JP4284744B2 - High frequency integrated circuit device - Google Patents

High frequency integrated circuit device Download PDF

Info

Publication number
JP4284744B2
JP4284744B2 JP10546199A JP10546199A JP4284744B2 JP 4284744 B2 JP4284744 B2 JP 4284744B2 JP 10546199 A JP10546199 A JP 10546199A JP 10546199 A JP10546199 A JP 10546199A JP 4284744 B2 JP4284744 B2 JP 4284744B2
Authority
JP
Japan
Prior art keywords
semiconductor chip
multilayer substrate
integrated circuit
layer
frequency integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10546199A
Other languages
Japanese (ja)
Other versions
JP2000299427A (en
Inventor
章 栖原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP10546199A priority Critical patent/JP4284744B2/en
Publication of JP2000299427A publication Critical patent/JP2000299427A/en
Application granted granted Critical
Publication of JP4284744B2 publication Critical patent/JP4284744B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15313Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a land array, e.g. LGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • H01L2924/15321Connection portion the connection portion being formed on the die mounting surface of the substrate being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Abstract

PROBLEM TO BE SOLVED: To reduce the size of a high-frequency integrated circuit and increase the degree of integration of the circuit, by effectively utilizing the area of a multilayered substrate by mounting semiconductor chips and chip parts on both surfaces of the substrate. SOLUTION: Semiconductor chips 11 and 21 are flip-chip mounted on both surfaces of the multilayered substrate 2 of a high-frequency integrated circuit 1 and chips parts, a heat radiation cover 3, and a heat sink 5 are provided on one surface of the substrate 2. In addition, bumps BP are respectively formed on the rear surfaces of the chips 11 and 21 and the chips 11 and 21 are joined to the substrate 2 by positioning the chips 11 and 21 on the substrate 2, in a state where the surface electrodes of the dies of the chips 11 and 21 are directly faced oppositely to the electrodes formed on the surface of the substrate 2 through the bumps BP and applying heat and pressures to the chips 11 and 21. The chip parts are composed of passive elements, such as inductance elements, capacitance elements, resistance elements, etc., and constitute a prescribed circuit together with a circuit wiring layer formed on the surface or inside of the substrate 2. Therefore, the size of the high-frequency integrated circuit 1 can be reduced and the degree of integration of the circuit 1 can be increased.

Description

【0001】
【発明の属する技術分野】
本発明は、たとえば、移動体通信等の各種通信機器の高周波帯域の信号の処理に用いられる高周波集積回路装置に関する。
【0002】
【従来の技術】
近年、携帯電話、自動車電話に代表される移動体通信システムの進展には目覚ましいものがある。
たとえば、日本国内では、800MHz帯および1.5GHz帯のディジタルセルラー(PDC)や、1.9GHz帯の信号伝送を行うパーソナルハンディーホンシステム(PHS)がサービスを行っている。日本国外においても、GSM(Global System Mobile) を代表とする複数のシステムが既にサービスを展開している。
また、異なる通信システムをひとつの端末で利用可能な、例えば、デュアルバンド(CDMA(Code Division Multiple Access) 方式で1900MHz帯の信号伝送+AMPS(Advanced Mobile Phone System)方式で800MHz帯の信号伝送)やデュアルモード(CDMA方式およびAMPS方式で800MHz帯の信号伝送)などのサービスが活発になっている。
こうした発展の要因には、インフラの整備、サービスの充実とともに、携帯端末の小型、軽量化が挙げられる。当然のことながら、lCチップ自体にも小型、軽量化が要求され、小型モールドパッケージやチップ外形と同程度の寸法の基板にチップを実装するCSP(Chip Size/Scale Package)が注目を浴びている。
【0003】
高周波ICでは、IC外部の外付け部品でインピーダンス整合回路やバイアス回路を実現する場合、実装する基板や周辺部品の実装状況により、IC特性が変動する場合がある。
カスタマーごとに異なるセット基板上でICの特性を十分に引き出すには、周辺部品の素子値の最適化や、基板の再設計が必要になり、多大な工数がかかっている。
そのため、異なるセット基板上でもIC性能が保証されるように、整合回路やバイアス回路などの回路要素を内蔵した状態で小型化を実現した実装形態が望まれている。
さらに、ICの高機能化や多機能化も期待されており、半導体チップ上でさらなる集積化が進められている。
【0004】
しかしながら、多機能化を実現する際に、たとえば、半導体材料がGaAsからなる半導体チップとSiからなる半導体チップのように、同一プロセスでは製造できない場合や、それぞれの機能で最適なプロセス条件が異なり(最適なしきい値が異なり)プロセスが複雑になるような場合には、一つの半導体チップでの集積化は難しく、複数の半導体チップで実現するマルチチップ化が不可欠となる。
高周波ICのマルチチップ化の例としては、スイッチ機能をGaAsチップで実現し、ロジック機能をSiチップで実現した多機能スイッチや、パワーアンプおよびスイッチ機能とを有するチップと低雑音アンプおよびミキサ一機能を有するチップの二つのチップを用いた集積化ICなどがある。
【0005】
【発明が解決しようとする課題】
たとえば、図13に示す高周波IC101は、ダイパッド102上に複数の半導体チップ103および104を搭載し、各リード106と各半導体チップ103および104の電極とを金属細線105で接続し、これらを封止樹脂107で封止固定したモールドパッケージ型の半導体装置である。
また、図14に示す高周波IC201は、ダイパッド202上に複数の半導体チップ203および204を搭載し、ダイパッド202と半導体チップ203および204の各電極とを金属細線205で接続し、これらを封止樹脂207で封止固定し、ダイパッド202の裏面にバンプ206が形成されたBGA(Ball Grid Alley) 型の半導体装置である。
しかしながら、図13および図14に示す高周波IC101、201では、各半導体チップを2次元的に配置せざるを得ないため、小型化には限界があり、バイアス回路や整合回路の内蔵が難しい。また、2つの半導体チップを近接して配置しなければならないため、お互いの電気的な干渉を考慮する必要がある。
【0006】
一方、メモリーにおいては、メモリー同士(例えばフラッシュメモリーとスタティックメモリー)の集積化や機能の異なるIC(メモリーとロジック)の集積化が非常に活発である。
たとえば、図15に示すように、2種類の半導体チップ303および304をリードフレーム上のダイパッド302の上下面に搭載し、金属細線305および306でワイヤボンディングし、これらとリード部307とを封止樹脂308で封止固定した半導体装置301では、ある程度の小型化は可能だが、整合回路やバイアス回路の内蔵は困難である。
また、たとえば、図16に示すように、2種類の半導体チップ403および404をダイパッド402上に積層し、それぞれ金属細線405、406で接続し、封止樹脂407で封止固定したチップ積層型の半導体装置401方式では、2つの半導体チップ403および404をワイヤボンディングする際のスペース確保と金属細線405、406のワイヤ長の制約から実装可能なチップサイズに制限が加わり、また、整合回路やバイアス回路の内蔵も困難である。
また、たとえば、図17に示すように、2枚のインターポーザ502および503にインナーバンプ507および509によって2つの半導体チップ506および508をそれぞれ実装し、2枚のインターポーザ502および503をスタックバンプ504によって接続したフリップチップ実装型CSPのスタック方式の半導体装置501においても、小型化の実現は可能だが、整合回路やバイアス回路の内蔵は考慮されていない。
また、たとえば、図18に示すように、2つの半導体装置602および603のパッケージ自体を積層したパッケージ積層方式の半導体装置601においても、整合回路やバイアス回路の内蔵は困難であり、最終的なパッケージ厚や実装外形は大きくなってしまう。
【0007】
本発明は、上述の従来の問題に鑑みてなされたものであって、小型化、高集積化され、回路間の電気的干渉が抑制され、放熱特性の良い高周波集積回路装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、複数の誘電体層が積層された多層基板と、前記多層基板の両面に実装された、能動素子を有する半導体チップと、前記多層基板の層間および表面に形成された回路配線層と、前記多層基板の表面の少なくとも一方に実装された受動素子からなるチップ部品とを有する。
【0009】
前記多層基板の電子機器への装着面側の表層には、隣接する内層に通じる開口部が形成されており、前記半導体チップは、前記開口部内に収容され、かつ前記隣接する層上に実装されている。
【0010】
前記開口部が形成された表層の表面には、電子機器への装着のための電極が形成されている。
【0011】
前記開口部が形成された表層の厚さは、前記半導体チップまたは前記チップ部品の高さに応じて調整されている。
【0012】
前記多層基板の層間に接地層が形成されている。
【0013】
前記回路配線層は、インピーダンス整合回路およびバイアス回路の少なくとも一部を構成する。
【0014】
前記チップ部品は、前記回路配線層とともに、前記インピーダンス整合回路およびバイアス回路を構成する。
【0015】
前記バイアス回路が前記多層基板の層間に形成されている。
【0016】
前記多層基板の周囲を囲む被覆部と、一方に半導体チップの表面に直接接触する接触部とを具備する放熱板を有する。
【0017】
前記放熱板は、電磁シールドとして機能する。
【0018】
前記放熱板は、前記多層基板の電子機器への非装着面側に実装された半導体チップの表面に接触している。
【0019】
前記多層基板の電子機器への装着面側に実装された半導体チップの表面に直接接触し、かつ、前記開口部内に収容されている放熱板を有する。
【0020】
前記半導体チップは、フリップチップボンディングによって前記多層基板に電気的に接合されている。
【0021】
前記半導体チップは、ワイヤボンディングによって前記多層基板に電気的に接続されている。
【0022】
前記各半導体チップのうち、一方面に実装された半導体チップは、フリップチップボンディングによって前記多層基板に電気的に接合され、
他方面に実装された半導体チップは、ワイヤボンディングによって前記多層基板に電気的に接続されている。
【0023】
前記多層基板内には、前記半導体チップの実装位置に空洞が形成されている。
【0024】
また、本発明は、積層された第1〜第4の誘電体層と、前記第4の誘電体層に積層され当該第4の誘電体層の表面に通ずる開口部が形成された第5の誘電体層と、前記第1および第2の誘電体層間と前記第3および第4の誘電体層間とに形成された導電材料からなる接地層と、前記第2および第3の誘電体層間に形成された導電性材料からなる回路配線層と、前記第1および第4の誘電体層の表面に形成された導電性材料からなる回路配線層とを有する多層基板と、前記第1および第4の表面に実装された能動素子を有する半導体チップと、前記第1および第4の少なくとも一方に実装された受動素子が形成されたチップ部品とを有する。
【0025】
前記第2および第3の誘電体層間に形成された回路配線層は、バイアス回路を構成しており、前記第1および第4の誘電体層の表面に形成された導電性材料からなる回路配線層と前記第1および第4の少なくとも一方に実装された受動素子とは、インピーダンス整合回路を構成している。
【0026】
前記第5の誘電体層の表面には、電子機器への装着のための電極が形成されている。
【0027】
前記多層基板の側面および前記第1の誘電体層側を覆い、かつ第1の誘電体層表面に実装された半導体チップの表面に直接接触する放熱板を有する。
【0028】
前記多層基板の第5の誘電体層の開口部内に収容され、当該開口部内の半導体チップの表面に直接接合された放熱板を有する。
【0029】
本発明では、半導体チップが多層基板の両面に半導体チップが実装され、多層基板の少なくとも一方面にチップ部品が実装され、かつ、多層基板の内層および表面に回路配線層が形成されているため、複数の半導体チップおよび高周波集積回路に必要な各種の回路の集積化を多層基板の表面および内層で構成でき、小型化、高集積化が可能となる。
【0030】
【発明の実施の形態】
以下に、本発明の実施の形態について図面を参照して説明する。
第1実施形態
図1は、本発明の第1実施形態に係る高周波集積回路装置の構造を示す断面図である。本実施形態に係る高周波集積回路装置は、たとえば、携帯端末の高周波アンプ(CDMA方式で1900MHz帯の信号送信およびAMPS方式で800MHz帯の信号送信を行うデュアルバンド送信用増幅器)集積回路に適用したものである。
【0031】
図1において、高周波集積回路装置1は、多層基板2と、多層基板2の両面にそれぞれ実装された半導体チップ11、21と、多層基板2の一方面に実装されたチップ部品41と、多層基板2に対して設けられた放熱カバー3と、放熱板5とを有している。
【0032】
半導体チップ11、21は、たとえば、送信信号の高周波電力増幅を行うための能動素がそれぞれ形成されており、能動素子とともに、たとえばキャパシタ、抵抗等の受動素子が形成されており、これらの素子によって高周波回路を構成している。
能動素子は、たとえば、シリコン(Si)を用いたバイポーラトランジスタや、ガリウム砒素(GaAs)を用いた電界効果トランジスタや、MOSFET等である。
半導体チップ11、21を形成する材料としては、たとえば、GaAs等の化合物半導体や、Si等の半導体が用いられる。
また、半導体チップ11、21は、高周波電力増幅を行うため、熱的に放熱が不可欠である。
【0033】
半導体チップ11、21の裏面には、それぞれバンプBPが形成されており、半導体チップ11、21は、多層基板2にフリップチップ方式で実装されている。
すなわち、半導体チップ11、12のダイの表面電極と多層基板2の表面に形成された電極とをバンプBPを介して直接対向させて位置決めし、熱および圧力を加えて半導体チップ11、12を多層基板2に接合してある。
【0034】
チップ部品41は、たとえば、インダクター素子、容量素子、抵抗素子等の受動素子がそれぞれ形成されており、多層基板2の表面または内層に形成された回路配線層とともに、所定の機能の回路を構成している。
具体的には、チップ部品41は、たとえば、多層基板2の表面に形成された回路配線層とともに、半導体チップ11、21が行う送信信号の高周波増幅におけるインピーダンス整合回路を構成している。
なお、図1では、チップ部品41は多層基板2の一方面にのみ実装されているが、本実施形態では多層基板2の両面に実装されているものとする。
【0035】
多層基板2は、5層の第1〜第5誘電体層2a〜2eの積層構造となっていおる。
多層基板2の各誘電体層2a〜2eの形成材料は、たとえば、窒化アルミニウム、アルミナ、窒化シリコン、ガラスセラミック、ガラスエポキシ等の誘電体を用いることができる。また、これらの誘電体材料から、誘電率やコストを考慮して決定される。なお、必要に応じて、これらの材料を組み合わせて使用してもよい。
【0036】
図2および図3は、多層基板2の構成を示す断面図である。
なお、図2の(a)は、多層基板2の第1誘電体層2aを表面側から見た図であり、(b)は第1誘電体層2aを第2誘電体層2bとの層間側から見た図であり、(c)は第2誘電体層2aを第3誘電体層2cとの層間側から見た図である。図3の(a)は第3誘電体層2cを第4誘電体層2dとの層間側から見た図であり、(b)は第4誘電体層2dを第5誘電体層2eとの層間側から見た図であり、(c)は第5誘電体層2eを表面側から見た図である。
【0037】
第1誘電体層2aは最上層であり、図2(a)に示すように、第1誘電体層2aの上面には、たとえば、図示しないストリップライン(導体線路)で構成される回路配線層51が形成されているとともに、半導体チップ11およびチップ部品41が実装されている。
回路配線層51は、具体的には、たとえば、チップ部品41とともに半導体チップ11に対するインピーダンス整合回路を構成している。
【0038】
図2(b)に示すように、第1誘電体層2aの下面、すなわち、第1誘電体層2aと第2誘電体層2bとの層間には、たとえば、銅、アルミニウム等の導電性材料からなる接地層G1が形成されている。接地層G1は接地レベルである。
【0039】
図2(c)に示すように、第2誘電体層2bの下面には、すなわち、第2誘電体層2bと第3誘電体層2cとの層間には、たとえば、図示しないストリップライン(導体線路)で構成される回路配線層52が導電性材料によって形成されている。
回路配線層52は、具体的には、たとえば、半導体チップ11、21に各種電源を供給するバイアス回路を構成している。
バイアス回路は、基本波から発生した高調波を減衰させるために、伝送信号の基準波長λのλ/4の長さのストリップラインなどで構成する。なお、λ/4ののストリップラインの長さは、たとえば、800MHzの場合には、約30mmとなる。
【0040】
図3(a)に示すように、第3誘電体層2cの下面、すなわち、第3誘電体層2cと第4誘電体層2dとの層間には、接地層G2が形成されている。接地層G2は接地レベルである。
【0041】
図3(b)に示すように、第4誘電体層2dの下面、すなわち、第4誘電体層2dと第5誘電体層2eとの層間には、たとえば、図示しないストリップラインによって構成される回路配線層53が形成されるとともに、半導体チップ21とチップ部品41とが実装されている。
【0042】
第5誘電体層2eは最下層であり、図示しない電子機器の親基板に装着される層である。
第5誘電体層2eは、図3(c)に示すように、第4誘電体層2dに実装された半導体チップ21やチップ部品41が挿通しかつ収容する開口部55が設けられている。
また、第5誘電体層2eには、電子機器の親基板との接合のための、たとえば、ランド型の電極54が複数形成されている。
第5誘電体層2eの厚さは、半導体チップ21の高さ、または、チップ部品41の高さ、あるいはチップ部品41の有無によって、開口部55内に半導体チップ21およびチップ部品41が確実に収容されるように調整されている。
【0043】
上記の第1〜第5誘電体層2a〜2eの層間に形成された回路配線層52および接地層G1、G2と、多層基板2の両面に形成された回路配線層51,53、半導体チップ11,21、各チップ部品41は、図1に示すように、各誘電体層2a〜2eに形成されたスルーホール内の配線56および多層基板の周囲に形成された配線57によって互いに電気的に接続されている。配線57は、第5誘電体層2eに形成された電極54に電気的に接続されている。
【0044】
放熱カバー3は、多層基板2の第1誘電体層2a側に対して、多層基板2の外周および第1誘電体層2a側を覆うように設けられた被覆部3bと、被覆部3bに一体に形成された半導体チップ11の表面と直接接触する接触部3aとを有している。
放熱カバー3の接触部3aは、多層基板2に実装された半導体チップ11の表面と、たとえば、接着剤によって接合されており、多層基板2は放熱カバー3に保持されている。
放熱カバー3の材質としては、熱伝導性の良好なもの、例えばアルミニウム等の金属材料が用いられる。
放熱カバー3の被覆部3bの端部には、放熱カバー3を電子機器の親基板に取り付けるための取り付け部3cが形成されている。
【0045】
多層基板2の下面に実装された半導体チップ22の下面には、放熱板5が取り付けられ、半導体チップ22とともに封止樹脂Rによって樹脂固定されている。放熱板5は、多層基板2の第5誘電体層5eの開口部55内に収容されており、第5誘電体層5eの表面から突出していない。
放熱板5は、熱伝導性の良好な上記の放熱カバー3と同様の材料で形成される。
【0046】
上記高周波集積回路装置1は、電子機器の親基板に対して、放熱カバー3の取り付け部3cおよび第5誘電体層5eが接合される。
電子機器から高周波集積回路装置1に装着されると、たとえば、多層基板2の第2誘電体層2bと第3誘電体層2cとの層間に形成された回路配線層52のバイアス回路を通じて半導体チップ11、21に電源が供給され、半導体チップ11、21は高周波電力増幅を行う。
【0047】
多層基板2の両面に実装された半導体チップ11および21とも高周波電力増幅を行うので、半導体チップ11および21の発熱量は大きく、放熱を行う必要がある。
多層基板2の上面に実装された半導体チップ11から発生した熱は、接触部3aを通じて放熱カバー3に伝えられる。
放熱カバー3の被覆部3bは、広い表面積で空気に触れているため、放熱カバー3に伝えられた熱は空気中に放熱される。さらに、放熱カバー3の取り付け部3cにより親基板に取り付けていると、放熱カバー3の熱は、親基板により放熱される。なお、この放熱カバー3は、半導体チップ11の放熱を行うとともに、多層基板2の表面への塵の侵入防止や、外部との電磁シールドとしても機能する。
【0048】
多層基板2の下面に実装された半導体チップ21から発生した熱は、その下面に取り付けられている放熱板5を介して多層基板2が装着される図示しない電子機器の親基板に伝えられ、親基板より放熱される。
【0049】
本実施形態に係る高周波集積回路装置1では、多層基板2の両面を使って半導体チップ11、21やチップ部品41の実装を行っており、基板面積を有効に利用でき、3次元的な小型化が可能となる。
また、複数の誘電体層2a〜2eが積層された多層基板2を用いることにより、誘電体層2a〜2eの層間に、たとえば、バイアス回路においてλ/4の長さのストリップライン等の比較的線路長の長い回路を形成することができ、立体的に、整合回路やバイアス回路を組み込むことが可能となる。
また、多層基板2の両面には、インダクター素子や容量素子などのチップ部品41も実装され、多層基板2の両面を使って部品実装を行うことで基板面積が有効に利用でき、小型化が可能となる。
【0050】
さらに、本実施形態に係る高周波集積回路装置1によれば、誘電体層2a〜2eの層間に接地層G1およびG2を形成して、各回路配線層51、52、53の間に位置させているため、各回路配線層51、52、53間の電気的な干渉を防止することができる。
また、放熱カバー3は、放熱のみならず、高周波集積回路装置1内への塵の侵入防止や電磁シールドのためにも必要であるから、元々カバーは必要なものであり、放熱カバー3を取り付けることにより、大型化したり、コストアップになることはない。
なお、上述の説明では、チップ部品41は多層基板2の両面上に実装されているものとしたが、一方面のみの実装でも構わない。また、チップ部品41を実装せずに、半導体チップ11、21のみの実装でもよい。
【0051】
第2の実施形態
図4〜図7は、本発明の第2の実装形態に係る高周波集積回路装置の構造を示す断面図である。なお、第1の実施形態に係る高周波集積回路装置の構成要素と同一の構成要素については同一の符号をもって示している。
図4および図5に示す高周波集積回路装置は、基本的には、上述した第1の実施形態に係る高周波集積回路装置と同一の構成であるが、多層基板2の両面に実装される半導体チップ11および21のうち、一方が発熱量が比較的大きく、他方が発熱量が比較的小さい場合に本発明を適用した場合の構成を示している。
【0052】
図4に示す高周波集積回路装置61は、多層基板2の第1誘電体層2aの表面に実装された半導体チップ11の発熱が大きく、多層基板2の第5誘電体層2eに実装された半導体チップ21の発熱が小さい場合である。
半導体チップ11は、たとえば、送信信号増幅回路を有し、半導体チップ21は、たとえば、多機能スイッチ回路を有している。
図4に示すように、発熱が大きい半導体チップ11に対しては、放熱カバー3設け、発熱量の小さい半導体チップ21には上記の放熱板5は設けず、半導体チップ21は、フリップチップ方式で多層基板2の第4誘電体層2dに実装され、封止樹脂Rによって覆われている。
【0053】
図5に示す高周波集積回路装置62は、図4に示した高周波集積回路装置61と同様に、半導体チップ11の発熱が大きく、半導体チップ21の発熱が小さい場合である。
図5に示すように、発熱が大きい半導体チップ11に対しては、放熱カバー3設け、発熱量の小さい半導体チップ21には上記の放熱板5は設けない。
また、半導体チップ21は、表面電極が形成された面を第4誘電体層2dに対して反対向きにして第4誘電体層2dに接合し、半導体チップ21の表面電極と第4誘電体層2d上の電極とを金属細線59でワイヤリングするとともに、第5誘電体層2eの開口部55内を樹脂Rで充填して半導体チップ21および金属細線59を固定する。
【0054】
以上のように、半導体チップ11の発熱が大きく、半導体チップ21の発熱が小さい場合には、図4および図5に示した構成のように、ワイヤ長のばらつきやインダクタンスの影響を避けるべき半導体チップや放熱を必要とする半導体チップはフリップチップ方式で実装し、これらの必要のない半導体チップはワイヤボンディングを用いて実装することで対応可能となる。
【0055】
図6に示す高周波集積回路装置63は、半導体チップ11の発熱が小さく、半導体チップ21の発熱が大きい場合である。
この場合には、図6に示すように、半導体チップ11に対して上記の放熱カバー3は設けず、半導体チップ21に対しては放熱板5を設ける。
また、半導体チップ11および半導体チップ21は、バンプBPを介して多層基板2の両面にそれぞれフリップチップ方式で実装されている。
半導体チップ21およびは放熱板5は、第5誘電体層2eの開口部55内に樹脂Rによって固定されている。
【0056】
図7に示す高周波集積回路装置64は、図6に示した高周波集積回路装置63と同様に、半導体チップ11の発熱が小さく、半導体チップ21の発熱が大きい場合である。
図7に示すように、半導体チップ11は、半導体チップ11の表面電極形成側を第1誘電体層2aに対して反対向きに配置し、この表面電極と第1誘電体層2a上の電極とを金属細線70でワイヤリングするとともに、半導体チップ11および金属細線70を樹脂Rで固定している。
半導体チップ21の実装構造は、図6に示した高周波集積回路装置63と同様にしている。
【0057】
以上のように、半導体チップ11の発熱が小さく、半導体チップ21の発熱が大きい場合には、図6および図7に示した構成で対応可能である。
【0058】
第3の実施形態
図8〜図11は、本発明の第3の実装形態に係る高周波集積回路装置の構造を示す断面図である。なお、第1の実施形態に係る高周波集積回路装置の構成要素と同一の構成要素については同一の符号をもって示している。
図8〜図11に示す高周波集積回路装置は、基本的には、上述した第1の実施形態に係る高周波集積回路装置と同一の構成であるが、多層基板2の両面に実装される半導体チップ11および21の発熱量が小さく、特に放熱手段を設けなくてもよい場合である。
【0059】
図8に示す高周波集積回路装置65は、半導体チップ11および21をフリップチップ方式で多層基板2に実装し、樹脂Rで固定している。
図9に示す高周波集積回路装置66は、半導体チップ11が特に発熱量が少ない場合であり、半導体チップ11の表面電極形成側を第1誘電体層2aに対して反対向きに配置し、この表面電極と第1誘電体層2a上の電極とを金属細線72でワイヤリングするとともに、半導体チップ11および金属細線70を樹脂Rで固定している。
【0060】
図10に示す高周波集積回路装置67は、多層基板2の下面に実装される半導体チップ21が特に発熱量が少ない場合であり、半導体チップ21の表面電極形成側を第4誘電体層2dに対して反対向きに配置し、この表面電極と第5誘電体層2d上の電極とを金属細線73でワイヤリングするとともに、半導体チップ21および金属細線73を樹脂Rで固定している。
図11に示す高周波集積回路装置68は、多層基板2の両面に実装される半導体チップ11、12が共に特に発熱量が少ない場合であり、半導体チップ11、12が図9および図10に示した方法で実装されている。
【0061】
以上のように、半導体チップ11、12の発熱量が小さい場合には、図8〜図11に示した構成で対応可能となる。
【0062】
第4の実施形態
図12は、本発明の第4の実装形態に係る高周波集積回路装置の構造を示す断面図である。なお、第1の実施形態に係る高周波集積回路装置の構成要素と同一の構成要素については同一の符号をもって示している。
図12に示す高周波集積回路装置69は、多層基板2の下面に実装される半導体チップ21の処理する周波数がより高い場合である。
半導体チップ21が、さらに高い周波数の処理を行う場合には、たとえば、図12に示すように、多層基板2の第4誘電体層2dの表面に実装した半導体チップ21の実装位置に対応する多層基板2の第4誘電体層2dおよび第3誘電体層2cに空洞であるキャビティーHを形成する。
このような構成とすることにより、キャビティーHの空間は、誘電体よりも誘電率が低く、低インダクタンスとなり、半導体チップ21の高周波特性への影響を抑制することができる。
なお、本実施形態では、多層基板2の下面に実装される半導体チップ21に対してキャビティーHを形成しているが、同様に、多層基板2の上面に実装される半導体チップ11に対してもキャビティーHを形成することが可能である。
【0063】
本発明は、上述した実施形態では、多層基板2の各表面に実装された半導体チップはそれぞれ単数であったが、本発明はこれに限定されるわけではなく、多層基板2の両面に実装される半導体チップが複数であってもよい。
【0064】
【発明の効果】
本発明によれば、多層基板の両面を使って半導体チップおよびチップ部品の実装を行っているため、基板面積を有効に利用でき、高周波集積回路装置の小型化、高集積化が可能である。
また、本発明によれば、ワイヤ長のばらつきやインダクタンスの影響を避けるべき半導体チップや放熱を必要とする半導体チップの実装については、フリップ実装を用い、それらを考慮しなくてよい場合には、ワイヤリング方式を採用するため、実装方式の自由度を拡大させることができる。
また、本発明によれば、半導体チップおよびチップ部品を実装する基板として多層基板を用いることにより、高密度実装が行えるとともに、多層基板中には接地層を含める回路配線層間の電気的な干渉が防止され、かつ熱抵抗を低下させることが可能となる。
また、本発明によれば、半導体チップおよびチップ部品を実装する基板として多層基板を用いることにより、バイアス回路を多層基板の誘電体層間に実現可能であり、層間を有効に活用することで小型化、高実装化が可能となる。
また、本発明によれば、放熱が必要な半導体チップを実装した場合であっても、容易に対応可能である。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る高周波集積回路装置の構造を示す断面図である。
【図2】図1の高周波集積回路装置の多層基板の構成を示す図である。
【図3】図1の高周波集積回路装置の多層基板の構成を示す図である。
【図4】本発明の第2の実施形態に係る高周波集積回路装置の構造の一例を示す断面図である。
【図5】本発明の第2の実施形態に係る高周波集積回路装置の構造の他の例を示す断面図である。
【図6】本発明の第2の実施形態に係る高周波集積回路装置の構造のさらに他の例を示す断面図である。
【図7】本発明の第2の実施形態に係る高周波集積回路装置の構造のさらに他の例を示す断面図である。
【図8】本発明の第3の実施形態に係る高周波集積回路装置の構造の一例を示す断面図である。
【図9】本発明の第3の実施形態に係る高周波集積回路装置の構造の他の例を示す断面図である。
【図10】本発明の第3の実施形態に係る高周波集積回路装置の構造のさらに他の例を示す断面図である。
【図11】本発明の第3の実施形態に係る高周波集積回路装置の構造のさらに他の例を示す断面図である。
【図12】本発明の第4の実施形態に係る高周波集積回路装置の構造を示す断面図である。
【図13】従来の高周波集積回路装置の構造の一例を示す断面図である。
【図14】従来の高周波集積回路装置の構造の他の例を示す断面図である。
【図15】従来の高周波集積回路装置の構造のさらに他の例を示す断面図である。
【図16】従来の高周波集積回路装置の構造のさらに他の例を示す断面図である。
【図17】従来の高周波集積回路装置の構造のさらに他の例を示す断面図である。
【図18】従来の高周波集積回路装置の構造のさらに他の例を示す断面図である。
【符号の説明】
1…高周波集積回路装置、2…多層基板、2a〜2e…第1〜第5誘電体層、3…放熱カバー、5…放熱板、11,21…半導体チップ、41…チップ部品、51,52,53…回路配線層、G1,G2…接地層。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high frequency integrated circuit device used for processing a signal in a high frequency band of various communication devices such as mobile communication.
[0002]
[Prior art]
In recent years, there has been a remarkable progress in mobile communication systems represented by mobile phones and automobile phones.
For example, in Japan, 800 MHz band and 1.5 GHz band digital cellular (PDC) and personal handy phone systems (PHS) that perform signal transmission of 1.9 GHz band provide services. Outside Japan, a number of systems represented by GSM (Global System Mobile) have already developed services.
Further, different communication systems can be used in one terminal, for example, dual band (1900 MHz band signal transmission by CDMA (Code Division Multiple Access) system + 800 MHz band signal transmission by AMPS (Advanced Mobile Phone System) system) or dual band. Services such as modes (800 MHz band signal transmission in CDMA and AMPS systems) are active.
These development factors include the development of infrastructure and enhancement of services, as well as the reduction in size and weight of mobile terminals. Naturally, the IC chip itself is also required to be small and light, and CSP (Chip Size / Scale Package) that mounts the chip on a substrate of the same size as the small mold package or chip outline is attracting attention. .
[0003]
In a high-frequency IC, when an impedance matching circuit and a bias circuit are realized by external components external to the IC, the IC characteristics may vary depending on the mounting state of the substrate to be mounted and peripheral components.
In order to fully extract the characteristics of the IC on different set substrates for each customer, it is necessary to optimize the element values of peripheral components and to redesign the substrate, which takes a lot of man-hours.
Therefore, there is a demand for a mounting form that achieves miniaturization in a state in which circuit elements such as a matching circuit and a bias circuit are incorporated so that IC performance is guaranteed even on different set substrates.
Furthermore, higher functionality and multi-function of ICs are also expected, and further integration is being promoted on semiconductor chips.
[0004]
However, when realizing multi-functionality, for example, when the semiconductor material cannot be manufactured in the same process, such as a semiconductor chip made of GaAs and a semiconductor chip made of Si, the optimum process conditions differ for each function ( When the process is complicated (differing in the optimum threshold value), it is difficult to integrate with one semiconductor chip, and it is indispensable to make a multi-chip realized with a plurality of semiconductor chips.
Examples of multi-chip high frequency ICs include a multi-function switch in which the switch function is realized with a GaAs chip and a logic function with an Si chip, a chip having a power amplifier and a switch function, a low-noise amplifier, and a single mixer function There is an integrated IC using two chips of a chip having
[0005]
[Problems to be solved by the invention]
For example, a high-frequency IC 101 shown in FIG. 13 has a plurality of semiconductor chips 103 and 104 mounted on a die pad 102, and leads 106 and electrodes of the semiconductor chips 103 and 104 are connected by metal thin wires 105 and sealed. This is a mold package type semiconductor device sealed and fixed with a resin 107.
14 has a plurality of semiconductor chips 203 and 204 mounted on a die pad 202, and the die pad 202 and each electrode of the semiconductor chips 203 and 204 are connected by a thin metal wire 205, and these are sealed with a sealing resin. This is a BGA (Ball Grid Alley) type semiconductor device that is sealed and fixed at 207 and has bumps 206 formed on the back surface of the die pad 202.
However, in the high frequency ICs 101 and 201 shown in FIG. 13 and FIG. 14, each semiconductor chip must be two-dimensionally arranged, so there is a limit to downsizing and it is difficult to incorporate a bias circuit and a matching circuit. Moreover, since two semiconductor chips must be arranged close to each other, it is necessary to consider electrical interference between them.
[0006]
  On the other hand, in memories, integration of memories (for example, flash memory and static memory) and integration of ICs (memory and logic) having different functions are very active.
  For example, as shown in FIG.3In the semiconductor device 301 in which 03 and 304 are mounted on the upper and lower surfaces of the die pad 302 on the lead frame, wire-bonded with the fine metal wires 305 and 306, and the lead portion 307 are sealed and fixed with the sealing resin 308, Although downsizing is possible, it is difficult to incorporate a matching circuit and a bias circuit.
  Further, for example, as shown in FIG. 16, two types of semiconductor chips 403 and 404 are stacked on a die pad 402, respectively connected by thin metal wires 405 and 406, and sealed and fixed by a sealing resin 407. In the semiconductor device 401 system, the chip size that can be mounted is limited due to the space secured when wire bonding the two semiconductor chips 403 and 404 and the wire length of the thin metal wires 405 and 406, and the matching circuit and bias circuit are also limited. It is also difficult to incorporate.
  Further, for example, as shown in FIG. 17, two semiconductor chips 506 and 508 are mounted on two interposers 502 and 503 by inner bumps 507 and 509, respectively, and the two interposers 502 and 503 are connected by stack bumps 504. The flip-chip mounting type CSP stack type semiconductor device 501 can also be reduced in size, but does not take into account the incorporation of a matching circuit or a bias circuit.
  Also, for example, as shown in FIG. 18, in a package stacking type semiconductor device 601 in which the packages of two semiconductor devices 602 and 603 themselves are stacked, it is difficult to incorporate a matching circuit and a bias circuit. Thickness and mounting outline become large.
[0007]
The present invention has been made in view of the above-described conventional problems, and is to provide a high-frequency integrated circuit device that is miniaturized and highly integrated, suppresses electrical interference between circuits, and has good heat dissipation characteristics. Objective.
[0008]
[Means for Solving the Problems]
The present invention includes a multilayer substrate in which a plurality of dielectric layers are laminated, a semiconductor chip having active elements mounted on both surfaces of the multilayer substrate, and a circuit wiring layer formed between layers and on the surface of the multilayer substrate. And a chip component made of a passive element mounted on at least one of the surfaces of the multilayer substrate.
[0009]
In the surface layer on the mounting surface side of the multilayer substrate on the electronic device, an opening leading to an adjacent inner layer is formed, and the semiconductor chip is accommodated in the opening and mounted on the adjacent layer. ing.
[0010]
An electrode for mounting on an electronic device is formed on the surface of the surface layer where the opening is formed.
[0011]
The thickness of the surface layer in which the opening is formed is adjusted according to the height of the semiconductor chip or the chip component.
[0012]
A ground layer is formed between the layers of the multilayer substrate.
[0013]
The circuit wiring layer constitutes at least a part of an impedance matching circuit and a bias circuit.
[0014]
The chip component forms the impedance matching circuit and the bias circuit together with the circuit wiring layer.
[0015]
The bias circuit is formed between layers of the multilayer substrate.
[0016]
The heat sink includes a covering portion that surrounds the periphery of the multilayer substrate and a contact portion that directly contacts the surface of the semiconductor chip on one side.
[0017]
The heat sink functions as an electromagnetic shield.
[0018]
The heat sink is in contact with the surface of the semiconductor chip mounted on the non-mounting surface side of the multilayer substrate to the electronic device.
[0019]
A heat dissipation plate that is in direct contact with the surface of the semiconductor chip mounted on the electronic device mounting surface side of the multilayer substrate and is housed in the opening;
[0020]
The semiconductor chip is electrically bonded to the multilayer substrate by flip chip bonding.
[0021]
The semiconductor chip is electrically connected to the multilayer substrate by wire bonding.
[0022]
Of each of the semiconductor chips, a semiconductor chip mounted on one surface is electrically bonded to the multilayer substrate by flip chip bonding,
The semiconductor chip mounted on the other surface is electrically connected to the multilayer substrate by wire bonding.
[0023]
A cavity is formed in the multilayer substrate at the mounting position of the semiconductor chip.
[0024]
Further, according to the present invention, there is provided a fifth dielectric layer in which first to fourth dielectric layers are laminated, and an opening is formed that is laminated on the fourth dielectric layer and communicates with a surface of the fourth dielectric layer. A dielectric layer, a ground layer made of a conductive material formed between the first and second dielectric layers and the third and fourth dielectric layers, and between the second and third dielectric layers A multilayer substrate having a circuit wiring layer made of a conductive material and a circuit wiring layer made of a conductive material formed on the surfaces of the first and fourth dielectric layers; and the first and fourth A semiconductor chip having an active element mounted on the surface thereof, and a chip component on which a passive element mounted on at least one of the first and fourth is formed.
[0025]
The circuit wiring layer formed between the second and third dielectric layers constitutes a bias circuit, and the circuit wiring made of a conductive material formed on the surfaces of the first and fourth dielectric layers. The layer and the passive element mounted on at least one of the first and fourth constitute an impedance matching circuit.
[0026]
An electrode for mounting on an electronic device is formed on the surface of the fifth dielectric layer.
[0027]
A heat dissipation plate that covers a side surface of the multilayer substrate and the first dielectric layer side, and that directly contacts the surface of the semiconductor chip mounted on the surface of the first dielectric layer;
[0028]
A heat sink is housed in the opening of the fifth dielectric layer of the multilayer substrate and is directly bonded to the surface of the semiconductor chip in the opening.
[0029]
In the present invention, the semiconductor chip is mounted on both surfaces of the multilayer substrate, the chip component is mounted on at least one surface of the multilayer substrate, and the circuit wiring layer is formed on the inner layer and the surface of the multilayer substrate. Integration of various circuits necessary for a plurality of semiconductor chips and a high-frequency integrated circuit can be configured on the surface and inner layer of a multilayer substrate, and miniaturization and high integration are possible.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
First embodiment
FIG. 1 is a cross-sectional view showing the structure of the high-frequency integrated circuit device according to the first embodiment of the present invention. The high-frequency integrated circuit device according to the present embodiment is applied to, for example, a high-frequency amplifier (dual-band transmission amplifier that performs signal transmission in the 1900 MHz band by the CDMA method and signal transmission in the 800 MHz band by the AMPS method) of a portable terminal. It is.
[0031]
In FIG. 1, a high-frequency integrated circuit device 1 includes a multilayer substrate 2, semiconductor chips 11 and 21 mounted on both surfaces of the multilayer substrate 2, a chip component 41 mounted on one surface of the multilayer substrate 2, and a multilayer substrate. 2 has a heat dissipating cover 3 and a heat dissipating plate 5.
[0032]
  The semiconductor chips 11 and 21 are, for example, active elements for performing high-frequency power amplification of transmission signals.ChildAre formed, and passive elements such as capacitors and resistors are formed together with the active elements, and these elements constitute a high-frequency circuit.
  The active element is, for example, a bipolar transistor using silicon (Si), a field effect transistor using gallium arsenide (GaAs), a MOSFET, or the like.
  As a material for forming the semiconductor chips 11 and 21, for example, a compound semiconductor such as GaAs or a semiconductor such as Si is used.
  Further, since the semiconductor chips 11 and 21 perform high-frequency power amplification, heat dissipation is indispensable.
[0033]
Bumps BP are respectively formed on the back surfaces of the semiconductor chips 11 and 21, and the semiconductor chips 11 and 21 are mounted on the multilayer substrate 2 by a flip chip method.
That is, the surface electrodes of the dies of the semiconductor chips 11 and 12 and the electrodes formed on the surface of the multilayer substrate 2 are directly opposed via the bumps BP, and the semiconductor chips 11 and 12 are multilayered by applying heat and pressure. Bonded to the substrate 2.
[0034]
The chip component 41 is formed with passive elements such as an inductor element, a capacitive element, and a resistive element, for example, and constitutes a circuit having a predetermined function together with a circuit wiring layer formed on the surface or inner layer of the multilayer substrate 2. ing.
Specifically, the chip component 41 constitutes, for example, an impedance matching circuit for high-frequency amplification of transmission signals performed by the semiconductor chips 11 and 21 together with a circuit wiring layer formed on the surface of the multilayer substrate 2.
In FIG. 1, the chip component 41 is mounted only on one surface of the multilayer substrate 2, but in this embodiment, it is mounted on both surfaces of the multilayer substrate 2.
[0035]
The multilayer substrate 2 has a laminated structure of five first to fifth dielectric layers 2a to 2e.
As a material for forming the dielectric layers 2a to 2e of the multilayer substrate 2, for example, a dielectric such as aluminum nitride, alumina, silicon nitride, glass ceramic, glass epoxy, or the like can be used. Further, it is determined from these dielectric materials in consideration of dielectric constant and cost. In addition, you may use it combining these materials as needed.
[0036]
2 and 3 are cross-sectional views showing the configuration of the multilayer substrate 2.
2A is a diagram of the first dielectric layer 2a of the multilayer substrate 2 as viewed from the surface side, and FIG. 2B is a diagram illustrating the first dielectric layer 2a and the second dielectric layer 2b. It is the figure seen from the side, (c) is the figure which looked at the 2nd dielectric material layer 2a from the interlayer side with the 3rd dielectric material layer 2c. FIG. 3A is a view of the third dielectric layer 2c as viewed from the interlayer side with respect to the fourth dielectric layer 2d, and FIG. 3B is a diagram illustrating the fourth dielectric layer 2d with the fifth dielectric layer 2e. It is the figure seen from the interlayer side, (c) is the figure which looked at the 5th dielectric layer 2e from the surface side.
[0037]
The first dielectric layer 2a is the uppermost layer. As shown in FIG. 2A, on the upper surface of the first dielectric layer 2a, for example, a circuit wiring layer constituted by strip lines (conductor lines) not shown. 51 is formed, and the semiconductor chip 11 and the chip component 41 are mounted.
Specifically, the circuit wiring layer 51 constitutes, for example, an impedance matching circuit for the semiconductor chip 11 together with the chip component 41.
[0038]
As shown in FIG. 2B, a conductive material such as copper or aluminum is formed on the lower surface of the first dielectric layer 2a, that is, between the first dielectric layer 2a and the second dielectric layer 2b. A ground layer G1 is formed. The ground layer G1 is at the ground level.
[0039]
As shown in FIG. 2C, on the lower surface of the second dielectric layer 2b, that is, between the second dielectric layer 2b and the third dielectric layer 2c, for example, a strip line (not shown) A circuit wiring layer 52 composed of a line is formed of a conductive material.
Specifically, the circuit wiring layer 52 constitutes, for example, a bias circuit that supplies various power supplies to the semiconductor chips 11 and 21.
The bias circuit is composed of a strip line having a length of λ / 4 of the reference wavelength λ of the transmission signal in order to attenuate harmonics generated from the fundamental wave. The length of the λ / 4 strip line is about 30 mm in the case of 800 MHz, for example.
[0040]
As shown in FIG. 3A, a ground layer G2 is formed on the lower surface of the third dielectric layer 2c, that is, between the third dielectric layer 2c and the fourth dielectric layer 2d. The ground layer G2 is at the ground level.
[0041]
As shown in FIG. 3B, the lower surface of the fourth dielectric layer 2d, that is, the interlayer between the fourth dielectric layer 2d and the fifth dielectric layer 2e is constituted by, for example, a strip line (not shown). The circuit wiring layer 53 is formed, and the semiconductor chip 21 and the chip component 41 are mounted.
[0042]
The fifth dielectric layer 2e is the lowermost layer and is a layer attached to a parent substrate of an electronic device (not shown).
As shown in FIG. 3C, the fifth dielectric layer 2e is provided with an opening 55 through which the semiconductor chip 21 and the chip component 41 mounted on the fourth dielectric layer 2d are inserted and accommodated.
The fifth dielectric layer 2e is formed with a plurality of, for example, land-type electrodes 54 for bonding to the parent substrate of the electronic device.
The thickness of the fifth dielectric layer 2e depends on the height of the semiconductor chip 21, the height of the chip component 41, or the presence or absence of the chip component 41. It is adjusted to be accommodated.
[0043]
Circuit wiring layer 52 and ground layers G1 and G2 formed between the first to fifth dielectric layers 2a to 2e, circuit wiring layers 51 and 53 formed on both surfaces of the multilayer substrate 2, and the semiconductor chip 11 , 21 and each chip component 41 are electrically connected to each other by a wiring 56 in a through hole formed in each dielectric layer 2a to 2e and a wiring 57 formed around the multilayer substrate as shown in FIG. Has been. The wiring 57 is electrically connected to the electrode 54 formed on the fifth dielectric layer 2e.
[0044]
The heat radiating cover 3 is integrated with the covering portion 3b and the covering portion 3b provided to cover the outer periphery of the multilayer substrate 2 and the first dielectric layer 2a side with respect to the first dielectric layer 2a side of the multilayer substrate 2. And a contact portion 3a that is in direct contact with the surface of the semiconductor chip 11 formed on the substrate.
The contact portion 3 a of the heat dissipation cover 3 is bonded to the surface of the semiconductor chip 11 mounted on the multilayer substrate 2 by, for example, an adhesive, and the multilayer substrate 2 is held by the heat dissipation cover 3.
As the material of the heat radiating cover 3, a material having good thermal conductivity, for example, a metal material such as aluminum is used.
An attachment portion 3c for attaching the heat dissipation cover 3 to the parent substrate of the electronic device is formed at the end of the covering portion 3b of the heat dissipation cover 3.
[0045]
The heat sink 5 is attached to the lower surface of the semiconductor chip 22 mounted on the lower surface of the multilayer substrate 2, and is fixed to the semiconductor chip 22 together with the sealing resin R. The heat sink 5 is accommodated in the opening 55 of the fifth dielectric layer 5e of the multilayer substrate 2, and does not protrude from the surface of the fifth dielectric layer 5e.
The heat radiating plate 5 is formed of the same material as that of the heat radiating cover 3 having good thermal conductivity.
[0046]
In the high-frequency integrated circuit device 1, the attachment portion 3c of the heat dissipation cover 3 and the fifth dielectric layer 5e are joined to the parent substrate of the electronic device.
When mounted on the high frequency integrated circuit device 1 from an electronic device, for example, the semiconductor chip through a bias circuit of a circuit wiring layer 52 formed between the second dielectric layer 2b and the third dielectric layer 2c of the multilayer substrate 2 11 and 21 are supplied with power, and the semiconductor chips 11 and 21 perform high-frequency power amplification.
[0047]
  Since the semiconductor chips 11 and 21 mounted on both surfaces of the multilayer substrate 2 also perform high-frequency power amplification, the semiconductor chips 11 and 21 generate a large amount of heat and need to dissipate heat.
  Heat generated from the semiconductor chip 11 mounted on the upper surface of the multilayer substrate 2 is transmitted to the heat dissipation cover 3 through the contact portion 3a.
  Cover of heat dissipation cover 33bSince the air touches the air with a large surface area, the heat transferred to the heat dissipation cover 3 is dissipated into the air. Further, when the heat radiation cover 3 is attached to the parent substrate by the attachment portion 3c of the heat radiation cover 3, the heat of the heat radiation cover 3 is radiated by the parent substrate. The heat radiating cover 3 radiates heat from the semiconductor chip 11, and also functions as a dust intrusion prevention to the surface of the multilayer substrate 2 and as an electromagnetic shield with the outside.
[0048]
The heat generated from the semiconductor chip 21 mounted on the lower surface of the multilayer substrate 2 is transmitted to the parent substrate of an electronic device (not shown) on which the multilayer substrate 2 is mounted via the heat sink 5 attached to the lower surface. Heat is radiated from the substrate.
[0049]
In the high-frequency integrated circuit device 1 according to the present embodiment, the semiconductor chips 11 and 21 and the chip component 41 are mounted using both surfaces of the multilayer substrate 2, and the board area can be used effectively, and the three-dimensional downsizing is achieved. Is possible.
In addition, by using the multilayer substrate 2 in which a plurality of dielectric layers 2a to 2e are stacked, a relative distance between the dielectric layers 2a to 2e, such as a strip line having a length of λ / 4 in the bias circuit, is relatively small. A circuit having a long line length can be formed, and a matching circuit and a bias circuit can be incorporated three-dimensionally.
In addition, chip parts 41 such as inductor elements and capacitive elements are also mounted on both surfaces of the multilayer substrate 2. By mounting the components using both surfaces of the multilayer substrate 2, the board area can be used effectively and the size can be reduced. It becomes.
[0050]
Furthermore, according to the high-frequency integrated circuit device 1 according to the present embodiment, the ground layers G1 and G2 are formed between the dielectric layers 2a to 2e and are positioned between the circuit wiring layers 51, 52, and 53. Therefore, electrical interference between the circuit wiring layers 51, 52, and 53 can be prevented.
Further, since the heat radiation cover 3 is necessary not only for heat radiation but also for preventing dust from entering the high frequency integrated circuit device 1 and for electromagnetic shielding, the cover is originally necessary and the heat radiation cover 3 is attached. As a result, there is no increase in size or cost.
In the above description, the chip component 41 is mounted on both surfaces of the multilayer substrate 2, but it may be mounted on only one surface. Alternatively, only the semiconductor chips 11 and 21 may be mounted without mounting the chip component 41.
[0051]
Second embodiment
4 to 7 are sectional views showing the structure of the high-frequency integrated circuit device according to the second mounting form of the present invention. Note that the same components as those of the high-frequency integrated circuit device according to the first embodiment are denoted by the same reference numerals.
The high-frequency integrated circuit device shown in FIGS. 4 and 5 has basically the same configuration as the high-frequency integrated circuit device according to the first embodiment described above, but a semiconductor chip mounted on both surfaces of the multilayer substrate 2. 11 shows a configuration in which the present invention is applied when one of the heat generation amounts is relatively large and the other is a relatively small heat generation amount.
[0052]
  In the high-frequency integrated circuit device 61 shown in FIG. 4, the semiconductor chip 11 mounted on the surface of the first dielectric layer 2 a of the multilayer substrate 2 generates a large amount of heat, and the semiconductor mounted on the fifth dielectric layer 2 e of the multilayer substrate 2. This is a case where the heat generation of the chip 21 is small.
  The semiconductor chip 11 has a transmission signal amplifier circuit, for example, and the semiconductor chip 21 has a multifunction switch circuit, for example.
  As shown in FIG. 4, the heat dissipation cover 3 is applied to the semiconductor chip 11 that generates a large amount of heat.TheThe semiconductor chip 21 provided with a small amount of heat is not provided with the heat dissipation plate 5. The semiconductor chip 21 is mounted on the fourth dielectric layer 2 d of the multilayer substrate 2 by the flip chip method and covered with the sealing resin R. ing.
[0053]
  The high-frequency integrated circuit device 62 shown in FIG. 5 is a case where the heat generation of the semiconductor chip 11 is large and the heat generation of the semiconductor chip 21 is small, similarly to the high-frequency integrated circuit device 61 shown in FIG.
  As shown in FIG. 5, the heat radiation cover 3 is applied to the semiconductor chip 11 that generates a large amount of heat.TheThe above-described heat sink 5 is not provided in the semiconductor chip 21 provided with a small amount of heat generation.
  The semiconductor chip 21 is joined to the fourth dielectric layer 2d with the surface on which the surface electrode is formed facing away from the fourth dielectric layer 2d, and the surface electrode and the fourth dielectric layer of the semiconductor chip 21 are joined. The electrode on 2d is wired with a fine metal wire 59, and the opening 55 of the fifth dielectric layer 2e is filled with resin R to fix the semiconductor chip 21 and the fine metal wire 59.
[0054]
As described above, when the heat generation of the semiconductor chip 11 is large and the heat generation of the semiconductor chip 21 is small, as shown in FIGS. 4 and 5, the semiconductor chip that should avoid the influence of wire length variation and inductance. Semiconductor chips that require heat dissipation are mounted by a flip chip method, and semiconductor chips that do not need to be mounted can be accommodated by mounting using wire bonding.
[0055]
The high frequency integrated circuit device 63 shown in FIG. 6 is a case where the heat generation of the semiconductor chip 11 is small and the heat generation of the semiconductor chip 21 is large.
In this case, as shown in FIG. 6, the heat dissipation cover 3 is not provided for the semiconductor chip 11, and the heat dissipation plate 5 is provided for the semiconductor chip 21.
Further, the semiconductor chip 11 and the semiconductor chip 21 are mounted on the both surfaces of the multilayer substrate 2 via the bumps BP by the flip chip method.
The semiconductor chip 21 and the heat sink 5 are fixed by the resin R in the opening 55 of the fifth dielectric layer 2e.
[0056]
The high-frequency integrated circuit device 64 shown in FIG. 7 is a case where the heat generation of the semiconductor chip 11 is small and the heat generation of the semiconductor chip 21 is large, similarly to the high-frequency integrated circuit device 63 shown in FIG.
As shown in FIG. 7, in the semiconductor chip 11, the surface electrode forming side of the semiconductor chip 11 is arranged in the opposite direction to the first dielectric layer 2a, and the surface electrode and the electrode on the first dielectric layer 2a Are wired with a fine metal wire 70, and the semiconductor chip 11 and the fine metal wire 70 are fixed with a resin R.
The mounting structure of the semiconductor chip 21 is the same as that of the high-frequency integrated circuit device 63 shown in FIG.
[0057]
As described above, when the semiconductor chip 11 generates a small amount of heat and the semiconductor chip 21 generates a large amount of heat, the configuration shown in FIGS. 6 and 7 can be used.
[0058]
Third embodiment
8 to 11 are sectional views showing the structure of the high-frequency integrated circuit device according to the third mounting form of the present invention. Note that the same components as those of the high-frequency integrated circuit device according to the first embodiment are denoted by the same reference numerals.
The high-frequency integrated circuit device shown in FIGS. 8 to 11 has basically the same configuration as the high-frequency integrated circuit device according to the first embodiment described above, but a semiconductor chip mounted on both surfaces of the multilayer substrate 2. This is a case where the heat generation amount of 11 and 21 is small and it is not particularly necessary to provide a heat dissipating means.
[0059]
In the high-frequency integrated circuit device 65 shown in FIG. 8, the semiconductor chips 11 and 21 are mounted on the multilayer substrate 2 by a flip chip method and fixed with a resin R.
The high-frequency integrated circuit device 66 shown in FIG. 9 is a case where the semiconductor chip 11 generates a particularly small amount of heat, and the surface electrode forming side of the semiconductor chip 11 is disposed opposite to the first dielectric layer 2a. The electrode and the electrode on the first dielectric layer 2a are wired with a fine metal wire 72, and the semiconductor chip 11 and the fine metal wire 70 are fixed with a resin R.
[0060]
The high-frequency integrated circuit device 67 shown in FIG. 10 is a case where the semiconductor chip 21 mounted on the lower surface of the multilayer substrate 2 has a particularly small amount of heat generation. The surface electrode and the electrode on the fifth dielectric layer 2d are wired with a fine metal wire 73, and the semiconductor chip 21 and the fine metal wire 73 are fixed with a resin R.
The high-frequency integrated circuit device 68 shown in FIG. 11 is a case where both the semiconductor chips 11 and 12 mounted on both surfaces of the multilayer substrate 2 have a particularly small amount of heat generation, and the semiconductor chips 11 and 12 are shown in FIG. 9 and FIG. Implemented in a way.
[0061]
As described above, when the heat generation amount of the semiconductor chips 11 and 12 is small, the configuration shown in FIGS.
[0062]
Fourth embodiment
FIG. 12 is a cross-sectional view showing the structure of the high-frequency integrated circuit device according to the fourth mounting form of the present invention. Note that the same components as those of the high-frequency integrated circuit device according to the first embodiment are denoted by the same reference numerals.
The high frequency integrated circuit device 69 shown in FIG. 12 is a case where the frequency processed by the semiconductor chip 21 mounted on the lower surface of the multilayer substrate 2 is higher.
When the semiconductor chip 21 performs processing at a higher frequency, for example, as shown in FIG. 12, the multilayer corresponding to the mounting position of the semiconductor chip 21 mounted on the surface of the fourth dielectric layer 2 d of the multilayer substrate 2. A cavity H that is a cavity is formed in the fourth dielectric layer 2 d and the third dielectric layer 2 c of the substrate 2.
By adopting such a configuration, the space of the cavity H has a lower dielectric constant and lower inductance than that of the dielectric, and the influence on the high frequency characteristics of the semiconductor chip 21 can be suppressed.
In the present embodiment, the cavity H is formed in the semiconductor chip 21 mounted on the lower surface of the multilayer substrate 2. Similarly, the cavity H is formed in the semiconductor chip 11 mounted on the upper surface of the multilayer substrate 2. It is also possible to form the cavity H.
[0063]
In the embodiment described above, the number of semiconductor chips mounted on each surface of the multilayer substrate 2 is one in the above-described embodiment. However, the present invention is not limited to this and is mounted on both surfaces of the multilayer substrate 2. There may be a plurality of semiconductor chips.
[0064]
【The invention's effect】
According to the present invention, since the semiconductor chip and the chip component are mounted using both sides of the multilayer substrate, the substrate area can be used effectively, and the high-frequency integrated circuit device can be downsized and highly integrated.
In addition, according to the present invention, for the mounting of a semiconductor chip that should avoid the influence of wire length variation and inductance or a semiconductor chip that requires heat dissipation, when flip mounting is used and it is not necessary to consider them, Since the wiring method is adopted, the degree of freedom of the mounting method can be expanded.
In addition, according to the present invention, by using a multilayer substrate as a substrate for mounting semiconductor chips and chip components, high-density mounting can be achieved, and electrical interference between circuit wiring layers including a ground layer is present in the multilayer substrate. It is possible to prevent heat resistance.
Further, according to the present invention, a bias circuit can be realized between the dielectric layers of the multilayer substrate by using the multilayer substrate as a substrate for mounting the semiconductor chip and the chip component, and the size can be reduced by effectively utilizing the interlayer. High mounting is possible.
Further, according to the present invention, even when a semiconductor chip that requires heat dissipation is mounted, it can be easily handled.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing the structure of a high-frequency integrated circuit device according to a first embodiment of the present invention.
2 is a diagram showing a configuration of a multilayer substrate of the high-frequency integrated circuit device of FIG. 1;
3 is a diagram showing a configuration of a multilayer substrate of the high-frequency integrated circuit device of FIG. 1;
FIG. 4 is a cross-sectional view showing an example of the structure of a high-frequency integrated circuit device according to a second embodiment of the present invention.
FIG. 5 is a cross-sectional view showing another example of the structure of the high-frequency integrated circuit device according to the second embodiment of the present invention.
FIG. 6 is a cross-sectional view showing still another example of the structure of the high-frequency integrated circuit device according to the second embodiment of the present invention.
FIG. 7 is a cross-sectional view showing still another example of the structure of the high-frequency integrated circuit device according to the second embodiment of the present invention.
FIG. 8 is a cross-sectional view showing an example of the structure of a high-frequency integrated circuit device according to a third embodiment of the present invention.
FIG. 9 is a cross-sectional view showing another example of the structure of the high-frequency integrated circuit device according to the third embodiment of the present invention.
FIG. 10 is a cross-sectional view showing still another example of the structure of the high-frequency integrated circuit device according to the third embodiment of the present invention.
FIG. 11 is a cross-sectional view showing still another example of the structure of the high-frequency integrated circuit device according to the third embodiment of the present invention.
FIG. 12 is a cross-sectional view showing the structure of a high-frequency integrated circuit device according to a fourth embodiment of the present invention.
FIG. 13 is a cross-sectional view showing an example of the structure of a conventional high-frequency integrated circuit device.
FIG. 14 is a cross-sectional view showing another example of the structure of a conventional high-frequency integrated circuit device.
FIG. 15 is a cross-sectional view showing still another example of the structure of a conventional high-frequency integrated circuit device.
FIG. 16 is a cross-sectional view showing still another example of the structure of a conventional high-frequency integrated circuit device.
FIG. 17 is a cross-sectional view showing still another example of the structure of a conventional high-frequency integrated circuit device.
FIG. 18 is a cross-sectional view showing still another example of the structure of a conventional high-frequency integrated circuit device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... High frequency integrated circuit device, 2 ... Multilayer substrate, 2a-2e ... 1st-5th dielectric layer, 3 ... Radiation cover, 5 ... Radiation plate, 11, 21 ... Semiconductor chip, 41 ... Chip components, 51, 52 53, circuit wiring layers, G1, G2, ground layers.

Claims (12)

複数の誘電体層が積層された多層基板と、
前記多層基板の電子機器への非装着面側である一方面の表層に、フリップチップボンディングによる電気的な接続により実装された、能動素子を有する第1半導体チップと、
前記多層基板の電子機器への装着面側である他方面の表層に、フリップチップボンディングによる電気的な接続により実装された、能動素子を有する第2半導体チップと、
前記多層基板の層間および表面に形成された回路配線層と、
前記多層基板の表面の前記一方面もしくは両面に実装された受動素子からなるチップ部品と、
前記多層基板の周囲を囲む被覆部と、前記第1半導体チップ及び前記チップ部品が実装された前記一方面において、前記第1半導体チップの表面に直接接触する接触部とを具備する第1放熱板とを有し、
前記第2半導体チップは、前記他方面の表層に、隣接する内層に通じるように形成された開口部内に収容され、かつ前記隣接する内層上に実装されており、
前記開口部が形成された表層の厚さは、前記半導体チップまたはチップ部品の高さに応じて調整されおり、
前記第2半導体チップの表面に直接接触し、かつ、前記開口部内に収容されている第2放熱板をさらに有する
高周波集積回路装置。
A multilayer substrate in which a plurality of dielectric layers are laminated;
A first semiconductor chip having an active element mounted on a surface layer on one side which is a non-mounting surface side of the multilayer substrate to an electronic device by electrical connection by flip chip bonding;
A second semiconductor chip having an active element mounted on the surface layer of the other surface, which is the mounting surface side of the multilayer substrate, to the electronic device by electrical connection by flip chip bonding ;
A circuit wiring layer formed between the layers and the surface of the multilayer substrate;
A chip component composed of passive elements mounted on the one or both surfaces of the surface of the multilayer substrate;
A first heat radiating plate comprising: a covering portion surrounding the multilayer substrate; and a contact portion that directly contacts the surface of the first semiconductor chip on the one surface on which the first semiconductor chip and the chip component are mounted. And
The second semiconductor chip is accommodated in an opening formed in the surface layer on the other surface so as to communicate with an adjacent inner layer, and is mounted on the adjacent inner layer,
The thickness of the surface layer in which the opening is formed is adjusted according to the height of the semiconductor chip or chip component,
The high-frequency integrated circuit device further comprising a second heat radiating plate in direct contact with the surface of the second semiconductor chip and housed in the opening.
前記開口部が形成された表層の表面には、電子機器への装着のための電極が形成されている
請求項1に記載の高周波集積回路装置。
The high frequency integrated circuit device according to claim 1, wherein an electrode for mounting to an electronic device is formed on a surface of the surface layer where the opening is formed.
前記多層基板の層間に接地層が形成されている
請求項1または2のいずれかに記載の高周波集積回路装置。
The high-frequency integrated circuit device according to claim 1, wherein a ground layer is formed between layers of the multilayer substrate.
前記回路配線層は、インピーダンス整合回路およびバイアス回路の少なくとも一部を構成する
請求項1〜3のいずれかに記載の高周波集積回路装置。
The high-frequency integrated circuit device according to claim 1, wherein the circuit wiring layer constitutes at least a part of an impedance matching circuit and a bias circuit.
前記チップ部品は、前記回路配線層とともに、前記インピーダンス整合回路およびバイアス回路を構成する
請求項4に記載の高周波集積回路装置。
The high-frequency integrated circuit device according to claim 4, wherein the chip component constitutes the impedance matching circuit and the bias circuit together with the circuit wiring layer.
前記バイアス回路が前記多層基板の層間に形成されている
請求項4に記載の高周波集積回路装置。
The high-frequency integrated circuit device according to claim 4, wherein the bias circuit is formed between layers of the multilayer substrate.
前記第1放熱板は、電磁シールドとして機能する
請求項1〜6のいずれかに記載の高周波集積回路装置。
The high-frequency integrated circuit device according to claim 1, wherein the first heat radiation plate functions as an electromagnetic shield.
前記多層基板の他方面に実装された前記第2半導体チップは、フリップチップボンディングによって前記多層基板に電気的に接合されている
請求項1〜7のいずれかに記載の高周波集積回路装置。
The high-frequency integrated circuit device according to claim 1, wherein the second semiconductor chip mounted on the other surface of the multilayer substrate is electrically bonded to the multilayer substrate by flip chip bonding.
前記多層基板内には、前記第2半導体チップの実装位置に空洞が形成されている
請求項1〜のいずれかに記載の高周波集積回路装置。
Wherein the multilayer substrate, the high-frequency integrated circuit device according to any one of claims 1 to 8, cavity mounting position of the second semiconductor chip are formed.
積層された第1〜第4の誘電体層と、前記第4の誘電体層に積層され当該第4の誘電体層の表面に通ずる開口部が形成された第5の誘電体層と、
前記第1および第2の誘電体層間と前記第3および第4の誘電体層間とに形成された導電材料からなる接地層と、
前記第2および第3の誘電体層間に形成された導電性材料からなる回路配線層と、
前記第1および第4の誘電体層の表面に形成された導電性材料からなる回路配線層と
を有する多層基板と、
前記第1誘電体層の表面に、フリップチップボンディングによる電気的な接続により実装された、能動素子を有する第1半導体チップと、
前記第4の誘電体層の表面に、フリップチップボンディングによる電気的な接続により実装された、能動素子を有する第2半導体チップと、
前記第1の誘電体層に、または、前記第1および第4の誘電体層双方に実装された、受動素子が形成されたチップ部品と、
前記多層基板の側面および前記第1半導体チップ及び前記チップ部品が実装された、前記第1の誘電体層側を覆い、かつ第1の誘電体層表面に実装された前記第1半導体チップの表面に直接接触する第1放熱板とを有し、
前記第2半導体チップは、前記他方面の表層に、隣接する内層に通じるように形成された開口部内に収容され、かつ前記隣接する内層上に実装されており、
前記開口部が形成された表層の厚さは、前記半導体チップまたはチップ部品の高さに応じて調整されおり、
前記第2半導体チップの表面に直接接触し、かつ、前記開口部内に収容されている第2放熱板をさらに有する
高周波集積回路装置。
A first dielectric layer to a fourth dielectric layer laminated, and a fifth dielectric layer laminated on the fourth dielectric layer and having an opening leading to the surface of the fourth dielectric layer;
A ground layer made of a conductive material formed between the first and second dielectric layers and the third and fourth dielectric layers;
A circuit wiring layer made of a conductive material formed between the second and third dielectric layers;
A multilayer substrate having a circuit wiring layer made of a conductive material formed on the surfaces of the first and fourth dielectric layers;
A first semiconductor chip having active elements mounted on the surface of the first dielectric layer by electrical connection by flip chip bonding;
A second semiconductor chip having active elements mounted on the surface of the fourth dielectric layer by electrical connection by flip chip bonding ;
A chip component on which the passive element is formed, which is mounted on the first dielectric layer or on both the first and fourth dielectric layers;
The side surface of the multilayer substrate and the surface of the first semiconductor chip that covers the first dielectric layer side on which the first semiconductor chip and the chip component are mounted and is mounted on the surface of the first dielectric layer A first heat radiating plate in direct contact with
The second semiconductor chip is accommodated in an opening formed in the surface layer on the other surface so as to communicate with an adjacent inner layer, and is mounted on the adjacent inner layer,
The thickness of the surface layer in which the opening is formed is adjusted according to the height of the semiconductor chip or chip component,
The high-frequency integrated circuit device further comprising a second heat radiating plate in direct contact with the surface of the second semiconductor chip and housed in the opening.
前記第2および第3の誘電体層間に形成された回路配線層は、バイアス回路を構成しており、
前記第1および第4の誘電体層の表面に形成された導電性材料からなる回路配線層と前記第1の誘電体層に、または、前記第1および第4の誘電体層双方に実装された受動素子とは、インピーダンス整合回路を構成している
請求項10に記載の高周波集積回路装置。
The circuit wiring layer formed between the second and third dielectric layers constitutes a bias circuit,
Mounted on the circuit wiring layer and the first dielectric layer made of a conductive material formed on the surfaces of the first and fourth dielectric layers, or on both the first and fourth dielectric layers. The high-frequency integrated circuit device according to claim 10 , wherein the passive element constitutes an impedance matching circuit.
前記第5の誘電体層の表面には、電子機器への装着のための電極が形成されている
請求項10または11に記載の高周波集積回路装置。
Wherein the fifth surface of the dielectric layer, a high-frequency integrated circuit device according to claim 10 or 11 electrodes for attachment to the electronic device is formed.
JP10546199A 1999-04-13 1999-04-13 High frequency integrated circuit device Expired - Fee Related JP4284744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10546199A JP4284744B2 (en) 1999-04-13 1999-04-13 High frequency integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10546199A JP4284744B2 (en) 1999-04-13 1999-04-13 High frequency integrated circuit device

Publications (2)

Publication Number Publication Date
JP2000299427A JP2000299427A (en) 2000-10-24
JP4284744B2 true JP4284744B2 (en) 2009-06-24

Family

ID=14408232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10546199A Expired - Fee Related JP4284744B2 (en) 1999-04-13 1999-04-13 High frequency integrated circuit device

Country Status (1)

Country Link
JP (1) JP4284744B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3547363B1 (en) * 2018-03-29 2022-12-21 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Electronic assembly and electronic system with impedance matched interconnect structures

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003060523A (en) * 2001-08-09 2003-02-28 Tdk Corp Radio communication module
JP2003258192A (en) * 2002-03-01 2003-09-12 Hitachi Ltd Semiconductor device and method for manufacturing the same
KR101166575B1 (en) * 2002-09-17 2012-07-18 스태츠 칩팩, 엘티디. Semiconductor multi-package module having wire bond interconnection between stacked packages
US20070075436A1 (en) * 2003-10-06 2007-04-05 Nec Corporation Electronic device and manufacturing method of the same
JP4590294B2 (en) * 2005-04-13 2010-12-01 株式会社リコー Manufacturing method of three-dimensional molded circuit components
JP4703424B2 (en) * 2006-02-10 2011-06-15 大日本印刷株式会社 Compound sensor package
KR100782774B1 (en) * 2006-05-25 2007-12-05 삼성전기주식회사 System in package module
US8339790B2 (en) * 2010-09-10 2012-12-25 Raytheon Company Monolithic microwave integrated circuit
JP6173611B1 (en) * 2016-04-27 2017-08-02 三菱電機株式会社 High frequency circuit
JP6994342B2 (en) * 2017-10-03 2022-01-14 新光電気工業株式会社 Board with built-in electronic components and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3547363B1 (en) * 2018-03-29 2022-12-21 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Electronic assembly and electronic system with impedance matched interconnect structures

Also Published As

Publication number Publication date
JP2000299427A (en) 2000-10-24

Similar Documents

Publication Publication Date Title
US8067824B2 (en) Integrated circuit module package and assembly method thereof
US6853070B2 (en) Die-down ball grid array package with die-attached heat spreader and method for making the same
US5717249A (en) RF power amplifying circuit device
US6359341B1 (en) Ball grid array integrated circuit package structure
EP1256980B1 (en) Ball grid array package with a heat spreader and method for making the same
KR100839067B1 (en) Electronic circuit module and manufacturing method thereof
US6982485B1 (en) Stacking structure for semiconductor chips and a semiconductor package using it
US9219021B2 (en) Semiconductor device including heat dissipating structure
US20090230541A1 (en) Semiconductor device and manufacturing method of the same
KR20020071849A (en) Heat dissipation type semiconductor pacakage and method of fabricating the same
US20220059427A1 (en) Semiconductor package, semiconductor device, semiconductor package-mounted apparatus, and semiconductor device-mounted apparatus
JP4284744B2 (en) High frequency integrated circuit device
US20050012192A1 (en) Hybrid integrated circuit
JP2003086726A (en) High-power monolithic microwave integrated circuit package
US6531775B1 (en) High-frequency module
JPH05167302A (en) High frequency power amplifier circuit device and high frequency module including said circuit device
JP2006120996A (en) Circuit module
CN113614898A (en) Electronic device flip chip package with exposed clip
TWI249262B (en) Apparatus of antenna with heat slug and its fabrication process
US7091594B1 (en) Leadframe type semiconductor package having reduced inductance and its manufacturing method
JP6952913B2 (en) Semiconductor device and antenna device
EP0996155A2 (en) Radio frequency integrated circuit apparatus
JPH09148373A (en) Radio communication module
JPWO2006001087A1 (en) Semiconductor device
US11521920B2 (en) Plurality of power semiconductor chips between a substrate and leadframe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees