art keywords
steel pipe
thickness
seamless steel
value
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16257699A
Other languages
Japanese (ja)
Other versions
JP2000351012A (en
Inventor
賢治 生井
知良 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP16257699A priority Critical patent/JP4288757B2/en
Publication of JP2000351012A publication Critical patent/JP2000351012A/en
Application granted granted Critical
Publication of JP4288757B2 publication Critical patent/JP4288757B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Control Of Metal Rolling (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、目標の肉厚に制御された継目無鋼管を安定して製造することのできる継目無鋼管の製造方法に関するものである。
【0002】
【従来の技術】
継目無鋼管の製造時における肉厚の測定は、継目無鋼管の素材である鋼片の重量、製造された継目無鋼管の長さ測定値、及びロールバイト径(継目無鋼管の外径に相当)の3つの要素から計算により算出する方法と、透過放射線を用いた放射線厚み計により測定する方法の2つの方法により行われ、その測定値は、継目無鋼管の肉厚制御のために製造条件にフィードバックされている。
【0003】
放射線厚み計による測定方法は、図6に示すように継目無鋼管51の一方側から、γ線照射器52によりγ線ビーム53を照射し、継目無鋼管51を透過したγ線ビーム53を、継目無鋼管51を挟んでγ線照射器52と対向して配置したγ線検出器54で検出し、下記の(2)式により肉厚を求めるものである。但し(2)式において、Iはγ線の透過量、I0 はγ線の照射量、μはγ線吸収係数、tは継目無鋼管の肉厚である。
I=I0 exp(−μt)……(2)
【0004】
【発明が解決しようとする課題】
しかしながら、上述した従来の肉厚測定方法には、次のような問題点がある。即ち、継目無鋼管の先端部及び後端部の圧延時における非定常部では、中央部に対して肉厚が変動するが、鋼片の重量、継目無鋼管の長さ測定値、及びロールバイト径の3つの要素から算出する方法では、この非定常部の肉厚変動が反映できず、正確性に欠ける。又、放射線厚み計による測定では、継目無鋼管の非定常部における肉厚変動は測定できるが、圧延中の振動等により測定値の絶対値の精度が良くない。
【0005】
従って、従来の肉厚測定方法による肉厚測定値に基づき、肉厚が目標となるべく製造条件を制御しても、目標とする肉厚の的中率は低く、肉厚不良により不合格となる場合も生じていた。
【0006】
本発明は上記事情に鑑みなされたもので、その目的とするところは、放射線厚み計を用いながら、圧延される継目無鋼管の肉厚を目標とする肉厚に近づけることのできる継目無鋼管の製造方法を提供することである。
【0007】
【課題を解決するための手段】
本発明に係る継目無鋼管の製造方法は、圧延ロールにより圧延した継目無鋼管の肉厚を放射線厚み計により全長に渡って測定すると共に継目無鋼管の長さを測定し、得られた肉厚測定値t及び長さ測定値Lと圧延ロールのロールバイト径とを用いて継目無鋼管の計算重量W1 を求め、前記肉厚測定値tと、求めた計算重量W1 と、この継目無鋼管の圧延前の鋼片段階で予め測定した実貫重量W0 とを用いて(1)式により継目無鋼管の肉厚を修正し、修正して得られた修正肉厚値tS と肉厚目標値t0 とを比較して、修正肉厚値tS と肉厚目標値t0 との差が小さくなるように、その差に基づき圧延ロールの回転数を制御することを特徴とするものである。
S=t×[1+(W0−W1)/W0]……(1)
【0008】
放射線厚み計を用いて測定した継目無鋼管の先端から後端に渡っての肉厚分布には、肉厚の絶対値がプラス側若しくはマイナス側に偏った状態となることが多い。本発明においては、この偏りを鋼片段階の実貫重量W0 と、継目無鋼管の肉厚測定値t及び長さ測定値Lから算出される計算重量W1 とを用いて、(1)式に示すように、その差に応じて修正しているので、修正して得られた肉厚値tS は肉厚の絶対値に近いものとなる。
【0009】
そして、この修正した肉厚値tS に基づいて圧延ロールの回転数を制御するので、正確な継目無鋼管の肉厚制御が行われ、肉厚目標値t0 に近い継目無鋼管を安定して製造することが可能となる。
【0010】
【発明の実施の形態】
以下、本発明を図面を参照して説明する。図1は本発明の実施の形態例を示す図であって、継目無鋼管の製造装置の概略構成図、図2は本発明に係る継目無鋼管の製造方法を示すフローチャートである。
【0011】
最初に、図1を用いて継目無鋼管の製造装置を説明する。図1において、1は継目無鋼管の素材である鋼片で、2は鋼片1をプラグミル、マンドレルミル等により圧延して製造した継目無素管で、3は継目無素管2を圧延して製造した継目無鋼管である。4は鋼片1を秤量するための秤量機である。5はストレッチレデューサーで、絞り圧延機とも呼ばれ、継目無鋼管3の外径及び肉厚を最終的に決める圧延装置で、本実施の形態では継目無素管2を圧延して継目無鋼管3を製造する圧延機として使用される。6は圧延ロールで、ストレッチレデューサー5は複数の圧延ロール6を1組として配置された圧延スタンドを圧延方向に複数基並べて構成されている。7はモーターで、各圧延スタンド毎に配置されており、各圧延スタンドの圧延ロール6を駆動する。8はモーター制御装置で、各圧延スタンドに配置されたモーター7の回転数を各モーター7毎に個別に制御する。9は熱間放射線厚み計で、ストレッチレデューサー5の出側直後で継目無鋼管3の肉厚を測定する。10は熱間測長計で、長さ検出用カメラ11を備えており、継目無鋼管3の長さを測定する。12は生産管理用計算機で、予め決定されている製造諸元を入出力する。13は圧延制御用計算機で、秤量機4により測定されたデータと、熱間放射線厚み計9及び熱間測長計10により測定されたデータと、生産管理用計算機12から入力されたデータとから、モーター制御装置を介して各スタンドのモーター7の回転数を制御する。
【0012】
次に、この構成の継目無鋼管の製造装置を用いた本発明に係る継目無鋼管の製造方法を図2を参照して説明する。
【0013】
先ず、継目無鋼管3の製造諸元を生産管理用計算機12に入力する(ステップS1)。入力する製造諸元は、継目無鋼管3の肉厚目標値t0 、外径、規格等である。そして、この継目無鋼管3の素材である鋼片1の実貫重量W0 を秤量機4にて測定し(S2)、測定した実貫重量W0 のデータを秤量機4から圧延制御用計算機13に入力する。秤量後、この鋼片1をプラグミル、マンドレルミル等を用いて圧延し、継目無素管2を製造する。
【0014】
次いで、この継目無素管2をストレッチレデューサー5で圧延する。圧延に際して、圧延制御用計算機13は、生産管理用計算機12から入力された製造諸元、及び秤量機4から入力された実貫重量W0 に基づき圧延ロール6の回転数を決定し(S3)、その信号をモーター制御装置8に入力する。そして、モーター制御装置8により圧延ロール6の回転数を決定された所定の回転数に制御して、継目無素管2の圧延を実施し(S4)、継目無鋼管3を製造する。
【0015】
製造した継目無鋼管3の肉厚を熱間放射線厚み計9により全長に渡って測定し(S5)、測定された各位置毎の肉厚測定値tを熱間放射線厚み計9から圧延制御用計算機13に入力する。又、肉厚測定後、熱間測長計10により継目無鋼管3の長さを測定し、測定された長さ測定値Lを熱間測長計10から圧延制御用計算機13に入力する。
【0016】
圧延制御用計算機13は、継目無鋼管3の先端から後端までのN個の肉厚測定値tのデータと、長さ測定値Lのデータとを用いて、(3)式により継目無鋼管3の計算重量W1 を算出する。但し(3)式において、ΔLは熱間放射線厚み計9による肉厚測定ピッチで(4)式により算出され、Dは継目無鋼管3の外径、ρは継目無鋼管3の比重である。尚、Dは生産管理用計算機12から入力される圧延目標外径、即ち、ストレッチレデューサー5の最終スタンドのロールバイト径に、鋼種及び管肉厚毎の収縮代αを掛けたものを使用すれば良い。
1 =ΣΔL×π×(D−t)×t×ρ……(3)
ΔL=L/N……(4)
【0017】
圧延制御用計算機13は、計算重量W1 と実貫重量W0 とに基づき肉厚測定値tを前述の(1)式により修正し(S6)、修正肉厚値tS を算出する。即ち、継目無鋼管3の肉厚分布を、図3に示す実線の分布から破線の分布に修正する。尚、図3では修正肉厚値tS の方が肉厚測定値tより大きい場合を示しているが、当然、逆の場合もある
【0018】
圧延制御用計算機13は、求めた修正肉厚値tS と生産管理用計算機12から入力された肉厚目標値t0 とを比較して(S7)、修正肉厚値tS が肉厚目標値t0 と異なる時には、その差が少なくなるように圧延ロール6の回転数を変更し(S8)、変更したロール回転数で次回の圧延を実施する。又、修正肉厚値tS が肉厚目標値t0 と同じであれば、圧延ロール6の回転数を変更せずに、設定した回転数を維持して次回の圧延を実施する。
【0019】
このようにして継目無鋼管3を圧延することで、正確に継目無鋼管3の肉厚制御を行うことが可能となり、肉厚目標値t0 に近い継目無鋼管3を安定して製造することが可能となる。
【0020】
【実施例】
図1に示す構成の継目無鋼管製造装置を用い、本発明を用いて、製品外径が60.5mmで、肉厚目標値t0 が3.90mmの継目無鋼管を製造した。その時の肉厚目標値t0 と実測値との偏差(%)に対する度数(本数)分布の調査結果を図4に示す。又、比較のため、その他の条件を同一として、熱間放射線厚み計による肉厚測定値tを修正しないままフィードバックする従来法により製造し(従来例)、その時の肉厚目標値t0 と実測値との偏差(%)に対する度数(本数)分布の調査結果を図5に合せて示す。これらの図で明らかなように、肉厚目標値t0 と実測値との偏差の平均値及び分散(σ)は、共に本発明の実施例の方が小さく、肉厚の寸法精度が良いことが分かる。
【0021】
【発明の効果】
本発明では、熱間放射線厚み計による測定値を、鋼片段階の実貫重量と継目無鋼管の肉厚測定値及び長さ測定値から算出される計算重量とを用いて修正し、修正した肉厚値に基づき継目無鋼管の肉厚を制御するので、正確に継目無鋼管の肉厚制御を行うことが可能となり、肉厚目標値に近い継目無鋼管を安定して製造することが可能となる。その結果、肉厚不良による製品不良率を大幅に低減することができ、工業上有益な効果がもたらされる。
【図面の簡単な説明】
【図1】本発明の実施の形態例を示す図であって、継目無鋼管の製造装置の概略構成図である。
【図2】本発明に係る継目無鋼管の製造方法を示すフローチャートである。
【図3】継目無鋼管の修正前後の肉厚分布を示す図である。
【図4】本発明の実施例における肉厚目標値と実測値との偏差に対する度数分布の調査結果を示す図である。
【図5】従来例における肉厚目標値と実測値との偏差に対する度数分布の調査結果を示す図である。
【図6】放射線厚み計による継目無鋼管の肉厚測定方法の概要を示す図である。
【符号の説明】
1 鋼片
2 継目無素管
3 継目無鋼管
4 秤量機
5 ストレッチレデューサー
6 圧延ロール
7 モーター
8 モーター制御装置
9 熱間放射線厚み計
10 熱間測長計
11 検出用カメラ
12 生産管理用計算機
13 圧延制御用計算機
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a seamless steel pipe capable of stably manufacturing a seamless steel pipe controlled to a target thickness.
[0002]
[Prior art]
The thickness of the seamless steel pipe is measured by measuring the weight of the steel slab, the length of the manufactured seamless steel pipe, and the roll bite diameter (equivalent to the outer diameter of the seamless steel pipe). ) And a method of calculating by a radiation thickness meter using transmitted radiation, and the measured value is a manufacturing condition for controlling the thickness of the seamless steel pipe. Has been fed back.
[0003]
As shown in FIG. 6, the measurement method using the radiation thickness meter is that a γ-ray beam 53 is irradiated from the one side of the seamless steel pipe 51 by a γ-ray irradiator 52 and transmitted through the seamless steel pipe 51. It is detected by a γ-ray detector 54 disposed opposite to the γ-ray irradiator 52 with the seamless steel pipe 51 interposed therebetween, and the thickness is obtained by the following equation (2). In equation (2), I is the amount of γ-ray transmitted, I 0 is the amount of γ-ray irradiation, μ is the γ-ray absorption coefficient, and t is the thickness of the seamless steel pipe.
I = I 0 exp (−μt) (2)
[0004]
[Problems to be solved by the invention]
However, the above-described conventional wall thickness measuring method has the following problems. That is, in the unsteady part at the time of rolling the front end part and the rear end part of the seamless steel pipe, the thickness varies with respect to the center part, but the weight of the steel slab, the measured length of the seamless steel pipe, and the roll bite In the method of calculating from the three elements of the diameter, the thickness fluctuation of the unsteady part cannot be reflected, and accuracy is lacking. Further, in the measurement with the radiation thickness meter, the thickness fluctuation in the unsteady portion of the seamless steel pipe can be measured, but the accuracy of the absolute value of the measured value is not good due to vibration during rolling.
[0005]
Therefore, even if the manufacturing conditions are controlled as much as possible based on the thickness measurement value obtained by the conventional thickness measurement method, the target thickness ratio is low and it is rejected due to a thickness failure. There was also a case.
[0006]
The present invention has been made in view of the above circumstances. The purpose of the present invention is to provide a seamless steel pipe capable of bringing the thickness of the seamless steel pipe to be rolled closer to the target thickness while using a radiation thickness meter. It is to provide a manufacturing method.
[0007]
[Means for Solving the Problems]
The method for producing a seamless steel pipe according to the present invention is to measure the thickness of the seamless steel pipe rolled by a rolling roll over the entire length with a radiation thickness meter, and measure the length of the seamless steel pipe, and the obtained thickness The calculated weight W 1 of the seamless steel pipe is obtained using the measured value t, the length measured value L, and the roll bite diameter of the rolling roll, and the thickness measured value t, the calculated calculated weight W 1 , and this seamless The thickness of the seamless steel pipe is corrected by the formula (1) using the actual penetration weight W 0 measured in advance at the slab stage before rolling the steel pipe, and the corrected thickness value t S and the wall thickness obtained by the correction are obtained. by comparing the thickness target value t 0, so that the difference between the modified meat thickness value t S and the thickness target value t 0 becomes smaller, and controlling the rotational speed of the rolling rolls on the basis of the difference Is.
t S = t × [1+ (W 0 −W 1 ) / W 0 ] (1)
[0008]
In the wall thickness distribution from the front end to the rear end of the seamless steel pipe measured using a radiation thickness meter, the absolute value of the wall thickness is often biased to the plus side or the minus side. In the present invention, this deviation is calculated using the actual weight W 0 at the billet stage and the calculated weight W 1 calculated from the measured thickness t and length L of the seamless steel pipe (1) As shown in the equation, since the correction is made according to the difference, the thickness value t S obtained by the correction is close to the absolute value of the thickness.
[0009]
Then, since the number of rotations of the rolling roll is controlled based on the corrected thickness value t S , accurate thickness control of the seamless steel pipe is performed, and the seamless steel pipe close to the thickness target value t 0 is stabilized. Can be manufactured.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an embodiment of the present invention, which is a schematic configuration diagram of a seamless steel pipe manufacturing apparatus, and FIG. 2 is a flowchart showing a seamless steel pipe manufacturing method according to the present invention.
[0011]
Initially, the manufacturing apparatus of a seamless steel pipe is demonstrated using FIG. In FIG. 1, 1 is a steel slab which is a material of a seamless steel pipe, 2 is a seamless element pipe manufactured by rolling the steel slab 1 with a plug mill, a mandrel mill, etc., and 3 is a seamless element pipe 2 rolled. It is a seamless steel pipe manufactured in this way. 4 is a weighing machine for weighing the steel slab 1. Reference numeral 5 denotes a stretch reducer, which is also referred to as a drawing mill, and is a rolling device that finally determines the outer diameter and thickness of the seamless steel pipe 3. Used as a rolling mill. Reference numeral 6 denotes a rolling roll, and the stretch reducer 5 is configured by arranging a plurality of rolling stands in which a plurality of rolling rolls 6 are arranged as one set in the rolling direction. Reference numeral 7 denotes a motor, which is arranged for each rolling stand, and drives the rolling roll 6 of each rolling stand. Reference numeral 8 denotes a motor control device that individually controls the number of rotations of the motor 7 arranged in each rolling stand for each motor 7. Reference numeral 9 denotes a hot radiation thickness gauge, which measures the thickness of the seamless steel pipe 3 immediately after the exit side of the stretch reducer 5. Reference numeral 10 denotes a hot length meter, which includes a length detection camera 11 and measures the length of the seamless steel pipe 3. Reference numeral 12 denotes a production management computer which inputs and outputs predetermined manufacturing specifications. 13 is a rolling control computer, from the data measured by the weighing machine 4, the data measured by the hot radiation thickness meter 9 and the hot length meter 10, and the data input from the production management computer 12, The number of rotations of the motor 7 of each stand is controlled via a motor control device.
[0012]
Next, the manufacturing method of the seamless steel pipe which concerns on this invention using the manufacturing apparatus of the seamless steel pipe of this structure is demonstrated with reference to FIG.
[0013]
First, the manufacturing specifications of the seamless steel pipe 3 are input to the production management computer 12 (step S1). The manufacturing specifications to be input are the wall thickness target value t 0 , the outer diameter, the standard, etc. of the seamless steel pipe 3. Then, by measuring the actual transmembrane weight W 0 of the steel piece 1 which is a material of the seamless steel pipe 3 in the weighing machine 4 (S2), the rolling control computer from the weighing machine 4 data of the real transmural weight W 0 of measurement 13 is input. After weighing, the steel slab 1 is rolled using a plug mill, a mandrel mill or the like to produce a seamless element tube 2.
[0014]
Next, this seamless element tube 2 is rolled by a stretch reducer 5. At the time of rolling, the rolling control computer 13 determines the number of rotations of the rolling roll 6 based on the manufacturing specifications input from the production management computer 12 and the actual through weight W 0 input from the weighing machine 4 (S3). The signal is input to the motor control device 8. Then, the rotational speed of the rolling roll 6 is controlled to a predetermined rotational speed determined by the motor control device 8 to roll the seamless element tube 2 (S4), and the seamless steel pipe 3 is manufactured.
[0015]
The thickness of the manufactured seamless steel pipe 3 is measured over the entire length by the hot radiation thickness meter 9 (S5), and the measured thickness measurement value t at each position is used for rolling control from the hot radiation thickness meter 9. Input to the computer 13. Further, after the wall thickness measurement, the length of the seamless steel pipe 3 is measured by the hot length meter 10, and the measured length measurement value L is input from the hot length meter 10 to the rolling control computer 13.
[0016]
The rolling control computer 13 uses the data of the N measured thicknesses t from the front end to the rear end of the seamless steel pipe 3 and the data of the length measured value L, and the seamless steel pipe according to the equation (3). The calculated weight W 1 of 3 is calculated. However, in the equation (3), ΔL is a thickness measurement pitch by the hot radiation thickness meter 9 and is calculated by the equation (4), D is the outer diameter of the seamless steel pipe 3, and ρ is the specific gravity of the seamless steel pipe 3. Note that D is a rolling target outer diameter input from the production management computer 12, that is, a roll bite diameter of the final stand of the stretch reducer 5 multiplied by a contraction allowance α for each steel type and pipe thickness. good.
W 1 = ΣΔL × π × (D−t) × t × ρ (3)
ΔL = L / N (4)
[0017]
The rolling control computer 13 corrects the wall thickness measurement value t by the above-described equation (1) based on the calculated weight W 1 and the actual penetration weight W 0 (S6), and calculates the corrected wall thickness value t S. That is, the wall thickness distribution of the seamless steel pipe 3 is corrected from the solid line distribution shown in FIG. 3 to the broken line distribution. FIG. 3 shows the case where the corrected wall thickness value t S is larger than the wall thickness measurement value t.
The rolling control computer 13 compares the obtained corrected wall thickness value t S with the wall thickness target value t 0 input from the production management computer 12 (S7), and the corrected wall thickness value t S is the wall thickness target. When the value is different from the value t 0 , the rotation speed of the rolling roll 6 is changed so as to reduce the difference (S8), and the next rolling is performed with the changed roll rotation speed. If the corrected wall thickness value t S is the same as the wall thickness target value t 0 , the next rolling is performed while maintaining the set rotation speed without changing the rotation speed of the rolling roll 6.
[0019]
By rolling this seamless steel pipe 3 in the exactly it is possible to perform thickness control of a seamless steel tube 3, to manufacture a seamless steel pipe 3 close to the wall thickness desired value t 0 stably Is possible.
[0020]
【Example】
Using the seamless steel pipe manufacturing apparatus having the configuration shown in FIG. 1, a seamless steel pipe having a product outer diameter of 60.5 mm and a wall thickness target value t 0 of 3.90 mm was manufactured using the present invention. FIG. 4 shows the result of investigation of the frequency (number) distribution with respect to the deviation (%) between the thickness target value t 0 and the measured value at that time. For comparison, the same the other conditions, the produced (Conventional Example) by conventional methods of feedback without modify the wall thickness measurement value t by hot radiation thickness meter, the thickness target value t 0 at that time measured The survey results of the frequency (number) distribution with respect to the deviation (%) from the value are shown in FIG. As is clear from these figures, the average value and variance (σ) of the deviation between the wall thickness target value t 0 and the measured value are both smaller in the embodiment of the present invention and the dimensional accuracy of the wall thickness is better. I understand.
[0021]
【The invention's effect】
In the present invention, the measurement value by the hot radiation thickness meter was corrected using the actual weight of the billet stage and the calculated weight calculated from the thickness measurement value and the length measurement value of the seamless steel pipe. Since the thickness of the seamless steel pipe is controlled based on the wall thickness value, it is possible to accurately control the wall thickness of the seamless steel pipe, and it is possible to stably manufacture seamless steel pipes close to the wall thickness target value. It becomes. As a result, the defective product rate due to defective thickness can be greatly reduced, and an industrially beneficial effect can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an embodiment of the present invention, and is a schematic configuration diagram of a seamless steel pipe manufacturing apparatus.
FIG. 2 is a flowchart showing a method for manufacturing a seamless steel pipe according to the present invention.
FIG. 3 is a view showing a wall thickness distribution before and after modification of a seamless steel pipe.
FIG. 4 is a diagram showing a result of investigation of a frequency distribution with respect to a deviation between a target thickness value and an actual measurement value in an example of the present invention.
FIG. 5 is a diagram showing a result of investigation of a frequency distribution with respect to a deviation between a wall thickness target value and an actual measurement value in a conventional example.
FIG. 6 is a diagram showing an outline of a method for measuring the thickness of a seamless steel pipe using a radiation thickness meter.
[Explanation of symbols]
1 Billet 2 Seamless Element Tube 3 Seamless Steel Tube 4 Weighing Machine 5 Stretch Reducer 6 Rolling Roll 7 Motor 8 Motor Controller 9 Hot Radiation Thickness Meter 10 Hot Length Meter 11 Detection Camera 12 Production Control Computer 13 Rolling Control Calculator

Claims (1)

圧延ロールにより圧延した継目無鋼管の肉厚を放射線厚み計により全長に渡って測定すると共に継目無鋼管の長さを測定し、得られた肉厚測定値t及び長さ測定値Lと圧延ロールのロールバイト径とを用いて継目無鋼管の計算重量W1 を求め、前記肉厚測定値tと、求めた計算重量W1 と、この継目無鋼管の圧延前の鋼片段階で予め測定した実貫重量W0 とを用いて(1)式により継目無鋼管の肉厚を修正し、修正して得られた修正肉厚値tS と肉厚目標値t0 とを比較して、修正肉厚値tS と肉厚目標値t0 との差が小さくなるように、その差に基づき圧延ロールの回転数を制御することを特徴とする継目無鋼管の製造方法。
S=t×[1+(W0−W1)/W0]……(1)
The thickness of the seamless steel pipe rolled by the rolling roll is measured over the entire length by a radiation thickness meter, and the length of the seamless steel pipe is measured, and the obtained thickness measurement value t, length measurement value L, and rolling roll are obtained. The calculated weight W 1 of the seamless steel pipe was determined using the roll bite diameter of the steel sheet, and the thickness measurement value t, the calculated calculated weight W 1, and the billet stage before rolling of the seamless steel pipe were measured in advance. Using the actual weight W 0 , the thickness of the seamless steel pipe is corrected by the formula (1), and the corrected thickness value t S obtained by the correction is compared with the target thickness value t 0 and corrected. A method for producing a seamless steel pipe, characterized in that the number of rotations of a rolling roll is controlled based on a difference between the wall thickness value t S and a wall thickness target value t 0 so as to be small.
t S = t × [1+ (W 0 −W 1 ) / W 0 ] (1)
JP16257699A 1999-06-09 1999-06-09 Seamless steel pipe manufacturing method Expired - Lifetime JP4288757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16257699A JP4288757B2 (en) 1999-06-09 1999-06-09 Seamless steel pipe manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16257699A JP4288757B2 (en) 1999-06-09 1999-06-09 Seamless steel pipe manufacturing method

Publications (2)

Publication Number Publication Date
JP2000351012A JP2000351012A (en) 2000-12-19
JP4288757B2 true JP4288757B2 (en) 2009-07-01

Family

ID=15757219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16257699A Expired - Lifetime JP4288757B2 (en) 1999-06-09 1999-06-09 Seamless steel pipe manufacturing method

Country Status (1)

Country Link
JP (1) JP4288757B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102980518A (en) * 2012-11-23 2013-03-20 中冶辽宁德龙钢管有限公司 Intelligent length-measuring and weighing device and data management method
DE102018217378B3 (en) * 2018-10-11 2020-03-26 Sms Group Gmbh Wall thickness control when reducing pipe stretch
CN115156307B (en) * 2022-07-29 2024-06-25 无锡华贝钢管制造有限公司 Data processing method and system suitable for seamless steel tube

Also Published As

Publication number Publication date
JP2000351012A (en) 2000-12-19

Similar Documents

Publication Publication Date Title
JP4685777B2 (en) Wedge setting and control method in sheet metal rolling
JP4288757B2 (en) Seamless steel pipe manufacturing method
JP3235870B2 (en) Method and apparatus for narrowing tolerances of shape accuracy and dimensional accuracy of rolled product rolled into steel wire row and / or steel bar row
JPS641210B2 (en)
JP3217843B2 (en) Method and apparatus for online non-destructive measurement of properties of continuously manufactured products
WO2006106938A1 (en) Drawing/rolling control method
JPS6277110A (en) Dimension and shape straightening apparatus for hot rolling steel plate
RU2006115561A (en) METHOD AND DEVICE FOR REGULATING THE PROVISIONS DURING THE ROLLING OF ROLLING ROLLS OF A THREE-SWEATER CELL OF THE MILL FOR ROLLING SEAMLESS TUBES ON THE Mandrel
JPH07246414A (en) Method for controlling wall thickness in tube end part with stretch reducer
JP3205118B2 (en) Automatic thickness control method for wrought steel pipe
JP2829065B2 (en) Method of measuring thickness of rolled strip
JP2950182B2 (en) Manufacturing method of tapered steel plate
US11648597B2 (en) Wall thickness monitoring while stretch-reducing tubes
JPH0857512A (en) Manufacture of tapered steel sheet
JP2005186085A (en) Thickness change controller for travelling plate in continuous cold rolling machine
JP2698884B2 (en) Pipe thickness control method with stretch reducer
JPH08257637A (en) Method for flattening tapered thick steel plate
JP3300202B2 (en) Rolling force control method in temper rolling of steel strip
JPS60257912A (en) Automatic screw down control method for reeling mill
JPH01210111A (en) Plate thickness control method for hot finish rolling
JP2001018004A (en) Method for rolling tube stock with mandrel mill and mandrel mill
JPH0471606B2 (en)
JPS6039442B2 (en) How to control the width of plate material
JPS6115761B2 (en)
JPH09257458A (en) Method for measuring shape of end of joint of rolled materials in continuous hot rolling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060908

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4288757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

EXPY Cancellation because of completion of term