JP2007169655A - Epoxy resin composition for sealing semiconductor and semiconductor device using the same - Google Patents

Epoxy resin composition for sealing semiconductor and semiconductor device using the same Download PDF

Info

Publication number
JP2007169655A
JP2007169655A JP2007011702A JP2007011702A JP2007169655A JP 2007169655 A JP2007169655 A JP 2007169655A JP 2007011702 A JP2007011702 A JP 2007011702A JP 2007011702 A JP2007011702 A JP 2007011702A JP 2007169655 A JP2007169655 A JP 2007169655A
Authority
JP
Japan
Prior art keywords
epoxy resin
average particle
resin composition
semiconductor
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007011702A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kondo
広行 近藤
Akihisa Kuroyanagi
秋久 黒柳
Hirokatsu Kamiyama
博克 神山
Shinya Akizuki
伸也 秋月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2007011702A priority Critical patent/JP2007169655A/en
Publication of JP2007169655A publication Critical patent/JP2007169655A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epoxy resin composition for sealing a semiconductor, with excellent fluidity and forming property, without generating warpage, and enabling to produce a one side sealed type semiconductor device with excellent soldering heat resistance. <P>SOLUTION: The epoxy resin composition is used for sealing a semiconductor element mounted on one side of an insulated substrate and comprises the following components (A)-(C): (A) an epoxy resin comprising 4,4'-bis(2,3-epoxypropoxy)-3,3',5,5'-tetramethylbiphenyl-based epoxy resin and a specific tert-butylhydroquinone-based epoxy resin; (B) a curing agent containing a specific naphthol aralkyl compound as a necessary component; and (C) a mixture containing three kinds of inorganic fillers with different average particle diameters. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、流動性および成形性を確保しつつ、反りの発生が抑制され、かつ半田耐熱性に優れた片面封止タイプの半導体装置の製造に用いられる半導体封止用エポキシ樹脂組成物およびそれを用いた半導体装置に関するものである。   The present invention relates to an epoxy resin composition for encapsulating a semiconductor, which is used for the production of a single-side encapsulated type semiconductor device in which the occurrence of warpage is suppressed and the heat resistance of the solder is excellent while ensuring fluidity and moldability. The present invention relates to a semiconductor device using the.

トランジスタ、IC、LSI等の半導体素子は、通常、エポキシ樹脂組成物を用いてトランスファー成形により樹脂封止される。この種のパッケージとして、従来から各種形態のパッケージが開発されている。   Semiconductor elements such as transistors, ICs, and LSIs are usually resin-sealed by transfer molding using an epoxy resin composition. Conventionally, various types of packages have been developed as this type of package.

そして、近年の半導体装置分野における半導体素子の封止技術において、片面封止タイプのものが注目され実用化されている。エポキシ樹脂組成物硬化体で半導体素子が封止された半導体装置は量産性に優れ、かつ低コストのものであり、さらに上記片面封止タイプの半導体装置は半導体素子の高集積化による高性能化が可能なものである。また、フリップチップ方式、ダイレクトチップアタッチ方式における、半導体素子を絶縁基板であるボードに実装する方法では、通常、半導体素子を内包する状態で片面封止、あるいは絶縁基板と半導体素子の間の空隙に溶融した熱硬化性樹脂組成物を充填し硬化させて樹脂封止することが行われている。しかし、これらの半導体装置に関し、封止樹脂の硬化収縮、絶縁基板と封止樹脂の線膨張係数の不一致に起因してパッケージに反りが発生するという問題を有している。   In recent semiconductor device sealing techniques in the field of semiconductor devices, single-sided sealing types have attracted attention and have been put into practical use. A semiconductor device in which a semiconductor element is encapsulated with a cured epoxy resin composition is excellent in mass production and low in cost, and the single-side encapsulated semiconductor device has a higher performance due to higher integration of semiconductor elements. Is possible. Also, in the flip chip method and the direct chip attach method, the method of mounting a semiconductor element on a board that is an insulating substrate is usually sealed on one side with the semiconductor element enclosed, or in a gap between the insulating substrate and the semiconductor element. Filling and curing a molten thermosetting resin composition and sealing the resin is performed. However, these semiconductor devices have a problem that the package is warped due to curing shrinkage of the sealing resin and mismatch between the linear expansion coefficients of the insulating substrate and the sealing resin.

上記のような反りを発生した半導体装置は、反り応力による封止界面の剥離等が生じ信頼性を低下させたり、さらには実装基板への実装性が劣る結果となる。このために片面封止型パッケージの反りを向上させることが強く望まれている。   A semiconductor device that has warped as described above results in peeling of the sealing interface due to warping stress and the like, resulting in poor reliability, and poor mounting on a mounting substrate. For this reason, it is strongly desired to improve the warpage of the single-side sealed package.

本発明は、このような事情に鑑みなされたもので、良好な流動性および成形性を有するとともに、反りの発生が抑制され、かつ半田耐熱性に優れた片面封止タイプの半導体装置を得ることのできる半導体封止用エポキシ樹脂組成物およびそれを用いた半導体装置の提供をその目的とする。   The present invention has been made in view of such circumstances, and obtains a single-side sealed semiconductor device that has good fluidity and moldability, is suppressed in warpage, and has excellent solder heat resistance. An object of the present invention is to provide an epoxy resin composition for encapsulating a semiconductor and a semiconductor device using the same.

上記の目的を達成するため、本発明は、絶縁基板の片面に搭載された半導体素子の、半導体素子搭載面側のみを樹脂封止するために用いられるエポキシ樹脂組成物であって、下記の(A)〜(C)成分を含有する半導体封止用エポキシ樹脂組成物を第1の要旨とする。
(A)下記の一般式(a)で表されるビフェニル型エポキシ樹脂および下記の一般式(b)で表されるヒドロキノン型エポキシ樹脂からなるエポキシ樹脂。

Figure 2007169655
Figure 2007169655
(B)下記の一般式(1)で表されるナフトール系化合物を必須成分として含有する硬化剤。
Figure 2007169655
(C)下記の平均粒径(x),(y),(z)を有する3種類の無機質充填剤の混合物であって、上記平均粒径(x)を有する無機質充填剤が混合物全体の50〜92重量%、上記平均粒径(y)を有する無機質充填剤が混合物全体の5〜40重量%、上記平均粒径(z)を有する無機質充填剤が混合物全体の3〜15重量%に設定されている。
(x)平均粒径20〜60μm。
(y)上記(x)である平均粒径20〜60μmのもののうちから選択使用した無機質充填剤の平均粒径をαとした場合、0.1α≦平均粒径(μm)≦0.2αで表される平均粒径。
(z)上記(x)である平均粒径20〜60μmのもののうちから選択使用した無機質充填剤の平均粒径をαとした場合、0.01α≦平均粒径(μm)<0.1αで表される平均粒径。 In order to achieve the above object, the present invention provides an epoxy resin composition used for resin-sealing only a semiconductor element mounting surface side of a semiconductor element mounted on one side of an insulating substrate. The epoxy resin composition for semiconductor encapsulation containing the components A) to (C) is a first gist.
(A) An epoxy resin comprising a biphenyl type epoxy resin represented by the following general formula (a) and a hydroquinone type epoxy resin represented by the following general formula (b).
Figure 2007169655
Figure 2007169655
(B) A curing agent containing a naphthol compound represented by the following general formula (1) as an essential component.
Figure 2007169655
(C) A mixture of three kinds of inorganic fillers having the following average particle diameters (x), (y), and (z), wherein the inorganic filler having the average particle diameter (x) is 50% of the total mixture. ~ 92 wt%, the inorganic filler having the above average particle size (y) is set to 5 to 40 wt% of the whole mixture, and the inorganic filler having the above average particle size (z) is set to 3 to 15 wt% of the whole mixture Has been.
(X) Average particle size of 20-60 μm.
(Y) When the average particle diameter of the inorganic filler selected and used from the above (x) having an average particle diameter of 20 to 60 μm is α, 0.1α ≦ average particle diameter (μm) ≦ 0.2α The average particle size represented.
(Z) When the average particle diameter of the inorganic filler selected and used from the above (x) having an average particle diameter of 20 to 60 μm is α, 0.01α ≦ average particle diameter (μm) <0.1α The average particle size represented.

また、上記半導体封止用エポキシ樹脂組成物を用いて、半導体素子が搭載された絶縁基板の半導体素子搭載面側のみを封止してなる半導体装置を第2の要旨とする。   A second gist is a semiconductor device in which only the semiconductor element mounting surface side of an insulating substrate on which a semiconductor element is mounted is sealed using the above epoxy resin composition for semiconductor sealing.

すなわち、本発明者らは、良好な流動性および成形性とともに片面封止タイプの半導体装置の反りの発生を抑制することができ、半田耐熱性に優れた半導体封止用エポキシ樹脂組成物を得るために一連の研究を重ねた。その結果、エポキシ樹脂として上記2種類のエポキシ樹脂を必須成分とし、かつ硬化剤成分として上記一般式(1)で表されるナフトール系化合物を必須成分として用いるとともに、上記特定の粒度分布を有する無機質充填剤を併用すると、パッケージにおける反りの抑制効果が向上し、実装性さらには半田耐熱性等の信頼性に優れた封止材料が得られることを見出し本発明に到達した。   That is, the present inventors can suppress the occurrence of warpage of a single-side sealed semiconductor device with good fluidity and moldability, and obtain an epoxy resin composition for semiconductor encapsulation excellent in solder heat resistance. A series of research was repeated for this purpose. As a result, the above two types of epoxy resins as essential components are used as epoxy resins, and the naphthol compound represented by the above general formula (1) is used as an essential component as a curing agent component, and an inorganic substance having the above specific particle size distribution. It has been found that when a filler is used in combination, the effect of suppressing warpage in the package is improved, and a sealing material excellent in mounting properties and reliability such as solder heat resistance can be obtained.

以上のように、本発明は、片面封止タイプの半導体装置の封止に用いられる、エポキシ樹脂として上記2種類のエポキシ樹脂を必須成分とし、かつ前記一般式(1)で表されるナフトール系化合物を必須成分として含有する硬化剤(B成分)を用いるとともに、前記特定の粒度分布を有する無機質充填剤(C成分)を含有する半導体封止用エポキシ樹脂組成物である。このため、上記無機質充填剤が高充填であったとしても、良好な流動性を有するとともに、これを片面封止タイプの半導体装置の封止材料として用いた場合、反りの発生が抑制され、半田耐熱性等の信頼性にも優れた片面封止タイプの半導体装置を得ることができる。   As described above, the present invention uses the above-mentioned two types of epoxy resins as essential components as an epoxy resin used for sealing a single-side sealed semiconductor device, and is represented by the general formula (1). While using the hardening | curing agent (B component) which contains a compound as an essential component, it is the epoxy resin composition for semiconductor sealing containing the inorganic filler (C component) which has the said specific particle size distribution. For this reason, even if the inorganic filler is highly filled, it has good fluidity, and when it is used as a sealing material for a single-sided sealing type semiconductor device, the occurrence of warpage is suppressed, and soldering is performed. A single-side sealed semiconductor device having excellent reliability such as heat resistance can be obtained.

そして、上記B成分中のナフトール系化合物の含有割合を、硬化剤(B成分)全体の30重量%以上に設定すると、より一層良好な流動性を確保したまま、反り発生の抑制効果が得られる。   And if the content rate of the naphthol type compound in the said B component is set to 30 weight% or more of the whole hardening | curing agent (B component), the suppression effect of curvature generation | occurrence | production will be acquired, ensuring much better fluidity | liquidity. .

さらに、D成分として金属水酸化物を用いると、優れた難燃作用を奏するとともに、多面体形状のものを用いた場合エポキシ樹脂組成物の流動性の低下を抑制することができるようになる。   Furthermore, when a metal hydroxide is used as the D component, an excellent flame retarding effect can be obtained, and when a polyhedral shape is used, a decrease in fluidity of the epoxy resin composition can be suppressed.

つぎに、本発明の実施の形態について詳しく説明する。   Next, embodiments of the present invention will be described in detail.

本発明の半導体封止用エポキシ樹脂組成物は、絶縁基板の片面に搭載された半導体素子の、半導体素子搭載面側のみを樹脂封止する際に用いられるものであって、特定のエポキシ樹脂(A成分)と、特定のナフトール系化合物を必須成分として含有する硬化剤(B成分)と、特定の粒度分布を有する無機質充填剤(C成分)を用いて得られ、通常、粉末状もしくはこれを打錠したタブレット状になっている。   The epoxy resin composition for semiconductor encapsulation of the present invention is used when resin-sealing only a semiconductor element mounting surface side of a semiconductor element mounted on one side of an insulating substrate, and is a specific epoxy resin ( A component), a curing agent (B component) containing a specific naphthol compound as an essential component, and an inorganic filler (C component) having a specific particle size distribution. It is like a tablet.

なお、本発明において、片面封止タイプの半導体装置としては、例えば、絶縁基板の片面に搭載した半導体素子の、半導体素子搭載面側のみを半導体素子を内包するよう樹脂封止したタイプの半導体装置や、絶縁基板の片面に半導体素子を搭載する際、両者の間に接続用電極を介して空隙が形成されるよう半導体素子が搭載され、上記空隙に封止材料を充填して硬化させ樹脂封止したタイプの半導体装置等があげられる。   In the present invention, as a single-side sealed semiconductor device, for example, a semiconductor device in which a semiconductor element mounted on one side of an insulating substrate is sealed with a resin so that only the semiconductor element mounting surface side is included. Alternatively, when mounting a semiconductor element on one side of an insulating substrate, the semiconductor element is mounted so that a gap is formed between the two via a connection electrode, and the gap is filled with a sealing material and cured to be resin-sealed. Stopped type semiconductor devices and the like.

本発明に用いるエポキシ樹脂(A成分)は、下記の一般式(a)で表されるビフェニル型エポキシ樹脂と、下記の一般式(b)で表されるヒドロキノン型エポキシ樹脂からなるものである。両者の使用割合は、通常、重量基準で1:1である。   The epoxy resin (component A) used in the present invention is composed of a biphenyl type epoxy resin represented by the following general formula (a) and a hydroquinone type epoxy resin represented by the following general formula (b). The usage ratio of both is usually 1: 1 on a weight basis.

Figure 2007169655
Figure 2007169655

Figure 2007169655
Figure 2007169655

上記エポキシ樹脂(A成分)とともに用いられる硬化剤(B成分)は、下記の一般式(1)で表されるナフトール系化合物を必須成分として含有するものである。   The curing agent (component B) used together with the epoxy resin (component A) contains a naphthol compound represented by the following general formula (1) as an essential component.

Figure 2007169655
Figure 2007169655

上記一般式(1)で表されるナフトール系化合物としては、例えば、水酸基当量200〜210、軟化点70〜80℃のものを用いることが好ましい。また、本発明においては、硬化剤(B成分)が上記ナフトール系化合物のみから構成されてもよいし、従来公知の各種フェノール樹脂との併用であってもよい。そして、上記一般式(1)で表されるナフトール系化合物は、硬化剤(B成分)全体の30重量%以上を占めることが好ましい。より好ましくは40重量%以上であり、特に好ましくは50〜70重量%の範囲である。すなわち、ナフトール系化合物が、硬化剤(B成分)全体中の30重量%未満では、流動性の確保は可能であるが、反りの抑制効果が低減する傾向がみられるからである。   As the naphthol compound represented by the general formula (1), for example, a hydroxyl group equivalent of 200 to 210 and a softening point of 70 to 80 ° C. are preferably used. Moreover, in this invention, a hardening | curing agent (B component) may be comprised only from the said naphthol type compound, and combined use with conventionally well-known various phenol resins may be sufficient. And it is preferable that the naphthol type compound represented by the said General formula (1) occupies 30 weight% or more of the whole hardening | curing agent (B component). More preferably, it is 40 weight% or more, Most preferably, it is the range of 50 to 70 weight%. That is, when the naphthol compound is less than 30% by weight in the entire curing agent (component B), fluidity can be ensured, but the warpage suppressing effect tends to be reduced.

上記硬化剤(B成分)として、上記一般式(1)で表されるナフトール系化合物とともに従来公知の各種フェノール樹脂を併用する場合の上記併用するフェノール樹脂としては、例えば、下記の一般式(2)、式(3)、式(4)で表される各フェノール樹脂があげられる。これらフェノール樹脂を併用することにより、より信頼性の高い特性を得ることができる。上記式(2)〜(4)で表されるフェノール樹脂は単独でもしくは2種以上併せて用いることができる。   As said hardening agent (B component), when using conventionally well-known various phenol resins together with the naphthol type compound represented by the said General formula (1), as said phenol resin used together, for example, following General formula (2) ), Formula (3), and each phenol resin represented by formula (4). By using these phenol resins in combination, more reliable characteristics can be obtained. The phenol resins represented by the above formulas (2) to (4) can be used alone or in combination of two or more.

Figure 2007169655
Figure 2007169655

Figure 2007169655
Figure 2007169655

Figure 2007169655
Figure 2007169655

上記式(2)において、繰り返し数rは0以上の整数である。そして、上記式(3)において、繰り返し数nは0以上の整数である。また、上記式(4)において、繰り返し数p,qはそれぞれ、1以上の整数である。なお、上記式(4)で表されるフェノール樹脂における、繰り返し単位p,qは、ブロック,ランダム,交互等の態様のいずれであってもよい。   In the above formula (2), the repetition number r is an integer of 0 or more. In the above formula (3), the repetition number n is an integer of 0 or more. In the above formula (4), the repetition numbers p and q are each an integer of 1 or more. In addition, the repeating units p and q in the phenol resin represented by the above formula (4) may be in any form such as block, random, and alternating.

したがって、上記式(2)〜(4)で表されるフェノール樹脂を単独でもしくは2種以上前記一般式(1)で表されるナフトール系化合物と併用する際には、先に述べたように、前記一般式(1)で表されるナフトール系化合物の占める割合が硬化剤(B成分)全体の少なくとも30重量%となることが好ましい。   Therefore, when the phenol resins represented by the above formulas (2) to (4) are used alone or in combination with two or more naphthol compounds represented by the above general formula (1), as described above. The proportion of the naphthol compound represented by the general formula (1) is preferably at least 30% by weight of the entire curing agent (component B).

上記エポキシ樹脂(A成分)と硬化剤(B成分)の配合割合は、エポキシ樹脂中のエポキシ基1当量あたり、硬化剤中の水酸基当量が0.5〜2.0当量となるように配合することが好ましい。より好ましくは0.8〜1.2当量である。   The mixing ratio of the epoxy resin (component A) and the curing agent (component B) is such that the hydroxyl group equivalent in the curing agent is 0.5 to 2.0 equivalents per equivalent of epoxy group in the epoxy resin. It is preferable. More preferably, it is 0.8-1.2 equivalent.

上記A成分およびB成分とともに用いられる無機質充填剤(C成分)としては、各種公知の無機質充填剤が用いられる。例えば、石英ガラス粉末,シリカ粉末,アルミナ,タルク等があげられる。特に好ましくは溶融球状シリカ粉末があげられる。   Various known inorganic fillers are used as the inorganic filler (C component) used together with the A component and the B component. Examples thereof include quartz glass powder, silica powder, alumina, talc and the like. Particularly preferred is fused spherical silica powder.

そして、上記無機質充填剤(C成分)は、下記の平均粒径(x)〜(z)を有する3種類の無機質充填剤の混合物である。上記平均粒径は、レーザー散乱式粒度分布測定装置により測定した。
(x)平均粒径20〜60μm。
(y)上記(x)である平均粒径20〜60μmのもののうちから選択使用した無機質充填剤の平均粒径をαとした場合、0.1α≦平均粒径(μm)≦0.2αで表される平均粒径。
(z)上記(x)である平均粒径20〜60μmのもののうちから選択使用した無機質充填剤の平均粒径をαとした場合、0.01α≦平均粒径(μm)<0.1αで表される平均粒径。
And the said inorganic filler (C component) is a mixture of 3 types of inorganic fillers which have the following average particle diameter (x)-(z). The average particle size was measured with a laser scattering particle size distribution measuring device.
(X) Average particle size of 20-60 μm.
(Y) When the average particle diameter of the inorganic filler selected and used from the above (x) having an average particle diameter of 20 to 60 μm is α, 0.1α ≦ average particle diameter (μm) ≦ 0.2α The average particle size represented.
(Z) When the average particle diameter of the inorganic filler selected and used from the above (x) having an average particle diameter of 20 to 60 μm is α, 0.01α ≦ average particle diameter (μm) <0.1α The average particle size represented.

すなわち、このような3種類の平均粒径、平均粒径の大きな無機質充填剤(x)と、中程度の粒径の無機質充填剤(y)と、小さい粒径の無機質充填剤(z)を、それぞれ下記に示す割合(i) 〜(iii) に配合する必要がある。このような 割合となるよう混合することにより、良好な流動性が得られ、金線流れ等の成形信頼性が高く、バリ発生等の成形作業においても良好な結果が得られる。   That is, such three kinds of average particle size, an inorganic filler (x) having a large average particle size, an inorganic filler (y) having a medium particle size, and an inorganic filler (z) having a small particle size. The ratios (i) to (iii) shown below must be blended. By mixing in such a ratio, good fluidity can be obtained, gold wire flow and other molding reliability is high, and good results can be obtained even in molding operations such as generation of burrs.

(i) 平均粒径20〜60μm(x)の無機質充填剤が混合物全体の50〜92重量%。
(ii)0.1α≦平均粒径(μm)≦0.2αで表される平均粒径(y)の無機質充填剤が混合物全体の5〜40重量%。
(iii) 0.01α≦平均粒径(μm)<0.1αで表される平均粒径(z)の無機質充填剤が混合物全体の3〜15重量%。
〔ただし、αは上記(x)における平均粒径20〜60μmのもののうちから選択使用した無機質充填剤の平均粒径である。〕
(i) An inorganic filler having an average particle diameter of 20 to 60 μm (x) is 50 to 92% by weight of the whole mixture.
(ii) The inorganic filler having an average particle size (y) represented by 0.1α ≦ average particle size (μm) ≦ 0.2α is 5 to 40% by weight of the entire mixture.
(iii) The inorganic filler having an average particle size (z) represented by 0.01α ≦ average particle size (μm) <0.1α is 3 to 15% by weight of the entire mixture.
[However, α is the average particle size of the inorganic filler selected from the average particle size of 20 to 60 μm in (x) above. ]

そして、上記粒度分布を有する無機質充填剤(C成分)として、特に溶融シリカ粉末が好ましく用いられるが、さらにこの粒度分布を有する溶融シリカ粉末全体の60重量%以上が、真円度0.7以上であることが好ましい。特に好ましくは、全体の80重量%以上が真円度0.8以上であることである。すなわち、溶融シリカ粉末全体の特定割合以上が高い真円度であることにより、より一層流動性が向上し、先に述べたように、高い成形信頼性が得られるようになるからである。   And as an inorganic filler (C component) which has the said particle size distribution, although fused silica powder is used preferably especially, 60 weight% or more of the whole fused silica powder which has this particle size distribution is roundness 0.7 or more. It is preferable that Particularly preferably, 80% by weight or more of the total has a roundness of 0.8 or more. That is, when the roundness is higher than a specific ratio of the entire fused silica powder, the fluidity is further improved, and high molding reliability can be obtained as described above.

なお、上記真円度は、つぎのようにして算出される。すなわち、図1(a)に示すように、真円度の測定対象となる対象物の投影像1において、その実面積をαとし、上記投影像1の周囲の長さをPMとした場合、図1(b)に示すように、上記投影像1と周囲の長さが同じPMとなる真円の投影像2を想定する。そして、上記投影像2の面積α′を算出する。その結果、上記投影像1の実面積αと投影像2の面積α′の比(α/α′)が真円度を示し、この値(α/α′)は下記の数式(A)により算出される。したがって、真円度が1.0とは、この定義からも明らかなように、真円であるといえる。そして、対象物の外周に凹凸が多ければ多いほどその真円度は1.0よりも順次小さくなる。なお、本発明において、上記無機質充填剤の真円度とは、測定対象となる無機質充填剤から一部を抽出し上記方法にて測定して得られる値であり、通常、平均の真円度をいう。   The roundness is calculated as follows. That is, as shown in FIG. 1A, in the projection image 1 of the object to be measured for roundness, when the actual area is α and the perimeter of the projection image 1 is PM, As shown in FIG. 1B, a projection image 2 having a perfect circle having the same PM as the projection image 1 is assumed. Then, the area α ′ of the projected image 2 is calculated. As a result, the ratio (α / α ′) of the actual area α of the projected image 1 to the area α ′ of the projected image 2 indicates roundness, and this value (α / α ′) is expressed by the following formula (A). Calculated. Therefore, a roundness of 1.0 is a perfect circle, as is clear from this definition. Then, the more irregularities are on the outer periphery of the object, the roundness becomes smaller sequentially than 1.0. In the present invention, the roundness of the inorganic filler is a value obtained by extracting a part from the inorganic filler to be measured and measuring by the above method, and usually the average roundness. Say.

Figure 2007169655
Figure 2007169655

このような粒度分布を有する無機質充填剤(C成分)の配合量は、エポキシ樹脂組成物全体の75重量%以上であることが好ましく、より好ましくは80〜91重量%の範囲である。すなわち、75重量%未満のように少なすぎると、耐半田特性や、片面封止タイプの半導体装置において反りレベルでの特性が劣る傾向がみられるからである。   The blending amount of the inorganic filler (C component) having such a particle size distribution is preferably 75% by weight or more, more preferably in the range of 80 to 91% by weight based on the entire epoxy resin composition. That is, if the amount is too small, such as less than 75% by weight, the solder resistance characteristics and the warp level characteristics tend to be inferior in a single-side sealed type semiconductor device.

さらに、D成分として、難燃剤としての金属水酸化物を用いてもよい。このような金属水酸化物としては、多面体形状のものを用いることが好ましい。すなわち、六角板形状を有するもの、あるいは鱗片状等のように、いわゆる厚みの薄い平板形状の結晶形状を有するものではなく、縦,横とともに厚み方向(c軸方向)に結晶成長してより立体的かつ球状に近似させた球状の結晶形状、例えば、略12面体、略8面体、略4面体等の形状を有する金属水酸化物をいい、通常、これらの混合物である。もちろん、上記多面体形状は、結晶の成長の仕方以外にも、粉砕や摩砕等によっても多面体の形は変化し、より立体的かつ球状に近似させることが可能となる。このように、本発明では、上記多面体形状を有する金属水酸化物を用いることにより、鱗片状等のような平板形状の結晶形状を有するものに比べ、エポキシ樹脂組成物の流動性の低下を抑制することが可能となる。   Furthermore, you may use the metal hydroxide as a flame retardant as D component. As such a metal hydroxide, it is preferable to use a polyhedral shape. That is, it does not have a so-called thin plate-like crystal shape such as a hexagonal plate shape or a scale-like shape, but grows more vertically and horizontally in the thickness direction (c-axis direction). A metal hydroxide having a spherical crystal shape approximated to a target and spherical shape, for example, a substantially dodecahedron, a substantially octahedron, a substantially tetrahedron, or the like, and is usually a mixture thereof. Of course, the shape of the polyhedron changes not only in the manner of crystal growth, but also by pulverization, grinding, etc., and can be approximated more three-dimensionally and spherically. As described above, in the present invention, by using the metal hydroxide having the polyhedral shape, a decrease in the fluidity of the epoxy resin composition is suppressed as compared with those having a flat crystal shape such as a scale shape. It becomes possible to do.

このような金属水酸化物としては、具体的には、下記の一般式(5)で表される金属水酸化物があげられる。   Specific examples of such a metal hydroxide include metal hydroxides represented by the following general formula (5).

Figure 2007169655
Figure 2007169655

上記金属水酸化物の含有量は、配合する場合、エポキシ樹脂組成物全体の0.1〜30重量%、特には0.5〜25重量%の範囲に設定することが好ましい。すなわち、上記金属水酸化物が0.1重量%未満では、充分な難燃効果を得ることが困難であり、また、30重量%を超えると、流動性が低下し、ワイヤー流れ等の不良を引き起こす傾向がみられるからである。   When blended, the content of the metal hydroxide is preferably set in the range of 0.1 to 30% by weight, particularly 0.5 to 25% by weight of the entire epoxy resin composition. That is, if the metal hydroxide is less than 0.1% by weight, it is difficult to obtain a sufficient flame retardant effect. If the metal hydroxide exceeds 30% by weight, the fluidity is lowered and defects such as wire flow are caused. This is because there is a tendency to cause.

本発明では、上記A〜C成分および場合によりD成分に加えて、必要に応じて硬化促進剤、上記D成分以外のノボラック型ブロム化エポキシ樹脂等のハロゲン系の難燃剤や三酸化アンチモン等の難燃助剤、カーボンブラック等の顔料、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランやγ−グリシドキシプロピルトリメトキシシラン等のシランカップリング剤、カーボンブラック等の顔料等他の添加剤が適宜に用いられる。   In the present invention, in addition to the components A to C and optionally the component D, if necessary, a curing accelerator, a halogen-based flame retardant such as a novolak-type brominated epoxy resin other than the component D, antimony trioxide, etc. Flame retardant aids, pigments such as carbon black, silane coupling agents such as β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane and γ-glycidoxypropyltrimethoxysilane, pigments such as carbon black, etc. Additives are used as appropriate.

上記硬化促進剤としては、アミン型,リン型等のものがあげられる。アミン型としては、2−メチルイミダゾール等のイミダゾール類、トリエタノールアミン,ジアザビシクロウンデセン等の三級アミン類等があげられる。また、リン型としては、トリフェニルホスフィン等があげられる。これらは単独でもしくは併せて用いられる。そして、この硬化促進剤の配合割合は、エポキシ樹脂組成物全体の0.1〜1.0重量%の割合に設定することが好ましい。さらに、エポキシ樹脂組成物の流動性を考慮すると好ましくは0.15〜0.35重量%である。   Examples of the curing accelerator include amine type and phosphorus type. Examples of the amine type include imidazoles such as 2-methylimidazole and tertiary amines such as triethanolamine and diazabicycloundecene. Examples of the phosphorus type include triphenylphosphine. These may be used alone or in combination. And it is preferable to set the mixture ratio of this hardening accelerator to the ratio of 0.1 to 1.0 weight% of the whole epoxy resin composition. Furthermore, when considering the fluidity of the epoxy resin composition, it is preferably 0.15 to 0.35% by weight.

本発明の半導体封止用エポキシ樹脂組成物は、例えばつぎのようにして製造することができる。すなわち、上記A〜C成分および場合によりD成分、ならびに必要に応じて他の添加剤を配合し混合した後、ミキシングロール機等の混練機にかけ加熱状態で溶融混合し、これを室温に冷却した後、公知の手段によって粉砕し、必要に応じて打錠するという一連の工程により製造することができる。   The epoxy resin composition for semiconductor encapsulation of the present invention can be produced, for example, as follows. That is, after mixing and mixing the above-mentioned components A to C and optionally D component, and other additives as required, the mixture was melted and mixed in a kneading machine such as a mixing roll machine, and cooled to room temperature. Thereafter, it can be produced by a series of steps of pulverization by known means and tableting as necessary.

このようなエポキシ樹脂組成物を用いての絶縁基板の片面に搭載された半導体素子の封止は、特に制限するものではなく、通常のトランスファー成形等の公知のモールド方法により行うことができる。   The sealing of the semiconductor element mounted on one side of the insulating substrate using such an epoxy resin composition is not particularly limited, and can be performed by a known molding method such as normal transfer molding.

つぎに、実施例について比較例と併せて説明する。   Next, examples will be described together with comparative examples.

下記に示す各成分を準備した。   Each component shown below was prepared.

〔エポキシ樹脂a〕
下記の一般式(a)で表されるビフェニル型エポキシ樹脂(エポキシ当量191、融点105℃)

Figure 2007169655
[Epoxy resin a]
Biphenyl type epoxy resin represented by the following general formula (a) (epoxy equivalent 191; melting point 105 ° C.)
Figure 2007169655

〔エポキシ樹脂b〕
下記の一般式(b)で表されるヒドロキノン型エポキシ樹脂(エポキシ当量175、軟化点145℃)

Figure 2007169655
[Epoxy resin b]
Hydroquinone type epoxy resin represented by the following general formula (b) (epoxy equivalent 175, softening point 145 ° C.)
Figure 2007169655

〔フェノール樹脂a〕
前記一般式(1)で表されるナフトール系化合物(水酸基当量175、軟化点75℃)
[Phenolic resin a]
A naphthol compound represented by the general formula (1) (hydroxyl equivalent: 175, softening point: 75 ° C.)

〔フェノール樹脂b〕
前記一般式(2)で表されるフェノール樹脂(水酸基当量107、軟化点92℃)
[Phenolic resin b]
Phenol resin represented by the general formula (2) (hydroxyl equivalent 107, softening point 92 ° C.)

〔フェノール樹脂c〕
前記一般式(3)で表されるフェノール樹脂(水酸基当量97、軟化点98℃)
[Phenolic resin c]
Phenol resin represented by the general formula (3) (hydroxyl equivalent 97, softening point 98 ° C.)

〔フェノール樹脂d〕
前記一般式(4)で表されるフェノール樹脂(繰り返し単位p,qはブロック重合の態様である)(水酸基当量157、軟化点76℃)
[Phenolic resin d]
Phenol resin represented by the general formula (4) (repeating units p and q are embodiments of block polymerization) (hydroxyl equivalent 157, softening point 76 ° C.)

〔フェノール樹脂e〕
下記の一般式(e)で表されるフェノール樹脂(水酸基当量170、軟化点83℃)

Figure 2007169655
[Phenolic resin e]
Phenol resin represented by the following general formula (e) (hydroxyl equivalent: 170, softening point: 83 ° C.)
Figure 2007169655

〔無機質充填剤a〜c〕
下記の表1に示す各種シリカ粉末を準備した。
[Inorganic fillers a to c]
Various silica powders shown in Table 1 below were prepared.

Figure 2007169655
Figure 2007169655

〔カップリング剤〕
β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン
[Coupling agent]
β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane

〔硬化促進剤〕
トリフェニルホスフィン
[Curing accelerator]
Triphenylphosphine

〔金属水酸化物〕
多面体形状の結晶構造の金属水酸化物(タテホ化学工業社製、エコーマグZ−10)
[Metal hydroxide]
Metal hydroxide with polyhedral crystal structure (Echo Mug Z-10, manufactured by Tateho Chemical Industry Co., Ltd.)

〔実施例1〜11、比較例1〜6〕
下記の表2〜表4に示す各原料を、同表に示す割合で配合し、80〜120℃に加熱したロール混練機(5分間)にかけて溶融混練した。つぎに、この溶融物を冷却した後粉砕し、さらにタブレット状に打錠することにより半導体封止用エポキシ樹脂組成物を得た。
[Examples 1-11, Comparative Examples 1-6]
The raw materials shown in Tables 2 to 4 below were blended in the proportions shown in the same table, and melt kneaded by applying a roll kneader (5 minutes) heated to 80 to 120 ° C. Next, the melt was cooled and then pulverized, and further compressed into a tablet to obtain an epoxy resin composition for semiconductor encapsulation.

Figure 2007169655
Figure 2007169655

Figure 2007169655
Figure 2007169655

Figure 2007169655
Figure 2007169655

このようにして得られた実施例および比較例のエポキシ樹脂組成物を用い、下記の方法に従って、スパイラルフロー値およびゲルタイムを、さらに半導体パッケージの反り量、耐半田性を測定・評価した。その結果を後記の表5〜表7に併せて示す。   Using the epoxy resin compositions of Examples and Comparative Examples thus obtained, the spiral flow value and gel time, the warpage amount of the semiconductor package, and the solder resistance were further measured and evaluated according to the following methods. The results are also shown in Tables 5 to 7 below.

〔スパイラルフロー値〕
スパイラルフロー測定用金型を用い、175±5℃にてEMMI 1−66に準じて測定した。
[Spiral flow value]
Measurement was performed at 175 ± 5 ° C. according to EMMI 1-66 using a spiral flow measurement mold.

〔ゲルタイム〕
規定温度(175℃)の熱平板上に試料(200〜500mg)を載せ、攪拌しながら熱平板上に薄く引き伸ばし、試料が熱平板上に溶融した点から硬化するまでの時間を読み取りゲル化時間とした。
[Geltime]
A sample (200 to 500 mg) is placed on a hot plate at a specified temperature (175 ° C.), stretched thinly on the hot plate while stirring, and the time from the point at which the sample melts on the hot plate to cure is read. It was.

〔反り量〕
上記のようして得られた各エポキシ樹脂組成物製タブレットを用い、絶縁基板上に搭載された半導体素子をトランスファー成形(条件:175℃×1分+175℃×5時間の後硬化)することにより図2に示す片面封止タイプの半導体装置を作製した。図2において、3は半導体素子4を搭載した絶縁基板で、5は半導体素子4と絶縁基板3上の回路部分(図示せず)とを接続するボンディングワイヤー、6は半導体素子4を封止した樹脂封止層、7は絶縁基板3の他面に形成された半田製球状接続電極である。
樹脂封止層6(エポキシ樹脂組成物硬化体)サイズ:30×30×厚み1.2mm
半導体素子4サイズ:10×10×厚み0.37mm
絶縁基板3サイズ:ビスマレイミドトリアジン(BT)樹脂/ガラスクロス基板
[Warpage amount]
By using each epoxy resin composition tablet obtained as described above, transfer molding of the semiconductor element mounted on the insulating substrate (conditions: 175 ° C. × 1 minute + 175 ° C. × 5 hours post-curing) A single-side sealed semiconductor device shown in FIG. 2 was produced. 2, 3 is an insulating substrate on which the semiconductor element 4 is mounted, 5 is a bonding wire for connecting the semiconductor element 4 and a circuit portion (not shown) on the insulating substrate 3, and 6 is for sealing the semiconductor element 4. A resin sealing layer 7 is a solder spherical connection electrode formed on the other surface of the insulating substrate 3.
Resin sealing layer 6 (cured epoxy resin composition) size: 30 × 30 × thickness 1.2 mm
Semiconductor element 4 size: 10 × 10 × thickness 0.37 mm
Insulating substrate 3 size: bismaleimide triazine (BT) resin / glass cloth substrate

上記のようにして得られた各半導体装置について、マイクロディプスメーターを用いて反り量を測定した。   About each semiconductor device obtained as mentioned above, the curvature amount was measured using the micro depth meter.

〔耐半田性〕
上記半導体装置を用い、下記の条件(a),(b)にて吸湿させた後、赤外線リフロー(条件:260℃×10秒間)の評価試験(耐半田性)を行った。そして、クラックが発生した個数(20個中)を測定した。
(a)30℃/60%RH×168時間
(b)60℃/60%RH×120時間
[Solder resistance]
The semiconductor device was used to absorb moisture under the following conditions (a) and (b), and then an infrared reflow (condition: 260 ° C. × 10 seconds) evaluation test (solder resistance) was performed. Then, the number of cracks (out of 20) was measured.
(A) 30 ° C./60% RH × 168 hours (b) 60 ° C./60% RH × 120 hours

Figure 2007169655
Figure 2007169655

Figure 2007169655
Figure 2007169655

Figure 2007169655
Figure 2007169655

上記表5〜表7から、実施例品は、スパイラルフロー値およびゲルタイムの各値から良好な流動性を備えていることがわかる。しかも、反り量が小さく、耐半田性試験においても優れた評価結果が得られ、信頼性の高い半導体装置が得られたことがわかる。   From Tables 5 to 7, it can be seen that the example products have good fluidity from the values of the spiral flow value and the gel time. Moreover, the amount of warpage is small, and an excellent evaluation result is obtained even in a solder resistance test, indicating that a highly reliable semiconductor device is obtained.

これに対して、前記一般式(1)で表されるナフトール系化合物を配合していない比較例1,2品では、反り量が高く、しかも耐半田性試験において、前記(b)の条件での測定結果が悪く信頼性に劣るものであることがわかる。また、無機質充填剤の混合割合が前記特定の範囲を外れる比較例3〜6品では、粘度の増加が著しいために、良好な流動性が得られなかった。   On the other hand, in Comparative Examples 1 and 2 in which the naphthol compound represented by the general formula (1) is not blended, the warpage amount is high, and in the solder resistance test, the condition (b) is satisfied. It can be seen that the measurement result is poor and the reliability is poor. Further, in Comparative Examples 3 to 6 in which the mixing ratio of the inorganic filler was outside the above specific range, the viscosity was remarkably increased, so that good fluidity was not obtained.

(a)および(b)は無機質充填剤の真円度の測定方法を示す説明図である。(A) And (b) is explanatory drawing which shows the measuring method of the roundness of an inorganic filler. 実施例および比較例で作製した片面封止タイプの半導体装置を示す断面図である。It is sectional drawing which shows the single-side sealing type semiconductor device produced by the Example and the comparative example.

Claims (4)

絶縁基板の片面に搭載された半導体素子の、半導体素子搭載面側のみを樹脂封止するために用いられるエポキシ樹脂組成物であって、下記の(A)〜(C)成分を含有する半導体封止用エポキシ樹脂組成物。
(A)下記の一般式(a)で表されるビフェニル型エポキシ樹脂および下記の一般式(b)で表されるヒドロキノン型エポキシ樹脂からなるエポキシ樹脂。
Figure 2007169655
Figure 2007169655
(B)下記の一般式(1)で表されるナフトール系化合物を必須成分として含有する硬化剤。
Figure 2007169655
(C)下記の平均粒径(x),(y),(z)を有する3種類の無機質充填剤の混合物であって、上記平均粒径(x)を有する無機質充填剤が混合物全体の50〜92重量%、上記平均粒径(y)を有する無機質充填剤が混合物全体の5〜40重量%、上記平均粒径(z)を有する無機質充填剤が混合物全体の3〜15重量%に設定されている。
(x)平均粒径20〜60μm。
(y)上記(x)である平均粒径20〜60μmのもののうちから選択使用した無機質充填剤の平均粒径をαとした場合、0.1α≦平均粒径(μm)≦0.2αで表される平均粒径。
(z)上記(x)である平均粒径20〜60μmのもののうちから選択使用した無機質充填剤の平均粒径をαとした場合、0.01α≦平均粒径(μm)<0.1αで表される平均粒径。
An epoxy resin composition used for resin-sealing only a semiconductor element mounting surface side of a semiconductor element mounted on one side of an insulating substrate, which contains the following components (A) to (C) Stopping epoxy resin composition.
(A) An epoxy resin comprising a biphenyl type epoxy resin represented by the following general formula (a) and a hydroquinone type epoxy resin represented by the following general formula (b).
Figure 2007169655
Figure 2007169655
(B) A curing agent containing a naphthol compound represented by the following general formula (1) as an essential component.
Figure 2007169655
(C) A mixture of three kinds of inorganic fillers having the following average particle diameters (x), (y), and (z), wherein the inorganic filler having the average particle diameter (x) is 50% of the total mixture. ~ 92 wt%, the inorganic filler having the above average particle size (y) is set to 5 to 40 wt% of the whole mixture, and the inorganic filler having the above average particle size (z) is set to 3 to 15 wt% of the whole mixture Has been.
(X) Average particle size of 20-60 μm.
(Y) When the average particle diameter of the inorganic filler selected and used from the above (x) having an average particle diameter of 20 to 60 μm is α, 0.1α ≦ average particle diameter (μm) ≦ 0.2α The average particle size represented.
(Z) When the average particle diameter of the inorganic filler selected and used from the above (x) having an average particle diameter of 20 to 60 μm is α, 0.01α ≦ average particle diameter (μm) <0.1α The average particle size represented.
上記(B)成分中のナフトール系化合物の含有割合が、(B)成分全体の30重量%以上である請求項1記載の半導体封止用エポキシ樹脂組成物。   2. The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein the content ratio of the naphthol-based compound in the component (B) is 30% by weight or more of the whole component (B). 上記(A)〜(C)成分とともに、(D)成分として金属水酸化物を含有する請求項1または2記載の半導体封止用エポキシ樹脂組成物。   The epoxy resin composition for semiconductor encapsulation according to claim 1 or 2, comprising a metal hydroxide as the component (D) together with the components (A) to (C). 請求項1〜3のいずれか一項に記載の半導体封止用エポキシ樹脂組成物を用いて、半導体素子が搭載された絶縁基板の半導体素子搭載面側のみを封止してなる半導体装置。   The semiconductor device formed by sealing only the semiconductor element mounting surface side of the insulating substrate in which the semiconductor element was mounted using the epoxy resin composition for semiconductor sealing as described in any one of Claims 1-3.
JP2007011702A 2007-01-22 2007-01-22 Epoxy resin composition for sealing semiconductor and semiconductor device using the same Pending JP2007169655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007011702A JP2007169655A (en) 2007-01-22 2007-01-22 Epoxy resin composition for sealing semiconductor and semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007011702A JP2007169655A (en) 2007-01-22 2007-01-22 Epoxy resin composition for sealing semiconductor and semiconductor device using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002171490A Division JP3967205B2 (en) 2002-06-12 2002-06-12 Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same

Publications (1)

Publication Number Publication Date
JP2007169655A true JP2007169655A (en) 2007-07-05

Family

ID=38296607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007011702A Pending JP2007169655A (en) 2007-01-22 2007-01-22 Epoxy resin composition for sealing semiconductor and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP2007169655A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009235164A (en) * 2008-03-26 2009-10-15 Panasonic Electric Works Co Ltd Semiconductor sealing epoxy resin composition, and single side sealing type semiconductor device manufactured by sealing semiconductor device using the composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08111468A (en) * 1994-10-11 1996-04-30 Nitto Denko Corp Semiconductor device
JP2000109649A (en) * 1998-10-08 2000-04-18 Nitto Denko Corp Semiconductor sealing epoxy resin composition and preparation thereof and semiconductor device
JP2001040181A (en) * 1999-08-03 2001-02-13 Nitto Denko Corp Epoxy resin composition for sealing semiconductor and semiconductor apparatus using the same
JP2001226454A (en) * 2000-02-17 2001-08-21 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
WO2002024808A1 (en) * 2000-09-25 2002-03-28 Hitachi Chemical Co., Ltd. Epoxy resin molding material for sealing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08111468A (en) * 1994-10-11 1996-04-30 Nitto Denko Corp Semiconductor device
JP2000109649A (en) * 1998-10-08 2000-04-18 Nitto Denko Corp Semiconductor sealing epoxy resin composition and preparation thereof and semiconductor device
JP2001040181A (en) * 1999-08-03 2001-02-13 Nitto Denko Corp Epoxy resin composition for sealing semiconductor and semiconductor apparatus using the same
JP2001226454A (en) * 2000-02-17 2001-08-21 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
WO2002024808A1 (en) * 2000-09-25 2002-03-28 Hitachi Chemical Co., Ltd. Epoxy resin molding material for sealing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009235164A (en) * 2008-03-26 2009-10-15 Panasonic Electric Works Co Ltd Semiconductor sealing epoxy resin composition, and single side sealing type semiconductor device manufactured by sealing semiconductor device using the composition

Similar Documents

Publication Publication Date Title
JP2011153173A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP2021024945A (en) Granular semiconductor-sealing resin composition and semiconductor device
JP4827192B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2005239892A (en) Resin composition for semiconductor encapsulation and semiconductor device using the same
JP2001064522A (en) Semiconductor sealing resin composition
JP2004018790A (en) Epoxy resin composition and semiconductor device
JP2012012431A (en) Fluid resin composition and semiconductor apparatus
JP4950010B2 (en) Manufacturing method of epoxy resin composition for semiconductor encapsulation and manufacturing method of semiconductor device
JP2007169655A (en) Epoxy resin composition for sealing semiconductor and semiconductor device using the same
TW202225244A (en) Resin composition for encapsulating semiconductor and semiconductor device
JP3967205B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP2003277585A (en) Epoxy resin composition and semiconductor device
JP2002194058A (en) Semiconductor device
JP4525141B2 (en) Method for producing epoxy resin composition for semiconductor encapsulation and method for producing epoxy resin composition for area mounting type semiconductor encapsulation
JP2003277477A (en) Epoxy resin composition and resin-sealing type semiconductor device
JP3915545B2 (en) Epoxy resin composition for sealing and single-side sealed semiconductor device
JP2002080694A (en) Epoxy resin composition and semiconductor device
JP2009256475A (en) Epoxy resin composition for sealing semiconductor and semiconductor device using the same
JP2005154717A (en) Epoxy resin composition and semiconductor device
JPH08153831A (en) Semiconductor device
JP2005325210A (en) Epoxy resin composition for sealing semiconductor and semiconductor device using the same
JP2010031119A (en) Semiconductor-sealing epoxy resin composition and semiconductor device using it
JP5201451B2 (en) Epoxy resin composition for semiconductor encapsulation
JP5226957B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2007077237A (en) Epoxy resin composition for sealing semiconductor, and semiconductor device by using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005