JP4287914B2 - Method for producing positive electrode mixture for battery - Google Patents

Method for producing positive electrode mixture for battery Download PDF

Info

Publication number
JP4287914B2
JP4287914B2 JP476697A JP476697A JP4287914B2 JP 4287914 B2 JP4287914 B2 JP 4287914B2 JP 476697 A JP476697 A JP 476697A JP 476697 A JP476697 A JP 476697A JP 4287914 B2 JP4287914 B2 JP 4287914B2
Authority
JP
Japan
Prior art keywords
positive electrode
mixture
weight
electrode mixture
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP476697A
Other languages
Japanese (ja)
Other versions
JPH10199517A (en
Inventor
千洋 村田
康裕 石黒
彰英 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP476697A priority Critical patent/JP4287914B2/en
Publication of JPH10199517A publication Critical patent/JPH10199517A/en
Application granted granted Critical
Publication of JP4287914B2 publication Critical patent/JP4287914B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、機械的な加圧・圧縮を行うことなく見掛け密度の高い合剤を得ることができる、電池の正極合剤製造方法に関する。
【0002】
【従来の技術】
図6は従来におけるリチウム電池の正極合剤の製造方法を模式的に示す工程図であり、同図に示すように、リチウム電池の正極合剤は以下の手順で製造されている。
【0003】
すなわち、▲1▼先ず、正極活物質粉末と導電性炭素粉末とをミキサーで乾式混合する。▲2▼乾式混合後、結着剤と水溶液とを加えてさらに湿式混合する。▲3▼湿式混合後の混合物を吸引ろ過器でろ過する。▲4▼ろ過後の混合物を乾燥機で乾燥する。▲5▼乾燥後の混合物をローラーコンパクターで板状に加圧・圧縮して凝集させ、混合物内部の粉体間の空隙を減らして見掛け密度を高める。▲6▼加圧・圧縮後の板状の混合物を解砕機で解砕する。▲7▼解砕後の混合物を篩で分級し、所望の粒子径の造粒正極合剤を得る。
【0004】
ここで、導電性炭素粉末には黒鉛(グラファイト)、正極活物質粉末には焼成した電解二酸化マンガン(焼成EMD)、結着剤にはテフロン、水溶液には水をそれぞれ用いている。
【0005】
また、図7は従来におけるアルカリ電池の正極合剤の製造方法を模式的に示す工程図であり、同図に示すようにアルカリ電池の正極合剤は以下の手順で製造されている。
【0006】
すなわち、▲1▼先ず、正極活物質粉末と導電性炭素粉末と結着剤とをミキサーで乾式混合する。▲2▼乾式混合後、水溶液を加えてさらに湿式混合する。▲3▼湿式混合後の混合物をローラコンパクターで板状に加圧・圧縮して凝集させ、混合物内部の粉体間の空隙を減らして見掛け密度を高める。▲4▼加圧・圧縮後の板状混合物を解砕機で解砕する。▲5▼解砕後の混合物を篩で分級し、所望の粒子径の造粒正極合剤を得る。
【0007】
ここで、導電性炭素粉末には黒鉛(グラファイト)、正極活物質粉末には電解二酸化マンガン(EMD)、結着剤にはステアリン酸カルシウム、水溶液には水酸化カリウム(KOH)をそれぞれ用いている。
【0008】
【発明が解決しようとする課題】
上記のように、従来の正極合剤の製造方法では、リチウム電池の正極合剤を製造する場合にあっても、またアルカリ電池の正極合剤を製造する場合にあっても、得られる正極合剤の造粒粉体の見掛け密度を高めて良好な放電特性を確保し得るようにするためには、正極活物質粉末と導電性炭素粉末と結着剤及び水溶液との湿潤した状態の混合物をローラーコンパクター等の加圧機械で物理的に加圧・圧縮して板状に凝集させ、混合物内部の粉体間の空隙を減らしておく必要があった。
【0009】
しかしながら、ローラーコンパクターで当該混合物を加圧・圧縮した後に、解砕機で解砕するようにした上記従来の製造方法では、粉体や粉体間の微細な空隙に空気や水分閉じ込められたままである。また、これらローラコンパクターや解砕機等の設備機器の摩耗を避けられないという問題があった。
【0010】
また、板状に加圧・圧縮して凝集した混合物を解砕機で解砕することによって得られる従来の正極合剤の造粒粉体では、形状がフレーク状の流動性に劣る粒子が生成され易く、このため爾後の成形等の後加工に支障が生じないようにその流動性を確保するには、見掛け密度の大きいEMD,グラファイトや滑り性の優れた燐片状のグラファイト等を使用する等、原材料を予め厳選しておく必要があった。
【0011】
本発明は、以上の問題点に鑑みてなされたものであり、その目的は、見かけ密度の高い流動性に優れた造粒正極合剤を、従来のように混合物を加圧・圧縮して解砕するという工程を経ずに得ることができる電池の正極合剤製造方法を提供することにある。
【0012】
【課題を解決するための手段】
上記の目的を達成するために、本発明の請求項1に係る電池正極の合剤製造方法では、正極活物質粉末と導電性炭素粉末と結着剤と水溶液とを減圧系に接続した減圧ミキサーの回転ドラム内に投入して湿式混合し、前記回転ドラムの回転により前記混合した混合物を転動させて所定粒度の球形状に造粒し、前記造粒した前記混合物を転動させながら、前記回転ドラム内を前記減圧系との接続により減圧して乾燥することにより球形顆粒状の正極合剤を製造することを特徴とする。
【0013】
正極活物質粉末と導電性炭素粉末と結着剤と水溶液とを転動混合して湿潤した状態で混練していくと、正極活物質粉末と導電性炭素粉末とが結着して混合物は次第に球形状に造粒されていく。そして、粒子径がほぼ所望の大きさに整粒されたならば、雰囲気を減圧して造粒粉体を減圧乾燥させる。上記球形状に造粒された粉体を減圧しながら乾燥するため粉体間の微細な空隙に空気や水分が閉じ込められることなく凝集し、より見掛け密度の高く粉体相互の接触に優れた造粒正極合剤となる。
【0014】
また、本発明の請求項2に係る電池正極の合剤製造方法では、正極活物質粉末と導電性炭素粉末と結着剤と水溶液とを加熱空気供給系および減圧系に接続した減圧ミキサーの回転ドラム内に投入して湿式混合し、前記回転ドラムの回転により前記混合した混合物を転動させて所定粒度の球形状に造粒し、前記造粒した前記混合物を転動させながら、前記回転ドラム内を前記加熱空気供給系および前記減圧系との接続により加熱および減圧して乾燥することにより球形顆粒状の正極合剤を製造することを特徴とする。
【0015】
この場合には、減圧乾燥時にさらに加熱するので、乾燥時間の短縮化が図れ、しかも減圧下での加熱なので混合物の温度上昇は抑制される。
【0016】
ここで、請求項3の電池正極の合剤製造方法に示すように、正極活物質粉末として二酸化マンガン100重量部、導電性炭素粉末として黒鉛粉末5〜15重量部、結着剤0.1〜1重量部、水溶液3〜30重量部の混合物を転動造粒して得るアルカリ電池正極の合剤を前記請求項1の製造方法にて製造するにあたっては、前記混合物は1重量部当たり0.01気圧/分〜0.05気圧/分にて減圧乾燥することが望ましい。
【0017】
また、請求項4の電池正極の合剤製造方法に示すように、正極活物質粉末として二酸化マンガン100重量部、導電性炭素粉末として黒鉛粉末5〜15重量部、少なくとも2種以上の結着剤0.5〜10重量部、水溶液3〜30重量部の混合物を転動造粒して得るリチウム電池正極の合剤を前記請求項2の製造方法にて製造するにあたっては、前記混合物を加熱しながら1重量部当たり0.01気圧/分〜0.05気圧/分にて減圧乾燥することが望ましい。
【0018】
【発明の実施の形態】
以下に、本発明に係る電池の正極合剤製造方法について、その好適な実施形態例を添付図面に基づき詳細に説明する。
【0019】
先ず、本発明の合剤製造方法にて用いる混合造粒装置の概略構成について説明する。図1に示すように、この混合造粒装置2は減圧ミキサー4と、この減圧ミキサー4の混合室内に加熱空気を送り込む加熱空気供給系6、混合室内の圧力を減圧させる減圧系8、並びに混合室内に水溶液を供給する水溶液供給タンク10とを備えている。上記減圧ミキサー4は内容物を密閉された空間内で転動混合するもので、混合室は回転駆動される回転ドラムによって画成されている。そして、この回転ドラム内の混合室に連通して、上記加熱空気供給系6と減圧系8並びに水溶液供給タンク10とが接続されている。
【0020】
加熱空気供給系6は、ブロワ12と加熱ヒータ14と開閉弁16とからなり、ブロワ12で圧送する大気を加熱ヒータ14で加熱して減圧ミキサー4の混合室内に吹き込むようになっており、開閉弁16は加熱ヒータ14と減圧ミキサー4との間に介設されている。
【0021】
また、減圧系8は真空ポンプ18とコンデンサー20と凝縮水タンク22、並びにフィルタ24、開度調整弁26とからなり、減圧ミキサー4の混合室内の空気を真空ポンプ18で吸引して減圧し、その管路の途中に介設したコンデンサー20で吸引空気中に含まれる蒸気等の水分を凝縮させて凝縮水タンク22に回収するようになっている。また、フィルタ24はコンデンサー20の上流側に設けられて、吸引空気中に含まれる粉体等を除去するようになっており、開度調整弁26はこのフィルター24とコンデンサー20との間に介設されている。
【0022】
また、水溶液供給タンク10と減圧ミキサー4との間にも開閉弁28が設けられている。
【0023】
以上のような混合造粒装置 を用いて、本発明では以下に示す実施例1及び実施例2のようにして電池の正極合剤を製造する。
【0024】
【実施例1】
図2は、正極活物質粉末として二酸化マンガン粉末を100重量部、導電性炭素粉末として黒鉛粉末(グラファイトGr)を5〜15重量部、結着剤としてポリアクリル酸(PA)粉末を1種のみ0.1〜1重量部、水溶液として水酸化カリウム(KOH)水溶液を3〜30重量部の配合割合で混合された混合物を造粒して、アルカリ電池の正極合剤とする場合の製造工程図を示すものである。
【0025】
なお、ここでは表1に示すように、上記黒鉛粉末は11重量部、ポリアクリル酸(結着剤)は0.3重量部、水溶液は22重量部の配合割合とされている。また、上記結着剤としてはポリアクリル酸以外のものでも良く、ステアリン酸カルシウム等一般的に用いられているものを使用できる。
【0026】
【表1】

Figure 0004287914
【0027】
図2に示すように、アルカリ電池の正極合剤は次のような手順で製造される。
【0028】
▲1▼先ず、黒鉛粉末と二酸化マンガン粉末とポリアクリル酸粉末とを上記の配合割合で減圧ミキサー4の混合室内に投入し、回転ドラムを回転駆動させて約3分間程乾式混合する。
【0029】
▲2▼次に、水溶液供給タンク10の開閉弁28を開けてこれに貯留した水酸化カリウム水溶液を混合室内に上記の配合割合分だけ注入して約5分間湿式混合する。
【0030】
▲3▼引き続き、湿潤した状態の混合物を混練させ続け、黒鉛粉末と二酸化マンガンとを結着剤で結着させて球形状に転動造粒していき、造粒粉体の粒度が10〜60メッシュ近辺になるまで整粒混合する。
【0031】
▲4▼その後、転動させながら真空ポンプ18により混合室内を減圧して、減圧下での乾燥を行う。この際、減圧速度は混合物の1重量部あたり0.01気圧/分〜0.05気圧/分にコントロールして、突沸を避けながら、徐々に0.1気圧まで減圧していく。突沸が生じると造粒粉体が粉砕してしまうためである。ここでは、減圧速度は0.02気圧/分に設定している。そして、減圧下で約40分間の乾燥を行い、顆粒状の正極合剤を得る。なお、減圧速度のコントロールは開度調整弁26の制御によって行い、加熱空気供給系6の開閉弁16は閉塞させておく。
【0032】
▲5▼減圧乾燥が終了したならば、減圧ミキサー4内から正極合剤の造粒粉体を取り出して篩にかけ、10〜60メッシュの所望粒度に分級してアルカリ電池の正極合剤とする。ここで、減圧ミキサー4内において0.1気圧の雰囲気下で乾燥されて球形状に造粒された正極合剤は、転動しながら減圧乾燥されることにより粒内の空隙に空気や水分を閉じ込めることなく空隙の少ない見掛け密度の大きな粉体相互の接触に優れた正極合剤となる。
【0033】
以上のようにして製造した本実施例1の正極合剤では、従来のようなローラコンパクター等の機械を用いて物理的に混合物を加圧・圧縮して板状とし、それを解砕機で解砕するという工程を全く経ることなく、表1に示すように1.6〜2.1g/ccという良好な見掛け密度の造粒粉体が得られた。
【0034】
なお、同表1に示す従来例1は、加圧・圧縮工程と解砕工程とを有する前述した図7の従来の製造方法によって製造したアルカリ電池の正極合剤の一例を示すものであるが、この従来方法で得られる正極合剤の1.55〜2.00g/ccの見掛け密度と比較すると本実施例1の正極合剤は数値的には同等か5%ほど上回るものとなっている。
【0035】
また、図3に示すような一般的な筒型構造のLR6型アルカリ乾電池において、その正極作用物質に実施例1の正極合剤を使用したものと、従来例1の正極合剤を使用したものとを作製して、10Ω連続の放電試験を行ったところ、表2に示すように、指数表示で従来例1のものが100であるのに対し、本実施例1のものでは107となり性能の向上が認められた。
【0036】
【表2】
Figure 0004287914
【0037】
ここで、同表2に示すように、実施例1と従来例1の正極合剤はともに粒度は10〜60メッシュであり、粒子形状は実施例1のものは球形状で、従来例1のものはフレーク状であった。また、収率は実施例1のものが87%で、従来例1のものが70%であった。すなわち、本実施例1の正極合剤による性能向上は、粒子形状が球形状であることによる造粒粉体相互の結着性の良さに起因するものと考えられる。
【0038】
また、上記のように本実施例1の正極合剤は造粒粉体の形状が球形に形成されるから、その粒子形状がフレーク状である従来例1のものより流動性に富み、このため成形性に優れ、筒体状に容易に成形できた。
【0039】
なお、図3のアルカリ電池において30は正極缶、32は筒体状に形成された正極合剤、34はセパレータ、36は負極合剤、38は集電子、40は封口キャップ、42はガスケット、44はシール材、46は絶縁リング、48は負極端子であり、その構造は従来から良く知られた一般的なものである。
【0040】
以上のように、本実施例1の製造方法では、正極活物質粉末と導電性炭素粉末と結着剤と水溶液とを減圧ミキサーの混合室内で湿潤した状態で転動混合させて混練し、その混合物を所定粒度の球形状に転動造粒しながら、混合室内の雰囲気を減圧して混合物を減圧乾燥させて顆粒状の造粒粉体を得るので、当該造粒粉体は、粉体間の微細な空隙に空気や水分を閉じ込めることなく凝集し、乾燥終了後には、より見掛け密度が高く粉体相互の接触に優れた造粒正極合剤が得られ、よって従来のようにローラコンパクター等の加圧機で物理的に板状に加圧・圧縮凝集してから解砕機で解砕するといった工程を経ることなく、見掛け密度の高い正極合剤の造粒粉体を製造できる。
【0041】
従って、従来のような加圧機や解砕機等の摩耗を来しやすい設備が不要で、設備のメンテナンスが簡易に行えるようになる。また、混合から乾燥までを減圧ミキサー内で行えるから、混合物を加圧機や解砕機に順次移送していく必要がなく、製造時間の可及的な短縮化が図れて、生産効率を向上できる。また、加圧機や解砕機、並びにこれらへの移送路も不要になるから、設備の設置スペースを可及的に縮小することができる。
【0042】
【実施例2】
図4は、正極活物質として二酸化マンガン(焼成EMD)粉末を100重量部、導電性炭素粉末として黒鉛粉末(グラファイトGr)を5〜15重量部、少なくとも2種以上の結着剤としてポリアクリル酸粉末(結着剤1)とテフロン(結着剤2)とを0.5〜10重量部、水溶液として水酸化リチウム(LiOH)水溶液を3〜30重量部の配合割合で混合された混合物を転動造粒して、リチウム電池の正極合剤とする場合の製造工程図を示すものである。
【0043】
なお、ここでは表3に示すように、上記黒鉛粉末は11重量部、結着剤は1種目のポリアクリル酸(結着剤1)が2重量部、2種目のテフロン(結着剤2)が4重量部、水溶液の水酸化リチウムは22重量部の配合割合とされている。また、上記結着剤1,2としてはポリアクリル酸やテフロン以外のものでも良く、ステアリン酸カルシウム等一般的に用いられているものを使用できる。
【0044】
【表3】
Figure 0004287914
【0045】
図4に示すように、リチウム電池の正極合剤は次のような手順で製造される。
【0046】
▲1▼先ず、黒鉛粉末(グラファイト)と二酸化マンガン粉末(焼成EMD)とポリアクリル酸粉末(結着剤1)とを上記の配合割合で減圧ミキサー4の混合室内に投入し、回転ドラムを回転駆動させて約3分間程乾式混合する。
【0047】
▲2▼次に、水溶液供給タンク10の開閉弁28を開けてこれに貯留した水酸化リチウム(LiOH)水溶液を混合室内に上記の配合割合分だけ注入して約5分間湿式混合する。
【0048】
▲3▼更に2種目の結着剤であるテフロン(結着剤2)を上記所定割合の配合で投入し、引き続き湿潤した状態の混合物を混練し続け、黒鉛粉末と二酸化マンガンとを上記2種の結着剤1,2で結着させて球形状に転動造粒していき、造粒粉体の粒度が20〜80メッシュ近辺になるまで整粒混合する。
【0049】
▲4▼その後、転動させながら減圧ミキサー4の混合室内を加熱しつつ減圧して上記混合物の乾燥を行う。ここで、回転ドラム内の加熱は加熱空気供給系6の開閉弁16を開放してブロワ12から加熱ヒータ14を介して加熱した空気を送り込むことで行う。ここでは250℃〜350℃の加熱空気を使用した。また、減圧は真空ポンプ18により加熱空気の供給量の以上の空気を吸い出すことにより行う。この際、減圧速度は上記混合物の1重量部あたり0.01気圧/分〜0.05気圧/分にコントロールして、突沸を避けながら、徐々に0.1気圧まで減圧していく。突沸が生じると造粒粉体が粉砕してしまうためである。ここでは、減圧速度は0.02気圧/分に設定されている。そして、減圧下で約40分間の乾燥を行い、顆粒状の正極合剤を得る。なお、減圧速度のコントロールは開度調整弁26の制御によって行う。
【0050】
▲5▼減圧乾燥が終了したならば、減圧ミキサー4内から顆粒状に形成された正極合剤の造粒粉体を取り出して篩にかけ、20〜80メッシュの所望粒度に分級してリチウム電池の正極合剤とする。ここで、減圧ミキサー4内において0.1気圧の雰囲気下で乾燥されて、球形状に造粒された正極合剤は、減圧されながら乾燥するため、粉体間の微細な空隙に空気や水分を閉じこめることなく凝集し、より見掛け密度が高く粉体相互の接触に優れたものとなる。
【0051】
なお、混合室内を加熱しても、減圧による温度低下が起こるから、混合室内の温度は上昇することはなく、造粒正極合剤が加熱されて高温になることはなく、その後の分級工程中で結露等の不具合を生じることもない。
【0052】
以上のようにして製造した本実施例2の正極合剤では、実施例1の場合と全く同様に、従来のようなローラコンパクター等の機械を用いて物理的に混合物を板状に加圧・圧縮した後、解砕機で解砕するといった工程を全く経ることなく、表3に示すように1.4〜1.8g/ccの見掛け密度の造粒正極合剤が得られた。
【0053】
また、同表3に示す従来例2は、加圧・圧縮工程と解砕工程とを有する前述した図6の従来の製造方法によって製造したリチウム電池の正極合剤の一例を示すものであるが、この従来方法で得られる0.9〜1.3g/ccの見掛け密度と比較して本実施例2の正極合剤はかなり大きなものとなっている。
【0054】
また、図5に示すようなコイン型のCR2450型リチウム電池において、その正極作用物質に実施例2の正極合剤を使用したものと、従来例2の正極合剤を使用したものとを作製して、2.7kΩ連続の放電試験を行ったところ、表4に示すように、指数表示で従来例2のものが100であるのに対し、本実施例2のものでは110となり性能の向上が認められた。
【0055】
【表4】
Figure 0004287914
【0056】
ここで、同表4に示すように、実施例2と従来例2の正極合剤はともに粒度は20〜80メッシュで、粒子形状は実施例2が球形状で流動性に優れているのに対し、従来例2はフレーク状で流動性に問題がある。その上、それぞれの収率は実施例2のものが88%で、従来例2のものが55%であった。すなわち、本実施例2の正極合剤による性能向上は、粉体間の接触が良好であり、収率が良く流動性に優れていることに起因するものと考えられる。
【0057】
なお、図5のコイン型リチウム電池において50は正極缶、52は正極合剤、54は正極リング、56はセパレータ、58は負極作用物質、60はガスケット、62は負極端子であり、その構造は従来から良く知られた一般的なものである。
【0058】
以上のように、本実施例2の製造方法では、正極活物質粉末と導電性炭素粉末と2種の結着剤1,2と水溶液とを減圧ミキサー4の混合室内で湿潤した状態で転動混合させて混練し、その混合物を所定粒度の球形状に転動造粒した後、さらに転動させつつ混合室内の雰囲気を加熱しながら減圧して混合物を乾燥させて顆粒状の造粒粉体を得る。
【0059】
従って、前述の実施例1の場合と同様に、所定粒度の球形状に造粒された当該粉体をさらに転動させながら加熱および減圧して乾燥するため、粉体間の微細な空隙に空気や水分が閉じ込められることなく、より見掛け密度の高く粉体相互の接触に優れた造粒正極合剤が得られ、従来のようにローラコンパクター等で物理的に加圧・圧縮凝集した後、解砕機で解砕するといった工程を経ることなく見掛け密度の高い正極合剤の造粒粉体を製造でき、加圧機や解砕機等の摩耗を来しやすい設備が不要で、設備のメンテナンスが簡易に行えるようになる。また、混合から乾燥までを減圧ミキサー4内で行えるから、混合物を加圧機や解砕機に順次移送していく必要がなく、製造時間の可及的な短縮化が図れて、生産効率を向上できる。また、加圧機や解砕機、並びにこれらへの移送路も不要になるから、設備の設置スペースを可及的に縮小することができる。
【0060】
さらに、本実施例2によれば加熱しながら減圧乾燥させるので、乾燥時間の可及的な短縮化を図ることができ、生産効率をより向上できる。
【0061】
なお、実施例1及び実施例2ともに、実際に使用した減圧ミキサーは日本アイリッヒ株式会社製のアイリッヒバキュームミキサー(R08Vac)である。また、本発明によれば従来のように見掛け密度の大きいEMD,グラファイトや滑り性に優れた燐片状のグラファイトなどを使用する等、原材料を厳選することなく、粉体間の接触に優れ、球形状で見掛け密度の大きい造粒正極合剤を容易に得ることができる。
【0062】
【発明の効果】
以上、実施例で詳細に説明したように、本発明に係る電池の正極合剤製造方法によれば、次のような優れた効果を発揮する。
【0063】
(1)正極活物質粉末と導電性炭素粉末と結着剤と水溶液とを減圧系に接続した減圧ミキサーの回転ドラム内に投入して湿式混合し、前記回転ドラムの回転により前記混合した混合物を転動させて所定粒度の球形状に造粒し、前記造粒した前記混合物を転動させながら、前記回転ドラム内を前記減圧系との接続により減圧して乾燥することにより球形顆粒状の正極合剤を製造するので、当該造粒粉体は、粉体間の微細な空隙に空気や水分を閉じ込めることなく凝集し、乾燥終了後には、より見掛け密度が高く粉体相互の接触に優れた造粒正極合剤が得られ、かつ乾燥終了後に造粒粉体をその造粒時よりも圧力の高い大気中に晒せば、大気圧に押し潰されて見掛け密度の高い顆粒状の造粒粉体が得られ、従来のようにローラコンパクター等で物理的に加圧・圧縮凝集した後、解砕機で解砕するといった工程を経ることなく見掛け密度の高い正極合剤の造粒粉体を製造できる。
【0064】
(2)加圧機や解砕機等の摩耗を来しやすい設備が不要で、設備のメンテナンスが簡易に行え、混合から乾燥までを減圧ミキサー内で行えるから、混合物を加圧機や解砕機に順次移送していく必要がなく、製造時間の可及的な短縮化が図れて、生産効率を向上できる。また、加圧機や解砕機、並びにこれらへの移送路も不要になるから、設備の設置スペース可及的に縮小することができる。
【0065】
(3)加熱しながら減圧乾燥させるようにすれば、乾燥時間の短縮化が図れ、生産効率をより一層向上できる。
【図面の簡単な説明】
【図1】本発明に係る電池の正極合剤製造方法にて用いる混合造粒装置の概略構成を示すブロック図である。
【図2】アルカリ電池の正極合剤に本発明の製造方法を適用する場合の一実施例を示すもので、製造工程の概略図である。
【図3】図2に示す製造方法にて製造された正極合剤を用いて作製したLR6型のアルカリ電池の構造を示す縦断面図である。
【図4】リチウム電池の正極合剤に本発明の製造方法を適用する場合の一実施例を示すもので、製造工程の概略図である。
【図5】図4に示す製造方法にて製造された正極合剤を用いて作製したCR2450型のリチウム電池の構造を示す縦断面図である。
【図6】従来におけるリチウム電池の正極合剤製造方法を概略的に示す工程図である。
【図7】従来におけるアルカリ電池の正極合剤製造方法を概略的に示す工程図である。
【符号の説明】
2 混合造粒装置 4 減圧ミキサー
6 加熱空気供給系 8 減圧系
10 水溶液供給タンク 12 ブロワ
14 加熱ヒータ 16 開閉弁
18 真空ポンプ 20 コンデンサー
22 凝縮水タンク 24 フィルタ
26 開度調整弁 28 開閉弁
30,50 正極缶 32,52 正極合剤
34,56 セパレータ 36,58 負極合剤
38 集電子 40 封口キャップ
42 ガスケット 44 シール材
46 絶縁リング 48,62 負極端子
54 正極リング 60 ガスケット[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a positive electrode mixture for a battery, in which a mixture having a high apparent density can be obtained without performing mechanical pressure and compression.
[0002]
[Prior art]
FIG. 6 is a process diagram schematically showing a conventional method for producing a positive electrode mixture for a lithium battery. As shown in FIG. 6, the positive electrode mixture for a lithium battery is produced by the following procedure.
[0003]
(1) First, the positive electrode active material powder and the conductive carbon powder are dry-mixed with a mixer. (2) After dry mixing, a binder and an aqueous solution are added and further wet mixed. (3) The mixture after wet mixing is filtered with a suction filter. (4) The filtered mixture is dried with a dryer. (5) The dried mixture is pressed and compressed into a plate shape with a roller compactor to agglomerate, and the gap between powders inside the mixture is reduced to increase the apparent density. (6) Crush the plate-like mixture after pressurization and compression with a crusher. (7) The pulverized mixture is classified with a sieve to obtain a granulated positive electrode mixture having a desired particle size.
[0004]
Here, graphite (graphite) is used for the conductive carbon powder, sintered manganese dioxide (baked EMD) is used for the positive electrode active material powder, Teflon is used for the binder, and water is used for the aqueous solution.
[0005]
FIG. 7 is a process diagram schematically showing a conventional method for producing a positive electrode mixture for an alkaline battery. As shown in FIG. 7, the positive electrode mixture for an alkaline battery is produced by the following procedure.
[0006]
(1) First, the positive electrode active material powder, the conductive carbon powder, and the binder are dry-mixed with a mixer. (2) After dry mixing, an aqueous solution is added and further wet mixed. (3) The mixture after wet mixing is pressed and compressed into a plate shape with a roller compactor to agglomerate, and voids between powders inside the mixture are reduced to increase the apparent density. (4) Crush the plate-like mixture after pressurization and compression with a crusher. (5) The pulverized mixture is classified with a sieve to obtain a granulated positive electrode mixture having a desired particle size.
[0007]
Here, graphite (graphite) is used for the conductive carbon powder, electrolytic manganese dioxide (EMD) is used for the positive electrode active material powder, calcium stearate is used for the binder, and potassium hydroxide (KOH) is used for the aqueous solution.
[0008]
[Problems to be solved by the invention]
As described above, in the conventional method for producing a positive electrode mixture, even when a positive electrode mixture for a lithium battery is produced or a positive electrode mixture for an alkaline battery is produced, the obtained positive electrode mixture is obtained. In order to increase the apparent density of the granulated powder of the agent and ensure good discharge characteristics, a wet mixture of the positive electrode active material powder, the conductive carbon powder, the binder and the aqueous solution is used. It was necessary to physically press and compress with a press machine such as a roller compactor to agglomerate into a plate shape and reduce the gaps between the powders inside the mixture.
[0009]
However, after the mixture was pressurized and compressed in a roller compactor, in the above conventional manufacturing methods to be disintegrated in the disintegrator, the fine voids between the powder and the powder remains air or moisture trapped is there. Further, there is a problem that wear of equipment such as the roller compactor and the crusher cannot be avoided.
[0010]
In addition, granulated powder of a conventional positive electrode mixture obtained by crushing a mixture that has been agglomerated by pressing and compressing into a plate shape with a crusher produces particles with inferior fluidity in the form of flakes. For this reason, in order to ensure fluidity so as not to hinder post-processing such as molding after molding, EMD with high apparent density, graphite, flake-like graphite with excellent sliding properties, etc. are used. The raw materials had to be carefully selected in advance.
[0011]
The present invention has been made in view of the above problems, and its purpose is to dissolve a granulated positive electrode mixture having a high apparent density and excellent fluidity by pressurizing and compressing a mixture as in the conventional art. The object is to provide a method for producing a positive electrode mixture for a battery, which can be obtained without going through a step of crushing.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, in the method for producing a battery positive electrode mixture according to claim 1 of the present invention, a vacuum mixer in which a positive electrode active material powder, a conductive carbon powder, a binder, and an aqueous solution are connected to a vacuum system. Into the rotating drum, wet mixing, rolling the mixed mixture by the rotation of the rotating drum to granulate into a spherical shape of a predetermined particle size, while rolling the granulated mixture, A spherical granule-shaped positive electrode mixture is produced by reducing the pressure inside the rotating drum by connecting to the pressure reducing system and drying it .
[0013]
When the positive electrode active material powder, the conductive carbon powder, the binder, and the aqueous solution are tumbled and mixed and kneaded in a wet state, the positive electrode active material powder and the conductive carbon powder are bound, and the mixture gradually becomes a mixture. It is granulated into a spherical shape. When the particle size is adjusted to a desired size, the atmosphere is decompressed and the granulated powder is dried under reduced pressure. Since the spherically granulated powder is dried under reduced pressure, air and moisture are agglomerated without being trapped in the fine gaps between the powders, and the powder has a higher apparent density and excellent contact with each other. It becomes a grain cathode mix.
[0014]
In the method for producing a battery positive electrode mixture according to claim 2 of the present invention, the rotation of the vacuum mixer in which the positive electrode active material powder, the conductive carbon powder, the binder and the aqueous solution are connected to the heated air supply system and the vacuum system. The rotating drum is put into a drum and wet-mixed, the mixed mixture is rolled by the rotation of the rotating drum to granulate into a spherical shape of a predetermined particle size, and the granulated mixture is rolled while the rotating drum is rotated. A spherical granular positive electrode mixture is produced by heating and depressurizing the inside through connection with the heated air supply system and the decompression system, and drying .
[0015]
In this case, since further heating is performed at the time of drying under reduced pressure, the drying time can be shortened, and further, since the heating is performed under reduced pressure, the temperature rise of the mixture is suppressed.
[0016]
Here, as shown in the method for producing a battery positive electrode mixture of claim 3, 100 parts by weight of manganese dioxide as the positive electrode active material powder, 5 to 15 parts by weight of graphite powder as the conductive carbon powder, and 0.1 to 0.1 binder. In producing a mixture of an alkaline battery positive electrode obtained by rolling and granulating a mixture of 1 part by weight and 3 to 30 parts by weight of an aqueous solution by the production method of claim 1, the mixture is about 0.001 per part by weight. It is desirable to dry under reduced pressure at 01 atm / min to 0.05 atm / min.
[0017]
Further, as shown in the method for producing a battery positive electrode mixture according to claim 4, 100 parts by weight of manganese dioxide as a positive electrode active material powder, 5 to 15 parts by weight of graphite powder as a conductive carbon powder, and at least two or more binders In producing the lithium battery positive electrode mixture obtained by rolling and granulating a mixture of 0.5 to 10 parts by weight and 3 to 30 parts by weight of an aqueous solution by the production method of claim 2, the mixture is heated. However, it is desirable to dry under reduced pressure at 0.01 atm / min to 0.05 atm / min per part by weight.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the method for producing a positive electrode mixture for a battery according to the present invention will be described in detail with reference to the accompanying drawings.
[0019]
First, the schematic configuration of the mixing granulator used in the method for producing a mixture of the present invention will be described. As shown in FIG. 1, this mixing granulator 2 includes a decompression mixer 4, a heated air supply system 6 for sending heated air into the mixing chamber of the decompression mixer 4, a decompression system 8 for reducing the pressure in the mixing chamber, and a mixing An aqueous solution supply tank 10 for supplying an aqueous solution into the room is provided. The vacuum mixer 4 rolls and mixes the contents in a sealed space, and the mixing chamber is defined by a rotating drum that is driven to rotate. The heated air supply system 6, the decompression system 8, and the aqueous solution supply tank 10 are connected to the mixing chamber in the rotating drum.
[0020]
The heated air supply system 6 includes a blower 12, a heater 14, and an opening / closing valve 16, and the atmosphere fed by the blower 12 is heated by the heater 14 and blown into the mixing chamber of the decompression mixer 4. The valve 16 is interposed between the heater 14 and the decompression mixer 4.
[0021]
The decompression system 8 includes a vacuum pump 18, a condenser 20, a condensed water tank 22, a filter 24, and an opening adjustment valve 26. The vacuum pump 18 sucks the air in the mixing chamber of the decompression mixer 4 to reduce the pressure, The condenser 20 interposed in the middle of the pipe line condenses moisture such as steam contained in the suction air and collects it in the condensed water tank 22. In addition, the filter 24 is provided on the upstream side of the condenser 20 so as to remove powder and the like contained in the suction air, and the opening adjustment valve 26 is interposed between the filter 24 and the condenser 20. It is installed.
[0022]
An on-off valve 28 is also provided between the aqueous solution supply tank 10 and the decompression mixer 4.
[0023]
In the present invention, a positive electrode mixture for a battery is produced as in Examples 1 and 2 shown below using the above-described mixing granulator.
[0024]
[Example 1]
FIG. 2 shows 100 parts by weight of manganese dioxide powder as the positive electrode active material powder, 5 to 15 parts by weight of graphite powder (graphite Gr) as the conductive carbon powder, and only one type of polyacrylic acid (PA) powder as the binder. Production process diagram in the case of granulating a mixture of 0.1 to 1 part by weight, 3 to 30 parts by weight of potassium hydroxide (KOH) aqueous solution as an aqueous solution to make a positive electrode mixture of an alkaline battery Is shown.
[0025]
Here, as shown in Table 1, the graphite powder is 11 parts by weight, polyacrylic acid (binder) is 0.3 parts by weight, and the aqueous solution is 22 parts by weight. The binder may be other than polyacrylic acid, and generally used ones such as calcium stearate can be used.
[0026]
[Table 1]
Figure 0004287914
[0027]
As shown in FIG. 2, the positive electrode mixture of the alkaline battery is manufactured by the following procedure.
[0028]
(1) First, graphite powder, manganese dioxide powder and polyacrylic acid powder are put into the mixing chamber of the vacuum mixer 4 at the above blending ratio, and the rotary drum is driven to rotate for about 3 minutes.
[0029]
(2) Next, the on-off valve 28 of the aqueous solution supply tank 10 is opened, and the potassium hydroxide aqueous solution stored therein is injected into the mixing chamber by the above blending ratio and wet-mixed for about 5 minutes.
[0030]
(3) Subsequently, the wet mixture is continuously kneaded, and graphite powder and manganese dioxide are bound with a binder to roll and granulate into a spherical shape. Adjust and mix until it is around 60 mesh.
[0031]
{Circle around (4)} Thereafter, the pressure in the mixing chamber is reduced by the vacuum pump 18 while rolling, and drying is performed under reduced pressure. At this time, the pressure reduction rate is controlled to 0.01 atm / min to 0.05 atm / min per 1 part by weight of the mixture, and the pressure is gradually reduced to 0.1 atm while avoiding bumping. This is because the granulated powder is crushed when bumping occurs. Here, the decompression speed is set to 0.02 atm / min. Then, drying is performed under reduced pressure for about 40 minutes to obtain a granular positive electrode mixture. The pressure reduction speed is controlled by the opening adjustment valve 26, and the on-off valve 16 of the heated air supply system 6 is closed.
[0032]
(5) After drying under reduced pressure, the granulated powder of the positive electrode mixture is taken out from the vacuum mixer 4 and sieved, and classified to a desired particle size of 10 to 60 mesh to obtain a positive electrode mixture for an alkaline battery. Here, the positive electrode mixture that has been dried in a vacuum mixer 4 under an atmosphere of 0.1 atm and granulated into a spherical shape is dried under reduced pressure while rolling, so that air and moisture are contained in the voids in the granules. It becomes a positive electrode mixture excellent in contact between powders having a large apparent density with few voids without being confined.
[0033]
In the positive electrode mixture of Example 1 manufactured as described above, the mixture is physically pressed and compressed into a plate shape using a conventional machine such as a roller compactor, and the mixture is crushed by a crusher. As shown in Table 1, a granulated powder having a good apparent density of 1.6 to 2.1 g / cc was obtained without any pulverization step.
[0034]
In addition, although the prior art example 1 shown in the same table 1 shows an example of the positive mix of the alkaline battery manufactured by the conventional manufacturing method of FIG. 7 mentioned above which has a pressurization / compression process and a crushing process. In comparison with the apparent density of 1.55 to 2.00 g / cc of the positive electrode mixture obtained by this conventional method, the positive electrode mixture of Example 1 is numerically equivalent or about 5% higher. .
[0035]
Moreover, in the LR6 type alkaline dry battery having a general cylindrical structure as shown in FIG. 3, the positive electrode mixture of Example 1 is used as the positive electrode active substance, and the positive electrode mixture of Conventional Example 1 is used. And a 10 Ω continuous discharge test was conducted. As shown in Table 2, the index of the conventional example 1 is 100 as shown in Table 2, while the value of the present example 1 is 107. An improvement was observed.
[0036]
[Table 2]
Figure 0004287914
[0037]
Here, as shown in Table 2, the positive electrode mixture of Example 1 and Conventional Example 1 has a particle size of 10 to 60 mesh, the particle shape of Example 1 is spherical, The thing was flaky. The yield of Example 1 was 87%, and that of Conventional Example 1 was 70%. That is, it is considered that the performance improvement by the positive electrode mixture of Example 1 is caused by the good binding property between the granulated powders due to the spherical particle shape.
[0038]
In addition, as described above, the positive electrode mixture of Example 1 is formed in a spherical shape in the granulated powder, and thus has a higher fluidity than that of Conventional Example 1 in which the particle shape is flaky. It was excellent in moldability and could be easily formed into a cylindrical shape.
[0039]
In the alkaline battery of FIG. 3, 30 is a positive electrode can, 32 is a positive electrode mixture formed in a cylindrical shape, 34 is a separator, 36 is a negative electrode mixture, 38 is a current collector, 40 is a sealing cap, 42 is a gasket, Reference numeral 44 denotes a sealing material, 46 denotes an insulating ring, and 48 denotes a negative electrode terminal, and the structure thereof is a well-known general one.
[0040]
As described above, in the production method of Example 1, the positive electrode active material powder, the conductive carbon powder, the binder, and the aqueous solution are tumbled and mixed in a wet state in the mixing chamber of the vacuum mixer, While rolling and granulating the mixture into a spherical shape with a predetermined particle size, the atmosphere in the mixing chamber is decompressed and the mixture is dried under reduced pressure to obtain a granular granulated powder. Agglomerated without confining air and moisture in the fine voids of the particles, and after drying , a granulated positive electrode mixture with higher apparent density and excellent contact between powders can be obtained. A granulated powder of a positive electrode mixture having a high apparent density can be produced without going through the steps of physically pressing and compressing and agglomerating into a plate shape with a pressurizer and then crushing with a crusher.
[0041]
Therefore, a conventional equipment such as a pressurizer or a crusher that is likely to wear is unnecessary, and the maintenance of the equipment can be performed easily. Further, since mixing to drying can be performed in a vacuum mixer, it is not necessary to sequentially transfer the mixture to a pressurizer or a crusher, and the production time can be shortened as much as possible, thereby improving production efficiency. Moreover, since a pressurizer, a crusher, and a transfer path to them are not required, the installation space for equipment can be reduced as much as possible.
[0042]
[Example 2]
FIG. 4 shows 100 parts by weight of manganese dioxide (fired EMD) powder as the positive electrode active material, 5 to 15 parts by weight of graphite powder (graphite Gr) as the conductive carbon powder, and polyacrylic acid as at least two kinds of binders. A mixture prepared by mixing 0.5 to 10 parts by weight of powder (binder 1) and Teflon (binder 2) and 3 to 30 parts by weight of a lithium hydroxide (LiOH) aqueous solution as an aqueous solution was transferred. The manufacturing process figure in the case of carrying out dynamic granulation and setting it as the positive mix of a lithium battery is shown.
[0043]
Here, as shown in Table 3, the graphite powder is 11 parts by weight, the binder is 2 parts by weight of the first polyacrylic acid (Binder 1), and the second kind of Teflon (Binder 2). Is 4 parts by weight, and the lithium hydroxide in the aqueous solution is 22 parts by weight. The binders 1 and 2 may be other than polyacrylic acid and Teflon, and generally used ones such as calcium stearate can be used.
[0044]
[Table 3]
Figure 0004287914
[0045]
As shown in FIG. 4, the positive electrode mixture of the lithium battery is manufactured by the following procedure.
[0046]
(1) First, graphite powder (graphite), manganese dioxide powder (fired EMD), and polyacrylic acid powder (binder 1) are charged into the mixing chamber of the vacuum mixer 4 at the above blending ratio, and the rotating drum is rotated. Drive to dry mix for about 3 minutes.
[0047]
(2) Next, the on-off valve 28 of the aqueous solution supply tank 10 is opened, and the lithium hydroxide (LiOH) aqueous solution stored therein is injected into the mixing chamber by the above blending ratio and wet mixed for about 5 minutes.
[0048]
(3) Further, Teflon (binding agent 2), which is the second kind of binder, is added in the above-mentioned proportion, and the wet mixture is continuously kneaded, and graphite powder and manganese dioxide are mixed into the above two kinds. The binders 1 and 2 are rolled and granulated into a spherical shape, and the granulated powder is sized and mixed until the particle size of the granulated powder is around 20 to 80 mesh.
[0049]
{Circle around (4)} Thereafter, the mixture is dried while heating the mixing chamber of the vacuum mixer 4 while rolling. Here, heating in the rotating drum is performed by opening the on-off valve 16 of the heated air supply system 6 and feeding heated air from the blower 12 through the heater 14. Here, heated air of 250 ° C. to 350 ° C. was used. Further, the decompression is performed by sucking out the air exceeding the supply amount of the heated air by the vacuum pump 18. At this time, the pressure reduction rate is controlled to 0.01 atm / min to 0.05 atm / min per 1 part by weight of the mixture, and the pressure is gradually reduced to 0.1 atm while avoiding bumping. This is because the granulated powder is crushed when bumping occurs. Here, the decompression speed is set to 0.02 atm / min. Then, drying is performed under reduced pressure for about 40 minutes to obtain a granular positive electrode mixture. The decompression speed is controlled by controlling the opening adjustment valve 26.
[0050]
(5) When the drying under reduced pressure is completed, the granulated powder of the positive electrode mixture formed in a granular shape is taken out from the vacuum mixer 4 and sieved, and classified into a desired particle size of 20 to 80 mesh to obtain a lithium battery. A positive electrode mixture is used. Here, since the positive electrode mixture dried in a vacuum mixer 4 under an atmosphere of 0.1 atm and granulated into a spherical shape is dried while being decompressed, air or moisture is contained in fine voids between the powders. Aggregates without confining the particles, resulting in a higher apparent density and excellent contact between powders.
[0051]
In addition, even if the mixing chamber is heated, the temperature drops due to reduced pressure, so the temperature in the mixing chamber does not increase, the granulated cathode mixture is not heated to a high temperature, and during the subsequent classification process Therefore, there is no problem such as condensation.
[0052]
In the positive electrode mixture of Example 2 produced as described above, the mixture was physically pressed into a plate shape using a conventional machine such as a roller compactor, exactly as in Example 1. After compression, a granulated positive electrode mixture having an apparent density of 1.4 to 1.8 g / cc was obtained as shown in Table 3 without passing through any step of crushing with a crusher.
[0053]
In addition, Conventional Example 2 shown in Table 3 shows an example of a positive electrode mixture of a lithium battery manufactured by the above-described conventional manufacturing method of FIG. 6 having a pressurizing / compressing process and a crushing process. In comparison with the apparent density of 0.9 to 1.3 g / cc obtained by this conventional method, the positive electrode mixture of Example 2 is considerably large.
[0054]
Further, in the coin-type CR2450 type lithium battery as shown in FIG. 5, a battery using the positive electrode mixture of Example 2 as a positive electrode active substance and a battery using the positive electrode mixture of Conventional Example 2 were prepared. Then, when a discharge test of 2.7 kΩ was performed, as shown in Table 4, the index value of the conventional example 2 is 100, whereas the index of the present example 2 is 110, and the performance is improved. Admitted.
[0055]
[Table 4]
Figure 0004287914
[0056]
Here, as shown in Table 4, both the positive electrode mixture of Example 2 and Conventional Example 2 have a particle size of 20 to 80 mesh, and the particle shape of Example 2 is spherical and excellent in fluidity. On the other hand, Conventional Example 2 is flaky and has a problem of fluidity. In addition, the yield of Example 2 was 88% and that of Conventional Example 2 was 55%. That is, it is considered that the performance improvement by the positive electrode mixture of Example 2 is caused by good contact between powders, high yield, and excellent fluidity.
[0057]
In the coin-type lithium battery of FIG. 5, 50 is a positive electrode can, 52 is a positive electrode mixture, 54 is a positive electrode ring, 56 is a separator, 58 is a negative electrode active substance, 60 is a gasket, and 62 is a negative electrode terminal. It is a well-known general one.
[0058]
As described above, in the manufacturing method of Example 2, the positive electrode active material powder, the conductive carbon powder, the two binders 1 and 2 and the aqueous solution roll in a wet state in the mixing chamber of the vacuum mixer 4. the mixed was then kneaded, its after the mixture was rolling granulation into a spherical shape having a predetermined particle size, further dried rolling is allowed while mixing the atmosphere in the mixing chamber with heating under reduced pressure product granular granulated powder Get.
[0059]
Accordingly, in the same manner as in the case of Example 1 described above, the powder granulated into a spherical shape with a predetermined particle size is further dried while being rolled and heated and decompressed. A granulated positive electrode mixture with higher apparent density and excellent contact between powders can be obtained without trapping water and moisture, and after being physically pressurized and compressed and agglomerated with a roller compactor, etc. It is possible to produce granulated powder of positive mix with high apparent density without going through the process of crushing with a crusher, eliminating the need for equipment that tends to wear such as a pressurizer or crusher, and simplifying equipment maintenance. You can do it. In addition, since mixing to drying can be performed in the vacuum mixer 4, it is not necessary to sequentially transfer the mixture to a pressurizer or a crusher, and the production time can be shortened as much as possible to improve production efficiency. . Moreover, since a pressurizer, a crusher, and a transfer path to them are not required, the installation space for equipment can be reduced as much as possible.
[0060]
Furthermore, according to the second embodiment, drying is performed under reduced pressure while heating, so that the drying time can be shortened as much as possible, and the production efficiency can be further improved.
[0061]
In both Examples 1 and 2, the vacuum mixer actually used was an Eirich vacuum mixer (R08Vac) manufactured by Nihon Eirich Corporation. In addition, according to the present invention , it is excellent in contact between powders without carefully selecting raw materials, such as using EMD with a large apparent density, graphite or flake-like graphite with excellent sliding properties as in the past, A granulated positive electrode mixture having a spherical shape and high apparent density can be easily obtained.
[0062]
【The invention's effect】
As described above in detail in the examples, the battery positive electrode mixture manufacturing method according to the present invention exhibits the following excellent effects.
[0063]
(1) The positive electrode active material powder, the conductive carbon powder, the binder, and the aqueous solution are put into a rotary drum of a vacuum mixer connected to a vacuum system, wet-mixed, and the mixed mixture is rotated by the rotation of the rotary drum. Rolled and granulated into a spherical shape of a predetermined particle size, and while rolling the granulated mixture, the inside of the rotating drum was decompressed and dried by connection with the decompression system, thereby forming a spherical granular positive electrode Since the mixture is manufactured, the granulated powder agglomerates without trapping air or moisture in the fine gaps between the powders, and after drying is finished, the apparent density is higher and the powders are excellent in contact with each other. If a granulated positive electrode mixture is obtained, and the granulated powder is exposed to the atmosphere at a pressure higher than that at the time of granulation after drying, it is crushed to atmospheric pressure and granulated granulated powder with a high apparent density The body is obtained, and it is possible to use a roller compactor etc. Manner after the pressure-compression agglomeration, it can produce granulated powder without high apparent density cathode mixture going through the steps, such as disintegrated by the disintegrator.
[0064]
(2) Equipment that tends to wear, such as a pressurizer and crusher, is not required, equipment maintenance can be performed easily, and mixing to drying can be performed in a vacuum mixer, so the mixture is sequentially transferred to the pressurizer and crusher. It is not necessary to reduce the manufacturing time, and the production time can be shortened as much as possible to improve the production efficiency. Moreover, since a pressurizer, a crusher, and a transfer path to these are not required, the installation space of the facility can be reduced as much as possible.
[0065]
(3) By drying under reduced pressure while heating, the drying time can be shortened and the production efficiency can be further improved.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a schematic configuration of a mixing granulator used in a method for producing a positive electrode mixture for a battery according to the present invention.
FIG. 2 is a schematic view of a production process, showing an example in which the production method of the present invention is applied to a positive electrode mixture of an alkaline battery.
3 is a longitudinal sectional view showing the structure of an LR6 type alkaline battery manufactured using the positive electrode mixture manufactured by the manufacturing method shown in FIG. 2;
FIG. 4 is a schematic diagram of a production process, showing an example in which the production method of the present invention is applied to a positive electrode mixture of a lithium battery.
5 is a longitudinal sectional view showing the structure of a CR2450-type lithium battery produced using the positive electrode mixture produced by the production method shown in FIG.
FIG. 6 is a process diagram schematically showing a conventional method for producing a positive electrode mixture for a lithium battery.
FIG. 7 is a process chart schematically showing a conventional method for producing a positive electrode mixture for an alkaline battery.
[Explanation of symbols]
2 Mixing granulator 4 Decompression mixer 6 Heated air supply system 8 Depressurization system 10 Aqueous solution supply tank 12 Blower 14 Heater 16 Open / close valve 18 Vacuum pump 20 Condenser 22 Condensed water tank 24 Filter 26 Opening adjustment valve 28 Open / close valve 30, 50 Positive electrode can 32,52 Positive electrode mixture 34,56 Separator 36,58 Negative electrode mixture 38 Current collector 40 Sealing cap 42 Gasket 44 Sealing material 46 Insulating ring 48,62 Negative electrode terminal 54 Positive electrode ring 60 Gasket

Claims (4)

正極活物質粉末と導電性炭素粉末と結着剤と水溶液とを減圧系に接続した減圧ミキサーの回転ドラム内に投入して湿式混合し、前記回転ドラムの回転により前記混合した混合物を転動させて所定粒度の球形状に造粒し、前記造粒した前記混合物を転動させながら、前記回転ドラム内を前記減圧系との接続により減圧して乾燥することにより球形顆粒状の正極合剤を製造することを特徴とする電池の正極合剤製造方法。The positive electrode active material powder, the conductive carbon powder, the binder, and the aqueous solution are put into a rotary drum of a vacuum mixer connected to a vacuum system and wet-mixed, and the mixed mixture is rolled by the rotation of the rotary drum. A spherical granular positive electrode mixture is obtained by granulating into a spherical shape of a predetermined particle size and rolling the granulated mixture while reducing the pressure inside the rotary drum by connection to the vacuum system. A method for producing a positive electrode mixture for a battery. 正極活物質粉末と導電性炭素粉末と結着剤と水溶液とを加熱空気供給系および減圧系に接続した減圧ミキサーの回転ドラム内に投入して湿式混合し、前記回転ドラムの回転により前記混合した混合物を転動させて所定粒度の球形状に造粒し、前記造粒した前記混合物を転動させながら、前記回転ドラム内を前記加熱空気供給系および前記減圧系との接続により加熱および減圧して乾燥することにより球形顆粒状の正極合剤を製造することを特徴とする電池の正極合剤製造方法。The positive electrode active material powder, the conductive carbon powder, the binder, and the aqueous solution are put into a rotary drum of a vacuum mixer connected to a heated air supply system and a vacuum system and wet-mixed, and the mixing is performed by rotating the rotary drum. The mixture is rolled and granulated into a spherical shape of a predetermined particle size, and while rotating the granulated mixture, the inside of the rotating drum is heated and depressurized by connection with the heated air supply system and the decompression system. A method for producing a positive electrode mixture for a battery, comprising producing a spherical granular positive electrode mixture by drying the mixture. 前記湿式混合は前記正極活物質粉末として二酸化マンガン100重量部、前記導電性炭素粉末として黒鉛5〜15重量部、前記結着剤0.1〜1重量部、前記水溶液3〜30重量部を前記回転ドラム内に投入することにより行い前記乾燥は前記混合物の1重量部あたり0.01気圧/分〜0.05気圧/分の減圧速度にて行うことによりアルカリ電池の正極合剤を製造することを特徴とする請求項1記載の電池の正極合剤製造方法。 The wet mixing the positive electrode active material powder as manganese dioxide 100 parts by weight, 5 to 15 parts by weight of graphite as the conductive carbon powder, the binder 0.1-1 parts by weight, the said aqueous solution of 3 to 30 parts by weight performed by injecting into the rotary drum, the drying to produce a positive electrode mixture of alkaline batteries by performing under reduced pressure rate of 0.01 atm / min to 0.05 atm / min per 1 part by weight of said mixture The method for producing a positive electrode mixture for a battery according to claim 1. 前記湿式混合は前記正極活物質粉末として二酸化マンガン100重量部、前記導電性炭素粉末として黒鉛5〜15重量部、少なくとも2種以上の前記結着剤0.5〜10重量部、前記水溶液3〜30重量部を前記回転ドラム内に投入することにより行い前記乾燥は前記混合物の1重量部あたり0.01気圧/分〜0.05気圧/分の減圧速度にて行うことによりリチウム電池の正極合剤を製造することを特徴とする請求項2記載の電池の正極合剤製造方法。 The wet mixing the positive electrode active material powder as manganese dioxide 100 parts by weight, 5 to 15 parts by weight of graphite as the conductive carbon powder, at least two or more of said binder 0.5 to 10 parts by weight, the aqueous solution 3 30 parts by weight is put into the rotating drum, and the drying is performed at a reduced pressure rate of 0.01 to 0.05 atm / min per 1 part by weight of the mixture to thereby form a positive electrode for a lithium battery. The method for producing a positive electrode mixture for a battery according to claim 2, wherein the mixture is produced.
JP476697A 1997-01-14 1997-01-14 Method for producing positive electrode mixture for battery Expired - Lifetime JP4287914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP476697A JP4287914B2 (en) 1997-01-14 1997-01-14 Method for producing positive electrode mixture for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP476697A JP4287914B2 (en) 1997-01-14 1997-01-14 Method for producing positive electrode mixture for battery

Publications (2)

Publication Number Publication Date
JPH10199517A JPH10199517A (en) 1998-07-31
JP4287914B2 true JP4287914B2 (en) 2009-07-01

Family

ID=11592998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP476697A Expired - Lifetime JP4287914B2 (en) 1997-01-14 1997-01-14 Method for producing positive electrode mixture for battery

Country Status (1)

Country Link
JP (1) JP4287914B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001256969A (en) * 2000-03-14 2001-09-21 Toshiba Battery Co Ltd Zinc alkaline battery and manufacturing method of cathode mixture therefor
US7754382B2 (en) 2003-07-30 2010-07-13 Tdk Corporation Electrochemical capacitor having at least one electrode including composite particles
JP6050733B2 (en) * 2013-09-05 2016-12-21 株式会社井上製作所 Method and apparatus for producing aqueous electrode material for lithium ion secondary battery
JP6986472B2 (en) * 2018-03-22 2021-12-22 Fdk株式会社 Manufacturing method of electrode material for batteries

Also Published As

Publication number Publication date
JPH10199517A (en) 1998-07-31

Similar Documents

Publication Publication Date Title
JP4206269B2 (en) Sealed nickel-zinc primary battery, positive electrode thereof and manufacturing method thereof
KR102156133B1 (en) Method for producing binder-free coal-based molding activated carbon
JP2011506254A (en) Process for producing electrode active materials for lithium ion batteries
JPH10508141A (en) Method of manufacturing cathode components for use in electrochemical cells
KR20130040934A (en) Carbon-lithium transition metal phosphate composite material having a low carbon content
EP2298941A1 (en) Briquette manufacturing method, reductive metal manufacturing method, and zinc or lead separation method
JP4287914B2 (en) Method for producing positive electrode mixture for battery
CN115432698A (en) Carbon secondary particle and preparation method thereof, artificial graphite and preparation method thereof, lithium ion battery cathode material and lithium ion battery
CN114005972A (en) LLTO/nano flaky lithium cobaltate composite cathode material and preparation method thereof
CN108232195B (en) Pole piece forming method of water-based ion battery based on polytetrafluoroethylene binder
JP6295783B2 (en) Method for producing sintered ore
CN113594460A (en) Method for preparing lithium iron phosphate composite material by high-temperature kneading
JP4086931B2 (en) Method for producing high density spinel type LiMn2O4
CN108862230B (en) Treatment method of lithium iron phosphate superfine powder material
JP3881111B2 (en) Method for producing high density spinel type LiMn2O4
JP2001035756A (en) Manufacture of polarizable electrode for capacitor
CN108199025B (en) Preparation method of high-compaction-density lithium-rich manganese-based positive electrode material
JP2001307964A (en) Manufacturing method of polarizable electrode for capacitor
CN115312726A (en) Silicon-carbon composite material, preparation method thereof and lithium ion battery
KR100544107B1 (en) Electrode making device used in secondary battery
JP4058797B2 (en) Method for producing lithium cobalt oxide particle powder
JP2818602B2 (en) Method for producing positive electrode mixture in manganese dry battery
JP3840151B2 (en) Method for forming steelmaking raw materials using waste synthetic resin powder
CN112279307B (en) High-magnification lithium cobaltate and preparation method and application thereof
JP3470991B2 (en) Manufacturing method of positive electrode active material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070216

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070226

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term