JP4280048B2 - Method for producing TiCN-based cermet - Google Patents

Method for producing TiCN-based cermet Download PDF

Info

Publication number
JP4280048B2
JP4280048B2 JP2002282971A JP2002282971A JP4280048B2 JP 4280048 B2 JP4280048 B2 JP 4280048B2 JP 2002282971 A JP2002282971 A JP 2002282971A JP 2002282971 A JP2002282971 A JP 2002282971A JP 4280048 B2 JP4280048 B2 JP 4280048B2
Authority
JP
Japan
Prior art keywords
cermet
hard phase
ticn
powder
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002282971A
Other languages
Japanese (ja)
Other versions
JP2004115881A (en
Inventor
隆司 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002282971A priority Critical patent/JP4280048B2/en
Publication of JP2004115881A publication Critical patent/JP2004115881A/en
Application granted granted Critical
Publication of JP4280048B2 publication Critical patent/JP4280048B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、切削工具部材、耐摩耗性工具部材等に適する靱性と硬度をともに備えたTiCN基サーメットとその製造方法に関するものである。
【0002】
【従来の技術】
従来より、耐摩耗性工具や切削工具用合金としてTiC基サーメットやTiCN基サーメットが開発されており、特に靭性を改善したTiCN基サーメットが広く用いられている。
【0003】
かかるTiCN基サーメットにおいては、特に耐欠損性を向上させることが求められており、例えば、特開平8−199283号公報(特許文献1)では、硬質相の固溶状態、具体的には芯部が黒色の有芯構造をなす硬質相と芯部が白色の有芯構造をなす硬質相との存在割合、およびその粒度を最適化することによって高速切削等にて発生する熱衝撃に対して優れた耐久性を改善できることが開示されている。
【0004】
【特許文献1】
特開平8−199283号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記特開平8−199283号公報にて開示されたサーメットにおいても熱衝撃に対する耐久性は未だ不十分で切削性能の改良に限界があり、更なる耐熱衝撃性の改善および耐欠損性、耐摩耗性の向上が求められていた。
【0006】
本発明は、上記課題を解決するためのもので、その目的はTiCN基サーメットの硬質相の固溶状態を場所毎に適正化して組織の最適化を図ることにより更なる耐欠損性の向上および耐欠損性、耐摩耗性の向上を図ることにある。
【0007】
【課題を解決するための手段】
本発明においては、原料粉末の粒径、焼成条件の適正化によって、上記硬質相の固溶状態を各部分に合わせてそれぞれ最適化し、サーメット内部において硬質相の微粒化による強度、硬度向上と、サーメット表面における耐熱衝撃性向上とをともに満足させることができる結果、サーメット全体としての耐欠損性および耐摩耗性がともに向上することを知見した。
【0011】
発明のTiCN基サーメットの製造方法は、平均粒径0.1〜1.2μmのTiCN粉末と、Ti以外の周期律表IVa、VaおよびVIa族の金属の中から選択される少なくとも1種の金属の炭化物、窒化物および炭窒化物の粉末と、Coおよび/またはNiとを、TiCNを40−52質量%、TiNを12−20質量%、WCを9−15質量%、NbC又はTaCの一種以上を2−5質量%、Co及び/またはNiの結合相1−30質量%からなる成分組成に調合して所定形状に加工した後、0.7〜2℃/minの昇温速度で1150〜1250℃まで昇温し、次いで5〜15℃/minの昇温速度で1400〜1500℃まで昇温し、さらに4〜14℃/minの昇温速度で1500〜1600℃まで昇温して所定時間維持し、不活性ガスを10〜150Pa充填した状態で降温することを特徴とする。
【0012】
【発明の実施の形態】
本発明のTiCN基サーメット(以下、単にサーメットと略す。)について、その内部の任意断面についての走査型電子顕微鏡写真(SEM)である図1および表面を含む任意断面についてのSEM写真である図2を基に説明する。
【0013】
図1、2によれば、本発明のTiCN基サーメット(以下、単にサーメットと略す。)1は、TiCNとTi以外の周期律表IVa、VaおよびVIa族の金属の中から選択される少なくとも1種の金属の炭化物、窒化物および炭窒化物の少なくとも一部とが固溶してなる硬質相2を、1〜30重量%のCoおよび/またはNiの結合相3で硬質相2を結合した構成からなり、図1、2によれば、硬質相2は、黒色の第1硬質相2aと灰白色の第2硬質相2bとからなる。
【0014】
本発明によれば、サーメット1内部(図1)における第1硬質相2aの平均粒径d1inが0.05〜0.5μmで、サーメット1内部の全体に占める第1硬質相2aの面積比率S1inが40〜80面積%からなり、かつサーメット1内部における第2硬質相2bの平均粒径d2inが0.6〜2μmで、サーメット1内部の全体に占める第2硬質相2bの面積比率S2inが5〜40面積%からなるとともに、サーメット1表面(図2)における第1硬質相2aの平均粒径d1sfが0.3〜1μmで、サーメット1表面部の全体に占める第1硬質相2aの面積比率S1sfが5〜40面積%からなり、かつサーメット1表面における第2硬質相2bの平均粒径d2sfが1〜3μmで、サーメット1表面部の全体に占める第2硬質相2bの面積比率S2sfが50〜80面積%からなることが大きな特徴であり、これによって、サーメット1の強度を高めることができるとともに、サーメット1表面における熱伝導率、ヤング率を高めてサーメット1の表面における耐熱衝撃性を向上できることによって、特に高速切削、高送り切削や湿式切削等過酷な熱衝撃が発生するような条件においてもサーメット1の耐摩耗性および耐欠損性を向上させることができる。
【0015】
なお、上記平均粒径(d1、d2)および面積比率(S1、S2)は、走査型電子顕微鏡(SEM)写真に対して市販の画像解析装置を用いることによって測定することができる。
【0016】
ここで、上記サーメット1内部における第1硬質相2aの平均粒径d1inが0.05μmより小さいと、硬質相同士の凝集によって組織が不均質となり強度低下を招くとともに、サーメット1内部の熱伝導率が低下する。逆に、d1inが0.5μmを超えると、サーメット1の強度、硬度が低下していずれも耐欠損性、耐摩耗性が低下する。d1inの望ましい範囲は0.1〜0.3μmである。また、第1硬質相2aの面積比率S1inが40面積%より少ないかまたは80面積%より多いと、サーメット1の強度、硬度が低下する。S1inの望ましい範囲は50〜70面積%である。
【0017】
さらに、サーメット1内部における第2硬質相2bの平均粒径d2inが0.6μmより小さいと硬質相2が凝集して不均一な組織となり、d2inが2μmを超えると第2硬質相2bの分散状態が悪くなり強度が低下する。d2inの望ましい範囲は0.8〜1.5μmである。また、サーメット1内部における第2硬質相2bの面積比率S2inが5面積%より少ないとサーメット1が焼結不良状態となって強度が低下し、S2inが40面積%より多いとサーメット1が硬質相2全体の平均粒径が大きくなって強度が低下する。S2inの望ましい範囲は10〜30面積%である。
【0018】
一方、サーメット1表面領域においては、第1硬質相2aの平均粒径d1sfが0.3μmより小さいと、熱伝導率および耐塑性変形性が低下し、逆に、d1sfが1μmを超えると、サーメット1表面の耐欠損性が低下する。d1sfの望ましい範囲は0.3〜0.7μmである。また、サーメット1表面部における第1硬質相2aの面積比率S1sfが5面積%より少ないと、サーメット1の耐塑性変形性が低下し、逆に40面積%より多いとサーメット1表面の熱伝導性が損なわれて耐熱衝撃性が低下する。S1sfの望ましい範囲は7〜25面積%である。
【0019】
さらに、サーメット1表面領域における第2硬質相2bの平均粒径d2sfが1μmより小さいと熱伝導率および耐塑性変形性が低下し、d2sfが3μmを超えるとサーメット1表面の耐欠損性が低下する。d2sfの望ましい範囲は1.2〜2μmである。また、サーメット1表面部における第2硬質相2bの面積比率S2sfが50面積%より少ないとサーメット1の熱伝導率および耐塑性変形性が低下し、S2sfが80面積%より多いと第1硬質相および結合相不足によってサーメット1表面の耐欠損性が低下する。S2sfの望ましい範囲は60〜75面積%である。
【0020】
また、本発明によれば、灰白色の第2硬質相2bの中心には白色部3cが存在するとともに、サーメット1内部(図1)における白色部3cの存在割合がサーメット1表面(図2)における白色部3cの存在割合よりも多いことが、サーメット1内部の硬質相2(3a、3b)を微粒化してサーメット1の強度を高めるとともにサーメット1表面における硬質相2(3a、3b)の固溶状態を最適化してサーメット1の耐熱衝撃性を高める点で望ましい。
【0021】
また、第1硬質相2aとしては、金属成分としてTiを80重量%以上含有することが望ましく、特に、Tiが80〜98重量%、Ti以外の周期律表IVa、VaおよびVIa族の金属の中から選択される少なくとも1種の金属、特にW、Mo、Cr、NbおよびVの一種以上、さらにW(本発明では固溶体金属と称す。)の総量が1〜15重量%、Coおよび/またはNiの結合相金属の総量が0〜3重量%の割合からなることが望ましい。
【0022】
さらに、前記灰白色の第2硬質相2bとしては、第1硬質相2aに対して固溶体金属を多く含有することが望ましく、特に、Tiが30〜70重量%、固溶体金属の総量が70〜30重量%、Coおよび/またはNiの結合相金属の総量が0〜3重量%の割合からなることが望ましい。なお、上記硬質相中の金属成分の含有比率は透過型電子顕微鏡(TEM)のエネルギー分散分光分析(EDS)にて測定可能である。
【0023】
また、本発明によれば、硬質相2は、第1硬質相2aを芯部とし、第2硬質相2bを周辺部とする2重有芯構造をなしていることが、粒成長抑制効果を有しサーメット1が微細で均一な組織となるとともに、結合相3との濡れ性に優れるためにサーメット1の高強度化に寄与する点で望ましいが、全ての硬質相2が有芯構造をなしていなくてもよい。有芯構造の場合、第2硬質相2bの面積は、中心部の第1硬質相2aの面積を除いた環状部の面積である。
【0024】
また、本発明によれば、サーメット1の強度、硬度、耐熱衝撃性のバランスを最適化する上で、d1sf/d1in=1〜6、d2sf/d2in=1.5〜1.7、S1sf/S1in=0.3〜0.5、S2sf/S2in=1.5〜4であることが望ましい。
【0025】
さらに、サーメット1の耐欠損性および耐摩耗性の両立を図るために前記表面領域の厚みは20〜100μm、特に30〜50μmとすることが望ましい。
【0026】
なお、サーメット1におけるビッカース硬度は表面領域内で最大値をとり、内部に向かって次第にビッカース硬度が低下していくことが望ましい。これにより、高い耐摩耗性と耐欠損性の両方を有することができる。
【0027】
(製造方法) 次に、本発明のTiCN基サーメットの製造方法について説明する。
【0028】
まず、平均粒径0.1〜1.2μm、特に0.2〜0.9μmのTiCN粉末と、平均粒径0.1〜2μmのTiN粉末、上述した固溶体金属の炭化物粉末、窒化物粉末または炭窒化物粉末のいずれか1種と、Co粉末および/またはNi粉末とを、TiCNを40−52質量%、TiNを12−20質量%、WCを9−15質量%、NbC又はTaCの一種以上を2−5質量%、Co及び/またはNiの結合相1−30質量%からなる成分組成に混合した混合粉末を調整する。
【0029】
本発明によれば、上記TiCN原料粉末の平均粒径を0.1〜1.2μmの範囲に制御することが重要であり、この平均粒径が0.1μmより小さいと原料が凝集してサーメットが不均質な組織となり、逆に1.2μmを超えるとサーメットを上述した組織とすることができない。
【0030】
そして、この混合粉末にバインダーを添加して、プレス成形、押出成形、射出成形等の公知の成形方法によって所定形状に成形する。
【0031】
次に、上記成形体を、0.7℃/min〜2℃/minの昇温速度Aで室温から1150〜1250℃の焼成温度Aまで昇温し、1150〜1250℃から1400〜1500℃の焼成温度Bまで5℃/min〜15℃/minの昇温速度Bで昇温し、さらに、1500〜1600℃の焼成温度Cまで4℃/min〜14℃/minの昇温速度Bよりも遅い昇温速度Cで昇温して所定時間保持した後、不活性ガスを10〜150Pa充填した状態で降温する。
【0032】
本発明によれば、上記焼成時の昇温速度、および降温時に所定量の不活性ガスを充填した状態で降温することが重要であり、以上の製造方法によって上述した組織のサーメットを作製することができる。
【0033】
【実施例】
平均粒径0.7μm、または2μmのTiCN粉末、平均粒径1.5μmのTiN粉末、平均粒径μmのTaC粉末、平均粒径1.5μmのNbC粉末、平均粒径1.1μmのWC粉末、平均粒径1.8μmのZrC粉末、平均粒径1.0μmのVC粉末、平均粒径2.4μmのNi粉末、および平均粒径1.9μmのCo粉末を表1に示す割合で調整した混合粉末をステンレス製ボールミルと超硬ボールを用いて、IPAにて湿式混合し、パラフィンを3重量%添加、混合した後、200MPaでCNMG120408にプレス成形し、表1に示す焼成条件で焼成した。なお、降温時にはHeガスを表1に示す量だけ注入した。
【0034】
得られたサーメットをダイヤモンド砥石によって加工し、下記条件にて切削性能を評価した。また、各試料について走査型電子顕微鏡(SEM)観察を行い、7000倍の写真任意5箇所について市販の画像解析ソフトを用いて7mm×7mmの領域で画像解析を行い、硬質相(第1硬質相、第2硬質相)の存在状態を確認した。結果は表2に示した。
(切削条件)
切削評価1
切削方法:旋削 連続切削(耐摩耗性評価)
切削速度:230m/min
送り :0.25mm/rev
切込み :2.0mm
被削材 :SCM435
切削状態:湿式(エマルジョン)
切削時間:10分
評価項目:逃げ面摩耗幅(mm)
切削評価2
切削方法:旋削 断続切削(耐欠損性評価)
被削材:S45C
被削材:4本溝入り丸棒、
切削速度:100m/min、
送りおよび切削時間:0.1mm/revで10秒間切削後、送りを0.05mm/revずつ上げて各10秒間ずつ切削(最大送り0.5mm/revまで)
切込み:2mm、
評価項目:欠損するまでの総切削時間
切削状態:湿式(エマルジョン)
【0035】
【表1】

Figure 0004280048
【0036】
【表2】
Figure 0004280048
【0037】
表1、2より、本発明品である試料No.1〜12では、耐摩耗性と耐欠損性のともに優れた結果を示した。これに対して、単純な焼成パターンで焼成した試料No.13では、表面に所定の表面領域が形成されず、耐摩耗性および耐欠損性がともに低下した。また、焼成温度Cが1600℃を超え、降温時に不活性ガスを大量に導入した試料No.14、およびTiCN原料粒径が1.2μmを超える試料No.15では第1または第2硬質相の平均粒径が内部および表面領域ともに所定の範囲を超えてしまい耐欠損性が低下した。さらに、昇温速度Bが4℃/minより遅く、焼成温度Cが1600℃を超え、降温時に不活性ガスを導入しなかった試料No.16では第1硬質相の面積比率が内部において少なくなり、耐欠損性が低下した。また、昇温速度が14℃/minよりも速く、焼成温度Cが1500℃よりも低い試料No.17では表面部の第2硬質相の粒径が小さく、かつ表面部の第1硬質相の占める割合が多く、耐摩耗性が低下した。また、焼成温度Aまで5℃/minで昇温した試料No.18では内部と表面における第1硬質相の面積比率が多すぎて耐摩耗性が低下した。さらにまた、昇温速度Aが0.7℃/minより遅く、焼成温度Cが1600℃より高い試料No.19では表面における第1硬質相の粒径が大きく、かつ第2硬質相の粒径が小さいため、耐摩耗性が低下した。
【0039】
【発明の効果】
発明のTiCN基サーメットの製造方法によれば、原料粉末の粒径、焼成条件の適正化によって、硬質相の固溶状態を各部分に合わせてそれぞれ最適化し、サーメット内部において硬質相の微粒化による強度、硬度向上と、サーメット表面における耐熱衝撃性向上とをともに満足させることができる結果、サーメット全体としての耐欠損性および耐摩耗性がともに向上する。
【図面の簡単な説明】
【図1】本発明のTiCN基サーメットの内部についての走査型電子顕微鏡写真の模写図である。
【図2】本発明のTiCN基サーメットの表面付近についての走査型電子顕微鏡写真の模写図である。
【符号の説明】
1:TiCN基サーメット
2:硬質相
3:硬質相
4:芯部
5:周辺部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a TiCN-based cermet having both toughness and hardness suitable for cutting tool members, wear-resistant tool members, and the like, and a method for producing the same.
[0002]
[Prior art]
Conventionally, TiC-based cermets and TiCN-based cermets have been developed as wear-resistant tools and cutting tool alloys, and TiCN-based cermets with improved toughness have been widely used.
[0003]
Such TiCN-based cermets are particularly required to have improved fracture resistance. For example, in JP-A-8-199283 (Patent Document 1), a solid solution state of a hard phase, specifically, a core part is required. Optimizes the ratio of the hard phase that has a black cored structure and the hard phase that has a white core structure, and the thermal shock generated by high-speed cutting, etc. by optimizing the particle size It is disclosed that the durability can be improved.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 8-199283
[Problems to be solved by the invention]
However, the cermet disclosed in the above-mentioned JP-A-8-199283 also has insufficient durability against thermal shock, and there is a limit to improvement in cutting performance. Further improvement in thermal shock resistance and fracture resistance, There was a need for improved wear.
[0006]
The present invention is for solving the above-mentioned problems, and its purpose is to further improve the fracture resistance by optimizing the structure by optimizing the solid solution state of the hard phase of the TiCN-based cermet for each place and The purpose is to improve chipping resistance and wear resistance.
[0007]
[Means for Solving the Problems]
In the present invention, by optimizing the particle size of the raw material powder and the firing conditions, the solid solution state of the hard phase is optimized according to each part, and the strength and hardness improvement by atomizing the hard phase inside the cermet, As a result of satisfying both the thermal shock resistance improvement on the cermet surface, it was found that both the fracture resistance and the wear resistance of the cermet as a whole improved.
[0011]
The method for producing a TiCN-based cermet according to the present invention comprises at least one selected from TiCN powder having an average particle size of 0.1 to 1.2 μm and metals of Group IVa, Va and VIa other than Ti. Metal carbide, nitride and carbonitride powder, Co and / or Ni , TiCN 40-52 wt%, TiN 12-20 wt%, WC 9-15 wt%, NbC or TaC One or more components were mixed into a component composition consisting of 2 to 5% by mass and a binder phase of 1 to 30% by mass of Co and / or Ni , processed into a predetermined shape, and then heated at a rate of 0.7 to 2 ° C./min. The temperature is raised to 1150 to 1250 ° C., then raised to 1400 to 1500 ° C. at a rate of 5 to 15 ° C./min, and further raised to 1500 to 1600 ° C. at a rate of 4 to 14 ° C./min. Maintain for a predetermined time, Characterized by cooling the inert gas while filling 10~150Pa.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a scanning electron micrograph (SEM) of an arbitrary cross section inside the TiCN-based cermet of the present invention (hereinafter simply abbreviated as cermet), and FIG. 2 is an SEM photograph of an arbitrary cross section including the surface. This will be explained based on the above.
[0013]
According to FIGS. 1 and 2, the TiCN-based cermet (hereinafter simply abbreviated as cermet) 1 of the present invention is at least one selected from the metals of the periodic table IVa, Va and VIa other than TiCN and Ti. Hard phase 2 in which at least a part of carbides, nitrides, and carbonitrides of seed metals are dissolved is bonded to hard phase 2 with 1 to 30% by weight of Co and / or Ni bonding phase 3. According to FIGS. 1 and 2, the hard phase 2 is composed of a black first hard phase 2a and an off-white second hard phase 2b.
[0014]
According to the present invention, the average particle diameter d 1in of the first hard phase 2a in the cermet 1 (FIG. 1) is 0.05 to 0.5 μm, and the area ratio of the first hard phase 2a in the entire cermet 1 is occupied. The area ratio of the second hard phase 2b occupying the entire inside of the cermet 1 with S 1in of 40 to 80 area% and the average particle diameter d 2in of the second hard phase 2b in the cermet 1 being 0.6 to 2 μm. S 2in is composed of 5 to 40% by area, and the average particle diameter d 1sf of the first hard phase 2a on the surface of the cermet 1 (FIG. 2) is 0.3 to 1 μm, and the first hard occupies the entire surface of the cermet 1 The second hard phase occupying the entire surface portion of the cermet 1 in which the area ratio S 1sf of the phase 2a is 5 to 40 area% and the average particle diameter d 2sf of the second hard phase 2b on the cermet 1 surface is 1 to 3 μm. The area ratio S 2sf of 2b is 50-8 It is a major feature that it is composed of 0 area%, which can increase the strength of the cermet 1 and improve the thermal conductivity and Young's modulus on the surface of the cermet 1 to improve the thermal shock resistance on the surface of the cermet 1. Thus, the wear resistance and fracture resistance of the cermet 1 can be improved even under severe conditions such as high speed cutting, high feed cutting and wet cutting.
[0015]
Incidentally, the average particle size (d 1, d 2) and the area ratio (S 1, S 2) can be measured by using a commercially available image analysis apparatus with respect to a scanning electron micrograph (SEM) .
[0016]
Here, if the average particle diameter d 1in of the first hard phase 2a inside the cermet 1 is smaller than 0.05 μm, the structure becomes inhomogeneous due to agglomeration of the hard phases, leading to a decrease in strength and heat conduction inside the cermet 1. The rate drops. On the contrary, when d 1in exceeds 0.5 μm, the strength and hardness of the cermet 1 are lowered, and both the fracture resistance and the wear resistance are lowered. desired range of d 1in is 0.1 to 0.3 [mu] m. On the other hand, when the area ratio S 1in of the first hard phase 2a is less than 40 area% or more than 80 area%, the strength and hardness of the cermet 1 are lowered. A desirable range of S 1in is 50 to 70 area%.
[0017]
Further, if the average particle diameter d 2in of the second hard phase 2b in the cermet 1 is smaller than 0.6 μm, the hard phase 2 aggregates to form a non-uniform structure, and if d 2in exceeds 2 μm, the second hard phase 2b The dispersion state becomes worse and the strength decreases. A desirable range of d 2in is 0.8 to 1.5 μm. In addition, when the area ratio S 2in of the second hard phase 2b in the cermet 1 is less than 5 area%, the cermet 1 is in a poorly sintered state and the strength is lowered, and when S 2in is more than 40 area%, the cermet 1 is The average particle size of the entire hard phase 2 is increased and the strength is lowered. A desirable range of S 2in is 10 to 30 area%.
[0018]
On the other hand, in the cermet 1 surface region, when the average particle diameter d 1sf of the first hard phase 2a is smaller than 0.3 μm, the thermal conductivity and the plastic deformation resistance are lowered, and conversely, when d 1sf exceeds 1 μm. The fracture resistance of the cermet 1 surface is reduced. A desirable range of d 1sf is 0.3 to 0.7 μm. On the other hand, if the area ratio S 1sf of the first hard phase 2a in the surface portion of the cermet 1 is less than 5 area%, the plastic deformation resistance of the cermet 1 is lowered. And the thermal shock resistance is reduced. A desirable range of S 1sf is 7 to 25 area%.
[0019]
Further, if the average particle diameter d 2sf of the second hard phase 2b in the surface region of the cermet 1 is smaller than 1 μm, the thermal conductivity and plastic deformation resistance are lowered, and if d 2sf exceeds 3 μm, the fracture resistance of the cermet 1 surface is reduced. descend. A desirable range of d 2sf is 1.2 to 2 μm. Further, if the area ratio S 2sf of the second hard phase 2b in the surface portion of the cermet 1 is less than 50 area%, the thermal conductivity and plastic deformation resistance of the cermet 1 are lowered, and if S 2 sf is more than 80 area%, the first The deficiency of the surface of the cermet 1 decreases due to the lack of the hard phase and the binder phase. A desirable range of S 2sf is 60 to 75 area%.
[0020]
Further, according to the present invention, the white portion 3c is present at the center of the grayish white second hard phase 2b, and the ratio of the white portion 3c in the cermet 1 (FIG. 1) is the surface of the cermet 1 (FIG. 2). The presence of the white portion 3c is larger than that of the hard phase 2 (3a, 3b) in the cermet 1 to increase the strength of the cermet 1 and to dissolve the hard phase 2 (3a, 3b) on the cermet 1 surface. It is desirable in terms of optimizing the state and increasing the thermal shock resistance of the cermet 1.
[0021]
Further, the first hard phase 2a preferably contains 80% by weight or more of Ti as a metal component, and in particular, Ti is 80 to 98% by weight of the metals of the periodic table IVa, Va and VIa other than Ti. At least one metal selected from the group consisting of at least one of W, Mo, Cr, Nb and V, and further W (referred to as a solid solution metal in the present invention) in a total amount of 1 to 15% by weight, Co and / or It is desirable that the total amount of Ni binder phase metal is 0 to 3% by weight.
[0022]
Furthermore, the grayish white second hard phase 2b preferably contains a large amount of solid solution metal relative to the first hard phase 2a, and in particular, Ti is 30 to 70 wt%, and the total amount of solid solution metal is 70 to 30 wt%. It is desirable that the total amount of the binder phase metal of%, Co and / or Ni is 0 to 3% by weight. The content ratio of the metal component in the hard phase can be measured by energy dispersive spectroscopy (EDS) of a transmission electron microscope (TEM).
[0023]
Further, according to the present invention, the hard phase 2 has a double-core structure in which the first hard phase 2a is a core part and the second hard phase 2b is a peripheral part. The cermet 1 has a fine and uniform structure and is excellent in wettability with the binder phase 3 so that it contributes to increasing the strength of the cermet 1, but all the hard phases 2 have a cored structure. It does not have to be. In the case of the cored structure, the area of the second hard phase 2b is the area of the annular portion excluding the area of the first hard phase 2a at the center.
[0024]
Further, according to the present invention, the strength of the cermet 1, the hardness, in order to optimize the balance between thermal shock resistance, d 1sf / d 1in = 1~6 , d 2sf / d 2in = 1.5~1.7 , S 1sf / S 1in = 0.3~0.5 , it is desirable that the S 2sf / S 2in = 1.5~4.
[0025]
Further, in order to achieve both fracture resistance and wear resistance of the cermet 1, the thickness of the surface region is preferably 20 to 100 μm, particularly 30 to 50 μm.
[0026]
Note that it is desirable that the Vickers hardness in the cermet 1 takes a maximum value in the surface region, and the Vickers hardness gradually decreases toward the inside. Thereby, it can have both high abrasion resistance and defect resistance.
[0027]
(Manufacturing method) Next, the manufacturing method of the TiCN group cermet of this invention is demonstrated.
[0028]
First, TiCN powder having an average particle size of 0.1 to 1.2 μm, particularly 0.2 to 0.9 μm, TiN powder having an average particle size of 0.1 to 2 μm, the above-described solid solution metal carbide powder, nitride powder or Any one of carbonitride powder, Co powder and / or Ni powder , TiCN 40-52 mass%, TiN 12-20 mass%, WC 9-15 mass%, a kind of NbC or TaC The mixed powder which mixed the above into the component composition which consists of 1-30 mass% of binder phases of 2-5 mass% and Co and / or Ni is adjusted.
[0029]
According to the present invention, it is important to control the average particle size of the TiCN raw material powder in the range of 0.1 to 1.2 μm. If the average particle size is smaller than 0.1 μm, the raw material aggregates and the cermet Becomes a heterogeneous structure, and conversely, if it exceeds 1.2 μm, the cermet cannot be made the above-described structure.
[0030]
And a binder is added to this mixed powder, and it shape | molds in a predetermined shape by well-known shaping | molding methods, such as press molding, extrusion molding, and injection molding.
[0031]
Next, the molded body is heated from room temperature to a firing temperature A of 1150 to 1250 ° C. at a heating rate A of 0.7 ° C./min to 2 ° C./min, and from 1150 to 1250 ° C. to 1400 to 1500 ° C. The temperature is raised to a firing temperature B at a temperature rising rate B of 5 ° C./min to 15 ° C./min, and further to a firing temperature C of 1500 to 1600 ° C. than a temperature rising rate B of 4 ° C./min to 14 ° C./min. After the temperature is raised at a slow temperature rise rate C and held for a predetermined time, the temperature is lowered in a state of being filled with 10 to 150 Pa of an inert gas.
[0032]
According to the present invention, it is important to lower the temperature in the state where the firing rate is increased and the predetermined amount of inert gas is filled when the temperature is decreased, and the cermet having the structure described above is manufactured by the above manufacturing method. Can do.
[0033]
【Example】
The average particle diameter of 0.7μm or 2 [mu] m TiCN powder,, TiN powder having an average particle diameter of 1.5 [mu] m, TaC powder having an average particle diameter of 2 [mu] m, NbC powder having an average particle size of 1.5 [mu] m, an average particle size of 1.1 .mu.m WC A powder, a ZrC powder having an average particle diameter of 1.8 μm, a VC powder having an average particle diameter of 1.0 μm, a Ni powder having an average particle diameter of 2.4 μm, and a Co powder having an average particle diameter of 1.9 μm are adjusted in the ratio shown in Table 1. The mixed powder was wet-mixed with IPA using a stainless steel ball mill and cemented carbide balls, mixed with 3% by weight of paraffin, mixed, pressed into CNMG120408 at 200 MPa, and fired under the firing conditions shown in Table 1. . When the temperature was lowered, He gas was injected in an amount shown in Table 1.
[0034]
The obtained cermet was processed with a diamond grindstone, and the cutting performance was evaluated under the following conditions. In addition, each sample was observed with a scanning electron microscope (SEM), and image analysis was performed in a 7 mm × 7 mm area using commercially available image analysis software for five arbitrary photographs at a magnification of 7000 × to obtain a hard phase (first hard phase). , The second hard phase) was confirmed. The results are shown in Table 2.
(Cutting conditions)
Cutting evaluation 1
Cutting method: Turning Continuous cutting (Abrasion resistance evaluation)
Cutting speed: 230 m / min
Feeding: 0.25mm / rev
Cutting depth: 2.0mm
Work material: SCM435
Cutting state: wet (emulsion)
Cutting time: 10 minutes Evaluation item: Flank wear width (mm)
Cutting evaluation 2
Cutting method: Turning Interrupted cutting (Evaluation of fracture resistance)
Work material: S45C
Work material: Round bar with 4 grooves,
Cutting speed: 100 m / min,
Feeding and cutting time: After cutting at 0.1 mm / rev for 10 seconds, feed is increased by 0.05 mm / rev and cut for 10 seconds each (up to a maximum feed of 0.5 mm / rev)
Cutting depth: 2mm
Evaluation item: Total cutting time until chipping Cutting state: Wet (emulsion)
[0035]
[Table 1]
Figure 0004280048
[0036]
[Table 2]
Figure 0004280048
[0037]
From Tables 1 and 2, Sample No. 1 to 12 showed excellent results in both wear resistance and fracture resistance. On the other hand, sample No. fired with a simple firing pattern. In No. 13, a predetermined surface area was not formed on the surface, and both wear resistance and fracture resistance were reduced. In addition, the sample No. 1 in which the firing temperature C exceeded 1600 ° C. and a large amount of inert gas was introduced when the temperature was lowered. 14 and Sample No. with a TiCN raw material particle size exceeding 1.2 μm. In No. 15, the average particle size of the first or second hard phase exceeded the predetermined range for both the internal and surface regions, and the fracture resistance decreased. Further, the sample heating rate B was slower than 4 ° C./min, the firing temperature C exceeded 1600 ° C., and no inert gas was introduced when the temperature was lowered. In No. 16, the area ratio of the 1st hard phase decreased in the inside, and the fracture resistance decreased. In addition, sample No. 1 with a heating rate faster than 14 ° C./min and a firing temperature C lower than 1500 ° C. In No. 17, the particle size of the second hard phase in the surface portion was small, and the proportion of the first hard phase in the surface portion was large, and the wear resistance was lowered. In addition, the sample No. 1 was heated up to the firing temperature A at 5 ° C./min. In No. 18, the area ratio of the first hard phase in the interior and the surface was too large, and the wear resistance was lowered. Furthermore, the sample No. No. 2 having a heating rate A lower than 0.7 ° C./min and a firing temperature C higher than 1600 ° C. In No. 19, since the particle size of the first hard phase on the surface was large and the particle size of the second hard phase was small, the wear resistance decreased.
[0039]
【The invention's effect】
According to the TiCN-based cermet manufacturing method of the present invention, by optimizing the particle size and firing conditions of the raw material powder, the solid phase of the hard phase is optimized for each part, and the hard phase is atomized inside the cermet. As a result, it is possible to satisfy both the improvement in strength and hardness by the heat resistance and the improvement in thermal shock resistance on the surface of the cermet. As a result, both the fracture resistance and wear resistance of the cermet as a whole are improved.
[Brief description of the drawings]
FIG. 1 is a copy of a scanning electron micrograph of the inside of a TiCN-based cermet according to the present invention.
FIG. 2 is a copy of a scanning electron micrograph of the vicinity of the surface of the TiCN-based cermet of the present invention.
[Explanation of symbols]
1: TiCN-based cermet 2: Hard phase 3: Hard phase 4: Core portion 5: Peripheral portion

Claims (1)

平均粒径0.1〜1.2μmのTiCN粉末と、Ti以外の周期律表IVa、VaおよびVIa族の金属の中から選択される少なくとも1種の金属の炭化物、窒化物および炭窒化物の粉末と、Coおよび/またはNiとを、TiCNを40−52質量%、TiNを12−20質量%、WCを9−15質量%、NbC又はTaCの一種以上を2−5質量%、Co及び/またはNiの結合相1−30質量%からなる成分組成に調合して所定形状に加工した後、0.7〜2℃/minの昇温速度で1150〜1250℃まで昇温し、次いで5〜15℃/minの昇温速度で1400〜1500℃まで昇温し、さらに4〜14℃/minの昇温速度で1500〜1600℃まで昇温して所定時間維持し、不活性ガスを10〜150Pa充填した状態で降温するTiCN基サーメットの製造方法。TiCN powder having an average particle size of 0.1 to 1.2 μm and at least one metal carbide, nitride and carbonitride selected from metals of group IVa, Va and VIa other than Ti Powder, Co and / or Ni , TiCN 40-52% by mass, TiN 12-20% by mass, WC 9-15% by mass, one or more of NbC or TaC 2-5% by mass, Co and After preparing a component composition comprising 1/30% by mass of a Ni binder phase and processing it into a predetermined shape, the temperature is increased to 1150 to 1250 ° C. at a temperature increase rate of 0.7 to 2 ° C./min, and then 5 The temperature is raised to 1400-1500 ° C. at a temperature increase rate of ˜15 ° C./min, further increased to 1500-1600 ° C. at a temperature increase rate of 4-14 ° C./min, and maintained for a predetermined time. In a state filled with ~ 150Pa Method for producing a TiCN-base cermet to temperature.
JP2002282971A 2002-09-27 2002-09-27 Method for producing TiCN-based cermet Expired - Fee Related JP4280048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002282971A JP4280048B2 (en) 2002-09-27 2002-09-27 Method for producing TiCN-based cermet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002282971A JP4280048B2 (en) 2002-09-27 2002-09-27 Method for producing TiCN-based cermet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008215177A Division JP4974980B2 (en) 2008-08-25 2008-08-25 TiCN-based cermet

Publications (2)

Publication Number Publication Date
JP2004115881A JP2004115881A (en) 2004-04-15
JP4280048B2 true JP4280048B2 (en) 2009-06-17

Family

ID=32276977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002282971A Expired - Fee Related JP4280048B2 (en) 2002-09-27 2002-09-27 Method for producing TiCN-based cermet

Country Status (1)

Country Link
JP (1) JP4280048B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5127110B2 (en) * 2004-01-29 2013-01-23 京セラ株式会社 TiCN-based cermet and method for producing the same
US7811683B2 (en) * 2006-09-27 2010-10-12 Kyocera Corporation Cutting tool
JP5063129B2 (en) * 2007-02-08 2012-10-31 京セラ株式会社 cermet
JP5127264B2 (en) * 2007-02-23 2013-01-23 京セラ株式会社 TiCN-based cermet
CN101790594B (en) * 2007-07-27 2013-06-19 京瓷株式会社 Titanium-base cermet, coated cermet, and cutting tool
JP5111259B2 (en) * 2008-06-26 2013-01-09 京セラ株式会社 Surface covering member
JP5188578B2 (en) 2008-07-29 2013-04-24 京セラ株式会社 Cutting tools
JP4690475B2 (en) * 2009-03-24 2011-06-01 住友電気工業株式会社 Cermet and coated cermet tools
JP5381616B2 (en) * 2009-10-27 2014-01-08 株式会社タンガロイ Cermet and coated cermet
KR101366028B1 (en) * 2010-12-25 2014-02-21 쿄세라 코포레이션 Cutting tool
JP2013010997A (en) * 2011-06-29 2013-01-17 Sumitomo Electric Hardmetal Corp Cermet, method for producing the same, and cutting tool
JP5534567B2 (en) * 2012-06-21 2014-07-02 住友電気工業株式会社 Hard materials and cutting tools
JP6380016B2 (en) * 2014-11-05 2018-08-29 株式会社タンガロイ Cermet tools and coated cermet tools
CN114657433B (en) * 2022-03-18 2023-08-29 武汉理工大学 Solid solution strengthening metal ceramic and preparation method thereof

Also Published As

Publication number Publication date
JP2004115881A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
JP5127264B2 (en) TiCN-based cermet
JP4280048B2 (en) Method for producing TiCN-based cermet
KR100186288B1 (en) High toughness cermet and process for preparing the same
JP4974980B2 (en) TiCN-based cermet
JP2004292905A (en) Compositionally graded sintered alloy and method of producing the same
JP5127110B2 (en) TiCN-based cermet and method for producing the same
JP5213326B2 (en) cermet
KR100996843B1 (en) TiCN BASE CERMET AND CUTTING TOOL AND METHOD FOR MANUFACTURING CUT ARTICLE USING THE SAME
JP5273987B2 (en) Cermet manufacturing method
KR101609972B1 (en) Sintered alloy for cutting tools
JP4172754B2 (en) TiCN-based cermet and method for producing the same
JP4703122B2 (en) Method for producing TiCN-based cermet
JP5031610B2 (en) TiCN-based cermet
JP5132678B2 (en) cermet
JP3359221B2 (en) TiCN-based cermet tool and its manufacturing method
JP4172752B2 (en) TiCN-based cermet and method for producing the same
JPH0713277B2 (en) High toughness cermet alloy
JP4035045B2 (en) Throw-away tip and manufacturing method thereof
JP3366696B2 (en) Manufacturing method of high strength cermet
JP4280037B2 (en) Method for producing Ti-based cermet
JP2893887B2 (en) Composite hard alloy material
JP2005131739A (en) Cutting tool made of cermet
JP4969533B2 (en) Ti-based cermet
JP2002192406A (en) Cemented carbide throw-away cutting tip exercising superior abrasion resistance in high-speed cutting
JPH0421738A (en) High toughness and high hardness sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees