JP4283365B2 - Method for producing cold-rolled steel sheet with good deep drawability, small in-plane anisotropy and excellent ridging resistance - Google Patents

Method for producing cold-rolled steel sheet with good deep drawability, small in-plane anisotropy and excellent ridging resistance Download PDF

Info

Publication number
JP4283365B2
JP4283365B2 JP03846699A JP3846699A JP4283365B2 JP 4283365 B2 JP4283365 B2 JP 4283365B2 JP 03846699 A JP03846699 A JP 03846699A JP 3846699 A JP3846699 A JP 3846699A JP 4283365 B2 JP4283365 B2 JP 4283365B2
Authority
JP
Japan
Prior art keywords
rolled
steel
hot
steel sheet
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03846699A
Other languages
Japanese (ja)
Other versions
JP2000239784A (en
Inventor
英邦 村上
和久 楠見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP03846699A priority Critical patent/JP4283365B2/en
Publication of JP2000239784A publication Critical patent/JP2000239784A/en
Application granted granted Critical
Publication of JP4283365B2 publication Critical patent/JP4283365B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車車体に代表される絞り、張出し成形を含むプレス加工して利用される鋼板の製造方法に関するものである。
【0002】
【従来の技術】
自動車車体、建材、及び缶材などの用途に、絞り成形や張出し成形を含むプレス成形用として用いられる鋼板では、その機械的特性として、加工性の観点から高い延性やランクフォード値(r値)が求められるが、これと共に加工時のしわを抑制する効果や鋼板歩留まりの観点から、面内異方性(△r)が小さいことが求められる。さらにこれらの材料は最終製品の外側で使用されることが多いため、加工後の表面性状が美麗であることも重要となる。
【0003】
これまでに高い延性とr値を有する鋼板として、Cを40ppm 以下まで低減し、さらに固溶Cを低減するためTi,Nbなどを添加したいわゆるIF鋼が実用化されている。高いr値を得るためのTi,Nbなどの添加量は、例えばTiの場合には窒化物や硫化物に加え炭化物を生成させ、Cを完全に固定する必要があるため、Ti*=Ti−48(C/12+N/14+S/32)などで定義されるTi*が正の値であるように、またNbについても固溶Cの低減が達せられるに十分な量が添加される。
これらTi,Nbの添加の目的は、C固定と共に熱延板結晶組織の微細化の効果も狙ったものである。
【0004】
熱延板組織の微細化が冷延、焼鈍後のr値を向上きせると共に、△rをも小さくする効果があることは良く知られている。一方、Ti,Nbの添加は合金コストや再結晶温度が上昇することによる生産性低下、また析出物の状態のコイル長手、幅位置による均一性を確保することが難しく、生産歩留りの低下の原因ともなっているため、Ti,Nbの低減が望まれている。
Ti,Nbを低減した鋼においては、熱延組織が粗大化することによるr値低下、△r増大に加え、製品板を軽加工した際にリジングと呼ばれる表面の凹凸が発生し、製品の美麗さを損ねることが問題となり、適用拡大の障害となっている。
【0005】
このような状況において、極低C鋼の熱延組織を微細化し材質向上を図るため、熱延時の高圧下や急速冷却を適用した技術が、特開昭61−204335号公報、特開昭62−139823号公報、特開昭62−227043号公報などで開示されている。
しかし、熱延時の高圧下や急速冷却は、形状制御や巻取り温度制御の精度や、設備能力との兼ね合いから、実用化に向けての制約が多い。
【0006】
一方、熱延の省エネルギーの目的から、連続鋳造の後、加熱炉を使用せず又は温度が高い内に加熱炉に装入する、いわゆる直送圧延又はホットチャージと呼ばれる技術が実用化されている。極低C鋼にこれらの技術を適用したものとしては、特開昭62−192538号公報、特開平7−242996号公報などがある。このうち特開昭62−192538号公報では、熱延組織の微細化のため熱延圧下配分の制御が必要であり、特開平7−242996号公報は析出物の形態制御を行うものであるが、通常の再加熱材と同等の特性を得るための技術に止まっている。
【0007】
【発明が解決しようとする課題】
本発明は、通常のIF鋼に比しTi,Nb添加量が少ない極低C鋼で問題となる、▲1▼:r値低下、▲2▼:△r増大、▲3▼:リジング発生、を熱延高圧下や急速冷却によらず回避するための技術を、省エネルギーを達成しつつ提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、直送圧延時の析出物形態の変化と鋼成分との関係を検討する内、Ti,Nb添加量が固溶C,Nを完全に固定しているいわゆるIF鋼より少ない鋼において、直送圧延を行うことにより、熱延中に微細な析出物を形成し熱延組織の微細化効果が発現し、さらに熱延巻取り中にこの析出物の形態が変化し、冷延焼鈍後の材質または焼鈍中の再結晶、粒成長挙動にはほとんど影響を及ぼさなくなることを知見し、本発明を達成したものである。
【0009】
本発明の要旨とするところは、C,Ti,Nb量およびTi*[但しTi*=Ti−48(C/12+N/14+S/32)]を特定した鋼板の熱延板または冷延板での、炭,窒,硫化物の平均直径および密度、さらに平均結晶粒径を制御し、冷延鋼板の絞り性、面内異方性、耐リジング性を向上させるものである。
そのための方法としては、熱延条件、冷延条件、焼鈍条件を制御することが考えられるが、連続鋳造後850℃以下に冷却することなく、または500℃以下に冷却することなく加熱炉にて900℃以上の温度域かつ30分以上の時間再加熱し、熱間圧延することが望ましい。
【0010】
【発明の実施の形態】
以下、本発明において鋼成分ならびに製造条件を限定した理由をその作用と共に詳細に説明する。成分の含有量は重量%である。
Cはr値向上、延性向上のためには低いことが望ましいが、C低減と共に一般的には異方性が大きくなり、リジングが発生するようになる。Cが高い場合には異方性および耐リジング性が問題とはならないので、対象範囲を0.0040%以下とする。時効性が重要な用途に対しては0.0017%以下とすることで、時効による不具合を回避できる。
【0011】
Tiは、多量に含有すればCを固定しr値が高くなると共に、熱延組織が微細化し異方性および耐リジング性も改善され、本発明の対象とはならないので、0.03%以下とする。
NbもTiと同様の理由により0.005%以下とする。
【0012】
Tiは正の部分に大きな値の場合は、窒化物、硫化物と共に炭化物を形成すると共に、固溶Tiが残存し、本発明によらずともr値向上、熱延組織微細化、△r低減、耐リジング性向上などの良好な特性を得ることが可能となるため、0.005%以下とする。
【0013】
その他の元素は特に成分限定をしないが、S,N,Mn,Alは後述する析出物形態との関連で、またPは組織微細化との関連で本発明の効果を得るのに好ましい範囲が存在する。いずれも通常、プレス用冷延鋼板で適用されている含有量である。
【0014】
Sは0.0010〜0.0200%、Nは0.0021〜0.0060%、Mnは0.01〜1.0%、Alは0.005〜0.10%、Pは0.05%以下とする
各下限は析出物の形成との関連で、少なすぎると析出物が形成されず発明効果が小さくなり、上限は含有量が多い場合には、本発明によらずとも熱延板組織が微細化し、必要特性の一部または全部が良好となることから決定した。
【0015】
本発明では、析出物の径および密度を特定範囲に制限することが重要である。
本発明鋼では窒,硫,炭化物の種類および形態はC,S,N,Mn,Ti,Nb,Alなどの窒,硫,炭化物形成元素の含有量によって変化する。各元素は複合析出物を形成しており、一つの析出物の種類および各化合物についてのサイズを特定することは困難である。
【0016】
本発明では、SPEED法により作成された抽出レプリカを透過型電子顕微鏡により観察した場合に、直径が0.005μm以上の析出物について密度が10個/μm 以下、直径が0.10μm以上の析出物の密度が0.010〜0.016個/μmであることを制限条件とする。これらの値は実験において本発明により製造した鋼と比較鋼の析出物を観察した結果から決定した。
【0017】
析出物の密度は、レプリカ作成過程における電解工程において試料表面を通電した全電荷が、Feの2価イオン(Fe2+ )として鋼板が電解されるのに消費され、電解時に残滓として残る析出物が全てレプリカ上に補足されるとして計算した。本発明者らは、通常のレプリカ作成においては試料表面積において10C(クーロン)/cm2 の電気量で電解を行うので、試料表面から3.7μmの厚さ内にある析出物がレプリカ上で観察される。
なお、本発明鋼で観察される析出物は主としてMnSで、これにTiの炭,窒,硫化物およびAlNが単独または複合で析出している。
【0018】
析出物のサイズおよび密度が上記の範囲の場合に本発明の効果が得られるメカニズムは明確ではないが、本発明鋼と比較鋼の析出量を析出物サイズ分布と各サイズの析出物の密度から計算すると、比較鋼の方が析出量が少ない傾向があることから、粒成長および再結晶の駆動力となる加工歪と、抑止力となる析出物として析出しきれていないMn,Ti,Sなどによる solute drag効果の釣合によると推定できる。
【0019】
すなわち、冷延板または熱延板時点での析出物が上記のように制御された鋼板においては、(熱延での再結晶および粒成長の駆動力)<( solute drag効果)であるため、熱延組織の微細化が達成され、(冷延後焼鈍での再結晶および粒成長の駆動力)>( solute drag効果)であるため、冷延後焼鈍での再結晶不足や粒成長不足による材質劣化が起き難くなるものと考えられる。
【0020】
ここで上の2つの式が成立するには、(冷延後焼鈍での再結晶および粒成長の駆動力)>(熱延での再結晶および粒成長の駆動力)であることが必要であるが、一般には低温で歪が付与される冷間圧延の方が歪の残存、蓄積が大きく、再結晶や粒成長の駆動力は大きくなると推測されるので、上記のメカニズムが働いている可能性は十分である。
【0021】
また、たとえ(冷延後焼鈍での再結晶および粒成長の駆動力)と(熱延での再結晶および粒成長の駆動力)がほぼ同等であるとしても、熱延巻取り工程または焼鈍工程前半において析出が進行し、(冷延後焼鈍中の solute drag効果)< (熱延中の solute drag効果)となっている可能性も指摘できる。また、熱延中の再結晶、粒成長は概略γ相中での現象であり、一方、冷延後焼鈍中の再結晶、粒成長は概略α相中での現象であることも考慮する必要がある。
【0022】
さらに、冷延鋼板の素材となる熱延鋼板の結晶粒径については、50μm以下とすることが好ましい。熱延板の粒径が50μm超の場合にはr値、△r、リジングとも特性が劣化することがある。
冷延圧下率は、60〜90%とする。60%未満では熱延鋼板との比較で生産コストが上昇するため実用的でないことと、90%超では本発明によらずともr値、△r、耐リジング性の改善が可能となるからである。
【0023】
冷延後に焼鈍するが、この温度は再結晶温度以上であれば良く、特に限定しない。一般には直送圧延材では析出物が微細化し焼鈍中の再結晶、粒成長を阻害するため、通常のスラブ再加熱材より高い焼鈍温度が必要、または同じ焼鈍温度なら材質の劣化が問題となるが、本発明鋼では再結晶温度ならびに粒成長性はスラブ再加熱材と同等であるため、低い焼鈍温度の適用が可能となる。
【0024】
通常、本発明鋼板は表面処理鋼板用の原板として使用されるが、表面処理により本発明の効果はなんら損なわれるものではない。缶用表面処理としては通常、錫、クロム(ティンフリー)などが、自動車、建材用表面処理としては、亜鉛、鉛、アルミ、ニッケル、クロムなどが施される。また、近年使用されるようになっている有機皮膜を貼ったラミネート鋼板用の原板としても、本発明の効果を損なうことなく使用できる。
【0025】
【実施例】
表1に示す各成分の鋼(残部は実質的にFe (不可避的不純物を含む) )について、通常の熱間圧延条件により表2のような熱延鋼板を得、冷間圧延、焼鈍した鋼板について材質を評価した。耐リジング性の評価はLおよびC方向に15%の伸び率で引張加工を行った試験片の表面粗度(Ra)を測定し、大きい方の値で評価した。その結果を表3に示す。
表3から明らかなように、本発明の範囲内で製造されたものは良好な特性が得られている。また,成分が本発明範囲外である成分c,d鋼では、通常のスラブ再加熱法においても良好な特性が得られるため、本発明対象外としている。
【0026】
【表1】

Figure 0004283365
【0027】
【表2】
Figure 0004283365
【0028】
【表3】
Figure 0004283365
【0029】
【発明の効果】
以上述べたごとく本発明によれば、延性が良好で再結晶温度が低い低Ti,低Nb極低C鋼板に高r値、低△r、良好な耐リジング性を付与し、かつ低コスト・省エネルギープロセスで製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a steel sheet used by press working including drawing and overhanging as typified by an automobile body.
[0002]
[Prior art]
Steel sheets used for press forming, including drawing and stretch forming, for applications such as automobile bodies, building materials, and cans, have high ductility and Rankford values (r values) from the viewpoint of workability. However, it is also required that the in-plane anisotropy (Δr) is small from the viewpoint of the effect of suppressing wrinkles during processing and the yield of the steel sheet. Furthermore, since these materials are often used outside the final product, it is also important that the surface properties after processing are beautiful.
[0003]
So-called IF steels with Ti, Nb, etc. added to reduce C to 40 ppm or less and further reduce solute C have been put to practical use as steel sheets having high ductility and r value. The amount of addition of Ti, Nb, etc. for obtaining a high r value is, for example, in the case of Ti, it is necessary to generate carbides in addition to nitrides and sulfides and to completely fix C. Therefore, Ti * = Ti− A sufficient amount of Ti * is defined so that a reduction in solid solution C can be achieved so that Ti * defined by 48 (C / 12 + N / 14 + S / 32) is a positive value.
The purpose of adding these Ti and Nb is to aim at the effect of refining the hot rolled sheet crystal structure as well as C fixation.
[0004]
It is well known that refinement of the hot-rolled sheet structure has the effect of improving the r value after cold rolling and annealing and also reducing Δr. On the other hand, the addition of Ti and Nb causes a decrease in productivity due to an increase in alloy cost and recrystallization temperature, and it is difficult to ensure uniformity according to the coil length and width position of precipitates, which causes a decrease in production yield. Therefore, reduction of Ti and Nb is desired.
In steels with reduced Ti and Nb, in addition to the decrease in r value and increase in Δr due to the coarsening of the hot rolled structure, surface irregularities called ridging occur when the product plate is lightly processed, resulting in a beautiful product. This is a problem, and it is an obstacle to the expansion of application.
[0005]
Under such circumstances, in order to refine the hot-rolled structure of the ultra-low C steel and improve the material, techniques applying high pressure during hot rolling and rapid cooling are disclosed in Japanese Patent Laid-Open Nos. 61-204335 and 62. -139823, JP-A-62-227043 and the like.
However, under high pressure and rapid cooling during hot rolling, there are many restrictions for practical use due to the balance between the accuracy of shape control and coiling temperature control, and the equipment capacity.
[0006]
On the other hand, for the purpose of energy saving of hot rolling, a technique called direct feed rolling or hot charging, in which a heating furnace is not used after continuous casting or is inserted into a heating furnace while the temperature is high, has been put into practical use. Japanese Patent Application Laid-Open No. 62-192538 and Japanese Patent Application Laid-Open No. 7-242996 disclose applications of these techniques to extremely low C steel. Of these, Japanese Patent Application Laid-Open No. 62-192538 requires control of distribution under hot rolling to refine the hot-rolled structure, while Japanese Patent Application Laid-Open No. 7-242996 performs form control of precipitates. However, the technology for obtaining the same characteristics as those of ordinary reheating materials has been stopped.
[0007]
[Problems to be solved by the invention]
The present invention has a problem with an extremely low C steel in which the amount of Ti and Nb added is smaller than that of ordinary IF steel, (1): r value decreased, (2): Δr increased, (3): ridging generated, The purpose of this technology is to provide a technology for avoiding hot rolling under high pressure and rapid cooling while achieving energy saving.
[0008]
[Means for Solving the Problems]
The present inventors have studied the relationship between the change in precipitate form during direct rolling and the steel composition, and the amount of Ti and Nb added is less than so-called IF steel in which solute C and N are completely fixed. In this case, by performing direct feed rolling, fine precipitates are formed during hot rolling, and the effect of refinement of the hot rolled structure is manifested, and further, the shape of the precipitates changes during hot rolling and cold rolling annealing is performed. The present invention has been achieved by finding that it hardly affects the subsequent material or recrystallization during annealing and the grain growth behavior.
[0009]
The gist of the present invention lies in the hot-rolled or cold-rolled steel sheet in which the amount of C, Ti, Nb and Ti * [where Ti * = Ti−48 (C / 12 + N / 14 + S / 32)] is specified. By controlling the average diameter and density of charcoal, nitrogen and sulfide, and the average grain size, the drawability, in-plane anisotropy and ridging resistance of the cold-rolled steel sheet are improved.
As a method for that, it is conceivable to control hot rolling conditions, cold rolling conditions, and annealing conditions, but in a heating furnace without cooling to 850 ° C. or lower after continuous casting, or without cooling to 500 ° C. or lower. It is desirable to reheat and perform hot rolling in a temperature range of 900 ° C. or higher and for a period of 30 minutes or longer.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the reason why the steel components and the production conditions are limited in the present invention will be described in detail together with the operation thereof. The content of the component is% by weight.
C is desirably low for improving r value and ductility, but generally, anisotropy increases as C decreases, and ridging occurs. When C is high, anisotropy and ridging resistance are not a problem, so the target range is set to 0.0040% or less. For applications where aging is important, by setting it to 0.0017% or less, problems due to aging can be avoided.
[0011]
If Ti is contained in a large amount, the C value is fixed and the r value is increased, the hot rolled structure is refined, the anisotropy and ridging resistance are improved, and it is not the object of the present invention, so 0.03% or less. And
Nb is also made 0.005% or less for the same reason as Ti.
[0012]
When Ti * has a large value in the positive part, it forms carbides with nitrides and sulfides, and solid solution Ti remains, so that the r value is improved, the hot-rolled structure is refined and Δr is not necessary according to the present invention. It is possible to obtain good characteristics such as reduction and ridging resistance improvement, so 0.005% or less.
[0013]
The other elements are not particularly limited, but S, N, Mn, and Al are related to the precipitate form described later, and P has a preferable range for obtaining the effects of the present invention in relation to the refinement of the structure. Exists. All are contents normally applied with the cold-rolled steel sheet for press.
[0014]
S is 0.0010 to 0.0200%, N is 0.0021 to 0.0060%, Mn is 0.01 to 1.0%, Al is 0.005 to 0.10%, P is 0.05% below that.
Each lower limit is related to the formation of precipitates, and if it is too small, precipitates are not formed and the effect of the invention is reduced.If the upper limit is high, the hot-rolled sheet structure is refined without depending on the present invention. It was determined because some or all of the required properties would be good.
[0015]
In the present invention, it is important to limit the diameter and density of the precipitate to a specific range.
In the steel of the present invention, the types and forms of nitrogen, sulfur and carbide vary depending on the contents of nitrogen, sulfur and carbide forming elements such as C, S, N, Mn, Ti, Nb and Al. Each element forms a composite precipitate, and it is difficult to specify the type of one precipitate and the size of each compound.
[0016]
In the present invention, when an extraction replica created by the SPEED method is observed with a transmission electron microscope, the density of precipitates having a diameter of 0.005 μm or more is 10 / μm 3. Hereinafter, the density of precipitates having a diameter of 0.10 μm or more is 0.010 to 0.016 / μm 3 as a limiting condition. These values were determined from the results of observing precipitates of the steel produced according to the present invention and the comparative steel in the experiment.
[0017]
The density of the precipitate is such that the total electric charge applied to the sample surface in the electrolysis process in the replica preparation process is consumed while the steel plate is electrolyzed as Fe divalent ions (Fe2 + ), and the precipitate remaining as a residue during electrolysis All calculations were made as supplemented on the replica. The present inventors perform electrolysis with a quantity of electricity of 10 C (Coulomb) / cm 2 on the surface area of the sample in normal replica production, so that precipitates within a thickness of 3.7 μm from the sample surface are observed on the replica. Is done.
The precipitates observed in the steel of the present invention are mainly MnS, on which Ti charcoal, nitrogen, sulfide and AlN are precipitated alone or in combination.
[0018]
Although the mechanism by which the effect of the present invention is obtained when the size and density of the precipitates are in the above range is not clear, the precipitation amount of the steel of the present invention and the comparative steel is determined from the precipitate size distribution and the density of the precipitates of each size. When calculated, the comparative steel tends to have a smaller amount of precipitation, so that the processing strain that becomes the driving force for grain growth and recrystallization, and Mn, Ti, S, etc. that are not fully precipitated as the precipitate that becomes the deterring force It can be estimated that this is due to the balance of the solute drag effect.
[0019]
That is, in the steel sheet in which the precipitates at the time of cold rolling or hot rolling are controlled as described above, since (driving force of recrystallization and grain growth in hot rolling) <(solute drag effect), The refinement of the hot-rolled structure is achieved, and (the driving force of recrystallization and grain growth in annealing after cold rolling)> (solute drag effect), it is due to insufficient recrystallization and grain growth in annealing after cold rolling. It is thought that material deterioration is less likely to occur.
[0020]
Here two equations above are satisfied, the must be a (driving force of recrystallization and grain growth at cold rolling after annealing)> (the driving force of recrystallization and grain growth in the hot-rolled) However, in general, cold rolling, where strain is imparted at low temperature, is assumed to have greater strain remaining and accumulation, and the driving force for recrystallization and grain growth will be greater, so the above mechanism may work. Sex is enough.
[0021]
Moreover, even if (the driving force for recrystallization and grain growth in annealing after cold rolling) and (the driving force for recrystallization and grain growth in hot rolling) are almost equal, the hot rolling winding process or annealing process Precipitation progresses in the first half, and it can be pointed out that (the solute drag effect during annealing after cold rolling) <(the solute drag effect during hot rolling). It is also necessary to consider that recrystallization and grain growth during hot rolling are phenomena in the γ phase, while recrystallization and grain growth during annealing after cold rolling are phenomena in the α phase. There is.
[0022]
Furthermore, it is preferable that the crystal grain size of the hot-rolled steel sheet, which is a material of the cold-rolled steel sheet, be 50 μm or less. When the particle size of the hot-rolled sheet exceeds 50 μm, the r value, Δr, and ridging may deteriorate characteristics.
The cold rolling reduction ratio is 60 to 90%. If it is less than 60%, the production cost increases compared with that of a hot-rolled steel sheet, which is not practical. If it exceeds 90%, the r value, Δr, and ridging resistance can be improved without depending on the present invention. is there.
[0023]
Although it anneals after cold rolling, this temperature should just be more than recrystallization temperature, and is not specifically limited. In general, in direct-rolled material, the precipitates become finer and hinder recrystallization and grain growth during annealing, so a higher annealing temperature is required than a normal slab reheated material, or deterioration of the material becomes a problem if the same annealing temperature. In the steel of the present invention, the recrystallization temperature and the grain growth property are equivalent to those of the slab reheated material, so that a low annealing temperature can be applied.
[0024]
Usually, the steel sheet of the present invention is used as an original sheet for a surface-treated steel sheet, but the effect of the present invention is not impaired by the surface treatment. As the surface treatment for cans, tin, chromium (tin-free) is usually applied, and as the surface treatment for automobiles and building materials, zinc, lead, aluminum, nickel, chromium, etc. are applied. Moreover, it can be used, without impairing the effect of this invention, also as the negative | original plate for laminated steel plates which stuck the organic membrane which has come to be used in recent years.
[0025]
【Example】
Steels of the respective components shown in Table 1 (the balance being substantially Fe (including inevitable impurities)) were obtained by hot rolling steel sheets as shown in Table 2 under normal hot rolling conditions, and were cold-rolled and annealed steel sheets. The material was evaluated. Evaluation of ridging resistance was made by measuring the surface roughness (Ra) of a test piece subjected to tensile processing at an elongation of 15% in the L and C directions, and evaluating the larger value. The results are shown in Table 3.
As is apparent from Table 3, good characteristics were obtained for those manufactured within the scope of the present invention. In addition, the components c and d steel whose components are out of the scope of the present invention are excluded from the scope of the present invention because good characteristics can be obtained even in a normal slab reheating method.
[0026]
[Table 1]
Figure 0004283365
[0027]
[Table 2]
Figure 0004283365
[0028]
[Table 3]
Figure 0004283365
[0029]
【The invention's effect】
As described above, according to the present invention, a low Ti, low Nb ultra-low C steel sheet having good ductility and low recrystallization temperature is imparted with a high r value, low Δr, good ridging resistance, and low cost. It can be manufactured with an energy-saving process.

Claims (2)

重量%で、
C <0.0040%、
Ti<0.030%、
Nb<0.005%、
Ti*<0.005%[但しTi*=Ti−48(C/12+N/14
+S/32)]
S :0.0010〜0.0200%、
N :0.0021〜0.0060%、
Mn:0.01〜1.0%、
Al:0.005〜0.10%、
P ≦0.05%、
残部Feおよび不可避的不純物からなる連続鋳造によって製造した鋼片を、850℃以下に冷却することなく熱間圧延するか、または500℃以下に冷却することなく加熱炉で900℃以上・30分以上の再加熱を行い熱間圧延し、60〜90%の圧下率の冷間圧延を施し、板厚0.4mm以上とすることを特徴とする深絞り性が良好で面内異方性が小さく、耐リジング性に優れる冷延鋼板の製造方法
% By weight
C <0.0040%,
Ti <0.030%,
Nb <0.005%,
Ti * <0.005% [where Ti * = Ti−48 (C / 12 + N / 14
+ S / 32)]
S: 0.0010 to 0.0200%,
N: 0.0021 to 0.0060%,
Mn: 0.01 to 1.0%
Al: 0.005 to 0.10%,
P ≦ 0.05%,
A steel slab produced by continuous casting consisting of the remaining Fe and inevitable impurities is hot-rolled without cooling to 850 ° C or lower, or 900 ° C or higher for 30 minutes or longer in a heating furnace without cooling to 500 ° C or lower. The steel is re-heated and hot-rolled, cold-rolled at a reduction rate of 60 to 90%, and has a sheet thickness of 0.4 mm or more. The manufacturing method of the cold-rolled steel plate which is excellent in ridging resistance.
直径0.005μm以上の析出物の密度が10個/μm 以下、直径0.10μm以上の析出物の密度が0.010〜0.016個/μm とすることを特徴とする請求項1記載の深絞り性が良好で面内異方性が小さく、耐リジング性に優れる冷延鋼板の製造方法The density of precipitates having a diameter of 0.005 μm or more is 10 / μm 3 Hereinafter, the density of precipitates having a diameter of 0.10 μm or more is 0.010 to 0.016 / μm 3 , wherein the deep drawability is good and the in-plane anisotropy is small, A method for producing a cold-rolled steel sheet having excellent ridging resistance.
JP03846699A 1999-02-17 1999-02-17 Method for producing cold-rolled steel sheet with good deep drawability, small in-plane anisotropy and excellent ridging resistance Expired - Fee Related JP4283365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03846699A JP4283365B2 (en) 1999-02-17 1999-02-17 Method for producing cold-rolled steel sheet with good deep drawability, small in-plane anisotropy and excellent ridging resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03846699A JP4283365B2 (en) 1999-02-17 1999-02-17 Method for producing cold-rolled steel sheet with good deep drawability, small in-plane anisotropy and excellent ridging resistance

Publications (2)

Publication Number Publication Date
JP2000239784A JP2000239784A (en) 2000-09-05
JP4283365B2 true JP4283365B2 (en) 2009-06-24

Family

ID=12526035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03846699A Expired - Fee Related JP4283365B2 (en) 1999-02-17 1999-02-17 Method for producing cold-rolled steel sheet with good deep drawability, small in-plane anisotropy and excellent ridging resistance

Country Status (1)

Country Link
JP (1) JP4283365B2 (en)

Also Published As

Publication number Publication date
JP2000239784A (en) 2000-09-05

Similar Documents

Publication Publication Date Title
JP5318421B2 (en) Austenitic steel having high strength and formability, method for producing the steel, and use thereof
CN100557058C (en) Cold-rolled steel sheet and manufacture method thereof with less anisotropy and high-yield-ratio
KR101030207B1 (en) Cold rolled steel sheet, process for producing the same, and cell and process for producing the same
JP4254663B2 (en) High strength thin steel sheet and method for producing the same
CN111910123B (en) Cold-rolled continuous annealing ultrahigh-strength steel with excellent phosphating performance and preparation method thereof
KR101128315B1 (en) Processes for production of steel sheets for cans
EP1616971A1 (en) High strength cold rolled steel sheet and method for production thereof
WO2016035235A1 (en) Material for cold-rolled stainless steel sheets
CN111748735A (en) Band steel with excellent low-temperature secondary processing performance and tensile strength of 390MPa and production method thereof
WO2016031234A1 (en) Steel sheet for cans and method for producing same
JP2007254766A (en) Steel sheet for deep drawing excellent in low-temperature baking hardenability and room-temperature non-aging property and method for producing the same
CN109913754A (en) A kind of the IF cold-rolled steel and production method of tensile strength &gt;=440MPa
JP4284815B2 (en) Steel plate for high-strength can and manufacturing method thereof
CN113718166B (en) Hot-dip aluminum-zinc steel plate with yield strength of 320MPa and manufacturing method thereof
TWI717098B (en) Steel plate for tank and manufacturing method thereof
JP4102284B2 (en) {100} &lt;011&gt; Cold rolled steel sheet manufacturing method with excellent shape freezing property with developed orientation
EP3231886B1 (en) Complex-phase steel sheet with excellent formability and manufacturing method therefor
JP3740779B2 (en) Steel plate for easy open can lid excellent in openability and rivet formability, manufacturing method thereof, and easy open can lid
JP3280692B2 (en) Manufacturing method of high strength cold rolled steel sheet for deep drawing
JP4283365B2 (en) Method for producing cold-rolled steel sheet with good deep drawability, small in-plane anisotropy and excellent ridging resistance
CN115505847A (en) Cold-rolled ultrahigh-strength steel plate with excellent impact property and preparation method thereof
CN113166837B (en) High-strength steel sheet and method for producing same
EP4261305A1 (en) High strength plated steel sheet having excellent formability and surface property, and method for manufacturing same
JP3582369B2 (en) Method for producing thin steel sheet with excellent workability and little variation in the width direction of workability
JPH0542486B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees