JP4278551B2 - Inverted pendulum robot - Google Patents

Inverted pendulum robot Download PDF

Info

Publication number
JP4278551B2
JP4278551B2 JP2004104844A JP2004104844A JP4278551B2 JP 4278551 B2 JP4278551 B2 JP 4278551B2 JP 2004104844 A JP2004104844 A JP 2004104844A JP 2004104844 A JP2004104844 A JP 2004104844A JP 4278551 B2 JP4278551 B2 JP 4278551B2
Authority
JP
Japan
Prior art keywords
wheel
inverted pendulum
robot
drive
rear wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004104844A
Other languages
Japanese (ja)
Other versions
JP2005288587A (en
Inventor
敬宏 宮下
浩 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ATR Advanced Telecommunications Research Institute International
Original Assignee
ATR Advanced Telecommunications Research Institute International
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ATR Advanced Telecommunications Research Institute International filed Critical ATR Advanced Telecommunications Research Institute International
Priority to JP2004104844A priority Critical patent/JP4278551B2/en
Publication of JP2005288587A publication Critical patent/JP2005288587A/en
Application granted granted Critical
Publication of JP4278551B2 publication Critical patent/JP4278551B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Motorcycle And Bicycle Frame (AREA)
  • Manipulator (AREA)

Description

この発明は倒立振子ロボットに関し、特にたとえば、駆動輪を同軸2輪倒立振子モードで制御する、倒立振子ロボットに関する。   The present invention relates to an inverted pendulum robot, and more particularly to an inverted pendulum robot that controls drive wheels in a coaxial two-wheel inverted pendulum mode.

本件発明者等は、特許文献1で、この種の同軸2輪倒立振子コミュニケーションロボットを提案した。この特許文献1の同軸2輪倒立振子ロボットでは、上半身機構の状態に応じて車輪の回転を制御するので、転倒の可能性を可及的排除できる。
特開2003−271243号
The inventors of the present invention proposed a coaxial two-wheel inverted pendulum communication robot of this type in Patent Document 1. In the coaxial two-wheel inverted pendulum robot of Patent Document 1, since the rotation of the wheel is controlled according to the state of the upper body mechanism, the possibility of falling can be eliminated as much as possible.
JP 2003-271243 A

特許文献1で提案される倒立振子ロボットは、バランスを動的にとることで外力に抗することができ、また相手に対して人間らしいフラフラした印象を与えることができるのでコミュニケーションロボットに適しているが、上半身機構の状態や内部状態の変化で不安定な状態になることもある。この不安定状態は近くに人間特に子供が存在するときには危険を感じさせることになり、このようなことは、コミュニケーションロボットとしはできるだけ防止する必要がある。   The inverted pendulum robot proposed in Patent Document 1 is suitable for a communication robot because it can resist external forces by dynamically balancing and can give a human-like fluffy impression to the opponent. In some cases, the state of the upper body mechanism and the internal state may change, resulting in an unstable state. This unstable state makes people feel dangerous when there are humans, especially children, nearby, and such a situation needs to be prevented as much as possible for a communication robot.

それゆえに、この発明の主たる目的は、より安全でコミュニケーションロボットに一層適する、倒立振子ロボットを提供することである。   Therefore, a main object of the present invention is to provide an inverted pendulum robot that is safer and more suitable for a communication robot.

請求項1の発明は、駆動輪を備え、この駆動輪を倒立振子モデルとして制御する、倒立振子ロボットであって駆動輪の前方に配置された前輪、駆動輪の後方に配置された後輪、および駆動輪の高さ方向の位置を変更する伸縮機構を備える、倒立振子ロボットである。 The invention of claim 1 includes a drive wheel, and controls the driving wheel as an inverted pendulum model, a inverted pendulum robot, the front wheel disposed in front of the driving wheels, rear wheels disposed behind the drive wheel And an inverted pendulum robot provided with an expansion / contraction mechanism for changing the position of the drive wheel in the height direction .

請求項2の発明は、伸縮機構は直動シリンダを含む、請求項1記載の倒立振子ロボットである。   The invention according to claim 2 is the inverted pendulum robot according to claim 1, wherein the telescopic mechanism includes a linear motion cylinder.

請求項2の発明では、直動シリンダをたとえばコンピュータで制御することによって、上記台車移動モードおよび倒立振子移動モードを動的に切り換えることができる。   In the invention of claim 2, the carriage moving mode and the inverted pendulum moving mode can be dynamically switched by controlling the linear motion cylinder by, for example, a computer.

請求項3の発明は、駆動輪を備え、この駆動輪を倒立振子モデルとして制御する、倒立振子ロボットであって、駆動輪の前方に配置された前輪、駆動輪の後方に配置された後輪、前輪の高さ方向の位置を変更する前輪伸縮機構、後輪の高さ方向の位置を変更する後輪伸縮機構、および前輪伸縮機構と後輪伸縮機構とを個別に制御する制御手段を備え、制御手段は、段差を上る際に、前輪が段差の上段と同じ高さになるように前輪伸縮機構を制御するとともに、後輪が段差の下段と同じ高さになるように後輪伸縮機構を制御する、倒立振子ロボットである。 The invention of claim 3 is an inverted pendulum robot that includes driving wheels and controls the driving wheels as an inverted pendulum model, and includes a front wheel disposed in front of the driving wheels and a rear wheel disposed in the rear of the driving wheels. A front wheel telescopic mechanism for changing the position of the front wheel in the height direction, a rear wheel telescopic mechanism for changing the position of the rear wheel in the height direction, and a control means for individually controlling the front wheel telescopic mechanism and the rear wheel telescopic mechanism. The control means controls the front wheel expansion / contraction mechanism so that the front wheel is at the same height as the upper stage of the step when climbing the step, and the rear wheel extension mechanism so that the rear wheel is the same height as the lower stage of the step. It is an inverted pendulum robot that controls .

請求項4の発明は、駆動輪を備え、この駆動輪を倒立振子モデルとして制御する、倒立振子ロボットであって、駆動輪の前方に配置された前輪、駆動輪の後方に配置された後輪、前輪の高さ方向の位置を変更する前輪伸縮機構、後輪の高さ方向の位置を変更する後輪伸縮機構、および前輪伸縮機構と後輪伸縮機構とを個別に制御する制御手段を備え、制御手段は、段差を上る際に、前輪が段差の下段と同じ高さになるように前輪伸縮機構を制御するとともに、後輪が段差の上段と同じ高さになるように後輪伸縮機構を制御する、倒立振子ロボットである。 According to a fourth aspect of the present invention, there is provided an inverted pendulum robot comprising a drive wheel and controlling the drive wheel as an inverted pendulum model, wherein the front wheel is disposed in front of the drive wheel, and the rear wheel is disposed behind the drive wheel. A front wheel telescopic mechanism for changing the position of the front wheel in the height direction, a rear wheel telescopic mechanism for changing the position of the rear wheel in the height direction, and a control means for individually controlling the front wheel telescopic mechanism and the rear wheel telescopic mechanism. The control means controls the front wheel expansion / contraction mechanism so that the front wheel is at the same height as the lower step of the step when climbing the step, and the rear wheel extension mechanism so that the rear wheel is the same height as the upper step of the step. It is an inverted pendulum robot that controls .

この発明によれば、倒立振子モードと台車移動モードとを切り換えることができるので、より安全で、コミュニケーションロボットに適した、倒立振子ロボットが得られる。   According to the present invention, since the inverted pendulum mode and the cart movement mode can be switched, an inverted pendulum robot that is safer and suitable for a communication robot can be obtained.

この発明の上述の目的,その他の目的,特徴および利点は、図面を参照して行う以下の実施例の詳細な説明から一層明らかとなろう。   The above object, other objects, features and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.

図1および図2に示すこの発明の一実施例の同軸2輪倒立振子ロボット(以下、単に「ロボット」ということがある。)10は、一例として、本件発明者等が既に提案している、商品名「Robovie−IV」という柔軟な皮膚を有するコミュニケーションロボットである。   A coaxial two-wheel inverted pendulum robot (hereinafter, simply referred to as “robot”) 10 according to an embodiment of the present invention shown in FIGS. 1 and 2 has already been proposed by the present inventors as an example. It is a communication robot having a flexible skin with the brand name “Robovie-IV”.

このロボット10は、人体形状部12を含み、この人体形状部12は、全身を覆うたとえば発泡ウレタンのような柔軟素材からなる皮膚を有し、その下に多数のピエゾ圧力センサを配し、頭部14と、2本の腕部16とを有する。ピエゾ圧力センサは接触センサとして機能し、多数のセンサの検知信号によって、どこの部位がどの程度の圧力で触られているかを知ることができる。そして、たとえば首の部分に関節機構(図示せず)が設けられていて、その関節機構によって頭部14が旋回俯仰可能に取り付けられる。いずれも図示しないが、頭部14には、前方を撮影するCCDカメラや、周囲の音を取り込むマイクあるいは対面者に声を発するスピーカなどが組み込まれる。また、腕部16は肩、肘および手首のそれぞれの関節を有する。なお、この発明は人体形状部12の形状や構造に関するものではなく、したがって、人体形状部12の形状や構造はこの発明には関係しないので、これ以上の説明は省略する。   The robot 10 includes a human body shape portion 12. The human body shape portion 12 has a skin made of a flexible material such as urethane foam covering the whole body, and a large number of piezoelectric pressure sensors are disposed below the skin. It has a portion 14 and two arm portions 16. The piezo pressure sensor functions as a contact sensor, and it is possible to know which part is being touched with what pressure by the detection signals of many sensors. Then, for example, a joint mechanism (not shown) is provided at the neck portion, and the head 14 is attached so as to be able to turn and lift by the joint mechanism. Although neither of them is shown, the head 14 incorporates a CCD camera for photographing the front, a microphone that captures ambient sounds, a speaker that speaks to the person in contact, and the like. Moreover, the arm part 16 has each joint of a shoulder, an elbow, and a wrist. Note that the present invention is not related to the shape and structure of the human body shape portion 12, and therefore, the shape and structure of the human body shape portion 12 are not related to the present invention, and thus further description thereof is omitted.

人体形状部12は台車機構18上に載置される。この台車機構18は、人体形状部12を固定的に取り付けるための取付け部20を有し、この取付け部20の下方に、駆動輪22を前補助輪24ならびに後補助輪26を設けている。ただし、これら駆動輪22、補助輪24および26は、図1や図3以降の各図では1つの車輪しか見えないが、図2からよく分かるように、それぞれ左右1対の車輪を有するものである。ただし、それぞれの左右1対の車輪は同じ車軸に取り付けられかつ一体に回転する。   The human body shape part 12 is placed on the carriage mechanism 18. The carriage mechanism 18 includes an attachment portion 20 for fixedly attaching the human body shape portion 12, and a drive wheel 22, a front auxiliary wheel 24 and a rear auxiliary wheel 26 are provided below the attachment portion 20. However, these drive wheels 22 and auxiliary wheels 24 and 26 have only one wheel in each figure after FIG. 1 and FIG. 3, but as shown in FIG. 2, each has a pair of left and right wheels. is there. However, each pair of left and right wheels is attached to the same axle and rotates together.

図3にこの台車機構18を詳細に図解するが、この図3に示すように、駆動輪22は支持部28によって回転可能に保持されていて、この支持部28が直動シリンダ30のロッドに結合される。ただし、直動シリンダ30のロッドがそのまま支持部28として利用されてもよい。直動シリンダ30が取付け部20の下面に取り付けられる。直動シリンダ30は、ロッドすなわち支持部28を直線的に伸縮する機能を持ち、したがって、この実施例では、直動シリンダ30をコンピュータ(図示せず)で制御することによって、支持部28を伸縮でき、結果的に、駆動輪22の高さ方向の位置を変更することができる。なお、この直動シリンダ30としては、油圧シリンダなどの流体シリンダや他の任意の形式のものが利用可能であるが、実施例では、応答が速く保持力が大きいので好ましいという理由で、ボールねじを利用した直動シリンダを用いる。   FIG. 3 illustrates the cart mechanism 18 in detail. As shown in FIG. 3, the drive wheel 22 is rotatably supported by a support portion 28, and the support portion 28 is attached to the rod of the linear cylinder 30. Combined. However, the rod of the direct acting cylinder 30 may be used as the support portion 28 as it is. The linear cylinder 30 is attached to the lower surface of the attachment portion 20. The linear motion cylinder 30 has a function of linearly extending and contracting the rod, that is, the support portion 28. Therefore, in this embodiment, the linear motion cylinder 30 is controlled by a computer (not shown) to expand and contract the support portion 28. As a result, the position of the drive wheel 22 in the height direction can be changed. As the direct acting cylinder 30, a fluid cylinder such as a hydraulic cylinder or any other type can be used. However, in this embodiment, a ball screw is preferable because it has a fast response and a large holding force. Use a linear cylinder that uses.

駆動輪22の高さ方向位置をコンピュータからの指令によって伸長位置と縮減位置とを自動的に切り替えできるという点で、直動シリンダ30として、コンピュータ制御可能な直動シリンダを用いることが望ましい。しかしながら、駆動輪22の高さ方向位置を手導的に変更するものでよいなら、他の伸縮機構または出没機構、たとえばリンク機構などを利用することも考えられる。   It is desirable to use a computer-controllable direct-acting cylinder as the direct-acting cylinder 30 in that the position in the height direction of the drive wheel 22 can be automatically switched between the expansion position and the contraction position by a command from the computer. However, if it is sufficient to change the position of the drive wheel 22 in the height direction, it is also conceivable to use another expansion / contraction mechanism or a retracting mechanism such as a link mechanism.

なお、図3に示すように、前補助輪24および後補助輪26は、それぞれ、支持部32および34によって取付け部20に固定的に取り付けられる。したがって、前後補助輪24および26は、その高さ方向の位置を変更することはできない。   As shown in FIG. 3, the front auxiliary wheel 24 and the rear auxiliary wheel 26 are fixedly attached to the attachment part 20 by support parts 32 and 34, respectively. Therefore, the front and rear auxiliary wheels 24 and 26 cannot change their height positions.

この実施例において、図3のように直動シリンダ30を縮めた状態では、直動シリンダ30のロッドすなわち支持部28が「没」位置にある。したがって、駆動輪22と前後補助輪24お26とはともに、地面(または床面)36に接触する。そのため、コンピュータによって駆動輪22に駆動力を付与すると、この駆動輪22が前後いずれかの方向に回転され、ロボット10(図1、図2)が前後いずれかの方向に、台車移動モードで移動する。この台車移動モードでは補助輪24および26によって駆動輪22の前後を支えるので、転倒に関しては非常に安定している。したがって、整地であれば、かなり安全にかつ安定的に移動することができる。   In this embodiment, when the linear cylinder 30 is contracted as shown in FIG. 3, the rod, that is, the support portion 28 of the linear cylinder 30 is in the “sunk” position. Therefore, both the driving wheel 22 and the front and rear auxiliary wheels 24 and 26 are in contact with the ground (or floor surface) 36. Therefore, when a driving force is applied to the drive wheels 22 by the computer, the drive wheels 22 are rotated in either the front or rear direction, and the robot 10 (FIGS. 1 and 2) moves in the cart movement mode in either the front or rear direction. To do. In this carriage movement mode, the auxiliary wheels 24 and 26 support the front and rear of the drive wheel 22, so that they are very stable with respect to overturning. Therefore, if it is leveling, it can move quite safely and stably.

これに対して、直動シリンダ30を伸ばした状態では、直動シリンダ30のロッドすなわち支持部28が「出」位置に伸ばされる。したがって、図4に示すように、駆動輪22だけが地面36Aに接触し、前後補助輪24および26はともに、地面36Aから浮いた状態となる。この状態では、ロボット10は、同軸2輪倒立振子モードで移動するので、図3に示す台車移動モードでは移動できなかった図4に示すような不整地(地表に凹凸がある)でも移動することができる。ここで、参照符号36Aは地面が不整地であることを示している。   On the other hand, when the linear motion cylinder 30 is extended, the rod of the linear motion cylinder 30, that is, the support portion 28 is extended to the “out” position. Therefore, as shown in FIG. 4, only the drive wheels 22 are in contact with the ground 36A, and the front and rear auxiliary wheels 24 and 26 are both lifted from the ground 36A. In this state, the robot 10 moves in the coaxial two-wheel inverted pendulum mode. Therefore, the robot 10 also moves on rough terrain as shown in FIG. 4 (uneven on the ground surface) that could not be moved in the cart movement mode shown in FIG. Can do. Here, the reference sign 36A indicates that the ground is rough.

なお、同軸2輪倒立振子モードでの具体的な制御方法は、先に挙げた特許文献1に詳細に説明されているので、ここでは詳細な説明は省略し、この特許文献1の記述を援用することにする。   Note that the specific control method in the coaxial two-wheel inverted pendulum mode is described in detail in Patent Document 1 mentioned above, so detailed description is omitted here, and the description in Patent Document 1 is used. I will do it.

駆動輪22と補助輪24および26とがともに地面に接触している図3の状態と駆動輪22だけが地面に接触している図4の状態とを動的に切り換えるためには、たとえばコンピュータによって直動シリンダ30の出没を制御するようにすればよい。そうすれば、倒立振子で全体がフラフラすることによってコミュニケーション時に相手に与える印象を人間らしいものにすることができる。この倒立振子モードでは、体を押されたときその押圧力に対抗して踏ん張ることができるので、基本的には転倒の可能性は小さいものの、たとえば内部状態の変化によって倒立振子が不安定になった場合またはなりそうな場合には補助輪24および26を使って安定させることができる。   In order to dynamically switch between the state shown in FIG. 3 in which both the driving wheel 22 and the auxiliary wheels 24 and 26 are in contact with the ground and the state in FIG. 4 in which only the driving wheel 22 is in contact with the ground, for example, a computer It is only necessary to control the appearance of the direct acting cylinder 30 by the above. If it does so, the impression given to the other party at the time of communication can be made human-like by fluttering the whole with an inverted pendulum. In this inverted pendulum mode, when the body is pressed, it can be strung against the pressing force, so although the possibility of falling is basically small, the inverted pendulum becomes unstable due to, for example, a change in the internal state If possible or likely, the auxiliary wheels 24 and 26 can be used to stabilize.

なお、上述の実施例では、駆動輪を補助輪に対して相対的に出没させるために、駆動輪22の支持部28を直動シリンダ30のロッドに結合した。しかしながら、図5に示すように、駆動輪22が固定され、前後補助輪24および26がともに直動シリンダ36および38のロッドにそれぞれ連結されてもよい。ただし、この実施例の直動シリンダ36および38は先の実施例の直動シリンダ30と同様であるので、重複する説明は省略する。   In the above-described embodiment, the support portion 28 of the drive wheel 22 is coupled to the rod of the direct acting cylinder 30 in order to make the drive wheel appear and disappear relative to the auxiliary wheel. However, as shown in FIG. 5, the drive wheels 22 may be fixed, and the front and rear auxiliary wheels 24 and 26 may be connected to the rods of the linear cylinders 36 and 38, respectively. However, since the direct acting cylinders 36 and 38 of this embodiment are the same as the direct acting cylinder 30 of the previous embodiment, the overlapping description is omitted.

この実施例において、コンピュータ(図示せず)が2つの直動シリンダ36および38をともに「出」位置に制御したときには、図5に示すように、駆動輪22および補助輪24および26がともに地面に接触し、図3と同じく、台車移動モードとなる。これに対して、コンピュータが2つの直動シリンダ36および38をともに「没」位置に制御したときには、図6に示すように、駆動輪22だけが地面36Aに接触し、2つの補助輪24および26は、浮いた状態になる。この状態では、図4と同様に、倒立振子モードで移動する。したがって、この実施例においても、コンピュータによって直動シリンダ36および38を適宜制御することによって、先の実施例と同様に、台車移動モードと倒立振子移動モードとを動的に切り換えることができる。   In this embodiment, when the computer (not shown) controls the two linear cylinders 36 and 38 to the “out” position, as shown in FIG. 5, the drive wheels 22 and the auxiliary wheels 24 and 26 are both on the ground. As shown in FIG. 3, the carriage movement mode is entered. On the other hand, when the computer controls both of the two direct acting cylinders 36 and 38 to the “sink” position, only the driving wheel 22 contacts the ground surface 36A as shown in FIG. 26 will be in a floating state. In this state, as in FIG. 4, the robot moves in the inverted pendulum mode. Therefore, also in this embodiment, the cart movement mode and the inverted pendulum movement mode can be dynamically switched by controlling the direct acting cylinders 36 and 38 as appropriate by the computer as in the previous embodiment.

図5の実施例では、さらに、従来の同軸2輪倒立振子機構ではできなかった階段の昇降が可能である。   In the embodiment shown in FIG. 5, the stairs can be raised and lowered which is not possible with the conventional coaxial two-wheel inverted pendulum mechanism.

図7に示すように、直動シリンダ38だけを「没」位置にすると、後補助輪26だけが没位置になり、駆動輪22と前補助輪24が同じ出位置となる。したがって、階段の下段から上段に移動しようとするときに図7の状態にすれば、補助輪26と、駆動輪22および補助輪24との高さ方向の位置の違いを形成でき、階段を上ることができる。ただし、階段の上段から下段へ移動しようとするときに図7の状態に制御すれば、同様に、補助輪26と、駆動輪22および補助輪24との段差を形成でき、階段を下ることができる。   As shown in FIG. 7, when only the direct acting cylinder 38 is set to the “sink” position, only the rear auxiliary wheel 26 is in the sunk position, and the drive wheel 22 and the front auxiliary wheel 24 are in the same exit position. Therefore, if the state shown in FIG. 7 is used when moving from the lower stage of the stairs to the upper stage, the height difference between the auxiliary wheel 26, the drive wheel 22 and the auxiliary wheel 24 can be formed, and the stairs are raised. be able to. However, if the state shown in FIG. 7 is controlled when moving from the upper stage of the stairs to the lower stage, similarly, a step between the auxiliary wheel 26 and the driving wheel 22 and auxiliary wheel 24 can be formed, and the stairs can be lowered. it can.

図8の場合にも同様に、直動シリンダ36だけを「没」位置にすると、前補助輪24だけが没位置になり、駆動輪22と後補助輪26が同じ出位置となる。したがって、図7の場合と同じようにして、補助輪24と、駆動輪22および補助輪26との間の段差を形成できるので、階段を上ったり下ったりすることができる。   Similarly in the case of FIG. 8, when only the direct acting cylinder 36 is set to the “sink” position, only the front auxiliary wheel 24 is in the sunk position, and the drive wheel 22 and the rear auxiliary wheel 26 are in the same exit position. Accordingly, as in the case of FIG. 7, a step between the auxiliary wheel 24 and the drive wheel 22 and auxiliary wheel 26 can be formed, so that the stairs can be raised or lowered.

図1はこの発明の一実施例の同軸2輪倒立振子ロボットの側面を示す図解図である。FIG. 1 is an illustrative view showing a side surface of a coaxial two-wheel inverted pendulum robot according to an embodiment of the present invention. 図2はこの実施例の同軸2輪倒立振子ロボットの正面を示す図解図である。FIG. 2 is an illustrative view showing the front of the coaxial two-wheel inverted pendulum robot of this embodiment. 図3は図1実施例の台車機構の詳細およびそれによって整地を台車モードで移動している状態を示す図解図である。FIG. 3 is an illustrative view showing the details of the cart mechanism of FIG. 1 embodiment and the state in which the leveling is moving in the cart mode. 図4は図1すなわち図3の実施例の台車機構で不整地を倒立振子モードで移動している状態を示す図解図である。FIG. 4 is an illustrative view showing a state in which the cart mechanism of the embodiment of FIG. 1, that is, FIG. 図5は図1実施例の台車機構の別の例の詳細およびそれによって整地を台車モードで移動している状態を示す図解図である。FIG. 5 is an illustrative view showing the details of another example of the cart mechanism of FIG. 1 embodiment and the state in which the leveling is moved in the cart mode. 図6は図1すなわち図5の実施例の台車機構で不整地を倒立振子モードで移動している状態を示す図解図である。FIG. 6 is an illustrative view showing a state in which the cart mechanism of FIG. 1, that is, the embodiment of FIG. 5 is moving on the rough terrain in the inverted pendulum mode. 図7は図1すなわち図5の実施例の台車機構で階段歩行をしている状態の一例を示す図解図である。FIG. 7 is an illustrative view showing one example of a state where a stair walking is performed by the cart mechanism of the embodiment of FIG. 1, that is, FIG. 図8は図1すなわち図5の実施例の台車機構で階段歩行をしている状態の他の例を示す図解図である。FIG. 8 is an illustrative view showing another example of a state where a stair walking is performed by the cart mechanism of the embodiment of FIG. 1, that is, FIG.

符号の説明Explanation of symbols

10 …同軸2輪倒立振子ロボット
12 …人体形状部
18 …台車機構
20 …取付け部
22 …駆動輪
24 …前補助輪
26 …後補助輪
28、32、34 …支持部
30、36、38 …直動シリンダ
DESCRIPTION OF SYMBOLS 10 ... Coaxial two-wheel inverted pendulum robot 12 ... Human-body-shaped part 18 ... Bogie mechanism 20 ... Mounting part 22 ... Drive wheel 24 ... Front auxiliary wheel 26 ... Rear auxiliary wheel 28, 32, 34 ... Support part 30, 36, 38 ... Straight Dynamic cylinder

Claims (4)

駆動輪を備え、この駆動輪を倒立振子モデルとして制御する、倒立振子ロボットであって、
前記駆動輪の前方に配置された前輪、
前記駆動輪の後方に配置された後輪、および
前記駆動輪の高さ方向の位置を変更する伸縮機構を備える、倒立振子ロボット。
An inverted pendulum robot that has drive wheels and controls the drive wheels as an inverted pendulum model,
A front wheel disposed in front of the drive wheel;
An inverted pendulum robot comprising: a rear wheel disposed behind the drive wheel; and an expansion / contraction mechanism that changes a position of the drive wheel in a height direction.
前記伸縮機構は直動シリンダを含む、請求項1記載の倒立振子ロボット。   The inverted pendulum robot according to claim 1, wherein the telescopic mechanism includes a linear motion cylinder. 駆動輪を備え、この駆動輪を倒立振子モデルとして制御する、倒立振子ロボットであって、
前記駆動輪の前方に配置された前輪、
前記駆動輪の後方に配置された後輪、
前記前輪の高さ方向の位置を変更する前輪伸縮機構、
前記後輪の高さ方向の位置を変更する後輪伸縮機構、および
前記前輪伸縮機構と前記後輪伸縮機構とを個別に制御する制御手段を備え
前記制御手段は、
段差を上る際に、前記前輪が段差の上段と同じ高さになるように前記前輪伸縮機構を制御するとともに、前記後輪が段差の下段と同じ高さになるように前記後輪伸縮機構を制御する、倒立振子ロボット。
An inverted pendulum robot that has drive wheels and controls the drive wheels as an inverted pendulum model,
A front wheel disposed in front of the drive wheel;
A rear wheel disposed behind the drive wheel;
A front wheel telescopic mechanism for changing the position of the front wheel in the height direction;
A rear wheel expansion / contraction mechanism for changing the position in the height direction of the rear wheel, and a control means for individually controlling the front wheel expansion / contraction mechanism and the rear wheel expansion / contraction mechanism ,
The control means includes
When climbing the step, the front wheel telescopic mechanism is controlled so that the front wheel is at the same height as the upper step of the step, and the rear wheel telescopic mechanism is adjusted so that the rear wheel is at the same height as the lower step of the step. An inverted pendulum robot to control .
駆動輪を備え、この駆動輪を倒立振子モデルとして制御する、倒立振子ロボットであって、
前記駆動輪の前方に配置された前輪、
前記駆動輪の後方に配置された後輪、
前記前輪の高さ方向の位置を変更する前輪伸縮機構、
前記後輪の高さ方向の位置を変更する後輪伸縮機構、および
前記前輪伸縮機構と前記後輪伸縮機構とを個別に制御する制御手段を備え、
前記制御手段は、
段差を上る際に、前記前輪が段差の下段と同じ高さになるように前記前輪伸縮機構を制御するとともに、前記後輪が段差の上段と同じ高さになるように前記後輪伸縮機構を制御する、倒立振子ロボット。
An inverted pendulum robot that has drive wheels and controls the drive wheels as an inverted pendulum model,
A front wheel disposed in front of the drive wheel;
A rear wheel disposed behind the drive wheel;
A front wheel telescopic mechanism for changing the position of the front wheel in the height direction;
A rear wheel telescopic mechanism for changing the position of the rear wheel in the height direction, and
A control means for individually controlling the front wheel extension mechanism and the rear wheel extension mechanism;
The control means includes
When climbing a step, the front wheel telescopic mechanism is controlled so that the front wheel is the same height as the lower step of the step, and the rear wheel telescopic mechanism is adjusted so that the rear wheel is the same height as the upper step of the step. An inverted pendulum robot to control .
JP2004104844A 2004-03-31 2004-03-31 Inverted pendulum robot Expired - Lifetime JP4278551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004104844A JP4278551B2 (en) 2004-03-31 2004-03-31 Inverted pendulum robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004104844A JP4278551B2 (en) 2004-03-31 2004-03-31 Inverted pendulum robot

Publications (2)

Publication Number Publication Date
JP2005288587A JP2005288587A (en) 2005-10-20
JP4278551B2 true JP4278551B2 (en) 2009-06-17

Family

ID=35322119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004104844A Expired - Lifetime JP4278551B2 (en) 2004-03-31 2004-03-31 Inverted pendulum robot

Country Status (1)

Country Link
JP (1) JP4278551B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4886201B2 (en) * 2005-03-14 2012-02-29 株式会社日立製作所 Mobile robot
JP4788412B2 (en) * 2006-03-10 2011-10-05 トヨタ自動車株式会社 Inverted pendulum type moving body
JP5107533B2 (en) * 2006-06-01 2012-12-26 株式会社日立製作所 Mobile robot
KR100870537B1 (en) 2007-04-12 2008-11-26 (주)한국로보틱스 Wheel assembly for Robot
JP4973303B2 (en) * 2007-04-27 2012-07-11 トヨタ自動車株式会社 Inverted type moving body and method for stopping movement of inverted type moving body
KR100919670B1 (en) * 2008-01-04 2009-09-30 부산대학교 산학협력단 single wheel robot capable automatic driving and motion control
JP4681016B2 (en) 2008-03-10 2011-05-11 株式会社豊田中央研究所 Inverted pendulum type wheel moving body
JP4894792B2 (en) * 2008-03-13 2012-03-14 株式会社エクォス・リサーチ vehicle
KR101013936B1 (en) 2008-09-04 2011-02-14 한국과학기술원 Parallel 2 wheel running gear and the control method that can control posture and location separatively through variableness style assistance wheel
JP5304365B2 (en) * 2009-03-19 2013-10-02 トヨタ自動車株式会社 Control method of mobile robot
KR101131125B1 (en) * 2010-02-22 2012-03-26 부산대학교 산학협력단 unicycle robot
CN105538302B (en) * 2016-01-26 2018-12-28 清华大学 A kind of robot semi-flexible based on liquid metal
CN108145722A (en) * 2017-12-30 2018-06-12 广州新烨数码科技有限公司 A kind of bottom moving structure of educational robot
CN111736615B (en) * 2020-08-04 2020-12-15 深圳市优必选科技股份有限公司 Gait planning method and device, computer readable storage medium and robot
US20240157570A1 (en) * 2021-03-19 2024-05-16 Honda Motor Co., Ltd. Robot
US20240176368A1 (en) * 2021-03-19 2024-05-30 Honda Motor Co., Ltd. Robot
DE112021007312T5 (en) * 2021-03-19 2024-04-04 Honda Motor Co., Ltd. ROBOT

Also Published As

Publication number Publication date
JP2005288587A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
JP4278551B2 (en) Inverted pendulum robot
US11312436B2 (en) Obstacle crossing robot
JP3277076B2 (en) Walking control device and walking control method for walking robot
JP2001150370A5 (en)
KR100687461B1 (en) Robot And Knuckle Apparatus For Robot
JP3555107B2 (en) Legged mobile robot and operation control method for legged mobile robot
KR100843863B1 (en) Legged mobile robot and control method thereof, leg structure of legged mobile robot, and mobile leg unit for legged mobile robot
JP4197052B1 (en) Leg wheel type moving mechanism
WO2016006248A1 (en) Travel device
JP2016530013A (en) Standing wheelchair
JPH09142347A (en) Rough terrain moving device
Takahashi et al. Front wheel raising and inverse pendulum control of power assist wheel chair robot
WO2019244444A1 (en) Mobile body
WO2002040226A1 (en) Biped robot
KR101583871B1 (en) Wearable driving device having driving and gait ability
JP4295947B2 (en) Legged mobile robot and its movement control method
JP2006142465A (en) Biped locomotion robot and walking control method
JP5168158B2 (en) Walking training system
JP2003340763A (en) Biped walking robot step elevating/lowering method and biped walking robot
KR100572684B1 (en) Biped walking robot driving method and apparatus for transition to driving mode
JP2016093221A (en) Walker
JP4111134B2 (en) Boarding robot
JP2001157972A (en) Leg type moving robot
JP3128522U (en) Machines capable of eliminating intelligent obstacles
CN109718065B (en) Mobile booster

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4278551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250