JP4282891B2 - Method for producing silicon ultrafine particles - Google Patents

Method for producing silicon ultrafine particles Download PDF

Info

Publication number
JP4282891B2
JP4282891B2 JP2000347876A JP2000347876A JP4282891B2 JP 4282891 B2 JP4282891 B2 JP 4282891B2 JP 2000347876 A JP2000347876 A JP 2000347876A JP 2000347876 A JP2000347876 A JP 2000347876A JP 4282891 B2 JP4282891 B2 JP 4282891B2
Authority
JP
Japan
Prior art keywords
ultrafine particles
silicon
silicon ultrafine
electrode
producing silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000347876A
Other languages
Japanese (ja)
Other versions
JP2002154817A (en
Inventor
聡 相原
信雄 斎藤
憲彦 鎌田
大陽 照沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Broadcasting Corp filed Critical Japan Broadcasting Corp
Priority to JP2000347876A priority Critical patent/JP4282891B2/en
Publication of JP2002154817A publication Critical patent/JP2002154817A/en
Application granted granted Critical
Publication of JP4282891B2 publication Critical patent/JP4282891B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、光吸収、フォトルミネッセンス等において優れた光学特性を有し、発光素子、受光素子として使用されるシリコン超微粒子の作製方法に関する。
【0002】
【従来の技術】
ナノメートルサイズのシリコン微結晶構造は、量子論的閉じ込め効果や表面効果により、バルクシリコンでは観測されない光吸収端の短波長化、高効率発光を呈することから、シリコン発光デバイスヘの応用展開が期待されている。
【0003】
【発明が解決しようとする課題】
しかしながら、従来のシリコン超微粒子の製造法は、減圧CVD法、レーザアブレーション法等のドライプロセスが主流であり、製造装置の規模が大きいために、大型で設置場所に制約を受けるという問題があった。また、その装置が高価である等の問題があった。
【0004】
本発明の目的は、小型で設置場所に制約がなく、安価な製造装置によりシリコン超微粒子を提供することにある。
【0005】
ところで、小型安価な製造方法として、電極還元法がある。この方法は有機電極反応の新しい手法として開発された方法であり、有機ポリシラン類の合成に用いられている(特開平5-247216号公報、特開平5-247217号公報参照)。
【0006】
しかし、前記公報に開示されている技術は、有機ポリシラン類、作製に特化しているため出発原料としてジハロシラン、トリハロシラン、テトラハロシランのうち複数が例示されているに過ぎずこのままでは、シリコン超微粒子の製造には適用できない。
【0007】
本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述及び添付図面によって明らかにする。
【0008】
【課題を解決するための手段】
本願において開示される発明の概要を簡単に説明すれば、下記のとおりである
【0011】
第1の発明は、テトラクロロシラン、テトラフルオロシラン、テトラブロモシランのうち1つの物質もしくは複数の物質を原料とし、非プロトン性の溶媒であるニトリル類、アミド類、エーテル類のうち1つの物質もしくは複数の物質を溶媒とし、反応性電極を用いた電極還元法により作製するシリコン超微粒子作製方法である。
第2の発明は第1の発明において、通電量をモルあたり0.5Fから2.0Fとすることにより、量子サイズ効果を発現させるのに必要な直径1.0nmから5.0nmの範囲のサイズにしたシリコン超微粒子の作製方法である。
【0012】
本発明のポイントは、光吸収、フォトルミネッセンス等において優れた光学特性を有し、発光素子、受光素子として使用されるシリコン超微粒子の製造法に関し、反応性電極を用いた電極還元法をシリコン超微粒子の製造に適用することにより、小型で設置場所に制約がなく、安価な製造装置でシリコン超微粒子を提供できるようにしたものである。
【0013】
すなわち、公知技術である反応性電極を用いた電極還元法をシリコン超微粒子の製造法に初めて適用したものである。小型で設置場所に制約がなく、安価な製造装置によるシリコン超微粒子の作製を達成するとともに、特に、テトラクロロシラン、テトラフルオロシラン、テトラブロモシランのうち1つの物質もしくは複数の物質を原料として作製したことにより、公知技術では作製できなかったシリコン超微粒子が作製できるようにしたものである。
【0014】
また、特に、テトラクロロシラン、テトラフルオロシラン、テトラブロモシランのうち1つの物質もしくは複数の物質を原料とし、ニトリル類、アミド類、エーテル類のうち1つの物質もしくは複数の物質を溶媒としてシリコン超微粒子を作製することにより、前記公知技術では作製できなかったシリコン超微粒子が作製できるようにしたものである。
【0015】
また、通電量をモル(mol)あたり0.5ファラデー(F)から2.0Fとすることにより、量子サイズ効果を発現させるのに必要な直径1.0nmから5.0nmの範囲のサイズのシリコン超微粒子を形成し、より好ましい特性を示すシリコン微粒子が作製できるようにしたものである。
【0016】
例として本発明では、テトラクロロシランのみを用いた電極還元反応(数1の反応式)によりシリコン超微粒子を製造した。
【数1】

Figure 0004282891
【0017】
前記シリコン超微粒子の製造方法の具体的な手順は以下のとおりである。
電解質として過塩素酸アルカリ金属を加えたテトラヒドロフラン溶液中にSiX4(Xはハロゲン原子)を混ぜ、陽極、陰極共にマグネシウム(Mg)等の反応性電極を用い直流電流を通電することにより超微粒子が成長する。
【0018】
この際、陽極の金属が金属イオン(M+)として溶出し、このM+が陰極で電子を受け取ることで非常に活性な金属(M*)を形成する。このM*がハロシランの還元反応に直接関与して、シリコンからハロゲン原子が剥ぎ取られる。ハロゲン原子が剥ぎ取られたシリルラジカル同士が結合することにより反応が進行する。
【0019】
得られるシリコン超微粒子は、量子サイズの効果を損なわないために結晶直径がおよそ5nmを超えないことが望ましい。そのため、反応に必要な通電量は、原料テトラハロシランのハロゲン原子を基準として0.5〜2.0F/molが良い。
【0020】
以下に、本発明について、その実施形態(実施例)とともに図面を参照して詳細に説明する。
【0021】
【発明の実施の形態】
図1は、本発明の一実施形態のシリコン超微粒子作製装置の概略構成を示す模式図であり、図2は、本発明の一実施形態のシリコン超微粒子の原子間力顕微鏡写真である。図1において、1は三ッ口フラスコ、2は極性変換装置、3は直流電源、4はクーロンメータ、5はアルゴン、6は超音波、7はMg電極である。
【0022】
本実施形態のシリコン超微粒子作製方法は、図1のシリコン超微粒子作製装置において、アルゴン雰囲気に置換した30ミリリットル(ml)三ッ口フラスコ1内に乾燥テトラヒドロフラン20ml、過塩素酸リチウム1.0gを入れ電解質溶液を調整した。その後トリメチルクロロシラン(TMSiCl)1.96mmol(0.25ml)を加え、室温で1時間攪拌することにより脱水処理を行った。更に、前記三ッ口フラスコ1内に設置された2個のMg電極7に直流電源3を極性変換装置2、クーロンメーター4を介して接続し、電流値50mA、2F/mol当量の通電を超音波6の照射下において行い、未反応のTMSiClを不活性化させた。この際、前記極性変換装置2により30秒毎に各Mg電極7の極性を変換した。
【0023】
その後、三ッ口フラスコ1内にテトラクロロシラン34.9mmol(4.0ml)を入れ、前述の装置により直流25mA、1.4F/mol当量の通電を行った(図1)。電極の極性は同様に30秒毎に変換し、超音波照射下において実施した。反応中においては、冷却水循環装置により超音波照射器の浴槽内水温を5℃に保った。
【0024】
生成したシリコン超微粒子のテトラヒドロフラン混合溶液を1規定塩酸水約100mlに攪拌しながら流し込んだ後に1規定NH3水溶液で中和し、沈殿物を吸引ろ過して精製し、生成物を真空デシケータ内で一晩乾燥させることにより収量1.47gで白色粉末状のシリコン超微粒子を得た。
【0025】
得られたシリコン超微粒子について、原子間力顕微鏡(AFM)を用いて直径を観測した。シリコン基板上に、得られたシリコン超微粒子粉末の1g/lテトラヒドロフラン懸濁液を滴下し、真空デシケータ中で乾燥させたものを測定に用いた。図2にAFM像を示す。図に見られるように、粒状のシリコン超微粒子とその凝集体が明瞭に観察でき、平均的な大きさのものの高さは3.6nmであった。このサイズは量子サイズ効果を示すのに十分な大きさであり、本方法により作製されたシリコン超微粒子が、冒頭に述べたデバイスへの応用にふさわしい特性を持つことを示唆するものである。
【0026】
なお、ここでは、原料としてテトラクロロシラン、溶媒としてテトラヒドロフランを用いた作製例のみを示したが、他の原料、他の溶媒を用いても同様に優れたシリコン超微粒子を作製できる。他の原料としてはテトラフルオロシラン、テトラブロモシラン、他の溶媒としては、テトラヒドロフラン以外のエーテル類、ニトリル類、アミド類を用いることが可能である。
【0027】
以上、本発明者によってなされた発明を、前記実施形態に基づき具体的に説明したが、本発明は、前記実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは勿論である。
【0028】
【発明の効果】
以上に説明したように、本発明によれば、反応性電極を用いてテトラクロロシランを電極還元すること(基本的には電極に直流電流を通電すること)のみにより、シリコン超微粒子を作製するので、大規模な製造装置を必要としない。
【0029】
また、本発明の方法により作製された優れた特性を持つシリコン超微粒子を、受光デバイス、発光デバイス等の機能性材料に適用することにより、簡便な方法により高性能のデバイスを得ることが可能となる。
【図面の簡単な説明】
【図1】本発明の一実施形態のシリコン超微粒子作製装置の概略構成を示す模式図である。
【図2】本発明の一実施形態のシリコン超微粒子の原子間力顕微鏡写真である。
【符号の説明】
1…三ッ口フラスコ
2…極性変換装置
3…直流電源
4…クーロンメータ
5…アルゴン
6…超音波
7…Mg電極[0001]
BACKGROUND OF THE INVENTION
The present invention, light absorption, has excellent optical properties in the photoluminescence or the like, the light emitting element relates to a method for manufacturing a silicon ultra fine particles to be used as the light receiving element.
[0002]
[Prior art]
The nanometer-sized silicon microcrystal structure is expected to be applied to silicon light-emitting devices because of its short wavelength and high-efficiency light emission that is not observed in bulk silicon due to quantum confinement and surface effects. ing.
[0003]
[Problems to be solved by the invention]
However, conventional silicon ultrafine particle manufacturing methods are mainly dry processes such as low-pressure CVD and laser ablation, and the size of the manufacturing apparatus is large, so there is a problem that it is large and restricted by the installation location. . There is also a problem that the device is expensive.
[0004]
An object of the present invention is to provide ultrafine silicon particles by a small-sized manufacturing apparatus that is small and has no restrictions on the installation location.
[0005]
Incidentally, there is an electrode reduction method as a small and inexpensive manufacturing method. This method has been developed as a new method of organic electrode reaction, and is used for the synthesis of organic polysilanes (see JP-A-5-247216 and JP-A-5-247217).
[0006]
However, since the technique disclosed in the above publication is specialized in the production of organic polysilanes and dihalosilanes, trihalosilanes, and tetrahalosilanes, only a plurality of examples are illustrated as starting materials. It cannot be applied to the production of fine particles.
[0007]
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.
[0008]
[Means for Solving the Problems]
The outline of the invention disclosed in the present application will be briefly described as follows .
[0011]
The first invention uses one substance or a plurality of substances among tetrachlorosilane, tetrafluorosilane, and tetrabromosilane as a raw material, and one substance among nitriles, amides, and ethers, which are aprotic solvents, This is a silicon ultrafine particle production method using a plurality of substances as a solvent and produced by an electrode reduction method using a reactive electrode.
The second invention is a size in the range of 1.0 nm to 5.0 nm in diameter necessary for exhibiting the quantum size effect by changing the energization amount from 0.5F to 2.0F per mole in the first invention. This is a method for producing ultrafine silicon particles.
[0012]
The point of the present invention relates to a method for producing silicon ultrafine particles having excellent optical characteristics in light absorption, photoluminescence, etc., and used as a light emitting element and a light receiving element, and relates to an electrode reduction method using a reactive electrode. By applying it to the production of fine particles, it is possible to provide silicon ultrafine particles with an inexpensive production apparatus that is small and has no restrictions on the installation location.
[0013]
That is, the electrode reduction method using a reactive electrode, which is a known technique, is first applied to a method for producing silicon ultrafine particles. Small size, no restrictions on installation location, and production of ultra-fine silicon particles using an inexpensive manufacturing device. In particular, one or more of tetrachlorosilane, tetrafluorosilane, and tetrabromosilane were used as raw materials. This makes it possible to produce silicon ultrafine particles that could not be produced by a known technique.
[0014]
In particular, silicon ultrafine particles using one or more of tetrachlorosilane, tetrafluorosilane, and tetrabromosilane as raw materials, and one or more of nitriles, amides, and ethers as solvents. Thus, it is possible to produce silicon ultrafine particles that could not be produced by the known technique.
[0015]
In addition, by setting the energization amount to 0.5 Faraday (F) to 2.0 F per mol (mol), silicon having a size in the range of 1.0 nm to 5.0 nm in diameter necessary for manifesting the quantum size effect. Ultrafine particles are formed so that silicon fine particles exhibiting more preferable characteristics can be produced.
[0016]
As an example, in the present invention, silicon ultrafine particles were produced by an electrode reduction reaction (reaction formula of Formula 1) using only tetrachlorosilane.
[Expression 1]
Figure 0004282891
[0017]
The specific procedure of the method for producing the silicon ultrafine particles is as follows.
Ultrafine particles can be obtained by mixing SiX 4 (X is a halogen atom) in a tetrahydrofuran solution to which alkali metal perchlorate is added as an electrolyte, and applying a direct current using a reactive electrode such as magnesium (Mg) for both the anode and cathode. grow up.
[0018]
At this time, the metal of the anode is eluted as a metal ion (M + ), and this M + receives an electron at the cathode to form a very active metal (M * ). This M * is directly involved in the reduction reaction of halosilane, and the halogen atoms are stripped from the silicon. The reaction proceeds when silyl radicals from which halogen atoms have been removed are bonded to each other.
[0019]
The obtained silicon ultrafine particles desirably have a crystal diameter not exceeding about 5 nm in order not to impair the effect of the quantum size. Therefore, the amount of electricity necessary for the reaction is preferably 0.5 to 2.0 F / mol based on the halogen atom of the raw material tetrahalosilane.
[0020]
The present invention will be described in detail below with reference to the drawings together with embodiments (examples) thereof.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic diagram showing a schematic configuration of a silicon ultrafine particle production apparatus according to an embodiment of the present invention, and FIG. 2 is an atomic force micrograph of the silicon ultrafine particles according to an embodiment of the present invention. In FIG. 1, 1 is a three-necked flask, 2 is a polarity converter, 3 is a DC power source, 4 is a coulomb meter, 5 is argon, 6 is an ultrasonic wave, and 7 is an Mg electrode.
[0022]
In the silicon ultrafine particle production method of this embodiment, in the silicon ultrafine particle production apparatus of FIG. 1, 20 ml of dry tetrahydrofuran and 1.0 g of lithium perchlorate are placed in a 30 ml (ml) three-necked flask 1 replaced with an argon atmosphere. The electrolyte solution was adjusted. Thereafter, 1.96 mmol (0.25 ml) of trimethylchlorosilane (TMSiCl) was added, and dehydration was performed by stirring at room temperature for 1 hour. Further, a direct current power source 3 is connected to the two Mg electrodes 7 installed in the three-necked flask 1 via the polarity converter 2 and the coulomb meter 4 so that the current value of 50 mA, 2 F / mol equivalent energization is exceeded. Unreacted TMSiCl was inactivated under the irradiation of acoustic waves 6. At this time, the polarity of each Mg electrode 7 was converted every 30 seconds by the polarity converter 2.
[0023]
Thereafter, 34.9 mmol (4.0 ml) of tetrachlorosilane was placed in the three-necked flask 1, and a current of 25 mA DC and 1.4 F / mol equivalent was applied by the above-described apparatus (FIG. 1). Similarly, the polarity of the electrode was changed every 30 seconds, and was performed under ultrasonic irradiation. During the reaction, the water temperature in the bathtub of the ultrasonic irradiator was kept at 5 ° C. by the cooling water circulation device.
[0024]
The tetrahydrofuran mixed solution of the produced silicon ultrafine particles was poured into about 100 ml of 1N hydrochloric acid with stirring, neutralized with 1N NH 3 aqueous solution, and the precipitate was purified by suction filtration. The product was purified in a vacuum desiccator. By drying overnight, white powdery silicon ultrafine particles were obtained with a yield of 1.47 g.
[0025]
The diameter of the obtained silicon ultrafine particles was observed using an atomic force microscope (AFM). A 1 g / l tetrahydrofuran suspension of the obtained silicon ultrafine particle powder was dropped on a silicon substrate and dried in a vacuum desiccator for measurement. FIG. 2 shows an AFM image. As can be seen from the figure, granular silicon ultrafine particles and aggregates thereof could be clearly observed, and the average size was 3.6 nm. This size is large enough to show the quantum size effect, which suggests that the silicon ultrafine particles produced by this method have characteristics suitable for the device application described at the beginning.
[0026]
Here, only the production example using tetrachlorosilane as a raw material and tetrahydrofuran as a solvent is shown, but excellent silicon ultrafine particles can be similarly produced using other raw materials and other solvents. As other raw materials, tetrafluorosilane and tetrabromosilane, and as other solvents, ethers other than tetrahydrofuran, nitriles, and amides can be used.
[0027]
As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Of course.
[0028]
【The invention's effect】
As explained above, according to the present invention, ultrafine silicon particles are produced only by electrode reduction of tetrachlorosilane using a reactive electrode (basically by applying a direct current to the electrode). Does not require large-scale manufacturing equipment.
[0029]
In addition, by applying silicon ultrafine particles with excellent characteristics produced by the method of the present invention to functional materials such as light receiving devices and light emitting devices, it is possible to obtain high performance devices by a simple method. Become.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a schematic configuration of a silicon ultrafine particle production apparatus according to an embodiment of the present invention.
FIG. 2 is an atomic force micrograph of ultrafine silicon particles according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Three necked flask 2 ... Polarity converter 3 ... DC power supply 4 ... Coulomb meter 5 ... Argon 6 ... Ultrasonic wave 7 ... Mg electrode

Claims (2)

テトラクロロシラン、テトラフルオロシラン、テトラブロモシランのうち1つの物質もしくは複数の物質を原料とし、非プロトン性の溶媒であるニトリル類、アミド類、エーテル類のうち1つの物質もしくは複数の物質を溶媒とし、反応性電極を用いた電極還元法により作製することを特徴とするシリコン超微粒子の作製方法。  One or more of tetrachlorosilane, tetrafluorosilane, and tetrabromosilane are used as raw materials, and one or more of nitriles, amides, and ethers that are aprotic solvents are used as solvents. A method for producing silicon ultrafine particles, which is produced by an electrode reduction method using a reactive electrode. 請求項1に記載のシリコン超微粒子の作製方法において、通電量をモルあたり0.5Fから2.0Fとすることにより、量子サイズ効果を発現させるのに必要な直径1.0nmから5.0nmの範囲のサイズにしたことを特徴とするシリコン超微粒子の作製方法 2. The method for producing silicon ultrafine particles according to claim 1, wherein the energization amount is changed from 0.5 F to 2.0 F per mole, so that the diameter of 1.0 nm to 5.0 nm necessary for manifesting the quantum size effect is obtained. A method for producing silicon ultrafine particles characterized by having a size within a range.
JP2000347876A 2000-11-15 2000-11-15 Method for producing silicon ultrafine particles Expired - Fee Related JP4282891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000347876A JP4282891B2 (en) 2000-11-15 2000-11-15 Method for producing silicon ultrafine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000347876A JP4282891B2 (en) 2000-11-15 2000-11-15 Method for producing silicon ultrafine particles

Publications (2)

Publication Number Publication Date
JP2002154817A JP2002154817A (en) 2002-05-28
JP4282891B2 true JP4282891B2 (en) 2009-06-24

Family

ID=18821541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000347876A Expired - Fee Related JP4282891B2 (en) 2000-11-15 2000-11-15 Method for producing silicon ultrafine particles

Country Status (1)

Country Link
JP (1) JP4282891B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7850938B2 (en) 2004-03-17 2010-12-14 Denki Kagaku Kogyo Kabushiki Kaisha Silicon particles, silicon particle superlattice and method for producing the same
WO2008108266A1 (en) * 2007-03-06 2008-09-12 Konica Minolta Medical & Graphic, Inc. Method for producing semiconductor nanoparticle, method for producing core-shell semiconductor nanoparticle, and core-shell semiconductor nanoparticle
WO2008126714A1 (en) * 2007-04-06 2008-10-23 Konica Minolta Medical & Graphic, Inc. Process for producing semiconductor nanoparticles

Also Published As

Publication number Publication date
JP2002154817A (en) 2002-05-28

Similar Documents

Publication Publication Date Title
Lu et al. Growth of SiC nanorods at low temperature
CN101451262B (en) Methods and devices for electrophoretic deposition of a uniform carbon nanotube composite film
JP4242366B2 (en) Method for forming guanidine group on carbon nanotube, method for attaching carbon nanotube with guanidine group formed on substrate, and carbon nanotube and substrate produced thereby
Yu et al. Fabrication of arrays of zinc oxide nanorods and nanotubes in aqueous solution under an external voltage
Sun et al. Room-temperature solution synthesis of mesoporous silicon for lithium ion battery anodes
CN105399139B (en) Method for inducing titanium dioxide nano particles to form pearl chain structure through self-assembly
CN105176528A (en) Preparation method of nitrogen doped carbon based quantum dot
Miao et al. Double‐Template Synthesis of CdS Nanotubes with Strong Electrogenerated Chemiluminescence
CN104988658B (en) A kind of preparation method of SiC micro/nano-fibre non-woven materials
WO2010027098A1 (en) Process for producing zinc oxide nanoparticles, and zinc oxide nanoparticles
CN107364845A (en) A kind of method for preparing nitrogen-doped graphene
JP4282891B2 (en) Method for producing silicon ultrafine particles
JP3106205B2 (en) Method for producing polysilane
KR101997874B1 (en) Switchable superhydrophobic film and preparing method of same
CN107539990B (en) A kind of porous silicon nano material and its preparation method and application
Tian et al. Long-range ordered amino acid assemblies exhibit effective optical-to-electrical transduction and stable photoluminescence
US10940456B2 (en) Method for producing hydrogenated amorphous silicon-containing colloids and/or composite colloids and for encapsulating substances with hydrogenated amorphous silicon-containing composite colloids, hydrogenated amorphous silicon-containing colloids and/or composite colloids, substances encapsulated with silicon-containing composite layers, and use thereof
WO2013029278A1 (en) A method for preparing functionalized silicon nanoparticles
CN108103770B (en) Black phosphorus-carbon cloth composite material and its preparation method and application
Chakrabarti et al. Nanotechnology-driven chemistry of boron materials
KR100836511B1 (en) Silica/carbon nanotube composite and its production method
CN110743578A (en) Tourmaline-loaded BiOI photocatalyst and preparation method thereof
JP2006327886A (en) Aluminum composite precursor, aluminum composite and aluminum composite sintered compact
CN114394622A (en) Three-dimensional hollow molybdenum disulfide @ gold nanoparticle and preparation method thereof
JP3640716B2 (en) Inorganic material in which CdS ultrafine crystals are present, method for producing the same, and photoelectrochemical device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090318

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees