JP4273292B2 - Thermal spray particles and thermal spray member using the particles - Google Patents

Thermal spray particles and thermal spray member using the particles Download PDF

Info

Publication number
JP4273292B2
JP4273292B2 JP2002102205A JP2002102205A JP4273292B2 JP 4273292 B2 JP4273292 B2 JP 4273292B2 JP 2002102205 A JP2002102205 A JP 2002102205A JP 2002102205 A JP2002102205 A JP 2002102205A JP 4273292 B2 JP4273292 B2 JP 4273292B2
Authority
JP
Japan
Prior art keywords
rare earth
particles
earth element
less
containing compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002102205A
Other languages
Japanese (ja)
Other versions
JP2002363725A (en
Inventor
正実 金吉
孝雄 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2002102205A priority Critical patent/JP4273292B2/en
Publication of JP2002363725A publication Critical patent/JP2002363725A/en
Application granted granted Critical
Publication of JP4273292B2 publication Critical patent/JP4273292B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、金属、セラミックス等の基材表面にプラズマ溶射等を用いて希土類元素含有化合物溶射被膜を形成した際に、密着性が高く、しかも平滑で高純度の溶射被膜を形成できる希土類元素含有化合物溶射用粒子、および該粒子を用いた溶射部材に関する。
【0002】
【従来の技術および発明が解決しようとする課題】
従来から、金属、セラミックス等に金属酸化物を溶射することにより被膜を形成し、耐熱性、耐磨耗性、耐食性を付与することが行なわれている。
このような溶射被膜を形成するための溶射用粒子として、(1)原料を電気炉で溶融し、冷却凝固後、粉砕機で微粉化し、その後分級することにより粒度調整を行って得られる溶融粉砕粉、(2)原料を焼結後、粉砕機で微粉化し、その後分級することにより粒度調整を行って得られる焼結粉砕粉、(3)原料粉末を有機バインダーに加えてスラリー化し、噴霧乾燥型造粒機を用いて造粒後、焼成し、場合によっては分級することにより粒度調整を行って得られる造粒粉、等が挙げられる。また、溶射部材としてアルミナ、シリカ等を用いた部材が開発されているが、パーティクルのない緻密な部材を得るのが困難であった。
【0003】
また、上記溶射用粒子に求められる特性として、▲1▼溶射時のプラズマ炎またはフレーム炎まで材料が安定、かつ、定量的に供給できること、▲2▼供給時および溶射時に粒子形状が崩れないこと、▲3▼溶射時に粒子が完全に溶融すること、が要求され、これら各特性は、十数項目からなる粉体物性値で定量的に表現される。
【0004】
ところで、上記溶射用粒子は、搬送チューブ等の細い流路を介して溶射ガンまで供給されることから、付着がなく安定的かつ定量的に供給を行えるか否かは、溶射用粒子の粉体物性、流動性にかなり影響されることとなる。
しかしながら、上記(1)、(2)の方法で得られる溶融粉砕粉や、焼結粉砕粉は、粒子の強度としては十分であるものの、形状が不定形であるうえ、粒度分布が広いため、搬送中の粒子同士の摩擦により、微粒子が発生するとともに、安息角が大きく流動性が悪いので、搬送チューブや溶射ガン内で閉塞等が生じ、連続的に溶射できない等の問題があった。
【0005】
これら各粉砕粉の問題点を解決するものとして、上記(3)の方法で得られる造粒粉、すなわち、球形または球に近い形状であるため流動性が良いという特徴を有する造粒粉、が開発されてきている。
この造粒粉の粉体強度は、原料とする粒子の粒度分布と、焼結工程の条件とで決まるものであるため、粉体強度にばらつきが生じやすく、強度が低いものは、供給時および溶射時に崩れ易いという問題があり、しかも造粒粉を得るプロセスが複雑になり、多くの工程からなる程、Fe等の不純物の混入を防ぐことができないという問題があった。
【0006】
一方、金属酸化物からなる溶射用粒子を溶射する場合、密着強度に優れた溶射被膜を形成するためには、溶射時にフレーム炎またはプラズマ炎中で溶射用粒子を完全に溶融させる必要がある。
しかしながら、噴霧型造粒機を用いた造粒粉の場合、平均粒径20μm以下にするのは難しく、一方、溶融粉砕粉や焼結粉砕粉の場合、粉砕することで平均粒径が小さい溶射材料が得られるものの、粉砕機等からの汚染があるため、通常の粒子では数十ppm程度の不純物の混入を避けることができなかった。
【0007】
このように、上述した溶融粉砕粉、焼結粉砕粉、造粒粉には、それぞれ長所、短所があるため、溶射用粒子として必ずしも最適なものがなかった。しかも、3種類の粉体全てにおいて、粉砕工程、造粒工程、分級工程からの汚染があるため、高純度化という点でも問題となっていた。
すなわち、上記各工程を経て得られる溶融粉砕粉、焼結粉砕粉、造粒粉では、鉄族元素、アルカリ金属元素、アルカリ土類金属元素等の不純物が、通常、酸化物換算で20ppm以上混入しているため、当該溶射用粒子を溶射してなる被膜を有する溶射部材が不純物部分から腐食を起こしやすく、十分な耐久性が得られないという問題もあった。
【0008】
本発明は、このような事情に鑑みてなされたものであり、高融点の希土類元素含有化合物を用いても密着性の高い溶射被膜を形成できるとともに、純度の高い希土類元素含有化合物溶射用粒子、および該粒子を基材表面に溶射してなる溶射部材を提供することを目的とする。
【0009】
【課題を解決するための手段および発明の実施の形態】
本発明者らは、上記目的を達成するために鋭意検討を行った結果、希土類元素含有化合物溶射用粒子において、平均粒径、分散指数、およびアスペクト比を所定の値に制御し、かつ、粉末形状を多面体形とすること、さらに必要に応じて比表面積、嵩密度、結晶子、ならびに鉄族、アルカリ金属およびアルカリ土類金属元素の各量を所定範囲に制御することで、該溶射用粒子が流動性に優れ、緻密かつ高強度であり、溶射時に崩壊せずに完全に溶解する可能性があることを見いだすとともに、当該溶射用粒子を溶射してなる被膜が、従来の溶射被膜に比べて平滑で高純度になり、密着性および耐食性に優れることを見いだし、本発明を完成した。
【0010】
すなわち、本発明は、
1.希土類元素の水溶性塩の水溶液と蓚酸水溶液とを、遊離酸濃度0.2モル/リットル以上、希土類元素濃度0.1〜1.0モル/リットルに調整した溶液に、濃度1〜30重量%、対希土類元素2〜2.5倍モル量の蓚酸水溶液、および対蓚酸2〜4倍モル量のアンモニア水を撹拌しながら混合した後、蓚酸複塩を晶出させ、その沈殿物及び反応母液を30〜100℃に1〜8時間保持し、次いでろ過により沈殿物を反応母液から分離し、その後不活性ガス雰囲気下または大気中で700〜1,700℃で1〜6時間焼成することにより、蓚酸塩の酸化物への熱分解および酸化物粒内の結晶成長、緻密化を経て造粒工程および粉砕工程を必要とせずに得られ、平均粒径が23〜100μm、分散指数が0.5以下、嵩密度が真密度の0.3倍以上0.47倍以下で、アスペクト比が2以下の多面体形であることを特徴とする希土類元素含有化合物溶射用粒子、
2.比表面積が8.0m2/g以下であることを特徴とする1記載の希土類元素含有化合物溶射用粒子、
3.結晶子が25nm以上であることを特徴とする1または2記載の希土類元素含有化合物溶射用粒子、
4.鉄族元素、アルカリ金属元素、およびアルカリ土類金属元素が酸化物換算でそれぞれ5ppm以下であることを特徴とする1〜3のいずれかの希土類元素含有化合物溶射用粒子、
5.基材と、この基材表面に1〜4のいずれかの希土類元素含有化合物溶射用粒子を溶射してなる被膜と、を備えることを特徴とする溶射部材
を提供する。
【0011】
以下、本発明についてさらに詳しく説明する。
本発明における希土類元素含有化合物としては、希土類元素を含む酸化物、ハロゲン化物(フッ化物、フッ化オキサイド、塩化物)等が挙げられるが、特に焼結して用いる点から、酸化物を用いることが好ましい。以下、酸化物について説明するが、他の化合物に関しても同様である。
希土類元素含有酸化物としては、イットリウム(Y)を含む3A族の希土類元素のうちから1種以上を用いることができるが、特にY、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、およびLuから選ばれる1種または2種以上の重希土類元素含有酸化物を用いることが好ましい。
なお、上記希土類元素含有酸化物とAl、Si、Zr、In等から選ばれる1種以上の金属との複合酸化物を用いてもよい。
【0012】
上記希土類元素含有酸化物は、融点が高く熱伝導度も低いので、その平均粒径を3〜100μmとする必要がある。ここで、平均粒径が3μm未満であると、溶射時のプラズマ炎等の中で蒸発、飛散してしまい、その分だけロスが生じるという問題がある。一方、平均粒径が100μmを超えると、溶射時のプラズマ炎等の中で完全に溶融せずに溶け残り、それが未融着粉となって、密着強度の低下を招く虞がある。より好ましい平均粒径は5〜50μm、特に7〜40μmが好ましい。なお、上記平均粒径とは、レーザー回折法で測定した粒度分布のD50の値である。
【0013】
本発明の希土類元素含有酸化物溶射用粒子は、針状や板状でない立方体を含む正多面体または該形状に近い多面体(本発明では両者を含めて多面体形という)を有し、球状体を含まないものであるとともに、粒度分布の狭いものである。
具体的には、分散指数が0.5以下、アスペクト比が2以下の粒子である。
ここで、分散指数が0.5を超えると、粒度分布がブロードになり、流動性が悪化し、粉体供給時にノズル内で閉塞等を生じることとなる。より好ましい分散指数は0.4以下である。
なお、分散指数とは、下記式で定義されるものである。
分散指数 = (D90−D10)/(D90+D10)
上式において、D10は10vol%での粒径を、D90は90vol%での粒径を示し、ともにレーザー回折法での測定値である。
【0014】
また、上記アスペクト比は、粒子の長径と短径との比、すなわち、長径/短径で表されるものであり、走査型電子顕微鏡写真から求められるものである。
ここで、アスペクト比が2を超えると、形状が正多面体形からかけ離れたものとなり、流動性が悪化することとなる。この場合、アスペクト比の下限値は、特に限定されないが、1により近いものが好ましい。
【0015】
以上において、希土類元素含有酸化物溶射用粒子の比表面積が8.0m2/g以下であることが好ましく、より好ましくは0.1〜4.0m2/g、特に0.1〜1.0m2/gであることが好ましい。
ここで、比表面積が8.0m2/gを超える場合、表面に凹凸が多くなる、すなわち、表面平滑性が悪くなり、流動性が低下する虞がある。
また、嵩密度が真密度の0.3倍以上0.47倍以下であることが好ましい。上記値が0.3倍未満の場合、粒子が緻密ではないために強度が弱くなりがちであり、溶射時に崩壊する虞がある
【0016】
ところで、単結晶粒子は最も緻密であり、多結晶粒子でも粒子を構成する単結晶粒子の粒径が大きいほど緻密であると考えられる。このような粒子を構成する単結晶粒子の粒径を結晶子といい、上記希土類元素含有酸化物溶射用粒子において、当該結晶子が25nm以上であることが好ましく、より好ましくは50nm以上である。結晶子が25nm未満の場合、単結晶粒子の粒径が小さい多結晶粒子であるため、緻密とはいえない場合が多いと考えられる。
なお、結晶子はX線回折のwilson法から求めた値である。このwilson法では、単結晶粒子の粒径がどれだけ大きくても、上記結晶子は0〜100nmの範囲になる。
【0017】
また、上記希土類元素含有酸化物溶射用粒子は、当該溶射用粒子を溶射してなる被膜を有する溶射部材に十分な耐食性を付与することを考慮すると、鉄族元素(Fe,Ni,Co等)、アルカリ金属元素(Na,K等)、およびアルカリ土類金属元素(Mg,Ca等)が酸化物換算でそれぞれ5ppm以下であることが好ましく、より好ましくは、3ppm以下である。これらの各金属元素の量は、少なければ少ないほど好ましいものであるが、通常、その下限値は0.1ppm程度である。
なお、鉄族元素、アルカリ金属元素、アルカリ土類金属元素の測定は、上記希土類元素含有酸化物溶射用粒子を酸分解した後、ICP分光分析(誘導結合高周波プラズマ分光分析)で測定したものである。
【0018】
上記希土類元素含有酸化物溶射用粒子の製造方法は、特に限定されるものではないが、以下のような方法を用いることが好ましい。
まず、希土類元素水溶液(塩化物、硝酸塩、硫酸塩等の水溶性塩の水溶液)と蓚酸水溶液とを、遊離酸濃度0.2モル/リットル以上、希土類元素濃度0.1〜1.0モル/リットルに調整した溶液に、濃度1〜30重量%、対希土類元素2〜2.5倍モル量の蓚酸水溶液、および対蓚酸2〜4倍モル量のアンモニア水を撹拌しながら混合する。ここで、上記各溶液の添加順序は特に限定されるものではない。
【0019】
混合後、蓚酸複塩を晶出させ、その沈殿物及び反応母液を30〜100℃、好ましくは50〜100℃に1〜8時間保持する。次いで、ろ過により沈殿物を反応母液から分離し、水洗する。反応母液に十分な量の温水を加え、その混合物を上で述べた温度範囲に上に述べた時間保持してもよい。沈殿物をろ過により反応母液から分離し、次いで温水に分散し、上記のように加熱し、再度ろ別してもよい。必要に応じて乾燥した後、不活性ガス雰囲気下または大気中で700〜1,700℃、より好ましくは1,200〜1,600℃で、1〜6時間、より好ましくは2〜4時間焼成することにより、蓚酸塩の酸化物への熱分解および酸化物粒内の結晶成長、緻密化を経て多面体形を有する希土類元素含有酸化物溶射用粒子を得る。
【0020】
上記製造方法は、造粒工程および/または粉砕工程を必要としないため、副材料や機器からの汚染物質の混入が少なく、その結果、特に、鉄族元素(Fe,Ni,Co等)、アルカリ金属元素(Na,K等)、アルカリ土類金属元素(Mg,Ca等)が酸化物換算でそれぞれ5ppm以下であるとともに、その他の不純物のない高純度な溶射用粒子を得やすいという特徴を有する。
【0021】
以上説明したように、本発明に係る溶射用粒子は、流動性がよく、搬送チューブ内等で詰まることがないため、安定的かつ連続的に供給でき、しかも、緻密で強度が高いため、溶射時のプラズマ炎中で崩れることがないという特徴を有する。さらに、平均粒径が小さいので、溶射時のプラズマ炎中で完全に溶融する可能性があるとともに、高純度かつ多面体形であるので、当該溶射用粒子からなる被膜の密着強度を高くすることができ、しかも、被膜の表面粗さを細かく(60μm以下)制御することができる。
【0022】
本発明に係る溶射部材は、基材と、この基材表面に上述の希土類元素含有化合物溶射用粒子を溶射してなる被膜と、を備えることを特徴とする。
ここで、基材としては、特に限定はなく、金属、合金、セラミックス、ガラス等を用いることができる。具体的には、金属として、Al、Fe、Si、Ni、Cr、Zn、Zr、およびこれらの合金が挙げられ、セラミックスとしては、アルミナ、窒化アルミ、窒化珪素、炭化珪素、ジルコニア等の金属窒化物、金属炭化物、金属酸化物等が挙げられる。ガラスとしては、石英ガラス等が挙げられる。
【0023】
上記基材表面の被膜の厚さは50〜500μmが好ましく、より好ましくは、150〜300μmである。被膜の厚さが50μm未満であると、当該被膜を有する溶射部材を耐食性部材として使用する場合、わずかの腐食で交換する必要が生じる虞がある。一方、被膜の厚さが500μmを超えると、厚すぎて被膜内部での剥離が生じやすくなる虞がある。
また、溶射部材の用途によって異なるが、被膜の表面粗さが60μm以下であることが好ましく、より好ましくは40μm以下である。表面粗さが60μmを超えると、溶射部材の使用時における発塵の原因となる虞があるとともに、プラズマ接触面積が大きくなるため、耐食性が悪くなる虞があり、腐食の進行によりパーティクルが発生する虞がある。
すなわち、被膜の表面粗さを60μm以下とすることで、良好な耐食性が得られる。したがって、腐食性ガス雰囲気下においても腐食が起こりにくく、当該溶射部材を耐食性部材として好適に使用することができる。
【0024】
本発明の溶射部材は、基材表面に、上述の希土類元素含有化合物溶射用粒子をプラズマ溶射または減圧プラズマ溶射等にて被膜を形成することで得ることができる。ここで、プラズマガスとしては、特に限定されるものではなく、窒素/水素、アルゴン/水素、アルゴン/ヘリウム、アルゴン/窒素等を用いることができる。
なお、溶射条件等については、特に限定はなく、基材、希土類元素含有化合物溶射用粒子等の具体的材質、得られる溶射部材の用途等に応じて適宜設定すればよい。
【0025】
本発明の溶射部材においても、被膜中の鉄族元素、アルカリ金属元素、アルカリ土類金属元素が酸化物換算でそれぞれ5ppm以下であることが好ましいが、これは上述した各金属元素が酸化物換算でそれぞれ5ppm以下の希土類元素含有化合物溶射用粒子を用いて被膜を形成することで達成できる。
すなわち、鉄族元素、アルカリ金属元素、アルカリ土類金属元素がそれぞれ5ppm以上混入している溶射用粒子を用いて被膜を形成した場合、被膜には溶射用粒子に混入しているだけの鉄族元素、アルカリ金属元素、アルカリ土類金属元素がそのまま混入することになるが、上記希土類元素含有化合物溶射用粒子を直接用いることで、このような問題は生じないこととなる。
【0026】
また、被膜中における上記各金属元素が酸化物換算でそれぞれ5ppm以下であれば、汚染が少ないため、当該溶射部材を高純度であることが要求される装置にも問題なく使用することができる。具体的には、液晶製造装置用部材および半導体製造装置用部材等として好適に使用することができる。
【0027】
【実施例】
以下、実施例および比較例を挙げて、本発明をより具体的に説明するが、本発明は、下記の実施例に限定されるものではない。
【0028】
[実施例1]
蓚酸(H224・2H2O)794.3gを純水9.27dm3に溶解し、これに28%アンモニア水900cm3を加えて、撹拌しながら加熱して75℃に保った。
これとは別に、硝酸イッテルビウムと硝酸イットリウムとの混合溶液(Yb濃度0.28mol/dm3、Y濃度0.42mol/dm3、遊離酸濃度1.40mol/dm3)4.29dm3を室温にて調製し、この溶液を、先に調製、温調した蓚酸水溶液に、撹拌下で約1分間かけて注ぎ込んだ。この混合溶液を、さらに温調によって液温72〜75℃に保ちながら、2時間撹拌を続けた。
その後、生じた沈殿をブフナー漏斗でろ別し、純水約15dm3で水洗した。回収した沈殿を2時間風乾した。ろ取した蓚酸塩を、磁器坩堝に入れ、大気中、900℃で2時間焼成し、熱分解させて酸化イッテルビウムと酸化イットリウムとの複合物とした後、さらにアルミナ坩堝に入れて、大気中、1,500℃で2時間焼成し、溶射用粒子を得た。
得られた溶射用粒子の粒径、結晶子等の各物性値について測定し、結果を表1に示した。また、得られた溶射用粒子の電子顕微鏡写真を図1、2に示す。各図に示されるように、酸化物は角状形状(正多面体形)であることがわかる。
【0029】
上記のようにして得られた溶射用粒子を、アルゴン/水素でプラズマ溶射して、アルミニウム合金基板上に膜厚250μmの被膜を形成し、溶射部材を得た。形成した被膜の物性値について測定した値を表2に示す。
なお、表2において、表面粗さRaはJIS B0601に準拠した方法により測定した。
【0030】
[実施例2]
硝酸イッテルビウムと硝酸イットリウムとの混合溶液の代わりに、硝酸イッテルビウム溶液(Yb濃度0.70mol/dm3、遊離酸濃度1.40mol/dm3)を用いた以外は、実施例1と同様にして、溶射用粒子を得た。得られた溶射用粒子の粒径、結晶子等の各物性値について測定した結果を表1に示す。
上記のようにして得られた溶射用粒子をアルゴン/水素でプラズマ溶射し、基材であるアルミニウム合金基板上に膜厚210μmの被膜を形成した。形成した被膜の物性値について測定した結果を表2に示す。
なお、図示は省略するが、実施例2で得られた溶射用粒子も実施例1と同様に角状形状(正多面体形)を示している。
【0031】
[比較例1]
PVA(ポリビニルアルコール)15gを溶かした純水15リットルに、平均粒子径1.2μmの酸化イッテルビウム5kgを分散させてスラリーを作製し、噴霧型造粒機でこのスラリーを噴霧乾燥させて造粒粉を作製した。さらに、この造粒粉を1,600℃で2時間焼成して溶射用粒子とした。
上記、造粒工程によって得られた溶射用粒子の粒径、結晶子等の各物性値について測定した結果を表1に示すが、該粒子は角状ではなかった。
さらに、この溶射用粒子をアルゴン/水素で減圧プラズマ溶射し、基材であるアルミニウム合金基板上に膜厚250μmになるように被膜を形成した。形成した被膜の物性値について測定した結果を表2に示す。
【0032】
【表1】

Figure 0004273292
【0033】
【表2】
Figure 0004273292
【0034】
表1に示されるように、実施例1、2で得られた希土類元素含有酸化物溶射用粒子は、平均粒径が23〜100μmの範囲にあり、かつ、分散指数が0.4以下と小さく、CaO、Fe23、Na2O等の不純物が少なく高純度であり、嵩密度が真密度の0.3倍以上であることがわかる。これに対して、比較例1で得られた希土類元素含有酸化物溶射用粒子は、分散指数が0.52と0.5より大きく、Fe23、Na2O等の不純物があり、嵩密度が真密度の0.3倍未満であることがわかる。
【0035】
また、表2に示されるように、実施例1、2の希土類元素含有酸化物溶射用粒子からなる被膜は、CaO、Fe23、Na2O等の不純物が少なく、高純度が必要とされる用途、例えば、液晶製造装置用部材および半導体製造装置用部材に適していることがわかる。しかも、表面粗さが細かく、腐食性ガス雰囲気(例えばハロゲン系ガスプラズマ)に対する耐食性部材として好適である。
これに対して、比較例1の溶射用粒子からなる被膜は、溶射用粒子に混入している量の鉄族元素、アルカリ金属元素、アルカリ土類金属元素がそのまま混入しており、しかも、表面粗さも73μmと粗いことがわかる。
【0036】
【発明の効果】
以上に述べたように、本発明の希土類元素含有化合物溶射用粒子は、平均粒径が3〜100μm、分散指数が0.5以下、アスペクト比が2以下の多面体形であるため、安定的かつ連続的に供給でき、しかも、溶射時のプラズマ炎中で完全に溶融する可能性があるので、当該溶射用粒子からなる被膜と被溶射材との密着強度を高くすることができる。
【図面の簡単な説明】
【図1】実施例1で得られた希土類元素含有酸化物溶射用粒子の電子顕微鏡写真である。
【図2】実施例1で得られた希土類元素含有酸化物溶射用粒子の電子顕微鏡写真である。[0001]
BACKGROUND OF THE INVENTION
In the present invention, when a rare earth element-containing compound sprayed coating is formed on the surface of a base material such as metal or ceramic using plasma spraying or the like, it contains a rare earth element that has high adhesion and can form a smooth and high-purity sprayed coating. The present invention relates to particles for compound spraying, and a sprayed member using the particles.
[0002]
[Background Art and Problems to be Solved by the Invention]
2. Description of the Related Art Conventionally, a coating is formed by spraying a metal oxide on metal, ceramics or the like to impart heat resistance, wear resistance, and corrosion resistance.
As particles for thermal spraying to form such a thermal spray coating, (1) melt pulverization obtained by adjusting the particle size by melting the raw material in an electric furnace, cooling and solidifying, pulverizing with a pulverizer, and then classifying Powder, (2) After sintering the raw material, pulverized with a pulverizer, and then classified to obtain a sintered pulverized powder obtained by adjusting the particle size. (3) Add the raw material powder to an organic binder to make a slurry, and spray dry Examples thereof include granulated powder obtained by performing particle size adjustment by granulation using a mold granulator, baking, and classification in some cases. Further, members using alumina, silica or the like have been developed as thermal spray members, but it has been difficult to obtain a dense member without particles.
[0003]
In addition, as the characteristics required for the above-mentioned particles for thermal spraying, (1) the material can be stably and quantitatively supplied up to the plasma flame or flame flame at the time of thermal spraying, and (2) the particle shape does not collapse during the supply and thermal spraying. (3) It is required that the particles are completely melted at the time of thermal spraying, and each of these characteristics is quantitatively expressed by a powder physical property value composed of more than ten items.
[0004]
By the way, since the thermal spray particles are supplied to the thermal spray gun through a narrow flow path such as a transfer tube, whether or not the thermal spray particles can be stably and quantitatively supplied is determined. It will be significantly affected by physical properties and fluidity.
However, the melt pulverized powder and sintered pulverized powder obtained by the methods (1) and (2) are sufficient as the strength of the particles, but the shape is irregular and the particle size distribution is wide. Fine particles are generated due to friction between the particles being transferred, and the angle of repose is large and the fluidity is poor. Therefore, there are problems such as blockage in the transfer tube and spray gun, and continuous spraying.
[0005]
As a solution to the problems of each of these pulverized powders, there is a granulated powder obtained by the method of (3) above, that is, a granulated powder having a characteristic of good fluidity because it has a spherical shape or a shape close to a sphere. It has been developed.
Since the powder strength of this granulated powder is determined by the particle size distribution of the raw material particles and the conditions of the sintering process, the powder strength is likely to vary. There is a problem that it is easy to collapse at the time of thermal spraying, and the process for obtaining the granulated powder is complicated, and there are problems that contamination of impurities such as Fe cannot be prevented as the number of processes increases.
[0006]
On the other hand, when thermal spraying particles made of a metal oxide are sprayed, it is necessary to completely melt the thermal spraying particles in a flame flame or plasma flame at the time of thermal spraying in order to form a thermal spray coating having excellent adhesion strength.
However, in the case of granulated powder using a spray type granulator, it is difficult to reduce the average particle size to 20 μm or less. On the other hand, in the case of melt pulverized powder or sintered pulverized powder, spraying with a small average particle size by pulverization. Although the material can be obtained, contamination from a pulverizer or the like has caused contamination of normal particles with an impurity of about several tens of ppm.
[0007]
Thus, since the above-mentioned melt pulverized powder, sintered pulverized powder, and granulated powder have advantages and disadvantages, respectively, there is not necessarily an optimum particle for thermal spraying. In addition, since all three types of powders are contaminated from the pulverization process, granulation process, and classification process, there has been a problem in terms of high purity.
That is, in the molten pulverized powder, sintered pulverized powder, and granulated powder obtained through each of the above steps, impurities such as iron group elements, alkali metal elements, and alkaline earth metal elements are usually mixed in an amount of 20 ppm or more in terms of oxides. Therefore, the thermal spray member having a coating formed by spraying the thermal spraying particles easily corrodes from the impurity portion, and there is a problem that sufficient durability cannot be obtained.
[0008]
The present invention has been made in view of such circumstances, and it is possible to form a thermal spray coating with high adhesion even when a high melting point rare earth element-containing compound is used. Another object of the present invention is to provide a thermal spray member obtained by spraying the particles on the surface of a substrate.
[0009]
Means for Solving the Problem and Embodiment of the Invention
As a result of intensive studies to achieve the above object, the present inventors have controlled the average particle diameter, dispersion index, and aspect ratio to predetermined values in the particles for spraying rare earth element-containing compounds, and powders. By making the shape into a polyhedron, and further controlling the amounts of specific surface area, bulk density, crystallites, and iron group, alkali metal and alkaline earth metal elements within a predetermined range, the particles for thermal spraying can be obtained. Has a high fluidity, is dense and has high strength, and can be completely dissolved without being disintegrated during thermal spraying. As a result, the present invention has been completed by finding that it is smooth and highly pure and has excellent adhesion and corrosion resistance.
[0010]
That is, the present invention
1. A solution prepared by adjusting an aqueous solution of a water-soluble salt of a rare earth element and an aqueous oxalic acid solution to a free acid concentration of 0.2 mol / liter or more and a rare earth element concentration of 0.1 to 1.0 mol / liter is used. , An aqueous solution of oxalic acid in an amount of 2 to 2.5 times the amount of rare earth elements and an aqueous ammonia in an amount of 2 to 4 times the amount of oxalic acid are mixed with stirring, and then a succinic acid double salt is crystallized, and the precipitate and reaction mother liquor Is kept at 30 to 100 ° C. for 1 to 8 hours, and then the precipitate is separated from the reaction mother liquor by filtration, and then calcined at 700 to 1,700 ° C. for 1 to 6 hours in an inert gas atmosphere or in the air. The oxalate is obtained by thermal decomposition into an oxide, crystal growth in the oxide grains, and densification without requiring a granulation step and a pulverization step, an average particle size of 23 to 100 μm, and a dispersion index of 0.1. 5 or less, bulk density is 0.3 times the true density Above 0.47 times or less, rare earth-containing compound particles for thermal spraying, wherein the aspect ratio is 2 or less polyhedral,
2. 2. The rare earth element-containing compound spray particles according to 1, wherein the specific surface area is 8.0 m 2 / g or less,
3. 1 or 2 rare earth element-containing compound spray particles, wherein the crystallite is 25 nm or more,
4). The rare earth element-containing compound spray particles according to any one of 1 to 3, wherein the iron group element, alkali metal element, and alkaline earth metal element are each 5 ppm or less in terms of oxides,
5. There is provided a thermal spray member comprising: a base material; and a coating formed by spraying any one of 1 to 4 rare earth element-containing compound thermal spray particles on the surface of the base material.
[0011]
Hereinafter, the present invention will be described in more detail.
Examples of the rare earth element-containing compound in the present invention include oxides and halides containing rare earth elements (fluorides, fluoride oxides, chlorides) and the like. Is preferred. Hereinafter, the oxide will be described, but the same applies to other compounds.
As the rare earth element-containing oxide, one or more of 3A group rare earth elements including yttrium (Y) can be used. In particular, Y, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb It is preferable to use one or more heavy rare earth element-containing oxides selected from Lu and Lu.
Note that a composite oxide of the rare earth element-containing oxide and one or more metals selected from Al, Si, Zr, In, and the like may be used.
[0012]
Since the rare earth element-containing oxide has a high melting point and low thermal conductivity, the average particle size needs to be 3 to 100 μm. Here, if the average particle size is less than 3 μm, there is a problem that evaporation and scattering occur in a plasma flame at the time of thermal spraying, resulting in a loss. On the other hand, if the average particle size exceeds 100 μm, the melt does not completely melt in the plasma flame during spraying, and remains unfused, which may cause unbonded powder, resulting in a decrease in adhesion strength. A more preferable average particle diameter is 5 to 50 μm, particularly 7 to 40 μm. In addition, the said average particle diameter is the value of D50 of the particle size distribution measured by the laser diffraction method.
[0013]
The rare earth element-containing oxide spray particles of the present invention have a regular polyhedron including a cube that is not needle-like or plate-like or a polyhedron close to the shape (in the present invention, including both) and includes a spherical body. It has no narrow particle size distribution.
Specifically, the particles have a dispersion index of 0.5 or less and an aspect ratio of 2 or less.
Here, when the dispersion index exceeds 0.5, the particle size distribution becomes broad, the fluidity deteriorates, and clogging or the like occurs in the nozzle when supplying the powder. A more preferable dispersion index is 0.4 or less.
The dispersion index is defined by the following formula.
Dispersion index = (D90−D10) / (D90 + D10)
In the above formula, D10 indicates the particle size at 10 vol%, D90 indicates the particle size at 90 vol%, and both are measured values by the laser diffraction method.
[0014]
The aspect ratio is represented by the ratio of the major axis to the minor axis of the particles, that is, the major axis / minor axis, and is obtained from a scanning electron micrograph.
Here, when the aspect ratio exceeds 2, the shape is far from the regular polyhedron shape, and the fluidity is deteriorated. In this case, the lower limit of the aspect ratio is not particularly limited, but is preferably closer to 1.
[0015]
In the above, the specific surface area of the rare earth element-containing oxide spray particles is preferably 8.0 m 2 / g or less, more preferably 0.1 to 4.0 m 2 / g, particularly 0.1 to 1.0 m. 2 / g is preferred.
Here, when the specific surface area exceeds 8.0 m 2 / g, the surface has irregularities, that is, the surface smoothness is deteriorated and the fluidity may be lowered.
Moreover, it is not preferable bulk density is less than 0.47 times 0.3 times the true density. When the above value is less than 0.3 times, the particles tend to be weak because the particles are not dense, and there is a possibility of collapsing during thermal spraying .
[0016]
By the way, the single crystal particles are the most dense, and even the polycrystalline particles are considered to be denser as the particle diameter of the single crystal particles constituting the particles is larger. The particle size of the single crystal particles constituting such particles is called a crystallite. In the rare earth element-containing oxide spraying particles, the crystallite is preferably 25 nm or more, more preferably 50 nm or more. When the crystallite is less than 25 nm, it is considered that the crystallite is often not dense because it is a polycrystalline particle having a small particle size.
The crystallite is a value obtained from the Wilson method of X-ray diffraction. In the Wilson method, the crystallites are in the range of 0 to 100 nm, no matter how large the single crystal particle size is.
[0017]
In addition, the rare earth element-containing oxide spraying particles are iron group elements (Fe, Ni, Co, etc.) in consideration of imparting sufficient corrosion resistance to a sprayed member having a coating formed by spraying the spraying particles. In addition, alkali metal elements (Na, K, etc.) and alkaline earth metal elements (Mg, Ca, etc.) are each preferably 5 ppm or less, more preferably 3 ppm or less in terms of oxides. The smaller the amount of each metal element, the better. However, the lower limit is usually about 0.1 ppm.
The iron group element, alkali metal element, and alkaline earth metal element were measured by ICP spectroscopic analysis (inductively coupled high frequency plasma spectroscopic analysis) after acid decomposition of the rare earth element-containing oxide spray particles. is there.
[0018]
The method for producing the rare earth element-containing oxide spray particles is not particularly limited, but the following method is preferably used.
First, a rare earth element aqueous solution (an aqueous solution of a water-soluble salt such as chloride, nitrate, sulfate, etc.) and an oxalic acid aqueous solution are mixed with a free acid concentration of 0.2 mol / liter or more and a rare earth element concentration of 0.1 to 1.0 mol / liter. A solution adjusted to 1 liter is mixed with stirring with an aqueous solution of oxalic acid having a concentration of 1 to 30% by weight and 2 to 2.5 times the amount of rare earth elements and 2 to 4 times the amount of oxalic acid. Here, the order of adding the above solutions is not particularly limited.
[0019]
After mixing, the oxalic acid double salt is crystallized, and the precipitate and the reaction mother liquor are kept at 30 to 100 ° C., preferably 50 to 100 ° C. for 1 to 8 hours. The precipitate is then separated from the reaction mother liquor by filtration and washed with water. A sufficient amount of warm water may be added to the reaction mother liquor and the mixture may be held in the temperature range described above for the time described above. The precipitate may be separated from the reaction mother liquor by filtration, then dispersed in warm water, heated as described above, and filtered again. After drying as necessary, it is fired at 700 to 1,700 ° C., more preferably at 1,200 to 1,600 ° C. in an inert gas atmosphere or in the air for 1 to 6 hours, more preferably 2 to 4 hours. By doing so, rare earth element-containing oxide spray particles having a polyhedral shape are obtained through thermal decomposition of oxalate into oxide, crystal growth in oxide grains, and densification.
[0020]
Since the above production method does not require a granulation step and / or a pulverization step, there is little contamination of contaminants from secondary materials and equipment. As a result, in particular, iron group elements (Fe, Ni, Co, etc.), alkali Metal elements (Na, K, etc.) and alkaline earth metal elements (Mg, Ca, etc.) are each 5 ppm or less in terms of oxides, and are characterized in that it is easy to obtain high-purity spray particles free from other impurities. .
[0021]
As described above, the particles for thermal spraying according to the present invention have good fluidity and do not clog in the transfer tube etc., so that they can be supplied stably and continuously, and because they are dense and high in strength, It has the characteristic that it does not collapse in the plasma flame of time. Furthermore, since the average particle size is small, it may melt completely in the plasma flame during thermal spraying, and since it has a high purity and a polyhedral shape, it is possible to increase the adhesion strength of the coating composed of the thermal spraying particles. Moreover, the surface roughness of the coating can be finely controlled (60 μm or less).
[0022]
The thermal spray member according to the present invention includes a base material and a coating formed by spraying the above-described rare earth element-containing compound thermal spray particles on the surface of the base material.
Here, there is no limitation in particular as a base material, A metal, an alloy, ceramics, glass, etc. can be used. Specifically, examples of the metal include Al, Fe, Si, Ni, Cr, Zn, Zr, and alloys thereof, and examples of the ceramic include metal nitride such as alumina, aluminum nitride, silicon nitride, silicon carbide, and zirconia. Products, metal carbides, metal oxides and the like. Examples of the glass include quartz glass.
[0023]
The thickness of the coating on the substrate surface is preferably 50 to 500 μm, more preferably 150 to 300 μm. When the thickness of the coating is less than 50 μm, when a thermal spray member having the coating is used as a corrosion-resistant member, it may be necessary to replace it with a slight corrosion. On the other hand, when the thickness of the coating exceeds 500 μm, there is a possibility that peeling inside the coating tends to occur because it is too thick.
Moreover, although it changes with uses of a thermal spray member, it is preferable that the surface roughness of a film is 60 micrometers or less, More preferably, it is 40 micrometers or less. If the surface roughness exceeds 60 μm, it may cause dust generation during use of the thermal spray member, and since the plasma contact area increases, corrosion resistance may be deteriorated, and particles are generated due to the progress of corrosion. There is a fear.
That is, good corrosion resistance is obtained by setting the surface roughness of the coating to 60 μm or less. Therefore, corrosion hardly occurs even in a corrosive gas atmosphere, and the sprayed member can be suitably used as a corrosion-resistant member.
[0024]
The thermal spray member of the present invention can be obtained by forming a coating film on the surface of the base material by plasma spraying or low pressure plasma spraying of the above-mentioned rare earth element-containing compound spraying particles. Here, the plasma gas is not particularly limited, and nitrogen / hydrogen, argon / hydrogen, argon / helium, argon / nitrogen, or the like can be used.
The thermal spraying conditions and the like are not particularly limited, and may be set as appropriate according to the specific material such as the base material, rare earth element-containing compound thermal spraying particles, the use of the obtained thermal spray member, and the like.
[0025]
Also in the thermal spray member of the present invention, it is preferable that the iron group element, alkali metal element, and alkaline earth metal element in the coating are each 5 ppm or less in terms of oxides. Can be achieved by forming a coating using particles for spraying a rare earth element-containing compound of 5 ppm or less.
That is, when a coating is formed using thermal spray particles in which iron group elements, alkali metal elements, and alkaline earth metal elements are mixed in an amount of 5 ppm or more, the iron group is only mixed in the thermal spray particles in the coating. Elements, alkali metal elements, and alkaline earth metal elements are mixed as they are, but such problems are not caused by directly using the rare earth element-containing compound spray particles.
[0026]
Moreover, if each said metal element in a film is each 5 ppm or less in conversion of an oxide, since there is little contamination, the said thermal spray member can be used without a problem also in the apparatus requested | required of high purity. Specifically, it can be suitably used as a member for a liquid crystal manufacturing apparatus and a member for a semiconductor manufacturing apparatus.
[0027]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to the following Example.
[0028]
[Example 1]
794.3 g of oxalic acid (H 2 C 2 O 4 .2H 2 O) was dissolved in 9.27 dm 3 of pure water, and 900 cm 3 of 28% ammonia water was added to this and heated with stirring to 75 ° C. .
Separately, a mixed solution of ytterbium nitrate and yttrium nitrate (Yb concentration 0.28 mol / dm 3, Y concentration 0.42 mol / dm 3, the free acid concentration 1.40 mol / dm 3) of 4.29Dm 3 to room temperature This solution was poured into the previously prepared and adjusted aqueous oxalic acid solution with stirring for about 1 minute. The mixed solution was further stirred for 2 hours while maintaining the liquid temperature at 72 to 75 ° C. by controlling the temperature.
Thereafter, the resulting precipitate was filtered off with a Buchner funnel and washed with pure water of about 15 dm 3 . The collected precipitate was air dried for 2 hours. The filtered oxalate is put in a porcelain crucible, calcined in the atmosphere at 900 ° C. for 2 hours, thermally decomposed to be a composite of ytterbium oxide and yttrium oxide, and further put in an alumina crucible in the atmosphere. Firing was performed at 1,500 ° C. for 2 hours to obtain particles for thermal spraying.
Each physical property value such as the particle size and crystallite of the obtained thermal spraying particles was measured, and the results are shown in Table 1. Moreover, the electron micrograph of the obtained particles for thermal spraying is shown in FIGS. As shown in each figure, it can be seen that the oxide has a square shape (regular polyhedron shape).
[0029]
The spray particles obtained as described above were plasma sprayed with argon / hydrogen to form a 250 μm-thick film on the aluminum alloy substrate to obtain a sprayed member. Table 2 shows the values measured for the physical properties of the formed film.
In Table 2, the surface roughness Ra was measured by a method based on JIS B0601.
[0030]
[Example 2]
Except for using a ytterbium nitrate solution (Yb concentration 0.70 mol / dm 3 , free acid concentration 1.40 mol / dm 3 ) instead of the mixed solution of ytterbium nitrate and yttrium nitrate, Thermal spray particles were obtained. Table 1 shows the measurement results of the physical properties of the obtained thermal spraying particles, such as the particle diameter and crystallites.
The thermal spray particles obtained as described above were plasma sprayed with argon / hydrogen to form a film having a thickness of 210 μm on the aluminum alloy substrate as the base material. Table 2 shows the measurement results of the physical properties of the formed film.
In addition, although illustration is abbreviate | omitted, the particle | grains for thermal spraying obtained in Example 2 also show the square shape (regular polyhedron shape) similarly to Example 1. FIG.
[0031]
[Comparative Example 1]
A slurry is prepared by dispersing 5 kg of ytterbium oxide having an average particle size of 1.2 μm in 15 liters of pure water in which 15 g of PVA (polyvinyl alcohol) is dissolved. Was made. Further, this granulated powder was fired at 1,600 ° C. for 2 hours to obtain particles for thermal spraying.
Table 1 shows the results of measuring the physical properties of the particles for thermal spraying obtained in the granulation step, such as the particle size and crystallites, but the particles were not square.
Further, this thermal spraying particle was subjected to low-pressure plasma spraying with argon / hydrogen to form a coating on the aluminum alloy substrate as a base material so as to have a film thickness of 250 μm. Table 2 shows the measurement results of the physical properties of the formed film.
[0032]
[Table 1]
Figure 0004273292
[0033]
[Table 2]
Figure 0004273292
[0034]
As shown in Table 1, the rare earth element-containing oxide spray particles obtained in Examples 1 and 2 have an average particle size in the range of 23 to 100 μm and a small dispersion index of 0.4 or less. , CaO, Fe 2 O 3 , Na 2 O and the like are few and high purity, and the bulk density is 0.3 times or more the true density. On the other hand, the rare earth element-containing oxide spray particles obtained in Comparative Example 1 have a dispersion index greater than 0.52 and 0.5, have impurities such as Fe 2 O 3 and Na 2 O, It can be seen that the density is less than 0.3 times the true density.
[0035]
Moreover, as shown in Table 2, the coating film made of the rare earth element-containing oxide spray particles of Examples 1 and 2 has few impurities such as CaO, Fe 2 O 3 , and Na 2 O and requires high purity. It can be seen that the present invention is suitable for applications such as liquid crystal manufacturing apparatus members and semiconductor manufacturing apparatus members. Moreover, it has a fine surface roughness and is suitable as a corrosion-resistant member against a corrosive gas atmosphere (for example, halogen-based gas plasma).
On the other hand, the coating composed of the thermal spraying particles of Comparative Example 1 contains the amount of iron group element, alkali metal element, alkaline earth metal element mixed in the thermal spraying particle as it is, and the surface. It can be seen that the roughness is 73 μm.
[0036]
【The invention's effect】
As described above, the particles for spraying a rare earth element-containing compound according to the present invention have a polyhedral shape with an average particle diameter of 3 to 100 μm, a dispersion index of 0.5 or less, and an aspect ratio of 2 or less. Since it can be continuously supplied and may be completely melted in the plasma flame at the time of thermal spraying, the adhesion strength between the coating composed of the particles for thermal spraying and the material to be sprayed can be increased.
[Brief description of the drawings]
1 is an electron micrograph of rare earth element-containing oxide spray particles obtained in Example 1. FIG.
2 is an electron micrograph of rare earth element-containing oxide spray particles obtained in Example 1. FIG.

Claims (5)

希土類元素の水溶性塩の水溶液と蓚酸水溶液とを、遊離酸濃度0.2モル/リットル以上、希土類元素濃度0.1〜1.0モル/リットルに調整した溶液に、濃度1〜30重量%、対希土類元素2〜2.5倍モル量の蓚酸水溶液、および対蓚酸2〜4倍モル量のアンモニア水を撹拌しながら混合した後、蓚酸複塩を晶出させ、その沈殿物及び反応母液を30〜100℃に1〜8時間保持し、次いでろ過により沈殿物を反応母液から分離し、その後不活性ガス雰囲気下または大気中で700〜1,700℃で1〜6時間焼成することにより、蓚酸塩の酸化物への熱分解および酸化物粒内の結晶成長、緻密化を経て造粒工程および粉砕工程を必要とせずに得られ、平均粒径が23〜100μm、分散指数が0.5以下、嵩密度が真密度の0.3倍以上0.47倍以下で、アスペクト比が2以下の多面体形であることを特徴とする希土類元素含有化合物溶射用粒子。A solution prepared by adjusting an aqueous solution of a water-soluble salt of a rare earth element and an aqueous oxalic acid solution to a free acid concentration of 0.2 mol / liter or more and a rare earth element concentration of 0.1 to 1.0 mol / liter is used. , An aqueous solution of oxalic acid in an amount of 2 to 2.5 times the amount of rare earth elements and an aqueous ammonia in an amount of 2 to 4 times the amount of oxalic acid are mixed with stirring, and then a succinic acid double salt is crystallized, and the precipitate and reaction mother liquor Is kept at 30 to 100 ° C. for 1 to 8 hours, and then the precipitate is separated from the reaction mother liquor by filtration, and then calcined at 700 to 1,700 ° C. for 1 to 6 hours in an inert gas atmosphere or in the air. The oxalate is obtained by thermal decomposition into an oxide, crystal growth in the oxide grains, and densification without requiring a granulation step and a pulverization step, an average particle size of 23 to 100 μm, and a dispersion index of 0.1. 5 or less, bulk density is 0.3 times the true density Above 0.47 times or less, rare earth-containing compound particles for thermal spraying, wherein the aspect ratio is 2 or less polyhedral. 比表面積が8.0m2/g以下であることを特徴とする請求項1記載の希土類元素含有化合物溶射用粒子。 2. The rare earth element-containing compound spray particles according to claim 1, wherein the specific surface area is 8.0 m < 2 > / g or less. 結晶子が25nm以上であることを特徴とする請求項1または2記載の希土類元素含有化合物溶射用粒子。  3. The rare earth element-containing compound spray particle according to claim 1, wherein the crystallite is 25 nm or more. 鉄族元素、アルカリ金属元素、およびアルカリ土類金属元素が酸化物換算でそれぞれ5ppm以下であることを特徴とする請求項1乃至3のいずれか1項に記載の希土類元素含有化合物溶射用粒子。  The rare earth element-containing compound spray particles according to any one of claims 1 to 3, wherein an iron group element, an alkali metal element, and an alkaline earth metal element are each 5 ppm or less in terms of oxides. 基材と、この基材表面に請求項1乃至4のいずれか1項に記載の希土類元素含有化合物溶射用粒子を溶射してなる被膜と、を備えることを特徴とする溶射部材。  A thermal spray member comprising: a base material; and a coating formed by spraying the rare earth element-containing compound thermal spraying particles according to any one of claims 1 to 4 on a surface of the base material.
JP2002102205A 2001-04-06 2002-04-04 Thermal spray particles and thermal spray member using the particles Expired - Fee Related JP4273292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002102205A JP4273292B2 (en) 2001-04-06 2002-04-04 Thermal spray particles and thermal spray member using the particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-109163 2001-04-06
JP2001109163 2001-04-06
JP2002102205A JP4273292B2 (en) 2001-04-06 2002-04-04 Thermal spray particles and thermal spray member using the particles

Publications (2)

Publication Number Publication Date
JP2002363725A JP2002363725A (en) 2002-12-18
JP4273292B2 true JP4273292B2 (en) 2009-06-03

Family

ID=26613246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002102205A Expired - Fee Related JP4273292B2 (en) 2001-04-06 2002-04-04 Thermal spray particles and thermal spray member using the particles

Country Status (1)

Country Link
JP (1) JP4273292B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190049830A (en) 2016-09-16 2019-05-09 가부시키가이샤 후지미인코퍼레이티드 Materials for use
KR20190049831A (en) 2016-09-16 2019-05-09 가부시키가이샤 후지미인코퍼레이티드 Materials for use

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4231990B2 (en) * 2001-03-21 2009-03-04 信越化学工業株式会社 Rare earth oxide spray particles and method for producing the same, thermal spray member and corrosion resistant member
JP2006144094A (en) * 2004-11-22 2006-06-08 Fujimi Inc Powder for thermal spraying, and manufacturing method therefor
JP4885445B2 (en) * 2004-12-21 2012-02-29 株式会社フジミインコーポレーテッド Thermal spray powder
JP4985928B2 (en) * 2005-10-21 2012-07-25 信越化学工業株式会社 Multi-layer coated corrosion resistant member
US7968205B2 (en) 2005-10-21 2011-06-28 Shin-Etsu Chemical Co., Ltd. Corrosion resistant multilayer member
JP4630799B2 (en) * 2005-11-02 2011-02-09 株式会社フジミインコーポレーテッド Thermal spray powder and method of forming thermal spray coating
JP4905697B2 (en) * 2006-04-20 2012-03-28 信越化学工業株式会社 Conductive plasma resistant material
KR101344990B1 (en) 2006-04-20 2013-12-24 신에쓰 가가꾸 고교 가부시끼가이샤 Conductive, plasma-resistant member
WO2007132028A1 (en) * 2006-05-12 2007-11-22 Fundacion Inasmet Method for obtaining ceramic coatings and ceramic coatings obtained
JP2008115407A (en) * 2006-10-31 2008-05-22 Fujimi Inc Thermal-spraying powder and method for depositing sprayed coating
JP5159204B2 (en) * 2006-10-31 2013-03-06 株式会社フジミインコーポレーテッド Thermal spray powder, thermal spray coating formation method, plasma resistant member, and plasma processing chamber
JP2011017078A (en) * 2009-06-10 2011-01-27 Denso Corp Method for forming thermal splay coating
JP5527884B2 (en) * 2009-12-28 2014-06-25 コバレントマテリアル株式会社 Thermal spray powder
JP6281507B2 (en) * 2015-03-03 2018-02-21 信越化学工業株式会社 Rare earth element oxyfluoride powder sprayed material and method for producing rare earth element oxyfluoride sprayed member

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3837782A1 (en) * 1988-11-08 1990-05-10 Starck Hermann C Fa OXYGENOUS MOLYBDAEN METAL POWDER AND METHOD FOR THE PRODUCTION THEREOF
JPH0832554B2 (en) * 1989-06-16 1996-03-29 信越化学工業株式会社 Method for producing rare earth oxide powder
JPH05320860A (en) * 1992-05-18 1993-12-07 Tosoh Corp Zirconia powder for thermal spraying
JPH0665706A (en) * 1992-08-19 1994-03-08 Tosoh Corp Ziconia powder for thermal spraying
JPH06142822A (en) * 1992-11-09 1994-05-24 Kawasaki Steel Corp Production of casting mold for casting high melting active metal
JP3009814B2 (en) * 1993-12-27 2000-02-14 黒崎窯業株式会社 Alumina-titania sprayed material
JPH08119632A (en) * 1994-10-25 1996-05-14 Shin Etsu Chem Co Ltd Production of hydroxide of rare earth element and production of oxide of rare earth element
JPH08311635A (en) * 1995-05-12 1996-11-26 Sumitomo Metal Mining Co Ltd Tungsten carbide-base cermet powder for high-speed powder flame spraying
JP2000001362A (en) * 1998-06-10 2000-01-07 Nippon Seratekku:Kk Corrosion resistant ceramic material
JP2000239066A (en) * 1999-02-22 2000-09-05 Kyocera Corp Corrosionproof member and its production, and member for plasma treatment device using the same
JP3672833B2 (en) * 2000-06-29 2005-07-20 信越化学工業株式会社 Thermal spray powder and thermal spray coating
JP4044348B2 (en) * 2001-03-08 2008-02-06 信越化学工業株式会社 Spherical particles for thermal spraying and thermal spraying member
JP4231990B2 (en) * 2001-03-21 2009-03-04 信越化学工業株式会社 Rare earth oxide spray particles and method for producing the same, thermal spray member and corrosion resistant member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190049830A (en) 2016-09-16 2019-05-09 가부시키가이샤 후지미인코퍼레이티드 Materials for use
KR20190049831A (en) 2016-09-16 2019-05-09 가부시키가이샤 후지미인코퍼레이티드 Materials for use
US11306383B2 (en) 2016-09-16 2022-04-19 Fujimi Incorporated Thermal spraying material
US11359270B2 (en) 2016-09-16 2022-06-14 Fujimi Incorporated Thermal spraying matertal

Also Published As

Publication number Publication date
JP2002363725A (en) 2002-12-18

Similar Documents

Publication Publication Date Title
US6596397B2 (en) Thermal spray particles and sprayed components
JP4273292B2 (en) Thermal spray particles and thermal spray member using the particles
TW593761B (en) Method for thermal spray coating and rare earth oxide powder used therefor
EP1239055B1 (en) Thermal spray spherical particles, and sprayed components
JP4231990B2 (en) Rare earth oxide spray particles and method for producing the same, thermal spray member and corrosion resistant member
JP4044348B2 (en) Spherical particles for thermal spraying and thermal spraying member
JP3672833B2 (en) Thermal spray powder and thermal spray coating
JPH07187612A (en) Multiple metal oxide powder and its production
US7837967B2 (en) Thermal spray powder and method for forming thermal spray coating
JP2006037238A (en) Method for producing spherical particle for thermal spraying
JP3523216B2 (en) Rare earth-containing compound particles for thermal spraying, thermal spraying member sprayed with the same
EP1243666B1 (en) Thermal spray rare earth oxide particles, sprayed components and corrosion resistant components
CN114045455B (en) Yttrium thermal spray coating film using yttrium particle powder and method for producing same
JP6926096B2 (en) Material for thermal spraying
JP5702279B2 (en) Method for producing glass frit powder using aerosol decomposition
JP2005170760A (en) Fine particle and method of manufacturing the same
TW200811050A (en) Zirconium oxide powder, manufacturing method thereof and material for thermal spraying
JP2005097747A (en) Thermal-spraying powder and thermal-sprayed film
JP2006144094A (en) Powder for thermal spraying, and manufacturing method therefor
JPH07187817A (en) Material for thermal spraying and its production
JPH07206434A (en) Alpha-alumina powder for sintered compact and its sintered compact
CN115443253A (en) Powder for film formation or sintering
Toplan et al. Powder Production Technology for Thermal Spraying
JPH10245229A (en) Production of chromium oxide powder excellent in thermal spraying characteristic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090204

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090217

R150 Certificate of patent or registration of utility model

Ref document number: 4273292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150313

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees