JP4286394B2 - Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same - Google Patents

Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same Download PDF

Info

Publication number
JP4286394B2
JP4286394B2 JP22048499A JP22048499A JP4286394B2 JP 4286394 B2 JP4286394 B2 JP 4286394B2 JP 22048499 A JP22048499 A JP 22048499A JP 22048499 A JP22048499 A JP 22048499A JP 4286394 B2 JP4286394 B2 JP 4286394B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
semiconductor
component
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22048499A
Other languages
Japanese (ja)
Other versions
JP2001040181A (en
Inventor
昌宏 畑
務 西岡
和弘 池村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP22048499A priority Critical patent/JP4286394B2/en
Publication of JP2001040181A publication Critical patent/JP2001040181A/en
Application granted granted Critical
Publication of JP4286394B2 publication Critical patent/JP4286394B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、難燃性はもちろん、優れた耐湿信頼性および流動性を有する半導体封止用エポキシ樹脂組成物およびそれを用いた半導体装置に関するものである。
【0002】
【従来の技術】
従来から、トランジスター,IC,LSI等の半導体素子は、エポキシ樹脂組成物を用い封止され電子部品化されている。その電子部品は、難燃性の規格であるUL94V−0に適合することが不可欠であるため、これまでは臭素化エポキシ樹脂および酸化アンチモンを添加することにより難燃性を付与する方法が採られてきた。ところが、近年、環境保護の観点から、上記ハロゲン系難燃剤やアンチモン化合物を用いることなく難燃性を付与させる方法が要求されている。
【0003】
上記要求に対して、難燃付与を目的に、金属水酸化物、硼素化合物、赤燐化合物等を用いることが検討されてきたが、上記化合物の多くはこれらを用いることにより、流動性の低下による成形性の不良、不純物含有量の多さによる耐湿性の低下という問題を有している。
【0004】
【発明が解決しようとする課題】
例えば、上記化合物において、金属水酸化物等においては板状の形状を有することから、封止材となるエポキシ樹脂組成物の流動性が低下するという欠点があった。また、赤燐化合物等においては、水に溶解し易いことから、高温高湿下で燐酸等の不純物イオンの析出が多くなり、耐湿信頼性の低下を生じるという欠点があった。さらに、有機燐化合物も難燃性を付与することができると考えられるが、上記赤燐化合物と同様、耐湿信頼性の低下を生じるという欠点を有している。
【0005】
本発明は、このような事情に鑑みなされたもので、高い難燃性はもちろん、優れた耐湿性および流動性を兼ね備えた半導体封止用エポキシ樹脂組成物およびそれを用いて得られる高い信頼性を有する半導体装置の提供をその目的とする。
【0006】
【課題を解決するための手段】
上記の目的を達成するため、本発明は、下記の(A)〜(D)成分を含有する半導体封止用エポキシ樹脂組成物を第1の要旨とする。
(A)ビフェニル型エポキシ樹脂。
(B)フェノールアラルキル樹脂。
(C)石英ガラス粉末、タルク、シリカ粉末、アルミナ粉末、窒化アルミニウム粉末、窒化珪素粉末を、単独でもしくは2種以上併せて用いてなる無機質充填剤。
(D)下記の一般式(1)で表される有機燐化合物。
【0007】
【化2】

Figure 0004286394
【0008】
また、本発明は、上記半導体封止用エポキシ樹脂組成物により半導体素子を封止してなる半導体装置を第2の要旨とする。
【0009】
本発明者らは、難燃性付与を必須条件に、これに加えて耐湿信頼性および流動性においても優れた封止材となり得るエポキシ樹脂組成物を得ることを目的に一連の研究を重ねた。その結果、上記一般式(1)で表される特定の有機燐化合物を用いると、優れた難燃性が付与されることはもちろん、耐湿信頼性においても優れ、かつ先に述べた金属水酸化物等のように流動性の低下を生じず所期の目的が達成されることを見出し本発明に到達した。すなわち、上記一般式(1)で表される有機燐化合物中の水酸基がエポキシ樹脂中のエポキシ基と反応し硬化物中に分子レベルで取り込まれると考えられるため、例えば、従来の赤燐等の難燃剤の場合と比較して、高温高湿等の条件下での燐酸イオン等の不純物が析出しにくく、その結果、耐湿信頼性に関して優れた封止材料となるのである。
【0010】
そして、上記(C)成分である無機質充填剤を特定の範囲の含有量となるように用いる場合、難燃性および流動性のバランスが特に良好となり、より優れた封止材を得ることができるようになる。
【0011】
【発明の実施の形態】
つぎに、本発明の実施の形態を詳しく説明する。
【0012】
本発明の半導体封止用エポキシ樹脂組成物は、ビフェニル型エポキシ樹脂(A成分)と、フェノールアラルキル樹脂(B成分)と、特定の無機質充填剤(C成分)と、特定の有機燐化合物(D成分)とを用いて得られるものであって、通常、粉末状もしくはそれを打錠したタブレット状になっている。
【0013】
上記ビフェニル型エポキシ樹脂(A成分)としては、融点が室温を超えていることが好ましい。例えば、上記ビフェニル型エポキシ樹脂としては、エポキシ当量180〜210、融点80〜120℃のものが好適に用いられる。
【0014】
上記フェノールアラルキル樹脂(B成分)は、上記ビフェニル型エポキシ樹脂(A成分)の硬化剤として作用するものであり、水酸基当量が70〜250,軟化点が50〜110℃のものを用いることが好ましい
【0015】
上記A成分およびB成分とともに用いられる特定の無機質充填剤(C成分)としては、石英ガラス粉末、タルク、シリカ粉末(溶融シリカ粉末や結晶性シリカ粉末等)、アルミナ粉末、窒化アルミニウム粉末、窒化珪素粉末があげられる。これらは単独でもしくは2種以上併せて用いられる。なかでも、得られる硬化物の線膨張係数を低減できるという点から上記シリカ粉末を用いることが好ましく、上記シリカ粉末のなかでも溶融シリカ粉末を用いることが高充填、高流動性という点から特に好ましい。上記溶融シリカ粉末としては、球状溶融シリカ粉末、破砕溶融シリカ粉末があげられるが、流動性という観点から、球状溶融シリカ粉末を用いることが好ましい。特に、平均粒径が10〜60μmの範囲、特に好ましくは25〜45μmの範囲のものを用いることが好ましい。なお、上記平均粒径は、例えば、レーザー回折散乱式粒度分布測定装置を用いて測定することができる。
【0016】
上記特定の無機質充填剤(C成分)の含有量は、エポキシ樹脂組成物全体の50〜95重量%の範囲内に設定することが好ましく、特に好ましくは70〜90重量%である。すなわち、50重量%未満のように少なすぎると、エポキシ樹脂組成物中の有機成分の占める割合が多くなり、硬化物の難燃効果に乏しくなり、95重量%を超えて多くなると、エポキシ樹脂組成物の流動性が著しく低下する傾向がみられるからである。
【0017】
上記A〜C成分とともに用いられる特定の有機燐化合物(D成分)は、下記の一般式(1)で表される2−(9‘,10’−ジヒドロ−9‘−ホスファ−9’−オキシド−10‘−オキサフェナンスレン−9’−イル)−1,4−ジヒドロキシベンゼンである。
【0018】
【化3】
Figure 0004286394
【0019】
上記有機燐化合物(D成分)の含有量は、エポキシ樹脂組成物全体中0.5〜20重量%の範囲に設定することが好ましく、特に好ましくは2〜10重量%の範囲である。すなわち、有機燐化合物の含有量が0.5重量%未満のように少な過ぎると必須条件である難燃効果に乏しく、逆に20重量%を超えて多過ぎると耐湿信頼性が低下する傾向がみられるからである。
【0020】
上記ビフェニル型エポキシ樹脂(A成分)と、フェノールアラルキル樹脂(B成分)および有機燐化合物(D成分)との配合割合は、エポキシ樹脂を硬化させるに充分な量に設定することが好ましい。一般的には、エポキシ樹脂中のエポキシ基1当量に対して、フェノールアラルキル樹脂(B成分)および有機燐化合物(D成分)の両者の水酸基の合計が0.7〜1.5当量となるように配合することが好ましい。より好ましくは0.9〜1.2当量である。
【0021】
なお、本発明の半導体封止用エポキシ樹脂組成物には、上記A〜D成分以外に必要に応じて、硬化促進剤、D成分である有機燐化合物以外の難燃剤、難燃助剤、離型剤、カーボンブラック等の顔料や着色料、γ−グリシドキシプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アミノエチルアミノプロピルトリメトキシシラン等のシランカップリング剤、低応力化剤等他の添加剤を適宜配合することができる。
【0022】
上記硬化促進剤としては、従来公知のものが用いられる。具体的には、テトラフェニルボレートや、トリフェニルホスフィン等の有機リン系化合物、1,8−ジアザビシクロ(5,4,0)ウンデセン−7、1,5−ジアザビシクロ(4,3,0)ノネン−5等のジアザビシクロアルケン系化合物等があげられる。これらは単独でもしくは2種以上併せて用いられる。
【0023】
上記有機燐化合物以外の難燃剤としては、下記の一般式(2)で表される多面体形状の複合化金属水酸化物を用いることができる。この複合化金属水酸化物は、結晶形状が多面体形状を有するものであり、従来の六角板形状を有するもの、あるいは、鱗片状等のように、いわゆる厚みの薄い平板形状の結晶形状を有するものではなく、縦、横とともに厚み方向(c軸方向)への結晶成長が大きい、例えば、板状結晶のものが厚み方向(c軸方向)に結晶成長してより立体的かつ球状に近似した粒状の結晶形状、例えば、略12面体、略8面体、略4面体等の形状を有する複合化金属水酸化物をいう。
【0024】
【化4】
m(Mab)・n(Qde)・cH2O ・・・(2)
〔上記式(2)において、MとQは互いに異なる金属元素であり、Qは、周期表のIVa,Va,VIa,VIIa,VIII ,Ib ,IIbから選ばれた族に属する金属元素である。また、m,n,a,b,c,d,eは正数であって、互いに同一の値であってもよいし、異なる値であってもよい。〕
【0025】
上記一般式(2)で表される複合化金属水酸化物に関して、式(2)中の金属元素を示すMとしては、Al,Mg,Ca,Ni,Co,Sn,Zn,Cu,Fe,Ti等があげられる。
【0026】
また、上記一般式(2)で表される複合化金属水酸化物中のもう一つの金属元素を示すQは、周期律表のIVa,Va,VIa, VIIa,VIII,Ib,IIbから選ばれた族に属する金属である。例えば、Fe,Co,Ni,Pd,Cu,Zn等があげられ、単独でもしくは2種以上併せて選択される。
【0027】
このような結晶形状が多面体形状を有する複合化金属水酸化物は、例えば、複合化金属水酸化物の製造工程における各種条件等を制御することにより、縦,横とともに厚み方向(c軸方向)への結晶成長が大きい、所望の多面体形状、例えば、略12面体、略8面体、略4面体等の形状を有する複合化金属水酸化物を得ることができ、通常、これらの混合物からなる。
【0028】
上記多面体形状を有する複合化金属水酸化物の具体的な代表例としては、酸化マグネシウム・酸化ニッケルの水和物、酸化マグネシウム・酸化亜鉛の水和物、酸化マグネシウム・酸化銅の水和物等があげられる。
【0029】
そして、上記多面体形状を有する複合化金属水酸化物としては、下記に示す粒度分布(α)〜(γ)を有することが好ましい。なお、下記に示す粒度分布の測定には、レーザー式粒度測定機を使用する。
(α)粒径1.3μm未満のものが10〜35重量%。
(β)粒径1.3〜2.0μm未満のものが50〜65重量%。
(γ)粒径2.0μm以上のものが10〜30重量%。
【0030】
また、上記多面体形状を有する複合化金属水酸化物のアスペクト比は、通常1〜8、好ましくは1〜7、特に好ましくは1〜4である。ここでいうアスペクト比とは、複合化金属水酸化物の長径と短径との比で表したものである。すなわち、アスペクト比が8を超えると、この複合化金属水酸化物を含有するエポキシ樹脂組成物が溶融したときの粘度低下に対する効果が乏しくなる。そして、本発明の半導体封止用エポキシ樹脂組成物の構成成分として用いられる場合には、一般的に、アスペクト比が1〜4のものが用いられる。
【0031】
上記離型剤としては、高級脂肪酸、高級脂肪酸エステル、高級脂肪酸カルシウム等の化合物があげられ、例えば、カルナバワックスやポリエチレン系ワックスが用いられ、これらは単独でもしくは2種以上併せて用いられる。
【0032】
また、上記低応力化剤としては、アクリル酸メチル−ブタジエン−スチレン共重合体、メタクリル酸メチル−ブタジエン−スチレン共重合体等のブタジエン系ゴムやシリコーン化合物があげられる。さらに、耐湿信頼性テストにおける信頼性向上を目的としてハイドロタルサイト類、水酸化ビスマス等のイオントラップ剤を配合してもよい。
【0033】
本発明に用いられる半導体封止用のエポキシ樹脂組成物は、例えば、つぎのようにして製造することができる。すなわち、前記ビフェニル型エポキシ樹脂(A成分)、フェノールアラルキル樹脂(B成分)、無機質充填剤(C成分)および有機燐化合物(D成分)ならびに必要に応じて他の添加剤を常法に準じて適宜配合し、ミキシングロール等の混練機を用いて加熱状態で溶融混練した後、これを室温下で冷却固化させる。その後、公知の手段により粉砕し、必要に応じて打錠するという一連の工程により目的とするエポキシ樹脂組成物を製造することができる。
【0034】
このようにして得られたエポキシ樹脂組成物を用いての半導体素子の封止は、特に制限するものではなく、通常のトランスファー成形等の公知のモールド方法により行うことができる。
【0035】
このようにして得られる半導体装置は、封止用樹脂組成物として用いられるエポキシ樹脂組成物中に、前記特定の有機燐化合物(D成分)が含有されているため、これが高い難燃性を有するとともに、優れた耐湿信頼性および流動性を備えていることから、高い信頼性を備えた半導体装置となる。
【0036】
つぎに、実施例について比較例と併せて説明する。
【0037】
まず、下記に示す各成分を準備した。
【0038】
〔エポキシ樹脂a〕
クレゾールノボラック型エポキシ樹脂(エポキシ当量195、軟化点70℃)
【0039】
〔エポキシ樹脂b〕
下記の式(b)で表されるビフェニル型エポキシ樹脂(エポキシ当量192、融点107℃)
【化5】
Figure 0004286394
【0040】
〔フェノール樹脂c〕
フェノールノボラック樹脂(水酸基当量107、軟化点85℃)
【0041】
〔フェノール樹脂d〕
下記の式(d)で表されるフェノール樹脂(水酸基当量174、軟化点70℃)
【化6】
Figure 0004286394
【0042】
〔無機質充填剤〕
球状溶融シリカ粉末(平均粒径30μm)
【0043】
〔硬化促進剤〕
トリフェニルホスフィン
【0044】
〔カップリング剤〕
γ−メルカプトプロピルトリメトキシシラン
【0045】
〔エステル系ワックス〕
カルナバワックス
【0046】
〔オレフィン系ワックス〕
ポリエチレン系ワックス
【0047】
〔有機燐化合物e〕
下記の化学式(e)で表される環状有機燐化合物(三光社製、HCA−HQ)
【化7】
Figure 0004286394
【0048】
〔赤燐系難燃剤〕
赤燐含有率93重量%、平均粒径30μm(燐化学工業社製、ノーバエクセル)
【0049】
〔金属水酸化物〕
板状結晶構造の複合化金属水酸化物(タテホ化学社製、エコーマグZ−10)
【0050】
【実施例1〜、比較例1〜3】
下記の表1、2に示す各原料を同表に示す割合で同時に配合し、ミキシングロール機(温度100℃)で3分間溶融混練した。つぎに、この溶融物を冷却した後粉砕することにより目的とする半導体封止用エポキシ樹脂組成物を得た。
【0051】
【表1】
Figure 0004286394
【0052】
【表2】
Figure 0004286394
【0053】
このようにして得られた実施例および比較例のエポキシ樹脂組成物を用い、下記の方法に従って不純物イオン濃度を測定した。さらに、上記各エポキシ樹脂組成物を用いて厚み1/16インチの試験片を成形し、UL94 V−0規格の方法に従って難燃性を評価した。なお「合格」とは94−V0の合格を意味する。
【0054】
〔不純物イオン濃度〕
各エポキシ樹脂組成物を用い下記の条件で硬化体を作製した。そして、得られた硬化体を粉砕した後、160℃×20時間の抽出条件にて燐酸イオンを抽出してそのイオン量をイオンクロマト分析にて測定した。
(硬化体作製条件)
温度:175℃
時間:2分
【0055】
また、上記実施例および比較例で得られたエポキシ樹脂組成物を用い、半導体素子(チップサイズ:7.5×7.5mm)をトランスファー成形(条件:175℃×2分)し、175℃×5時間の後硬化することより半導体パッケージを得た。このパッケージは、80ピンQFP(クワッドフラットパッケージ、サイズ:20mm×14mm×厚み2mm)であり、ダイパッドサイズは8×8mmである。
【0056】
このようにして作製した半導体パッケージを用いて、プレッシャークッカー試験(PCTテスト)をバイアスを印加して行った(条件130℃/85%RH、30Vバイアス)。なお、不良モードはリーク不良およびオープン不良を測定し、これら不良が発生するまでの時間を測定して耐湿性を評価した。
【0057】
さらに下記の方法に示すスパイラルフロー(SF)により流動性の評価を行った。
〔スパイラルフローの測定〕
スパイラルフロー測定用金型を用い、175±5℃にてEMMI 1−66に準じてスパイラルフロー値を測定した。
【0058】
これらの測定・評価結果を後記の表3、4に併せて示す。
【0059】
【表3】
Figure 0004286394
【0060】
【表4】
Figure 0004286394
【0061】
上記表3、4の結果、全ての実施例品は良好な難燃性を示すとともに、燐酸イオン量が少なく、耐湿性評価試験および流動性評価試験においても優れた結果が得られた。これに対して、シリカ粉末を含有しない比較例1品は耐湿信性評価試験は問題なかったが、難燃性に劣りかつ燐酸イオン量も高かった。また、難燃剤として赤燐を用いた比較例2品は良好な難燃性を示したが、燐酸イオン量が極端に高く、耐湿性評価試験結果が悪かった。また、金属水酸化物を用いた比較例3品は良好な難燃性を示したが、流動性評価試験の結果が悪かった。
【0062】
【発明の効果】
以上のように、本発明は、前記A〜C成分とともに前記一般式(1)で表される有機燐化合物(D成分)を含有する半導体封止用エポキシ樹脂組成物である。このため、高い難燃性はもちろん、高温高湿条件下での不純物が従来よりも析出し難くなり、優れた耐湿信頼性および流動性を有するようになる。したがって、この半導体封止用エポキシ樹脂組成物を用いて半導体素子を封止することにより、信頼性に優れた半導体装置を得ることができる。
【0063】
そして、上記(C)成分である無機質充填剤を特定の範囲の含有量となるように用いる場合、難燃性および流動性のバランスが特に良好となり、より優れた封止材を得ることができるようになる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an epoxy resin composition for semiconductor encapsulation having excellent moisture resistance reliability and fluidity as well as flame retardancy, and a semiconductor device using the same.
[0002]
[Prior art]
Conventionally, semiconductor elements such as transistors, ICs, and LSIs are encapsulated with an epoxy resin composition to form electronic components. Since it is indispensable for the electronic parts to comply with UL94V-0 which is a flame retardant standard, a method of imparting flame retardancy by adding brominated epoxy resin and antimony oxide has been adopted so far. I came. However, in recent years, from the viewpoint of environmental protection, a method for imparting flame retardancy without using the halogen-based flame retardant or antimony compound is required.
[0003]
In response to the above requirements, the use of metal hydroxides, boron compounds, red phosphorus compounds, etc. has been studied for the purpose of imparting flame retardancy, but many of the above compounds have reduced fluidity due to their use. There is a problem that the moldability is poor due to, and the moisture resistance is lowered due to the large impurity content.
[0004]
[Problems to be solved by the invention]
For example, in the above compound, the metal hydroxide or the like has a plate-like shape, so that the fluidity of the epoxy resin composition serving as a sealing material is reduced. In addition, red phosphorus compounds and the like are easily dissolved in water, so that precipitation of impurity ions such as phosphoric acid increases under high temperature and high humidity, resulting in a decrease in moisture resistance reliability. Furthermore, although it is considered that an organic phosphorus compound can also impart flame retardancy, it has the drawback of causing a decrease in moisture resistance reliability, like the red phosphorus compound.
[0005]
The present invention has been made in view of such circumstances, and has high flame retardancy as well as an epoxy resin composition for semiconductor encapsulation having excellent moisture resistance and fluidity, and high reliability obtained by using the epoxy resin composition. An object of the present invention is to provide a semiconductor device having
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the first gist of the present invention is an epoxy resin composition for semiconductor encapsulation containing the following components (A) to (D).
(A) Biphenyl type epoxy resin.
(B) Phenol aralkyl resin.
(C) An inorganic filler using quartz glass powder, talc, silica powder, alumina powder, aluminum nitride powder, or silicon nitride powder alone or in combination of two or more .
(D) An organic phosphorus compound represented by the following general formula (1).
[0007]
[Chemical formula 2]
Figure 0004286394
[0008]
Moreover, this invention makes the 2nd summary the semiconductor device formed by sealing a semiconductor element with the said epoxy resin composition for semiconductor sealing.
[0009]
The present inventors have made a series of studies for the purpose of obtaining an epoxy resin composition that can be an excellent sealing material in terms of moisture resistance reliability and fluidity in addition to imparting flame retardancy as an essential condition. . As a result, when the specific organic phosphorus compound represented by the general formula (1) is used, not only excellent flame retardancy is imparted, but also moisture resistance reliability is excellent, and the metal hydroxide described above is used. As a result, the present inventors have found that the intended purpose can be achieved without causing a decrease in fluidity as in the case of materials and the like. That is, it is considered that the hydroxyl group in the organic phosphorus compound represented by the general formula (1) reacts with the epoxy group in the epoxy resin and is taken into the cured product at the molecular level. Compared to the case of a flame retardant, impurities such as phosphate ions do not easily precipitate under conditions such as high temperature and high humidity, and as a result, the sealing material is excellent in terms of moisture resistance reliability.
[0010]
And when using the inorganic filler which is the said (C) component so that it may become content of a specific range, the balance of a flame retardance and fluidity | liquidity becomes especially favorable, and a more excellent sealing material can be obtained. It becomes like this.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail.
[0012]
The epoxy resin composition for semiconductor encapsulation of the present invention comprises a biphenyl type epoxy resin (component A), a phenol aralkyl resin (component B), a specific inorganic filler (component C), and a specific organic phosphorus compound (D Component) and is usually in the form of a powder or a tablet obtained by tableting it.
[0013]
The biphenyl type epoxy resin (component A) preferably has a melting point exceeding room temperature. For example, as the upper Symbol biphenyl type epoxy resin, epoxy equivalent 180-210, is preferably used in the melting point of 80 to 120 ° C..
[0014]
The phenolic aralkyl resin (B component) acts as a curing agent of the biphenyl type epoxy resin (A component), water group equivalent of 70 to 250, the softening point used as the 50 to 110 ° C. Is preferred .
[0015]
The component A and B specific inorganic filler to be used together with the component as the component (C) is quartz glass powder, talc, silica powder (fused silica powder, crystalline silica powder and the like), alumina powder, aluminum nitride powder, nitride silicon powder, and the like. These may be used alone or in combination of two or more. Among these, it is preferable to use the silica powder from the viewpoint that the linear expansion coefficient of the obtained cured product can be reduced, and it is particularly preferable from the viewpoint of high filling and high fluidity to use the fused silica powder among the silica powders. . Examples of the fused silica powder include spherical fused silica powder and crushed fused silica powder. From the viewpoint of fluidity, spherical fused silica powder is preferably used. In particular, it is preferable to use those having an average particle diameter in the range of 10 to 60 μm, particularly preferably in the range of 25 to 45 μm. In addition, the said average particle diameter can be measured using a laser diffraction scattering type particle size distribution measuring apparatus, for example.
[0016]
The content of the specific inorganic filler (component C) is preferably set in the range of 50 to 95% by weight, particularly preferably 70 to 90% by weight of the entire epoxy resin composition. That is, if the amount is too small, such as less than 50% by weight, the proportion of the organic component in the epoxy resin composition increases, the flame retardancy of the cured product becomes poor, and if it exceeds 95% by weight, the epoxy resin composition This is because there is a tendency that the fluidity of the product is significantly reduced.
[0017]
The specific organophosphorus compound (component D) used together with the components A to C is 2- (9 ′, 10′-dihydro-9′-phospha-9′-oxide represented by the following general formula (1): -10′-oxaphenanthrene-9′-yl) -1,4-dihydroxybenzene.
[0018]
[Chemical 3]
Figure 0004286394
[0019]
The content of the organic phosphorus compound (component D) is preferably set in the range of 0.5 to 20% by weight, particularly preferably in the range of 2 to 10% by weight, based on the entire epoxy resin composition. That is, if the content of the organic phosphorus compound is too small, such as less than 0.5% by weight, the flame retardant effect, which is an essential condition, is poor, and conversely if it exceeds 20% by weight, the moisture resistance reliability tends to decrease. Because it is seen.
[0020]
The blending ratio of the biphenyl type epoxy resin (component A), the phenol aralkyl resin (component B) and the organic phosphorus compound (component D) is preferably set to an amount sufficient to cure the epoxy resin. Generally, the total of hydroxyl groups of both the phenol aralkyl resin (component B) and the organophosphorus compound (component D) is 0.7 to 1.5 equivalents per equivalent of epoxy group in the epoxy resin. It is preferable to blend in. More preferably, it is 0.9-1.2 equivalent.
[0021]
In addition, the epoxy resin composition for semiconductor encapsulation of the present invention includes a curing accelerator, a flame retardant other than the organic phosphorus compound as a D component, a flame retardant aid, a release agent, as necessary, in addition to the components A to D. Molding agents, pigments and colorants such as carbon black, silane coupling agents such as γ-glycidoxypropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminoethylaminopropyltrimethoxysilane, and stress-reducing agents Other additives such as can be appropriately blended.
[0022]
A conventionally well-known thing is used as said hardening accelerator. Specifically, organophosphorus compounds such as tetraphenylborate and triphenylphosphine, 1,8-diazabicyclo (5,4,0) undecene-7, 1,5-diazabicyclo (4,3,0) nonene- And diazabicycloalkene compounds such as 5. These may be used alone or in combination of two or more.
[0023]
As the flame retardant other than the organic phosphorus compound, a polyhedral complex metal hydroxide represented by the following general formula (2) can be used. This composite metal hydroxide has a polyhedral shape, and has a conventional hexagonal plate shape, or a so-called thin plate-like crystal shape such as a scale shape. Rather, the crystal growth in the thickness direction (c-axis direction) is large as well as the length and width, for example, a plate-like crystal grows in the thickness direction (c-axis direction) and is more granular and more spherical. A composite metal hydroxide having a crystal shape of, for example, a substantially dodecahedron, a substantially octahedron, or a substantially tetrahedron.
[0024]
[Formula 4]
m (M a O b ) · n (Q d O e ) · cH 2 O (2)
[In the above formula (2), M and Q are metal elements different from each other, and Q is a metal element belonging to a group selected from IVa, Va, VIa, VIIa, VIII, Ib and IIb of the periodic table. Further, m, n, a, b, c, d, and e are positive numbers, and may be the same value or different values. ]
[0025]
Regarding the composite metal hydroxide represented by the general formula (2), M representing the metal element in the formula (2) is Al, Mg, Ca, Ni, Co, Sn, Zn, Cu, Fe, Ti etc. are mention | raise | lifted.
[0026]
Q representing another metal element in the composite metal hydroxide represented by the general formula (2) is selected from IVa, Va, VIa, VIIa, VIII, Ib, and IIb in the periodic table. A metal belonging to the tribe. For example, Fe, Co, Ni, Pd, Cu, Zn and the like can be mentioned, and these are selected singly or in combination of two or more.
[0027]
The composite metal hydroxide having such a polyhedral shape as the crystal shape can be obtained by controlling various conditions in the manufacturing process of the composite metal hydroxide, for example, in the thickness direction (c-axis direction) as well as in the vertical and horizontal directions. A complex metal hydroxide having a desired polyhedral shape, for example, a dodecahedron shape, a substantially octahedron shape, a substantially tetrahedron shape, or the like, having a large crystal growth, can be obtained, and usually comprises a mixture thereof.
[0028]
Specific examples of the composite metal hydroxide having the polyhedral shape include magnesium oxide / nickel oxide hydrate, magnesium oxide / zinc oxide hydrate, magnesium oxide / copper oxide hydrate, etc. Is given.
[0029]
The composite metal hydroxide having the polyhedral shape preferably has the following particle size distributions (α) to (γ). In addition, a laser particle size measuring machine is used for the measurement of the particle size distribution shown below.
(Α) 10 to 35% by weight of particles having a particle size of less than 1.3 μm.
(Β) 50 to 65% by weight of particles having a particle size of less than 1.3 to 2.0 μm.
(Γ) 10 to 30% by weight of particles having a particle size of 2.0 μm or more.
[0030]
The aspect ratio of the composite metal hydroxide having the polyhedral shape is usually 1 to 8, preferably 1 to 7, and particularly preferably 1 to 4. The aspect ratio here is expressed by the ratio of the major axis to the minor axis of the composite metal hydroxide. That is, when the aspect ratio exceeds 8, the effect of decreasing the viscosity when the epoxy resin composition containing the composite metal hydroxide is melted becomes poor. And when it is used as a structural component of the epoxy resin composition for semiconductor encapsulation of this invention, a thing with an aspect ratio of 1-4 is generally used.
[0031]
Examples of the releasing agent include compounds such as higher fatty acids, higher fatty acid esters, higher fatty acid calcium, and the like. For example, carnauba wax and polyethylene wax are used, and these are used alone or in combination of two or more.
[0032]
Examples of the stress reducing agent include butadiene rubbers such as methyl acrylate-butadiene-styrene copolymer and methyl methacrylate-butadiene-styrene copolymer, and silicone compounds. Furthermore, ion trapping agents such as hydrotalcites and bismuth hydroxide may be blended for the purpose of improving the reliability in the moisture resistance reliability test.
[0033]
The epoxy resin composition for semiconductor encapsulation used in the present invention can be produced, for example, as follows. That is, the biphenyl type epoxy resin (component A), the phenol aralkyl resin (component B), the inorganic filler (component C) and the organic phosphorus compound (component D) and other additives as required according to conventional methods. It mix | blends suitably, After melt-kneading in a heating state using kneading machines, such as a mixing roll, this is cooled and solidified at room temperature. Thereafter, the desired epoxy resin composition can be produced by a series of steps of pulverization by known means and tableting as necessary.
[0034]
The sealing of the semiconductor element using the epoxy resin composition thus obtained is not particularly limited, and can be performed by a known molding method such as ordinary transfer molding.
[0035]
The semiconductor device thus obtained has high flame retardancy because the epoxy resin composition used as the sealing resin composition contains the specific organic phosphorus compound (component D). In addition, since it has excellent moisture resistance reliability and fluidity, it becomes a semiconductor device with high reliability.
[0036]
Next, examples will be described together with comparative examples.
[0037]
First, each component shown below was prepared.
[0038]
[Epoxy resin a]
Cresol novolac type epoxy resin (epoxy equivalent 195, softening point 70 ° C.)
[0039]
[Epoxy resin b]
Biphenyl type epoxy resin represented by the following formula (b) (epoxy equivalent 192, melting point 107 ° C.)
[Chemical formula 5]
Figure 0004286394
[0040]
[Phenolic resin c]
Phenol novolac resin (hydroxyl equivalent 107, softening point 85 ° C)
[0041]
[Phenolic resin d]
Phenol resin represented by the following formula (d) (hydroxyl equivalent 174, softening point 70 ° C.)
[Chemical 6]
Figure 0004286394
[0042]
[Inorganic filler]
Spherical fused silica powder (average particle size 30 μm)
[0043]
[Curing accelerator]
Triphenylphosphine [0044]
[Coupling agent]
γ-Mercaptopropyltrimethoxysilane
[Ester wax]
Carnauba wax 【0046】
[Olefin wax]
Polyethylene wax [0047]
[Organic phosphorus compound e]
Cyclic organic phosphorus compound represented by the following chemical formula (e) (manufactured by Sanko Co., Ltd., HCA-HQ)
[Chemical 7]
Figure 0004286394
[0048]
[Red phosphorus flame retardant]
Red phosphorus content 93% by weight, average particle size 30μm (Rin Chemical Industry Co., Ltd., Nova Excel)
[0049]
[Metal hydroxide]
Composite metal hydroxide having a plate-like crystal structure (Echo Mug Z-10, manufactured by Tateho Chemical Co., Ltd.)
[0050]
Examples 1 to 5 and Comparative Examples 1 to 3
The raw materials shown in Tables 1 and 2 below were blended simultaneously in the proportions shown in the same table, and melt kneaded for 3 minutes with a mixing roll machine (temperature 100 ° C.). Next, the melt was cooled and then pulverized to obtain a target epoxy resin composition for semiconductor encapsulation.
[0051]
[Table 1]
Figure 0004286394
[0052]
[Table 2]
Figure 0004286394
[0053]
Using the epoxy resin compositions of Examples and Comparative Examples thus obtained, impurity ion concentrations were measured according to the following method. Further, a test piece having a thickness of 1/16 inch was molded using each of the epoxy resin compositions, and the flame retardancy was evaluated according to the method of UL94 V-0 standard. “Pass” means a 94-V0 pass.
[0054]
[Impurity ion concentration]
A cured body was prepared using the respective epoxy resin compositions under the following conditions. And after grind | pulverizing the obtained hardening body, the phosphate ion was extracted on the extraction conditions of 160 degreeC x 20 hours, and the ion amount was measured by the ion chromatography analysis.
(Hardened body preparation conditions)
Temperature: 175 ° C
Time: 2 minutes [0055]
Further, using the epoxy resin compositions obtained in the above examples and comparative examples, a semiconductor element (chip size: 7.5 × 7.5 mm) was transfer molded (condition: 175 ° C. × 2 minutes), and 175 ° C. × A semiconductor package was obtained by post-curing for 5 hours. This package is an 80-pin QFP (quad flat package, size: 20 mm × 14 mm × thickness 2 mm), and the die pad size is 8 × 8 mm.
[0056]
Using the semiconductor package thus produced, a pressure cooker test (PCT test) was performed by applying a bias (conditions 130 ° C./85% RH, 30 V bias). In the failure mode, leakage failure and open failure were measured, and the time until these failures occurred was measured to evaluate moisture resistance.
[0057]
Furthermore, fluidity | liquidity was evaluated by the spiral flow (SF) shown to the following method.
[Measurement of spiral flow]
The spiral flow value was measured according to EMMI 1-66 at 175 ± 5 ° C. using a spiral flow measurement mold.
[0058]
These measurement / evaluation results are also shown in Tables 3 and 4 below.
[0059]
[Table 3]
Figure 0004286394
[0060]
[Table 4]
Figure 0004286394
[0061]
As a result of the above Tables 3 and 4 , all the products of the examples showed good flame retardancy, and the phosphate ion amount was small, and excellent results were obtained in the moisture resistance evaluation test and the fluidity evaluation test. In contrast, the product of Comparative Example 1 containing no silica powder had no problem in the moisture resistance evaluation test, but was inferior in flame retardancy and also had a high amount of phosphate ions. Further, Comparative Example 2 using red phosphorus as a flame retardant showed good flame retardancy, but the phosphate ion amount was extremely high, and the results of the moisture resistance evaluation test were poor. Moreover, although the comparative example 3 goods using a metal hydroxide showed favorable flame retardance, the result of the fluidity | liquidity evaluation test was bad.
[0062]
【The invention's effect】
As mentioned above, this invention is the epoxy resin composition for semiconductor sealing containing the organophosphorus compound (D component) represented by the said General formula (1) with said AC component. For this reason, not only high flame retardancy but also impurities under high-temperature and high-humidity conditions are less likely to precipitate than before, and have excellent moisture resistance reliability and fluidity. Therefore, a semiconductor device having excellent reliability can be obtained by sealing a semiconductor element using this epoxy resin composition for sealing a semiconductor.
[0063]
And when using the inorganic filler which is said (C) component so that it may become content of a specific range, the balance of a flame retardance and fluidity | liquidity becomes especially favorable, and a more excellent sealing material can be obtained. It becomes like this.

Claims (4)

下記の(A)〜(D)成分を含有することを特徴とする半導体封止用エポキシ樹脂組成物。
(A)ビフェニル型エポキシ樹脂。
(B)フェノールアラルキル樹脂。
(C)石英ガラス粉末、タルク、シリカ粉末、アルミナ粉末、窒化アルミニウム粉末、窒化珪素粉末を、単独でもしくは2種以上併せて用いてなる無機質充填剤。
(D)下記の一般式(1)で表される有機燐化合物。
Figure 0004286394
The epoxy resin composition for semiconductor sealing characterized by containing the following (A)-(D) component.
(A) Biphenyl type epoxy resin.
(B) Phenol aralkyl resin.
(C) An inorganic filler using quartz glass powder, talc, silica powder, alumina powder, aluminum nitride powder, or silicon nitride powder alone or in combination of two or more .
(D) An organic phosphorus compound represented by the following general formula (1).
Figure 0004286394
上記(D)成分である有機燐化合物の含有量がエポキシ樹脂組成物全体中0.5〜20重量%の範囲に設定されている請求項1記載の半導体封止用エポキシ樹脂組成物。  2. The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein the content of the organic phosphorus compound as the component (D) is set in the range of 0.5 to 20 wt% in the entire epoxy resin composition. 上記(C)成分である無機質充填剤の含有量がエポキシ樹脂組成物全体中50〜95重量%の範囲に設定されている請求項1または2記載の半導体封止用エポキシ樹脂組成物。  The epoxy resin composition for semiconductor encapsulation according to claim 1 or 2, wherein the content of the inorganic filler as the component (C) is set in the range of 50 to 95% by weight in the entire epoxy resin composition. 請求項1〜3のいずれか一項に記載の半導体封止用エポキシ樹脂組成物により半導体素子を封止してなる半導体装置。  The semiconductor device formed by sealing a semiconductor element with the epoxy resin composition for semiconductor sealing as described in any one of Claims 1-3.
JP22048499A 1999-08-03 1999-08-03 Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same Expired - Fee Related JP4286394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22048499A JP4286394B2 (en) 1999-08-03 1999-08-03 Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22048499A JP4286394B2 (en) 1999-08-03 1999-08-03 Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same

Publications (2)

Publication Number Publication Date
JP2001040181A JP2001040181A (en) 2001-02-13
JP4286394B2 true JP4286394B2 (en) 2009-06-24

Family

ID=16751811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22048499A Expired - Fee Related JP4286394B2 (en) 1999-08-03 1999-08-03 Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP4286394B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169655A (en) * 2007-01-22 2007-07-05 Nitto Denko Corp Epoxy resin composition for sealing semiconductor and semiconductor device using the same
JP5388518B2 (en) 2008-09-16 2014-01-15 新日鉄住金化学株式会社 Phosphorus-containing phenol compound and method for producing the same, curable resin composition and cured product using the compound

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231080A (en) * 1985-04-04 1986-10-15 Sanko Kagaku Kk Stabilizer organic material
JP3092009B2 (en) * 1990-05-01 2000-09-25 東都化成株式会社 Flame retardant and thermosetting flame-retardant resin composition containing the flame retardant
JPH0631276B2 (en) * 1992-09-11 1994-04-27 三光化学株式会社 Organic cyclic phosphorus compound and method for producing the same
JPH08188638A (en) * 1995-01-11 1996-07-23 Hitachi Ltd Resin-sealed semiconductor device and its production
JP2000080251A (en) * 1998-09-03 2000-03-21 Matsushita Electric Works Ltd Phosphorus-modified flame-retardant epoxy resin composition and its production and molded product and laminate using the phosphorus-modified flame-retardant epoxy resin composition
JP2000212391A (en) * 1999-01-21 2000-08-02 Nippon Kayaku Co Ltd Flame-retardant epoxy resin composition

Also Published As

Publication number Publication date
JP2001040181A (en) 2001-02-13

Similar Documents

Publication Publication Date Title
TWI478969B (en) Epoxy resin composition and semiconductor device
JP3380560B2 (en) Resin composition for semiconductor encapsulation, semiconductor device using the same, and method of manufacturing semiconductor device
US6288169B1 (en) Butadiene rubber particles with secondary particle sizes for epoxy resin encapsulant
JP4779270B2 (en) Method for producing epoxy resin composition for semiconductor encapsulation
JP3976652B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP3618182B2 (en) Epoxy resin composition for semiconductor encapsulation
JP4286394B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JPH0686515B2 (en) Epoxy resin composition for semiconductor device encapsulation
JP3447615B2 (en) Resin composition for semiconductor encapsulation, semiconductor device using the same, and method of manufacturing semiconductor device
JP3916783B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP3858353B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP2593503B2 (en) Epoxy resin composition and resin-sealed semiconductor device using the same
JP5038972B2 (en) Semiconductor sealing resin composition, method for producing the same, and semiconductor device using the same
JP2006265487A (en) Epoxy resin composition for sealing semiconductor
JP4452071B2 (en) Method for producing epoxy resin composition for semiconductor encapsulation
JP4910240B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2002265753A (en) Semiconductor sealing epoxy resin composition and semiconductor device using the same
JPH02228354A (en) Epoxy resin composition for semiconductor sealing and cured product thereof
KR100413357B1 (en) Epoxy resin composition for encapsulating semiconductor device
JP3969402B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP2007077237A (en) Epoxy resin composition for sealing semiconductor, and semiconductor device by using the same
JP5191072B2 (en) Epoxy resin composition and semiconductor device
WO2005054331A1 (en) Epoxy resin composition and semiconductor device using the same
JP2002265759A (en) Semiconductor sealing epoxy resin composition and semiconductor device using the same
JP2885345B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20081022

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20081027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090325

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150403

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees