JP4280138B2 - Method for manufacturing photoelectric conversion device - Google Patents

Method for manufacturing photoelectric conversion device Download PDF

Info

Publication number
JP4280138B2
JP4280138B2 JP2003337500A JP2003337500A JP4280138B2 JP 4280138 B2 JP4280138 B2 JP 4280138B2 JP 2003337500 A JP2003337500 A JP 2003337500A JP 2003337500 A JP2003337500 A JP 2003337500A JP 4280138 B2 JP4280138 B2 JP 4280138B2
Authority
JP
Japan
Prior art keywords
semiconductor
photoelectric conversion
granular
thermosetting resin
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003337500A
Other languages
Japanese (ja)
Other versions
JP2005108971A (en
Inventor
洋二 積
好雄 三浦
久雄 有宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003337500A priority Critical patent/JP4280138B2/en
Publication of JP2005108971A publication Critical patent/JP2005108971A/en
Application granted granted Critical
Publication of JP4280138B2 publication Critical patent/JP4280138B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

本発明は太陽光発電などに使用される光電変換装置とその製造方法に関し、特に粒状結晶半導体を用いた光電変換装置およびその製造方法に関する。   The present invention relates to a photoelectric conversion device used for photovoltaic power generation and the like and a manufacturing method thereof, and more particularly to a photoelectric conversion device using a granular crystal semiconductor and a manufacturing method thereof.

従来の粒状結晶半導体を用いた光電変換装置を図3〜図6に示す。例えば図3に示すように、第1のアルミニウム箔9に開口を形成し、その開口にp型の上にn型表皮部8を持つシリコン球2を挿着し、このシリコン球2の裏側のn型表皮部8を除去し、第1のアルミニウム箔9の裏面側に酸化物絶縁層3を形成し、シリコン球2の裏側の酸化物絶縁層3を除去し、シリコン球2と第2のアルミニウム箔7とを接合する光電変換装置が開示されている(例えば、特許文献1を参照。)。   A conventional photoelectric conversion device using a granular crystal semiconductor is shown in FIGS. For example, as shown in FIG. 3, an opening is formed in the first aluminum foil 9, and a silicon sphere 2 having an n-type skin portion 8 on a p-type is inserted into the opening. The n-type skin portion 8 is removed, the oxide insulating layer 3 is formed on the back side of the first aluminum foil 9, the oxide insulating layer 3 on the back side of the silicon sphere 2 is removed, and the silicon sphere 2 and the second A photoelectric conversion device for joining the aluminum foil 7 is disclosed (for example, see Patent Document 1).

また、図4に示すように、基板1上に低融点金属層10を形成し、この低融点金属層10上に第1導電型の粒状結晶半導体2を配設し、この粒状結晶半導体2上に第2導電型のアモルファス半導体層6を上記低融点金属層10との間に絶縁層3を介して形成する光電変換装置が開示されている(例えば、特許文献2を参照。)。   Further, as shown in FIG. 4, a low melting point metal layer 10 is formed on a substrate 1, and a first conductive type granular crystal semiconductor 2 is disposed on the low melting point metal layer 10. Discloses a photoelectric conversion device in which the second conductive type amorphous semiconductor layer 6 is formed between the low-melting-point metal layer 10 and the low-melting-point metal layer 10 via the insulating layer 3 (see, for example, Patent Document 2).

また、図5に示すように、基板1上に高融点金属層11と低融点金属層10と半導体微小結晶粒12とを堆積し、半導体微小結晶粒12を融解させて飽和させた上で徐々に冷却して半導体を液相エビタキシャル成長させることによって多結晶薄膜12を形成する方法が開示されている(例えば、特許文献3を参照。)。   Further, as shown in FIG. 5, a high melting point metal layer 11, a low melting point metal layer 10, and semiconductor fine crystal grains 12 are deposited on the substrate 1, and the semiconductor fine crystal grains 12 are melted and saturated, and then gradually. A method of forming a polycrystalline thin film 12 by cooling the semiconductor to liquid phase epitaxial growth (see, for example, Patent Document 3) is disclosed.

また、図6に示すように、シート状のモジュール基板1上に複数の第1導電型の球状半導体16を導電ぺースト14によって接着された状態で熱可塑性透明柔軟樹脂17中に埋設し、球状半導体16の表面領域に不純物を熱拡散あるいはイオン注入によってドープすることで第2導電型の表面層4を形成する方法が開示されている(例えば、特許文献4を参照。)。   In addition, as shown in FIG. 6, a plurality of first conductive type spherical semiconductors 16 are embedded in a thermoplastic transparent flexible resin 17 in a state of being bonded by a conductive paste 14 on a sheet-like module substrate 1 to form a spherical shape. A method is disclosed in which the surface layer 4 of the second conductivity type is formed by doping impurities into the surface region of the semiconductor 16 by thermal diffusion or ion implantation (see, for example, Patent Document 4).

なお、図3〜図5において、5は透明導電膜などから成る電極である。
特開昭61−124179号公報 特許第2641800号公報 特公平8−34177号公報 特開2001−230429号公報
3 to 5, reference numeral 5 denotes an electrode made of a transparent conductive film or the like.
JP-A-61-124179 Japanese Patent No. 2641800 Japanese Patent Publication No. 8-34177 Japanese Patent Laid-Open No. 2001-230429

しかしながら、図3に示すような光電変換装置では、第1のアルミニウム箔9に開口を形成し、その開口にシリコン球2を押し込んでシリコン球2を第1のアルミニウム箔9に接合させる必要があるため、シリコン球2の球径に均一性が要求され、製造工程が複雑化するという問題があった。また、シリコン球2を接合させるときの処理温度がアルミニウムとシリコンとの共晶温度である577℃以下であるため、この接合が不安定になるという問題があった。   However, in the photoelectric conversion device as shown in FIG. 3, it is necessary to form an opening in the first aluminum foil 9 and to push the silicon sphere 2 into the opening to join the silicon sphere 2 to the first aluminum foil 9. Therefore, there is a problem that uniformity of the spherical diameter of the silicon sphere 2 is required and the manufacturing process is complicated. Moreover, since the processing temperature when bonding the silicon spheres 2 is 577 ° C. or less which is the eutectic temperature of aluminum and silicon, there is a problem that the bonding becomes unstable.

また、図4に示すような光電変換装置によれば、第1導電型の粒状結晶半導体2上に第2導電型のアモルファス半導体層6を設けるため、安定なpn接合を形成するにはアモルファス半導体層6を形成する前に粒状結晶半導体2の表面を十分にエッチングおよび洗浄する必要があった。また、アモルファス半導体層6の光吸収が大きいことに起因して膜厚を薄くしなければならず、アモルファス半導体層6の膜厚が薄い場合、欠陥に対する許容度も小さくなり、洗浄工程や製造環境の管理を厳しくする必要があり、その結果、製造工程が複雑化するという問題があった。   Further, according to the photoelectric conversion device as shown in FIG. 4, since the second conductive type amorphous semiconductor layer 6 is provided on the first conductive type granular crystal semiconductor 2, an amorphous semiconductor is used to form a stable pn junction. Before the layer 6 was formed, it was necessary to sufficiently etch and clean the surface of the granular crystal semiconductor 2. Further, the film thickness must be reduced due to the large light absorption of the amorphous semiconductor layer 6. When the film thickness of the amorphous semiconductor layer 6 is thin, the tolerance for defects is reduced, and the cleaning process and the manufacturing environment are reduced. As a result, there is a problem that the manufacturing process becomes complicated.

また、図5に示すような光電変換装置によれば、低融点金属層10が第1導電型の液相エピタキシャル多結晶層12中に混入するために性能が落ち、また絶縁体がないために上部電極5と下部電極11との間にリークが発生し、光電変換効率が低下するという問題があった。   Further, according to the photoelectric conversion device as shown in FIG. 5, the low melting point metal layer 10 is mixed in the liquid crystal epitaxial polycrystalline layer 12 of the first conductivity type, and the performance is reduced, and there is no insulator. There was a problem that a leak occurred between the upper electrode 5 and the lower electrode 11 and the photoelectric conversion efficiency was lowered.

また、図6に示すような光電変換装置によれば、第1導電型の球状半導体16の導電性ペースト14との接合部には高濃度層が存在しないため、光子により励起された電子の障壁、いわゆるバックフィールド効果を得ることができず、光電変換効率が低下する。   Further, according to the photoelectric conversion device as shown in FIG. 6, since there is no high concentration layer at the junction between the first conductive type spherical semiconductor 16 and the conductive paste 14, a barrier for electrons excited by photons is present. The so-called back field effect cannot be obtained, and the photoelectric conversion efficiency is lowered.

本発明は上記従来技術の問題点に鑑みてなされたものであり、その目的は、簡便な製造が可能で高性能な信頼性の高い光電変換装置およびその製造方法を提供することにある。   The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to provide a high-performance and highly reliable photoelectric conversion device that can be easily manufactured and a method for manufacturing the same.

発明の光電変換装置の製造方法は、下部電極となる基板上に光電変換を行なう粒状半導体を多数配設する工程と、前記粒状半導体どうしの間および前記粒状半導体の上に液状の熱硬化性樹脂を形成する工程と、前記熱硬化性樹脂に対して第1の熱処理を施して前記熱硬化性樹脂を1次硬化させる工程と、前記粒状半導体の上部に形成された前記熱硬化性樹脂を溶解して前記粒状半導体の前記上部を露出させる工程と、前記粒状半導体どうしの間に形成された前記熱硬化性樹脂に第2の熱処理を施して前記熱硬化性樹脂を2次硬化させる工程と、前記粒状半導体の前記上部に上部電極を形成する工程と、をこの順で含むことを特徴とする。ここで、「1次硬化させる」とは半硬化状態にさせることをいい、熱硬化性樹脂の半硬化状態により次工程の熱硬化性樹脂の溶解の際に容易に溶解することができるようにしている。また、「2次硬化させる」とはいわゆる完全に硬化させること、または十分に硬化した状態にさせることをいうものとする。特許請求の範囲もこの定義に従う。 Method of manufacturing a photoelectric conversion device of the present invention includes the steps of disposing a large number of granular semiconductor for performing photoelectric conversion on a substrate serving as a lower portion electrode, a thermosetting liquid over and between the particulate semiconductors each other the particulate semiconductor Forming a thermosetting resin, subjecting the thermosetting resin to a first heat treatment to primarily cure the thermosetting resin, and the thermosetting resin formed on the granular semiconductor. A step of exposing the upper part of the granular semiconductor by dissolving the second semiconductor, and a step of secondarily curing the thermosetting resin by applying a second heat treatment to the thermosetting resin formed between the granular semiconductors And a step of forming an upper electrode on the upper portion of the granular semiconductor in this order. Here, “primary curing” means to make a semi-cured state, so that the thermosetting resin can be easily dissolved by the semi-cured state of the thermosetting resin in the next step. I have to. Further, it is assumed to refer to the "to secondary curing", it is a so-called fully cured, or be sufficiently cured state. The claims also follow this definition.

発明の光電変換装置の製造方法は、下部電極となる基板上に光電変換を行なう粒状半導体を多数配設する工程と、前記粒状半導体どうしの間および前記粒状半導体の上に液状の熱硬化性樹脂を形成する工程と、前記熱硬化性樹脂に対して第1の熱処理を施して前記熱硬化性樹脂を硬化させる工程と、前記粒状半導体の上部に形成された前記熱硬化性樹脂を溶解して前記粒状半導体の前記上部を露出させる工程と、前記粒状半導体どうしの間に形成された前記熱硬化性樹脂に第2の熱処理を施して前記熱硬化性樹脂を硬化させる工程と、前記粒状半導体の前記上部に上部電極を形成する工程と、を含むので、簡便にかつ迅速に製造することが可能であり、粒状半導体において、広い半導体接合を信頼性よく確保することができるので、従来の光電変換装置と比較して製造工程が単純化されることから低コストで製造することができ、高い変換効率を有する信頼性の高い光電変換装置を提供することができる。 The method for producing a photoelectric conversion device of the present invention includes a step of disposing a large number of granular semiconductors that perform photoelectric conversion on a substrate serving as a lower electrode, and a liquid thermosetting property between the granular semiconductors and on the granular semiconductors. A step of forming a resin, a step of applying a first heat treatment to the thermosetting resin to cure the thermosetting resin, and dissolving the thermosetting resin formed on the granular semiconductor. Exposing the upper portion of the granular semiconductor, applying a second heat treatment to the thermosetting resin formed between the granular semiconductors to cure the thermosetting resin, and the granular semiconductor. Forming an upper electrode on the upper portion of the substrate, and thus can be easily and quickly manufactured, and a wide semiconductor junction can be reliably ensured in a granular semiconductor. Can be manufactured at low cost since the manufacturing process as compared with the photoelectric conversion device can be simplified, it is possible to provide a photoelectric conversion equipment reliable with high conversion efficiency.

以下、本発明の光電変換装置およびその製造方法について図面を参照にしつつ詳細に説明する。   Hereinafter, a photoelectric conversion device and a manufacturing method thereof according to the present invention will be described in detail with reference to the drawings.

図1において、1は基板、2は粒状結晶半導体、3は絶縁体、4は粒状結晶半導体2とは逆の導電型を呈する半導体層、5は他方の電極となる導電層、15は基板1と粒状結晶半導体2との合金層である。すなわち、本発明の光電変換装置は、下部電極となる基板1上に光電変換を行なう粒状半導体(粒状結晶半導体2と、これとは逆の導電型を呈する半導体層4とで構成)を多数配設してなるとともに、前記粒状半導体どうしの間に、複数回の熱処理で硬化させた熱硬化性樹脂である絶縁体3を前記粒状半導体の上部を露出させた状態で設け、前記粒状半導体の前記上部に上部電極である導電層5を設けてなる。   In FIG. 1, 1 is a substrate, 2 is a granular crystal semiconductor, 3 is an insulator, 4 is a semiconductor layer having a conductivity type opposite to that of the granular crystal semiconductor 2, 5 is a conductive layer serving as the other electrode, and 15 is a substrate 1 And an alloy layer of the granular crystal semiconductor 2. That is, in the photoelectric conversion device of the present invention, a large number of granular semiconductors (comprising a granular crystal semiconductor 2 and a semiconductor layer 4 having a conductivity type opposite to this) that perform photoelectric conversion on a substrate 1 that serves as a lower electrode. In addition, an insulator 3 which is a thermosetting resin cured by a plurality of heat treatments is provided between the granular semiconductors in a state where the upper part of the granular semiconductor is exposed, A conductive layer 5 as an upper electrode is provided on the upper portion.

また、図2において(a)は基板1上に一導電型を呈する粒状結晶半導体2を多数配設して加熱して前記基板1と接合した図、(b)はこの粒状結晶半導体2および基板1上に熱硬化性樹脂の溶液を塗布して1回目の熱処理を行なった図、(c)はこの熱硬化性樹脂を溶解しうる薬液を塗布してこの粒状結晶半導体2上の熱硬化性樹脂を優先的に除去し、2回目の熱処理によりこの粒状結晶半導体2間に熱硬化性樹脂による絶縁体3を形成した図、(d)はこの粒状結晶半導体2上を清浄にした後この粒状結晶半導体2上に逆導電型を呈する半導体層4を形成した図、(e)はこの逆導電型を呈する半導体層4に他方の電極となる導電層5を接続した図である。   2A is a diagram in which a large number of granular crystal semiconductors 2 of one conductivity type are arranged on the substrate 1 and heated and joined to the substrate 1. FIG. 2B is a diagram of the granular crystal semiconductor 2 and the substrate. The figure which applied the solution of the thermosetting resin on 1 and performed the 1st heat processing, (c) is applying the chemical | medical solution which can melt | dissolve this thermosetting resin, and thermosetting on this granular crystal semiconductor 2 The figure which removed resin preferentially and formed the insulator 3 by the thermosetting resin between this granular crystal semiconductor 2 by the heat processing of the 2nd time, (d) is this granular crystal after cleaning on this granular crystal semiconductor 2 The figure which formed the semiconductor layer 4 which exhibits a reverse conductivity type on the crystalline semiconductor 2, (e) is the figure which connected the conductive layer 5 used as the other electrode to the semiconductor layer 4 which exhibits this reverse conductivity type.

ここで、基板1は例えばアルミニウム単体もしくはアルミニウムの融点以上の融点を有する金属、またはセラミックを下地基板としその上にアルミニウムから成る電極層を形成した複合体を用いることができる。また、結晶半導体粒子2は、例えばSiにp型を呈するB,Al,Ga等、またはn型を呈するP,As等が微量元素含まれているものである。   Here, the substrate 1 can be, for example, aluminum alone or a metal having a melting point equal to or higher than the melting point of aluminum, or a composite in which an electrode layer made of aluminum is formed on a ceramic substrate. The crystalline semiconductor particles 2 include, for example, trace elements such as B, Al, Ga, etc. exhibiting p-type in Si, or P, As, etc. exhibiting n-type.

多数の結晶半導体粒子2を基板1上に配設する方法としては、例えば結晶半導体粒子2を基板1の表面に散布した後一定の荷重を結晶半導体粒子2上に掛けながら、基板1のアルミニウムと結晶半導体粒子2のシリコンとの共晶温度577℃以上に加熱することによって、基板1と結晶半導体粒子の合金層15を介して基板1と結晶半導体粒子2を接合させる方法が用いられる。   As a method of disposing a large number of crystal semiconductor particles 2 on the substrate 1, for example, after the crystal semiconductor particles 2 are dispersed on the surface of the substrate 1, a certain load is applied on the crystal semiconductor particles 2, A method of bonding the substrate 1 and the crystalline semiconductor particles 2 via the alloy layer 15 of the substrate 1 and the crystalline semiconductor particles by heating the eutectic temperature of the crystalline semiconductor particles 2 with silicon to 577 ° C. or higher is used.

図2(b)において、熱硬化性樹脂としてはポリイミドが望ましい。ポリイミド溶液の溶媒としては、N−メチルピロリドン、NN’−ジメチルホルムアミド、NN’−ジメチルアセトアミド、o,m,p−メチルフェノール等を用いることができ、中でも溶解性、毒性、コストの観点からN−メチルピロリドン、NN’−ジメチルアセトアミドが望ましい。溶液の濃度と粘度は、絶縁体3の形成性と、熱処理後の基板1上での厚み、粒状結晶半導体2上でのはじき性等の関係から、8%〜20%、および300mPa・s以下、好適には9%〜15%、および100mPa・s以下が望ましい。   In FIG. 2B, polyimide is desirable as the thermosetting resin. As a solvent for the polyimide solution, N-methylpyrrolidone, NN′-dimethylformamide, NN′-dimethylacetamide, o, m, p-methylphenol and the like can be used. Among them, N is preferable from the viewpoint of solubility, toxicity, and cost. -Methylpyrrolidone, NN'-dimethylacetamide is preferred. The concentration and viscosity of the solution are 8% to 20% and 300 mPa · s or less from the relationship between the formability of the insulator 3, the thickness on the substrate 1 after the heat treatment, the repellency on the granular crystal semiconductor 2, etc. Preferably, 9% to 15% and 100 mPa · s or less are desirable.

ポリイミド溶液の塗布方法としては、ディッピング法,スピンコート法,スプレー法,スクリーン印刷法,浸透法などが使用できるが、光電変換素子の大きさ,製造工程のレイアウト,タクトタイム,生産規模等を鑑み、適宜選択することができる。   As a polyimide solution coating method, dipping method, spin coating method, spray method, screen printing method, infiltration method, etc. can be used, but in view of the size of photoelectric conversion element, layout of manufacturing process, tact time, production scale, etc. Can be appropriately selected.

また、粒状結晶半導体2および基板1上に熱硬化性樹脂の溶液を塗布する前に、その粒状結晶半導体2および基板1上に撥液性を有する皮膜を形成することが望ましい(不図示)。撥液性を有する皮膜としては、長鎖のアルキル基やパーフルオロアルキル基を有する化合物が有効であり、特にフッ素系シランカップリング剤,パーフルオロシリコーン,パーフルオロポリシラザン等が用いられる。撥液性を有する皮膜を形成する方法としては、上記の撥液剤を含有する溶液を塗布し、室温または加熱乾燥により作製することができるが、撥液剤の種類は塗布性や乾燥性等の作業性に応じて適宜選択することができる。   Moreover, it is desirable to form a film having liquid repellency on the granular crystal semiconductor 2 and the substrate 1 before applying the solution of the thermosetting resin on the granular crystal semiconductor 2 and the substrate 1 (not shown). As the film having liquid repellency, a compound having a long-chain alkyl group or a perfluoroalkyl group is effective, and in particular, a fluorine-based silane coupling agent, perfluorosilicone, perfluoropolysilazane, or the like is used. As a method of forming a film having liquid repellency, a solution containing the above liquid repellant can be applied and prepared by room temperature or heat drying. It can be appropriately selected depending on the nature.

また、熱硬化性樹脂を1次硬化(半硬化)させるための1回目の熱処理(第1の熱処理)は、例えばポリイミドの場合、その硬化温度より低い温度で行なう。ポリイミドの硬化温度は通常、熱分析または赤外線ピーク比から求めるイミド化率で見積もれるが、イミド化率99%以上になる温度を実質的に硬化温度とみなすことができる。熱処理の雰囲気は大気中でも可能であるが、窒素雰囲気等の非酸化雰囲気を用いる方が望ましい。硬化温度より低い温度で熱処理されたポリイミド分子は柔軟で、容易に溶媒分子の進入が可能となることから溶媒に対する溶解性が向上し、さらに分子中に未反応のポリアミック酸が残存することから、塩基性物質と中和反応することができる。   The first heat treatment (first heat treatment) for primary curing (semi-curing) the thermosetting resin is performed at a temperature lower than the curing temperature in the case of polyimide, for example. The curing temperature of polyimide is usually estimated by the imidization rate obtained from thermal analysis or infrared peak ratio, but the temperature at which the imidization rate is 99% or more can be regarded as the curing temperature substantially. The heat treatment can be performed in the air, but it is preferable to use a non-oxidizing atmosphere such as a nitrogen atmosphere. Polyimide molecules that have been heat-treated at a temperature lower than the curing temperature are flexible, so that solvent molecules can easily enter the solvent, so that solubility in the solvent is improved, and unreacted polyamic acid remains in the molecule. It can neutralize with basic substances.

図2(c)において、上記の熱硬化性樹脂を溶解しうる薬液としては、N−メチルピロリドン、N,N’−ジメチルアセトアミド等の有機溶媒や水酸化ナトリウム等の無機塩基、テトラメチルアンモニウムハイドライド等の有機塩基を用いることができる。   In FIG.2 (c), as the chemical | medical solution which can melt | dissolve said thermosetting resin, organic bases, such as N-methylpyrrolidone and N, N'- dimethylacetamide, inorganic bases, such as sodium hydroxide, tetramethylammonium hydride An organic base such as can be used.

また、上記粒状結晶半導体2上の熱硬化性樹脂を優先的に除去する方法としては、室温または適度に加温された薬液に一定時間浸漬してもよいし、またその際超音波を併用してもよい。さらに浸漬中にブラシ等でスクラブ洗浄することも可能である。浸漬により基板1上のポリイミド樹脂も溶解されるので、浸漬時間はそれぞれの条件に従い最適化しなければならない。   In addition, as a method for preferentially removing the thermosetting resin on the granular crystal semiconductor 2, it may be immersed in a chemical solution heated at room temperature or moderately for a certain period of time, and in that case, ultrasonic waves may be used in combination. May be. Further, scrub cleaning with a brush or the like is possible during immersion. Since the polyimide resin on the substrate 1 is also dissolved by the immersion, the immersion time must be optimized according to each condition.

また、熱硬化性樹脂を2次硬化(十分に硬化)させるための2回目の熱処理は、例えばポリイミド場合、その硬化温度より高く、実質的な重量減少が起こり始める分解温度より低い温度で行なう。熱処理により硬化反応を終了させると伴に溶剤等の揮発分をできるだけ除去し、その後の粒状結晶半導体2上に逆導電型を呈する半導体層4を形成する工程で、ポリイミドからの揮発物質の発生による汚染を抑えるためである。熱処理の雰囲気は大気中でも可能であるが、窒素雰囲気等の非酸化雰囲気を用いる方が望ましい。   The second heat treatment for secondary curing (sufficient curing) of the thermosetting resin is performed at a temperature higher than its curing temperature and lower than a decomposition temperature at which substantial weight loss starts to occur, for example, in the case of polyimide. When the curing reaction is terminated by heat treatment, volatile components such as a solvent are removed as much as possible, and a semiconductor layer 4 exhibiting a reverse conductivity type is formed on the granular crystal semiconductor 2 thereafter. This is to suppress contamination. The heat treatment can be performed in the air, but it is preferable to use a non-oxidizing atmosphere such as a nitrogen atmosphere.

図2(d)において粒状結晶半導体2上を清浄にする方法は、RIE、CDE、プラズマエッチング等のドライエッチングまたはフッ酸硝酸等を用いたウエットエッチング、またはUV洗浄、オゾン洗浄等を用いることができる。逆導電型を呈する半導体層4は、例えばSiから成り、気相成長法等で例えばシラン化合物の気相にn型を呈するリン系化合物の気相、又はp型を呈するホウ素系化合物の気相を微量導入して形成する。膜質としては結晶質、非晶質、または結晶質と非晶質とが混在する場合のいずれでもよいが、光線透過率を考慮すると結晶質または結晶質と非晶質とが混在するものがよい。   In FIG. 2D, the method for cleaning the granular crystal semiconductor 2 uses dry etching such as RIE, CDE, plasma etching, wet etching using hydrofluoric acid nitric acid, UV cleaning, ozone cleaning, or the like. it can. The semiconductor layer 4 having the reverse conductivity type is made of, for example, Si, and a vapor phase growth method or the like, for example, a vapor phase of a phosphorus compound exhibiting n-type in a vapor phase of a silane compound, or a vapor phase of a boron compound exhibiting p-type. Is formed by introducing a small amount. The film quality may be any of crystalline, amorphous, or a mixture of crystalline and amorphous, but considering the light transmittance, a crystalline or a mixture of crystalline and amorphous is preferable. .

導電性については、半導体層4中の微量元素の濃度は高くてもよく、例えば1×1016〜1019原子/cm台程度である。 Regarding conductivity, the concentration of the trace element in the semiconductor layer 4 may be high, for example, about 1 × 10 16 to 10 19 atoms / cm 3 .

さらに、半導体層4は粒状結晶半導体2の表面に沿って形成し、粒状結晶半導体2の凸曲面形状に沿って形成することが望ましい。粒状結晶半導体2の凸曲面状の表面に沿って形成することによってpn接合の面積を広くとることができ、粒状結晶半導体2の内部で生成したキャリアを効率よく収集することが可能となる。なお、その外郭にn型を呈するP,As等、又はp型を呈するB,Al,Ga等が微量含まれている粒状結晶半導体2を用いる場合には、半導体層4はなくてもよく、その上に他方の電極となる導電層5を形成してもよい。   Furthermore, the semiconductor layer 4 is preferably formed along the surface of the granular crystal semiconductor 2 and formed along the convex curved surface shape of the granular crystal semiconductor 2. By forming along the convex curved surface of the granular crystal semiconductor 2, the area of the pn junction can be increased, and carriers generated inside the granular crystal semiconductor 2 can be efficiently collected. In addition, when using the granular crystal semiconductor 2 in which a small amount of P, As, etc. exhibiting n-type or B, Al, Ga, etc. exhibiting p-type is used, the semiconductor layer 4 may be omitted. A conductive layer 5 serving as the other electrode may be formed thereon.

図2(e)において、他方の電極となる導電層5は、スパッタリング法や気相成長法等の成膜方法あるいは塗布焼成等によって形成し、SnO,In,ITO,ZnO,TiO等から選ばれる1種又は複数の酸化物系膜、またはTi,Pt,Au等から選ばれる1種又は複数の金属系膜を形成する。なお、このような導電層5は透明であることが必要であり、粒状結晶半導体2がない部分で入射光の一部が導電層5を透過し、下部の基板1で反射して粒状結晶半導体2に照射されることで、光電変換装置全体に照射される光エネルギーを効率よく粒状結晶半導体2に照射することが可能となる。 In FIG. 2 (e), the conductive layer 5 serving as the other electrode, formed by a film forming method or coating baking such as sputtering or vapor deposition, SnO 2, In 2 O 3 , ITO, ZnO, TiO One or more oxide-based films selected from 2 or the like, or one or more metal-based films selected from Ti, Pt, Au, or the like are formed. Such a conductive layer 5 needs to be transparent, and a part of incident light is transmitted through the conductive layer 5 in a portion where the granular crystal semiconductor 2 is not present, and is reflected by the lower substrate 1 to be granular crystal semiconductor. By irradiating 2, it becomes possible to efficiently irradiate the granular crystal semiconductor 2 with the light energy irradiated to the entire photoelectric conversion device.

導電層5は膜厚を選べば反射防止膜としての効果も期待できる。さらに、導電層5は半導体層4あるいは粒状結晶半導体2の表面に沿って形成し、粒状結晶半導体2の凸曲面形状に沿って形成することが望ましい。粒状結晶半導体2の凸曲面状の表面に沿って形成することによってpn接合の面積を広くとることができ、粒状結晶半導体2の内部で生成したキャリアを効率よく収集することが可能となる。   The conductive layer 5 can be expected to have an effect as an antireflection film if the film thickness is selected. Furthermore, the conductive layer 5 is desirably formed along the surface of the semiconductor layer 4 or the granular crystal semiconductor 2 and is formed along the convex curved surface shape of the granular crystal semiconductor 2. By forming along the convex curved surface of the granular crystal semiconductor 2, the area of the pn junction can be increased, and carriers generated inside the granular crystal semiconductor 2 can be efficiently collected.

半導体層4あるいは導電層5上に保護層(不図示)を形成してもよい。このような保護層としては透明誘電体の特性を持つものがよく、CVD法やPVD法等で例えば酸化珪素,酸化セシウム,酸化アルミニウム,窒化珪素,酸化チタン,SiO−TiO,酸化タンタル,酸化イットリウム等を単一組成又は複数組成で単層又は組み合わせて半導体層4または導電層5上に形成する。保護層は光の入射面に設けられるために、透明性が必要であり、また半導体層4または導電層5と外部との間のリークを防止するために、誘電体であることが必要である。なお、保護層の膜厚を最適化すれば反射防止膜としての機能も期待できる。 A protective layer (not shown) may be formed on the semiconductor layer 4 or the conductive layer 5. Such a protective layer preferably has a characteristic of a transparent dielectric, such as silicon oxide, cesium oxide, aluminum oxide, silicon nitride, titanium oxide, SiO 2 —TiO 2 , tantalum oxide, by CVD or PVD. A single layer or a combination of yttrium oxide or the like is formed on the semiconductor layer 4 or the conductive layer 5 with a single composition or a plurality of compositions. Since the protective layer is provided on the light incident surface, the protective layer needs to be transparent, and in order to prevent leakage between the semiconductor layer 4 or the conductive layer 5 and the outside, it needs to be a dielectric. . In addition, if the thickness of the protective layer is optimized, a function as an antireflection film can be expected.

また、直列抵抗値を低くするために、半導体層4又は導電層5の上に一定間隔のフィンガーやバスバーといったパターン電極(不図示)を設けて直接的又は間接的に半導体層4と接続し、変換効率を向上させることも可能である。   In addition, in order to reduce the series resistance value, pattern electrodes (not shown) such as fingers and bus bars at regular intervals are provided on the semiconductor layer 4 or the conductive layer 5 and directly or indirectly connected to the semiconductor layer 4; It is also possible to improve the conversion efficiency.

以上のように、本発明の光電変換装置の製造方法は、下部電極となる基板1上に光電変換を行なう粒状半導体を多数配設する工程と、前記粒状半導体どうしの間および前記粒状半導体の上に液状の熱硬化性樹脂である絶縁体3を形成する工程と、絶縁体3に対して第1の熱処理を施して絶縁体3を1次硬化させる工程と、前記粒状半導体の上部に形成された絶縁体3を溶解して前記粒状半導体の前記上部を露出させる工程と、前記粒状半導体どうしの間に形成された絶縁体3に第2の熱処理を施して絶縁体3を2次硬化させる工程と、前記粒状半導体の前記上部に上部電極である導電層5を形成する工程と、をこの順で含むものである。   As described above, the method for manufacturing a photoelectric conversion device according to the present invention includes a step of disposing a large number of granular semiconductors that perform photoelectric conversion on the substrate 1 serving as a lower electrode, and between the granular semiconductors and above the granular semiconductors. A step of forming an insulator 3 that is a liquid thermosetting resin, a step of firstly curing the insulator 3 by subjecting the insulator 3 to a first heat treatment, and an upper portion of the granular semiconductor. Melting the insulator 3 to expose the upper part of the granular semiconductor, and subjecting the insulator 3 formed between the granular semiconductors to a second heat treatment to secondarily cure the insulator 3 And a step of forming a conductive layer 5 as an upper electrode on the upper portion of the granular semiconductor in this order.

かくして、本発明の光電変換装置およびその製造方法によれば、一方の電極となる基板1上に一導電型を呈する粒状結晶半導体2を多数配設して基板1と接合し、この粒状結晶半導体2および基板1上に熱硬化性樹脂の溶液を塗布して1回目の熱処理を行い、続いてこの熱硬化性樹脂を溶解しうる薬液を塗布してこの粒状結晶半導体2上の熱硬化性樹脂を優先的に除去し、2回目の熱処理によりこの粒状結晶半導体2間に熱硬化性樹脂による絶縁体3を形成し、この粒状結晶半導体2上を清浄にした後この粒状結晶半導体2上に逆導電型を呈する半導体層4を設けるとともに、逆導電型を呈する半導体層4に他方の電極となる導電層5を接続して成る光電変換装置の製造方法であることから、粒状結晶半導体2と逆導電型を呈する半導体層4との広いPN接合面積を確保でき、従来の光電変換装置と比較して低コストで高い変換効率を有する光電変換装置を容易に製造することができ、よって信頼性の高い光電変換装置を提供できる簡便にかつ迅速に製造することが可能である。このように、粒状半導体において、広い半導体接合を信頼性よく確保することができるので、従来の光電変換装置と比較して製造工程が単純化されることから低コストで製造することができ、高い変換効率を有する信頼性の高い光電変換装置およびその製造方法を提供できる。   Thus, according to the photoelectric conversion device and the method of manufacturing the same of the present invention, a large number of granular crystal semiconductors 2 having one conductivity type are arranged on the substrate 1 serving as one electrode and bonded to the substrate 1. 2 and a substrate 1 are coated with a solution of a thermosetting resin and subjected to a first heat treatment, and then a chemical solution capable of dissolving the thermosetting resin is applied to form a thermosetting resin on the granular crystal semiconductor 2. Is preferentially removed, an insulator 3 made of a thermosetting resin is formed between the granular crystal semiconductors 2 by the second heat treatment, and the granular crystal semiconductors 2 are cleaned and then reversely applied to the granular crystal semiconductors 2. This is a method for manufacturing a photoelectric conversion device in which a semiconductor layer 4 having a conductivity type is provided and a conductive layer 5 serving as the other electrode is connected to a semiconductor layer 4 having a reverse conductivity type. Semiconductor layer 4 having conductivity type A large PN junction area can be secured, and a photoelectric conversion device having a high conversion efficiency can be easily manufactured at a lower cost than conventional photoelectric conversion devices, and thus a highly reliable photoelectric conversion device can be provided. And can be manufactured quickly. As described above, since a wide semiconductor junction can be reliably ensured in a granular semiconductor, the manufacturing process is simplified as compared with a conventional photoelectric conversion device, so that it can be manufactured at a low cost. A highly reliable photoelectric conversion device having conversion efficiency and a manufacturing method thereof can be provided.

次に、本発明をより具体化した光電変換装置およびその製造方法について説明する。   Next, a photoelectric conversion device and a method for manufacturing the same according to the present invention will be described.

アルミニウム基板1上に直径0.3〜0.5mmのp型シリコン粒子2を多数設置した後、p型シリコン粒子2が動かないように一定の荷重をかけた状態で、630℃で加熱処理してp型シリコン粒子2をアルミニウム基板1に接合部15において接合させた。   After a large number of p-type silicon particles 2 having a diameter of 0.3 to 0.5 mm are placed on the aluminum substrate 1, the p-type silicon particles 2 are heat-treated at 630 ° C. under a constant load so that the p-type silicon particles 2 do not move. Silicon particles 2 were bonded to the aluminum substrate 1 at the bonding portion 15.

その上にパーフルオロアルキルシランカップリング剤の0.5%キシレン溶液を塗布して室温で乾燥させ撥液性を有する皮膜を形成した。   A 0.5% xylene solution of a perfluoroalkylsilane coupling agent was applied thereon and dried at room temperature to form a film having liquid repellency.

硬化温度が250℃であるポリイミドのN−メチルピロリドン溶液(固形分12質量%、25℃の粘度80mPa・s)を上記シリコン粒子2を接合したアルミニウム基板1上に塗布し、窒素雰囲気下で150℃で10分間加熱処理した。   An N-methylpyrrolidone solution of polyimide having a curing temperature of 250 ° C. (solid content 12% by mass, viscosity 80 mPa · s at 25 ° C.) is applied onto the aluminum substrate 1 to which the silicon particles 2 are bonded, and the solution is 150 in a nitrogen atmosphere. Heat treatment was carried out at 10 ° C. for 10 minutes.

基板1をN,N’−ジメチルアセトアミドに室温で1分間浸漬後引き上げ、窒素ブローにて乾燥し300℃で1時間熱処理し、p型シリコン粒子2間のアルミニウム基板1上にポリイミド樹脂の絶縁層3を形成した。   Substrate 1 is dipped in N, N′-dimethylacetamide at room temperature for 1 minute, pulled up, dried by nitrogen blowing, and heat treated at 300 ° C. for 1 hour, and an insulating layer of polyimide resin on aluminum substrate 1 between p-type silicon particles 2 3 was formed.

プラズマエッチング法によりp型シリコン粒子2表面を清浄にした後、シランガスと微量のP化合物からなる混合ガスを用いたプラズマCVD法により、p型シリコン粒子2上に厚み30nmのn型非晶質シリコン半導体層4を成膜し、その上にスパッタリング法によって厚み100nmのITO膜5を作製した。   After cleaning the surface of the p-type silicon particles 2 by plasma etching, n-type amorphous silicon having a thickness of 30 nm is formed on the p-type silicon particles 2 by plasma CVD using a mixed gas composed of silane gas and a small amount of P compound. A semiconductor layer 4 was formed, and an ITO film 5 having a thickness of 100 nm was formed thereon by a sputtering method.

フィンガーおよびバスバーからなるパターン電極を設けた後、光電変換率を測定したところ、7.8%と比較的高い値が得られた。また、この試料に対し−40℃〜90℃の温度サイクル試験(500サイクル)を行なったところ、絶縁体3にクラック,剥がれ等は発生せず、光電変換率も7.6%と特性劣化はほとんど見られなかった。   When a photoelectric conversion rate was measured after providing a pattern electrode composed of fingers and bus bars, a relatively high value of 7.8% was obtained. In addition, when this sample was subjected to a temperature cycle test (500 cycles) of −40 ° C. to 90 ° C., the insulator 3 was not cracked or peeled off, and the photoelectric conversion rate was 7.6%. I couldn't.

ポリイミド溶液を基板1上に塗布し、窒素雰囲気下で150℃で10分間加熱処理した後、テトラメチルアンモニウムハイドライド水溶液に室温で1分間浸漬し引き上げ水洗後、窒素ブローにて乾燥し、300℃で1時間熱処理した他は実施例1と同様にして光電変換装置を作製した。   A polyimide solution is applied on the substrate 1, heat-treated at 150 ° C. for 10 minutes in a nitrogen atmosphere, then immersed in an aqueous solution of tetramethylammonium hydride for 1 minute at room temperature, washed with water, dried with nitrogen blow, and heated at 300 ° C. A photoelectric conversion device was produced in the same manner as in Example 1 except that the heat treatment was performed for 1 hour.

光電変換率を測定したところ、8.0%と比較的高い値が得られた。また、この試料に対し−40℃〜90℃の温度サイクル試験(500サイクル)を行なったところ、絶縁体3にクラック,剥がれ等は発生せず、光電変換率も7.8%と特性劣化はほとんど見られなかった。   When the photoelectric conversion rate was measured, a relatively high value of 8.0% was obtained. When this sample was subjected to a temperature cycle test (500 cycles) of −40 ° C. to 90 ° C., the insulator 3 was not cracked or peeled off, and the photoelectric conversion rate was 7.8%. I couldn't.

本発明の光電変換装置の製造方法により製造した光電変換装置の一例を説明する断面図である。It is sectional drawing explaining an example of the photoelectric conversion apparatus manufactured with the manufacturing method of the photoelectric conversion apparatus of this invention. (a)〜(e)はそれぞれ本発明の光電変換装置の製造方法の一例を説明する断面図である。(A)-(e) is sectional drawing explaining an example of the manufacturing method of the photoelectric conversion apparatus of this invention, respectively. 従来の光電変換装置を説明する断面図である。It is sectional drawing explaining the conventional photoelectric conversion apparatus. 従来の他の光電変換装置を説明する断面図である。It is sectional drawing explaining the other conventional photoelectric conversion apparatus. 従来の他の光電変換装置を説明する断面図である。It is sectional drawing explaining the other conventional photoelectric conversion apparatus. 従来の他の光電変換装置を説明する断面図である。It is sectional drawing explaining the other conventional photoelectric conversion apparatus.

符号の説明Explanation of symbols

1・・・・基板
2・・・・粒状結晶半導体
3・・・・絶縁体
4・・・・逆導電型を呈する半導体層
5・・・・他方の電極となる導電層
15・・・アルミニウムとシリコンとの合金層
DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Granular crystal semiconductor 3 ... Insulator 4 ... Semiconductor layer 5 of reverse conductivity type ... Conductive layer to be the other electrode
15 ... Alloy layer of aluminum and silicon

Claims (1)

下部電極となる基板上に光電変換を行なう粒状半導体を多数配設する工程と、前記粒状半導体どうしの間および前記粒状半導体の上に液状の熱硬化性樹脂を形成する工程と、前記熱硬化性樹脂に対して第1の熱処理を施して前記熱硬化性樹脂を1次硬化させる工程と、前記粒状半導体の上部に形成された前記熱硬化性樹脂を溶解して前記粒状半導体の前記上部を露出させる工程と、前記粒状半導体どうしの間に形成された前記熱硬化性樹脂に第2の熱処理を施して前記熱硬化性樹脂を2次硬化させる工程と、前記粒状半導体の前記上部に上部電極を形成する工程と、をこの順で含むことを特徴とする光電変換装置の製造方法。A step of disposing a large number of granular semiconductors that perform photoelectric conversion on a substrate serving as a lower electrode; a step of forming a liquid thermosetting resin between and on the granular semiconductors; and the thermosetting Performing a first heat treatment on the resin to primarily cure the thermosetting resin; and dissolving the thermosetting resin formed on the granular semiconductor to expose the upper portion of the granular semiconductor. A step of subjecting the thermosetting resin formed between the granular semiconductors to a second heat treatment to secondarily cure the thermosetting resin, and an upper electrode on the upper portion of the granular semiconductor. And a step of forming the photoelectric conversion device in this order.
JP2003337500A 2003-09-29 2003-09-29 Method for manufacturing photoelectric conversion device Expired - Fee Related JP4280138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003337500A JP4280138B2 (en) 2003-09-29 2003-09-29 Method for manufacturing photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003337500A JP4280138B2 (en) 2003-09-29 2003-09-29 Method for manufacturing photoelectric conversion device

Publications (2)

Publication Number Publication Date
JP2005108971A JP2005108971A (en) 2005-04-21
JP4280138B2 true JP4280138B2 (en) 2009-06-17

Family

ID=34533303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003337500A Expired - Fee Related JP4280138B2 (en) 2003-09-29 2003-09-29 Method for manufacturing photoelectric conversion device

Country Status (1)

Country Link
JP (1) JP4280138B2 (en)

Also Published As

Publication number Publication date
JP2005108971A (en) 2005-04-21

Similar Documents

Publication Publication Date Title
JPWO2013161127A1 (en) SOLAR CELL, MANUFACTURING METHOD THEREOF, AND SOLAR CELL MODULE
JP2009533864A (en) Solar cell and method for manufacturing the same
TW201003943A (en) Solar cell having a high quality rear surface spin-on dielectric layer
EP2833391A1 (en) Semiconductor laminate and method for manufacturing same, method for manufacturing semiconductor device, semiconductor device, dopant composition, dopant injection layer, and method for forming doped layer
TW201003961A (en) Solar cell spin-on based process for simultaneous diffusion and passivation
JP4947654B2 (en) Dielectric film patterning method
EP2448002B1 (en) Passivation layer structure of semconductor device and method for forming the same
CN110190150B (en) Broadband high-performance photoelectric detector based on palladium selenide thin film/silicon cone packaging structure heterojunction and manufacturing method thereof
WO1991017572A1 (en) Solar cell
JP4486622B2 (en) Manufacturing method of solar cell
JP4319006B2 (en) Method for manufacturing solar battery cell
JP4280138B2 (en) Method for manufacturing photoelectric conversion device
JP2005026534A (en) Semiconductor device and its manufacturing method
JP2005167291A (en) Solar cell manufacturing method and semiconductor device manufacturing method
JP2005276857A (en) Photoelectric conversion device and its manufacturing method
JP4153814B2 (en) Method for manufacturing photoelectric conversion device
JP4926101B2 (en) Photoelectric conversion device
JP2004259835A (en) Photoelectric converter and its manufacturing method
CN110073498A (en) The manufacturing method of high photoelectricity conversion efficiency solar battery and high photoelectricity conversion efficiency solar battery
JP4174260B2 (en) Photoelectric conversion device and manufacturing method thereof
JP2005116783A (en) Manufacturing method of solar cell and solar cell manufactured thereby
JP4127362B2 (en) Method for manufacturing photoelectric conversion device
Suhail et al. Effective chemical treatment for high efficiency graphene/si schottky junction solar cells with a graphene back-contact structure
JP2004128438A (en) Semiconductor device and method of manufacturing the same
JP4127365B2 (en) Method for manufacturing photoelectric conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees