JPH0665706A - Ziconia powder for thermal spraying - Google Patents

Ziconia powder for thermal spraying

Info

Publication number
JPH0665706A
JPH0665706A JP4241397A JP24139792A JPH0665706A JP H0665706 A JPH0665706 A JP H0665706A JP 4241397 A JP4241397 A JP 4241397A JP 24139792 A JP24139792 A JP 24139792A JP H0665706 A JPH0665706 A JP H0665706A
Authority
JP
Japan
Prior art keywords
powder
spraying
oxide
thermal spraying
zirconia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4241397A
Other languages
Japanese (ja)
Inventor
Hiroyuki Matsumura
浩行 松村
Toshihiko Arakawa
敏彦 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP4241397A priority Critical patent/JPH0665706A/en
Publication of JPH0665706A publication Critical patent/JPH0665706A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To provide a zirconia powder for thermally spraying the grains of which can be easily molten when used for not only plasma thermal spraying but gas flame spraying, are hardly broken by the carrier gas during thermal spraying, have good fluidity, hardly cause clogging in a tube or supply failure, and can form a thermal spray film having excellent heat resistance, hardness, wear resistance, corrosion resistance, and conductivity, etc. CONSTITUTION:The powder essentially consists of zirconium oxide, yttrium oxide and aluminum oxide having <=1500Angstrom grain size and 1.5/98.5 to 12/88 Y2O3/ZrO2 molar ratio. The proportion of Al2O3 to the sum of zirconium oxide and yttrium oxide is 10.5-19.5wt.%, and the proportion of SiO2 to the sum of zirconium oxide and yttrium oxide is <=0.01wt.%. The average squeezing strength of the grain is >=0.10kgf/mm<2>.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶射用ジルコニア粉末
に関するものである。
FIELD OF THE INVENTION The present invention relates to zirconia powder for thermal spraying.

【0002】[0002]

【従来の技術】一般的に、高純度の溶射用ジルコニア粉
末は、サブミクロンの粉末を10〜100μmの大きさ
に造粒したものが内径2mm以下のパウダーチューブを
通って溶射ガンに供給され、窒素、アルゴン、水素、ヘ
リウムなどのプラズマ炎を熱源とするプラズマ溶射に使
用されている。酸素、アセチレンなどの燃焼炎を熱源と
するガスフレ−ム溶射、ア−ク溶射、爆発溶射などに使
用されないのは、それらの燃焼炎の温度が約3000℃
であって融点2500〜2700℃のジルコニアを溶融
するのに低すぎるからである。そこで安定化ジルコニア
の融点より低い融点を持つ酸化アルミニウムなどの微粒
子酸化物を1〜10wt%添加結合させ、爆発溶射法で
溶射する方法が特開昭63−241152号において提
案されている。
2. Description of the Related Art Generally, high-purity zirconia powder for thermal spraying is prepared by granulating submicron powder to a size of 10 to 100 μm through a powder tube having an inner diameter of 2 mm or less, and then supplied to a thermal spray gun. It is used for plasma spraying with a plasma flame such as nitrogen, argon, hydrogen, or helium as a heat source. Not used for gas flame spraying, arc spraying, explosive spraying, etc. where combustion flames of oxygen, acetylene, etc. are used as heat sources, the temperature of those combustion flames is about 3000 ° C.
This is because it is too low to melt zirconia having a melting point of 2500 to 2700 ° C. Therefore, Japanese Patent Laid-Open No. 63-241152 proposes a method in which 1 to 10 wt% of a fine particle oxide such as aluminum oxide having a melting point lower than that of stabilized zirconia is added and bonded, and thermal spraying is performed by an explosive spraying method.

【0003】また、アルミニウム合金母材とセラミック
溶射層との熱膨張係数の差によるセラミック溶射層の剥
離や脱落防止の手段として、Ni−Cr−Al合金など
を下地溶射する代わりに、ジルコニア系材料に酸化アル
ミニウムを20〜50wt%混合し、溶射後表面を加熱
してγ−Alからα−Alに変態させ、溶
射層中にクラックを発生させて剥離や脱落を防止させる
方法が特開平1−188659号において提案されてい
る。
As a means for preventing the ceramic sprayed layer from peeling off or falling off due to the difference in thermal expansion coefficient between the aluminum alloy base material and the ceramic sprayed layer, instead of undercoating a Ni-Cr-Al alloy or the like, a zirconia-based material is used. Aluminum oxide is mixed in an amount of 20 to 50 wt% and the surface is heated after thermal spraying to transform γ-Al 2 O 3 into α-Al 2 O 3 to generate cracks in the thermal sprayed layer and prevent peeling or falling off. A method is proposed in JP-A-1-18859.

【0004】[0004]

【発明が解決しようとする課題】前述の特開昭63−2
41152号の方法では、安定化ジルコニアに該安定化
ジルコニアよりも融点が低く、かつ粒径が小さい微粒子
酸化物を1〜10wt%添加し焼結結合させ爆発溶射で
溶射している。しかし、酸化アルミニウムとして10w
t%以下の添加量でガスフレーム溶射した場合、酸素や
アセチレンのガス圧力や流量が多いと未溶融で溶射層に
残存したり、皮膜が形成されないことがある。特開平1
−188659号の方法では、酸化アルミニウムとして
20wt%未満であれば分散量が少なく充分に熱応力を
緩和する効果がなく、50wt%以上であるとクラック
の発生数が多くなり溶射層が脆くなるとある。しかし、
20wt%以上の添加量でガスフレーム溶射した場
合、ジルコニアに対する酸化アルミニウムの添加量が多
くなればなるほど母材への付着効率が悪くなり、耐熱
性、硬度、耐摩耗性、強度、耐食性などに優れた皮膜が
得られない。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In the method of No. 41152, 1 to 10 wt% of fine particle oxide having a lower melting point and a smaller particle size than that of the stabilized zirconia is added to the stabilized zirconia, and the particles are sintered and bonded to each other and are sprayed by explosive spraying. However, 10w as aluminum oxide
When gas flame spraying is performed with an addition amount of t% or less, if the gas pressure or flow rate of oxygen or acetylene is high, it may remain unmelted and remain in the sprayed layer, or a film may not be formed. JP-A-1
According to the method of -188659, if the amount of aluminum oxide is less than 20% by weight, the amount of dispersion is small and the effect of relaxing thermal stress is not sufficient, and if it is 50% by weight or more, the number of cracks increases and the thermal spray layer becomes brittle. . But,
When gas flame spraying is performed with an addition amount of 20 wt% or more, as the addition amount of aluminum oxide with respect to zirconia increases, the adhesion efficiency to the base material becomes poorer and the heat resistance, hardness, wear resistance, strength, corrosion resistance, etc. are excellent. Film cannot be obtained.

【0005】一般に、プラズマ溶射の場合、有毒ガスを
発生させやすい、プラズマからの紫外線が強い、粉塵が
発生しやすい、溶射設備を手軽に持ち運びできないなど
の問題がある。また、理由は明らかでないが、一般に、
得られた皮膜の耐食性は、プラズマ溶射によるものより
もガスフレーム溶射によるもののほうが優れている。と
は言え、ジルコニアは上記のとおり融点が高いので、そ
の粉末をフレーム溶射などに適用すると、充分溶融せ
ず、一部未溶融状態で被覆されるべき母材に吹き付けら
れ、それによって気孔、特に貫通気孔を持つ皮膜とな
り、あるいは皮膜自体の粒子間の結合力や母材との結合
力が弱いものとなって、耐食性、耐摩耗性、耐熱性など
皮膜特性に問題を生じる。
Generally, in plasma spraying, there are problems that toxic gas is easily generated, ultraviolet rays from plasma are strong, dust is easily generated, and spraying equipment cannot be carried easily. Also, although the reason is not clear, in general,
The corrosion resistance of the resulting coating is better with gas flame spraying than with plasma spraying. However, since zirconia has a high melting point as described above, when the powder is applied to flame spraying or the like, it is not sufficiently melted and is sprayed on the base material to be coated in a partially unmelted state, whereby pores, especially The film has through-pores, or the bond strength between particles of the film itself or the bond strength with the base material becomes weak, which causes problems in the film characteristics such as corrosion resistance, abrasion resistance, and heat resistance.

【0006】また、ジルコニア粉末は、微細であるほど
粉末同士のあるいはそれと器壁との摩擦による静電気の
発生が激しくなる。造粒し分級しただけの粉末は軟らか
いので、内径2mm以下の供給チュ−ブ内で搬送ガスに
よって壊れ、微粉が生成し、帯電することとなり、それ
によって、微粉が造粒粉末の表面に付着し、さらに、チ
ュ−ブ内に滞積し閉塞現象や供給不良を生じる。この供
給がスム−ズに行われないと、いかなる溶射方法を用い
ても、溶射層における粒界、結晶粒および気孔から構成
されている積層が不均質になり、かつ1回当たりの皮膜
厚みが不均一になる。このような現象が生じると、製品
の耐熱性、硬度、耐摩耗性、強度、耐食性などに悪影響
がでてくる。
Further, the finer the zirconia powder is, the more the static electricity is generated due to the friction between the powders or the friction between the powder and the container wall. Since the powder that has just been granulated and classified is soft, it will be broken by the carrier gas in the supply tube with an inner diameter of 2 mm or less, and fine powder will be generated and electrified, whereby the fine powder will adhere to the surface of the granulated powder. In addition, the tube accumulates, causing a blocking phenomenon and poor supply. If this supply is not carried out smoothly, no matter which spraying method is used, the layered structure composed of grain boundaries, crystal grains and pores in the sprayed layer becomes inhomogeneous, and the coating thickness per operation is not uniform. It becomes uneven. When such a phenomenon occurs, the heat resistance, hardness, wear resistance, strength, corrosion resistance, etc. of the product are adversely affected.

【0007】また、部分安定化ジルコニアの溶射皮膜
は、酸化アルミニウムのそれに比べて、酸性の液やガス
の雰囲気における耐食性が劣る。例えば、30wt%H
SO溶液中にYで部分安定化させたジルコニ
ア溶射皮膜を浸漬させると、相転移により単斜晶が増加
し強度などが落ちる。一方、安定化ジルコニアの溶射皮
膜は、相転移を起こさず、しかも導電性など電気特性に
優れているが、機械的強度が低い。
Further, the partially stabilized zirconia sprayed coating is inferior in corrosion resistance to an acidic liquid or gas atmosphere as compared with that of aluminum oxide. For example, 30 wt% H
When a zirconia sprayed coating partially stabilized with Y 2 O 3 is immersed in a 2 SO 4 solution, monoclinic crystals increase due to the phase transition and the strength and the like decrease. On the other hand, the thermal spray coating of stabilized zirconia does not cause phase transition and is excellent in electrical properties such as conductivity, but has low mechanical strength.

【0008】これらの問題は、微粒子で純度がよい粉末
を用いて、従来のように粉末を分級調整や熱処理し、溶
射皮膜を形成させただけでは、解決されない。つまり、
耐熱性、硬度、耐摩耗性、耐食性、導電性など全ての面
で優れたジルコニア溶射皮膜を得ることは難しい。
These problems cannot be solved only by using a fine powder having a high purity and subjecting the powder to classification and heat treatment to form a thermal spray coating as in the conventional case. That is,
It is difficult to obtain a zirconia sprayed coating excellent in all aspects such as heat resistance, hardness, wear resistance, corrosion resistance, and conductivity.

【0009】本発明は、これらの問題の解決された、す
なわちプラズマ溶射法はもとよりガスフレ−ム溶射に適
用しても顆粒が溶融しやすく、しかも、搬送ガスによっ
て壊されにくく、流動性がよく、チューブ内で閉塞現象
や供給不良を生じることなく、かつ耐熱性、硬度、耐摩
耗性、耐食性、強度、導電性などに優れた溶射皮膜をつ
くりうる溶射用ジルコニア粉末の提供を目的とするもの
である。
The present invention has solved these problems, that is, the granules are easily melted not only by the plasma spraying method but also by the gas flame spraying, and moreover, the granules are less likely to be broken by the carrier gas and have good fluidity. The object is to provide a zirconia powder for thermal spraying capable of forming a thermal spray coating excellent in heat resistance, hardness, wear resistance, corrosion resistance, strength, conductivity, etc. without causing a blockage phenomenon or supply failure in the tube. is there.

【0010】[0010]

【課題を解決するための手段】本発明は、主として結晶
子径1500A以下の酸化ジルコニウム、酸化イットリ
ウムおよび酸化アルミニウムからなり、Y/Zr
モル比が1.5/98.5〜12/88の範囲であ
り、酸化ジルコニウムと酸化イットリウムとの合計に対
するAlの量が10.5〜19.5wt%であ
り、酸化ジルコニウムと酸化イットリウムとの合計に対
するSiOの量が0.01wt%以下であり、かつ、
平均顆粒圧壊強度が0.10kgf/mm以上である
溶射用ジルコニア粉末、を要旨とするものである。
The present invention is mainly composed of zirconium oxide having a crystallite size of 1500 A or less, yttrium oxide, and aluminum oxide, and is composed of Y 2 O 3 / Zr.
The O 2 molar ratio is in the range of 1.5 / 98.5 to 12/88, the amount of Al 2 O 3 is 10.5 to 19.5 wt% with respect to the total of zirconium oxide and yttrium oxide, and zirconium oxide. And the amount of SiO 2 with respect to the total of yttrium oxide and 0.01 wt% or less, and
The essence is zirconia powder for thermal spraying, which has an average granule crushing strength of 0.10 kgf / mm 2 or more.

【0011】Y/ZrOのモル比は、1.5/
98.5〜12/88の範囲でなければならず、特に
2.5/97.5〜10/90の範囲がよい。この比が
1.5/98.5未満では、高温下あるいは応力下での
正方晶と単斜晶の相転移が起こりやすくなり、溶射皮膜
の靭性や機械的強度が低くなる。一方、Yの添加
量が8/92〜12/88の範囲に導電率のピークがあ
り、12/88を超えると逆に導電率が低くなってい
く。
The molar ratio of Y 2 O 3 / ZrO 2 is 1.5 /
It should be in the range of 98.5 to 12/88, and particularly preferably in the range of 2.5 / 97.5 to 10/90. If this ratio is less than 1.5 / 98.5, a tetragonal and monoclinic phase transition easily occurs at high temperature or under stress, and the toughness and mechanical strength of the thermal spray coating are reduced. On the other hand, there is a conductivity peak in the range where the amount of Y 2 O 3 added is in the range of 8/92 to 12/88, and when it exceeds 12/88, the conductivity decreases conversely.

【0012】Alの含有量は、ZrOとY
との合計に対して(以下、とくにことわらないかぎ
り、Alの含有量はZrOとYとの合計
に対するものとする)10.5〜19.5wt%、好ま
しくは12.O〜18.Owt%でなければならない。
これが10.0wt%以下では酸素やアセチレンのガス
圧力や流量が多いと未溶融で溶射層に残存したり、皮膜
が形成されないことがある。特に5.0wt%以下では
この傾向が顕著に現れる。部分安定化領域あるいは安定
化領域を問わず20.0wt%以上の添加量でガスフレ
ーム溶射した場合、ジルコニアに対する酸化アルミニウ
ムの添加量が多くなればなるほど母材への付着効率が悪
くなる。特に30.0wt%を越えるとこの傾向が顕著
になる。一方、部分安定化領域ではAl無添加と
比較して1〜10.0wt%の領域では添加量が増加す
るほど皮膜の導電性が低下し、10.0wt%を越えて
くると逆に導電性が向上してくる。また、安定化領域で
は、Alとして13.0〜15.0wt%の範囲
に機械的強度および導電率のピークがある。
The contents of Al 2 O 3 are ZrO 2 and Y 2 O.
3 with respect to the sum of (hereinafter, unless otherwise specified particularly, the content of Al 2 O 3 is assumed to the total of ZrO 2 and Y 2 O 3) 10.5~19.5wt%, preferably 12. O-18. Must be Owt%.
If it is 10.0 wt% or less, if the gas pressure or flow rate of oxygen or acetylene is high, it may remain unmelted and remain in the sprayed layer, or a film may not be formed. This tendency is particularly noticeable at 5.0 wt% or less. When the gas flame spraying is performed with an addition amount of 20.0 wt% or more regardless of the partial stabilization region or the stabilization region, the adhesion efficiency to the base material becomes worse as the addition amount of aluminum oxide to zirconia increases. This tendency becomes remarkable especially when the content exceeds 30.0 wt%. On the other hand, in the partially stabilized region, the conductivity of the film decreases as the amount of addition increases in the region of 1 to 10.0 wt% as compared with the case where Al 2 O 3 is not added, and when it exceeds 10.0 wt%, it is reversed. The conductivity is improved. Further, in the stabilized region, Al 2 O 3 has peaks of mechanical strength and conductivity in the range of 13.0 to 15.0 wt%.

【0013】耐食性については、部分安定化領域では、
Al0.05wt%未満では30wt%濃度のH
SO中などで皮膜の正方晶が単斜晶に転移するのを
抑制する効果が不十分であり、Al0.05wt
%以上にして十分な耐食性を備えることになる。一方、
Al1.0wt%を超えても1.0wt%未満の
場合にくらべて耐食性がそれほど向上しない。もっと
も、安定化領域では、Alの含有量に係わりなく
相転移の問題はない。
Regarding the corrosion resistance, in the partially stabilized region,
When Al 2 O 3 is less than 0.05 wt%, H of 30 wt% concentration
The effect of suppressing the transition of the tetragonal crystal of the film to the monoclinic crystal in 2 SO 4 is insufficient, and Al 2 O 3 0.05 wt
% Or more to provide sufficient corrosion resistance. on the other hand,
Even if Al 2 O 3 exceeds 1.0 wt%, the corrosion resistance is not so improved as compared with the case of less than 1.0 wt%. However, in the stabilization region, there is no problem of phase transition regardless of the content of Al 2 O 3 .

【0014】SiOは、粒界でガラス層を形成し、酸
素イオンの移動を阻害するが、0.01wt%以下であ
れば共存するAlによってガラス層の形成が抑制
される。
SiO 2 forms a glass layer at the grain boundary and inhibits the movement of oxygen ions, but if it is 0.01 wt% or less, the coexisting Al 2 O 3 suppresses the formation of the glass layer.

【0015】ジルコニア粉末の結晶子径は、1500A
以下でなければならない。結晶子径が1500Aを超え
ると、粉末粒子同士でネック焼結していることがあり、
溶射時の流動性が悪くなり、前記の皮膜の積層や厚みが
不均一となるなどの障害を起こすからである。
The crystallite size of the zirconia powder is 1500 A
Must be: If the crystallite diameter exceeds 1500 A, powder particles may be neck-sintered with each other,
This is because the fluidity at the time of thermal spraying is deteriorated, which causes problems such as non-uniformity of the film stacking and thickness.

【0016】平均顆粒圧壊強度は、0.10kgf/m
以上でなければならない。それが0.10kgf/
mmに満たないと、溶射に使用する際、搬送ガス中で
顆粒が壊れ、前記の閉塞などの障害を起こすからであ
る。
The average granule crushing strength is 0.10 kgf / m.
Must be at least m 2 . That is 0.10 kgf /
This is because if it is less than mm 2 , the granules are broken in the carrier gas when used for thermal spraying, causing the above-mentioned obstruction such as clogging.

【0017】このような条件を満足するジルコニア粉末
は、噴霧乾燥法、転動造粒法、流動造粒法、攪拌造粒法
などによって製造することができる。例えば、イットリ
ウム化合物を含むジルコニウム塩を中和しあるいは加水
分解してジルコニア水和ゾルを得、これを噴霧乾燥して
顆粒状のゲルとし、600〜1200℃で仮焼してY
が固溶したジルコニアを得、これにAlを添
加し、湿式粉砕混合後、増粘剤などを用いて500〜3
000cpに粘度調整し、大気中で造粒したのち乾燥す
るか乾燥したのち造粒し、1500℃以下で焼成あるい
は乾燥することによって製造することができる。
Zirconia powder satisfying such conditions can be produced by a spray drying method, a tumbling granulation method, a fluidized granulation method, a stirring granulation method, or the like. For example, a zirconium salt containing an yttrium compound is neutralized or hydrolyzed to obtain a zirconia hydrated sol, which is spray-dried to give a granular gel, which is calcined at 600 to 1200 ° C. to obtain Y 2
Zirconia in which O 3 is solid-dissolved is obtained, Al 2 O 3 is added thereto, wet pulverization and mixing are performed, and then 500 to 3 using a thickener or the like.
It can be produced by adjusting the viscosity to 000 cp, granulating in the air and then drying or drying and then granulating and firing or drying at 1500 ° C. or less.

【0018】上記のジルコニウム塩は、水溶性であれば
いかなるものでもよく、例えば、オキシ塩化ジルコニウ
ム、塩化ジルコニウム、硝酸ジルコニウム、硫酸ジルコ
ニウムなどがある。ジルコニウム塩の水溶液にイットリ
ウム化合物を添加する時期は、中和法の場合は中和前が
よく、加水分解法の場合は前後どちらも可能であるが、
加水分解の前のほうがよい。添加する形態としては、酸
化物あるいは焼成によって酸化物となる塩、水和酸化
物、水酸化物またはそれらの混合物がある。また、加水
分解を行う前に、該水溶性ジルコニウム塩水溶液に水和
ジルコニア、酸化ジルコニウム粒子などを添加すれば、
加水分解時間を短縮することができる。また、加水分解
終了後に、後工程の生産性を向上させるために加水分解
終了液を濃縮してもよい。上記のようにYが固溶
したジルコニアにAlを添加することにより本発
明の溶射用ジルコニア粉末を製造することができるが、
Al源の添加時期は、それに限る必要はない。例
えば、中和法の場合はむしろ中和前がよく、加水分解法
の場合は前後どちらにしても格別の違いはないが、どち
らかといえば加水分解の前がよい。Al源も、上
記のY源と同じく、酸化物のほか塩、水和酸化
物、水酸化物またはそれらの混合物でもかまわない。酸
化物として添加する場合は、粉末粒子径は5μm以下の
ものが好ましい。
The zirconium salt may be any water-soluble one, and examples thereof include zirconium oxychloride, zirconium chloride, zirconium nitrate and zirconium sulfate. The yttrium compound may be added to the aqueous solution of the zirconium salt before the neutralization in the case of the neutralization method and before or after the hydrolysis method.
Better before hydrolysis. The form of addition is an oxide or a salt which becomes an oxide by firing, a hydrated oxide, a hydroxide or a mixture thereof. Moreover, if hydrated zirconia, zirconium oxide particles, etc. are added to the water-soluble zirconium salt aqueous solution before the hydrolysis,
The hydrolysis time can be shortened. In addition, after completion of hydrolysis, the hydrolysis-completed liquid may be concentrated in order to improve productivity in the subsequent step. Although the zirconia powder for thermal spraying of the present invention can be produced by adding Al 2 O 3 to zirconia in which Y 2 O 3 is solid-dissolved as described above,
The timing of adding the Al 2 O 3 source need not be limited to that. For example, in the case of the neutralization method, it is rather before neutralization, and in the case of the hydrolysis method, there is no particular difference between before and after, but rather before hydrolysis. The Al 2 O 3 source may be an oxide as well as a salt, a hydrated oxide, a hydroxide, or a mixture thereof, like the Y 2 O 3 source. When added as an oxide, the powder particle size is preferably 5 μm or less.

【0019】上記の水和ジルコニアゾルを乾燥し、ゲル
粉末を得る場合は、加水分解終了後直ちに乾燥しても濃
縮後に乾燥してもよく、更に加水分解終了後や濃縮後に
pH調整した後に乾燥してもよい。水和ジルコニアゾル
を乾燥し、造粒ゲル粉末を得る方法としては、噴霧乾燥
方法を用いることが好ましく、中でも流動性の向上のた
めに、回転ディスク方式がとくに好ましい。噴霧乾燥時
の熱風温度は、50〜300℃がよく、95〜200℃
がより好ましい。
When the above-mentioned hydrated zirconia sol is dried to obtain a gel powder, it may be dried immediately after completion of hydrolysis or after concentration, and may be further dried after completion of hydrolysis or after pH adjustment. You may. As a method for obtaining a granulated gel powder by drying the hydrated zirconia sol, it is preferable to use a spray drying method, and among them, a rotating disk method is particularly preferable for improving fluidity. The temperature of hot air during spray drying is preferably 50 to 300 ° C, 95 to 200 ° C.
Is more preferable.

【0020】造粒ゲル粉末を仮焼する方法としては、連
続、バッチ方式を問わず、一般的には、電気炉やガス炉
を用いることが多いが、回転ディスクにより、水和ジル
コニアゾルを噴霧しながら、乾燥−仮焼を同時に行う方
式を用いることもできる。
As a method for calcining the granulated gel powder, regardless of continuous or batch system, generally an electric furnace or a gas furnace is often used, but a rotating disk is used to spray hydrated zirconia sol. However, it is also possible to use a method of simultaneously performing drying and calcination.

【0021】造粒ゲル粉末の仮焼は、中和法、加水分解
法いずれによるものも、500〜1200℃、保持時間
は、15分〜10時間程度の条件で行うのが好ましい。
皮膜の必要としている特性により仮焼温度を変え、目的
に合った溶射粉末を得ることができる。
The calcination of the granulated gel powder, whether by the neutralization method or the hydrolysis method, is preferably carried out at 500 to 1200 ° C. and the holding time is about 15 minutes to 10 hours.
The calcination temperature can be changed according to the required characteristics of the coating to obtain a thermal spray powder suitable for the purpose.

【0022】ジルコニア粉末に、Alを添加し、
湿式粉砕混合するのに使用する粉砕機としては、ボ−ル
ミル、振動ボ−ルミル、アトリッションミルなどの湿式
粉砕機が好ましく、その際の粉砕媒体としては、ジルコ
ニアあるいはアルミナ製が好ましい。粉砕後のスラリ−
濃度は、経済性も考えて25wt%以上とするのが好ま
しい。
Al 2 O 3 was added to the zirconia powder,
The pulverizer used for wet pulverizing and mixing is preferably a wet pulverizer such as a ball mill, a vibrating ball mill or an attrition mill, and the pulverizing medium in that case is preferably zirconia or alumina. Slurry after crushing
The concentration is preferably 25 wt% or more in consideration of economy.

【0023】ジルコニアスラリ−を増粘剤などを用いて
粘度500〜3000cpの範囲に粘度調整を行い、造
粒乾燥し、造粒乾燥粉末を得る方法としては、噴霧乾燥
方法が好ましく、中でも流動性の向上のために、回転デ
ィスク方式がとくに好ましい。噴霧乾燥後の顆粒強度を
保つために、粘度調整前後に有機系バインダ−を添加し
てから噴霧乾燥してもよい。噴霧乾燥時の熱風温度は、
50〜300℃がよく、水系の場合は、150〜230
℃がより好ましい。また、噴霧乾燥によってえられる粉
末の平均顆粒径としては、100μm以下が好ましい。
As a method for obtaining a dry granulated powder by adjusting the viscosity of the zirconia slurry to a range of 500 to 3000 cp using a thickener or the like, a spray drying method is preferable, and a fluidity is particularly preferable. The rotating disk system is particularly preferable for the improvement of In order to maintain the granule strength after spray drying, an organic binder may be added before and after the viscosity adjustment and then spray drying. Hot air temperature during spray drying is
50 ~ 300 ℃ is good, in the case of water system, 150 ~ 230
C is more preferred. The average particle size of the powder obtained by spray drying is preferably 100 μm or less.

【0024】以上のようにして得られたジルコニア造粒
乾燥粉末に、ポリビニルアルコール、ポリビニルブチラ
ール、アクリル系モノマーまたはポリマーなどのバイン
ダーを水または溶剤に溶解した溶液を上記粉末に吹き付
けて塗布し、乾燥することによって平均顆粒圧壊強度
0.10kgf/mm以上の本発明の溶射用ジルコニ
ア粉末が得られる。このバインダーの添加は、上記の湿
式粉砕後のジルコニアスラリーの段階で行ってもよい。
また、上記バインダーとともにジルコニア粉末が静電気
を帯びるのを防ぐ性質をもつ、グリセリン、ソルビトー
ルなどのアルコール;グリセリン脂肪酸エステル、ポリ
エチレングリコール脂肪酸エステルなどのエステル;ア
ルキルスルホン酸塩、N−アシルザルコネートなどのア
ニオン界面活性剤;ポリオキシエチレン脂肪酸アルコー
ルエーテル、ポリオキシエチレンステアリン酸アミドな
どの非イオン界面活性剤;アルキルイミダゾリウムベタ
イン、β−アルキルアミノプロピオン酸塩などの両性界
面活性剤;ジメチルジアルキルアンモニウムクロリド、
アルキルトリメチルアンモニウムクロリドなどのカチオ
ン界面活性剤;四級アンモニウム化合物;アミン類など
を併用すれば、ジルコニア粉末の帯電を防止することが
できるので、いっそう流動性のよい溶射用ジルコニア粉
末とすることができる。
A solution of a binder such as polyvinyl alcohol, polyvinyl butyral, an acrylic monomer or polymer dissolved in water or a solvent is sprayed onto the above-obtained zirconia granulated dry powder thus obtained, and the powder is dried. By doing so, the zirconia powder for thermal spraying of the present invention having an average granule crushing strength of 0.10 kgf / mm 2 or more can be obtained. This binder may be added at the stage of the zirconia slurry after the above-mentioned wet pulverization.
Alcohols such as glycerin and sorbitol, which have the property of preventing the zirconia powder from being charged with static electricity together with the above binder; esters such as glycerin fatty acid ester and polyethylene glycol fatty acid ester; alkyl sulfonates, N-acyl sarconate, etc. Anionic surfactants; nonionic surfactants such as polyoxyethylene fatty acid alcohol ether and polyoxyethylene stearic acid amide; amphoteric surfactants such as alkylimidazolium betaine, β-alkylaminopropionate; dimethyldialkylammonium chloride,
When a cationic surfactant such as alkyltrimethylammonium chloride; a quaternary ammonium compound; amines, etc. are used in combination, the zirconia powder can be prevented from being charged, so that the zirconia powder for thermal spraying can be made even more fluid. .

【0025】上記のジルコニア造粒乾燥粉末を、電気、
ガスなどによって800〜1500℃の範囲、好ましく
は、1000〜1300℃の範囲で焼成する方法によっ
ても平均顆粒圧壊強度の高い溶射用ジルコニア粉末を製
造することができる。この熱処理温度が800℃未満で
は、得られる粉末の平均顆粒圧壊強度が不十分であり、
いっぽう、1500℃を超えると、得られる粉末の結晶
子径が1500Aを超え、いずれの場合も本発明の溶射
用ジルコニア粉末が得られない。また、後者のように熱
処理温度が高すぎる場合、造粒粒子内で部分的に焼結が
起こっているところがあり、溶射温度が低かった場合、
未溶融部分が残存し、溶射皮膜の付着効果が悪くなり、
気孔率が上昇するので、皮膜の耐熱性や硬度が低下す
る。
The above zirconia granulated dry powder was converted into
A zirconia powder for thermal spraying having a high average granule crushing strength can also be produced by a method of firing in the range of 800 to 1500 ° C., preferably 1000 to 1300 ° C. with a gas or the like. If the heat treatment temperature is lower than 800 ° C, the average granular crush strength of the obtained powder is insufficient,
On the other hand, when the temperature exceeds 1500 ° C., the crystallite diameter of the obtained powder exceeds 1500 A, and the zirconia powder for thermal spraying of the present invention cannot be obtained in any case. Further, if the heat treatment temperature is too high like the latter, there is a place where sintering partially occurs in the granulated particles, and if the spraying temperature is low,
The unmelted part remains and the adhesion effect of the thermal spray coating deteriorates,
Since the porosity increases, the heat resistance and hardness of the film decrease.

【0026】[0026]

【発明の効果】以上の如く、本発明の溶射用ジルコニア
粉末は、融点が低いのでプラズマ溶射法だけでなく、ガ
スフレーム溶射法にも適用することができ、また、従来
のものと比較して、流動性が優れており、内径2mm以
下のパウダ−チュ−ブでも閉塞することなく、単位時間
当たりの供給量も安定している。そのため、均質で付着
効率が高く、また、耐摩耗性、耐食性、導電性などに優
れた溶射皮膜を得ることができる。
As described above, since the zirconia powder for thermal spraying of the present invention has a low melting point, it can be applied not only to the plasma thermal spraying method but also to the gas flame thermal spraying method. The fluidity is excellent, the powder tube having an inner diameter of 2 mm or less is not blocked, and the supply amount per unit time is stable. Therefore, it is possible to obtain a sprayed coating that is homogeneous, has high adhesion efficiency, and is excellent in wear resistance, corrosion resistance, conductivity, and the like.

【0027】この粉末を耐摩耗性、耐食性などを必要と
する箇所あるいは酸素イオン伝導性を必要とする箇所に
溶射して皮膜を形成させることによって、従来法による
ものよりも寿命の長い溶射皮膜を得られることが期待さ
れる。
By spraying this powder on a portion requiring wear resistance, corrosion resistance or the like or a portion requiring oxygen ion conductivity to form a coating, a spray coating having a longer life than that obtained by the conventional method can be obtained. Expected to be obtained.

【0028】[0028]

【実施例】【Example】

実施例1 ZrO換算濃度50g/lのオキシ塩化ジルコニウム
水溶液にYをZrOとYとの合計に対す
るY換算3モル%となるように添加し、還流下に
加水分解率が92%になるまで加水分解し、更に該水溶
液にAl(住友化学工業社製 AKP−30、以
下同じ)をZrOに対して11.0wt%添加した
後、ZrO換算濃度が310g/lになるまで濃縮し
て水和ジルコニアゾルを得た。このゾルを回転ディスク
方式の噴霧乾燥装置を用いて熱風温度150℃で噴霧乾
燥を行い、球状造粒ゲル粉末を得た。このゲル粉末を更
に大気雰囲気下で1200℃、保持2時間の条件により
電気炉による熱処理によって溶射用部分安定化ジルコニ
ア粉末を得た。
Example 1 was added to the aqueous solution of zirconium oxychloride in terms of ZrO 2 concentration 50 g / l of Y 2 O 3 so as to be in terms of Y 2 O 3 3 mol% to the total of ZrO 2 and Y 2 O 3, at reflux after hydrolysis rate is hydrolyzed to become 92%, it was added 11.0 wt% more Al 2 O 3 in aqueous solution (manufactured by Sumitomo Chemical Co., Ltd. AKP-30, hereinafter the same) relative to ZrO 2, ZrO 2 The hydrated zirconia sol was obtained by concentrating until the reduced concentration became 310 g / l. This sol was spray-dried at a hot air temperature of 150 ° C. using a rotary disk type spray dryer to obtain a spherical granulated gel powder. The gel powder was further heat-treated in an electric furnace under the conditions of 1200 ° C. and a holding time of 2 hours in an air atmosphere to obtain a partially stabilized zirconia powder for thermal spraying.

【0029】実施例2 ZrO換算濃度50g/lのオキシ塩化ジルコニウム
水溶液にYClをZrOとYとの合計に対す
るY換算3モル%となるように添加し、還流下で
加水分解率が90%になるまで加水分解し、更に該水溶
液をZrO換算濃度が300g/lになるまで濃縮し
水和ジルコニアゾルを得た。このゾルを実施例1と同じ
条件で噴霧乾燥を行い、ゲル粉末を得、大気雰囲気下で
電気炉により850℃、保持2時間の条件で仮焼してジ
ルコニア粉末を得、Alを該ジルコニア粉末に対
して14.0wt%添加した後、ボ−ルミルにより24
時間湿式粉砕混合し、増粘剤としてアニオン界面活性剤
(サンノプコ社製 ノプコサントRFA)によって15
00cpに粘度調整し、190℃の熱風中に噴霧乾燥し
て部分安定化ジルコニアからなる球状造粒粉末を得た。
この粉末を更に大気雰囲気下で1100℃、保持2時間
の条件により電気炉による熱処理によって、溶射用部分
安定化ジルコニア粉末を得た。
Example 2 YCl 3 was added to an aqueous zirconium oxychloride solution having a ZrO 2 conversion concentration of 50 g / l so as to be 3 mol% as Y 2 O 3 conversion based on the total of ZrO 2 and Y 2 O 3, and the mixture was refluxed. Was hydrolyzed until the rate of hydrolysis reached 90%, and the aqueous solution was further concentrated until the ZrO 2 conversion concentration became 300 g / l to obtain a hydrated zirconia sol. This sol was spray-dried under the same conditions as in Example 1 to obtain a gel powder, which was calcined under an atmosphere in an electric furnace at 850 ° C. for 2 hours to obtain a zirconia powder, and Al 2 O 3 was obtained. After adding 14.0 wt% to the zirconia powder, it was added with a ball mill to give 24
Wet and pulverize for 15 hours and mix with anionic surfactant (Nopco Santo RFA manufactured by San Nopco Co.) as a thickening agent.
The viscosity was adjusted to 00 cp and spray-dried in hot air at 190 ° C. to obtain a spherical granulated powder made of partially stabilized zirconia.
This powder was further heat-treated in an electric furnace under the conditions of 1100 ° C. and a holding time of 2 hours in an air atmosphere to obtain a partially stabilized zirconia powder for thermal spraying.

【0030】実施例3 Alの添加量をジルコニア粉末に対して19.5
wt%とするほかは実施例2と同じ条件にして溶射用部
分安定化ジルコニア粉末を得た。
Example 3 The addition amount of Al 2 O 3 was 19.5 with respect to zirconia powder.
A partially stabilized zirconia powder for thermal spraying was obtained under the same conditions as in Example 2 except that the content was wt%.

【0031】実施例4 ZrO換算濃度50g/lのオキシ塩化ジルコニウム
水溶液にYClをZrOとYとの合計に対す
るY換算3モル%となるように添加し、還流下に
加水分解率が90%になるまで加水分解し、更に該水溶
液に水酸化ナトリウム溶液を添加し水和ジルコニアゾル
を得た。このゾルを実施例1と同じ条件で噴霧乾燥を行
い、ゲル粉末を得、大気雰囲気下で電気炉により850
℃、保持2時間の条件で仮焼してジルコニア粉末を得、
Alを該ジルコニア粉末に対して17.0wt%
添加した後、ボ−ルミルにより24時間湿式粉砕混合
し、スラリ−とし、ポリビニルアルコ−ル(けん化度8
8、重合度500)を該ジルコニア粉末に対して5wt
%加え、増粘剤(サンノプコ社製 A−818)により
1500cpに粘度調整し、帯電防止剤としてアニオン
界面活性剤(サンノプコ社製 ノプコサントRFA)を
上記ジルコニア粉末に対して0.5wt%添加し、18
0℃の熱風中に噴霧乾燥して、溶射用部分安定化ジルコ
ニア粉末を得た。
Example 4 YCl 3 was added to an aqueous zirconium oxychloride solution having a ZrO 2 conversion concentration of 50 g / l so as to be 3 mol% in Y 2 O 3 conversion with respect to the total of ZrO 2 and Y 2 O 3, and the mixture was refluxed. Was hydrolyzed until the rate of hydrolysis reached 90%, and a sodium hydroxide solution was further added to the aqueous solution to obtain a hydrated zirconia sol. This sol was spray-dried under the same conditions as in Example 1 to obtain a gel powder, which was heated in an air atmosphere at 850 in an electric furnace.
Calcination at ℃, holding for 2 hours to obtain zirconia powder,
17.0 wt% of Al 2 O 3 with respect to the zirconia powder
After the addition, the mixture was wet pulverized and mixed by a ball mill for 24 hours to prepare a slurry, and polyvinyl alcohol (saponification degree: 8
8, polymerization degree of 500) 5 wt% to the zirconia powder
%, The viscosity was adjusted to 1500 cp with a thickener (A-818 manufactured by San Nopco), and 0.5 wt% of an anionic surfactant (Nopco Santo RFA manufactured by San Nopco) was added as an antistatic agent to the zirconia powder. 18
Spray drying was carried out in hot air at 0 ° C to obtain a partially stabilized zirconia powder for thermal spraying.

【0032】実施例5 イットリア源としてYを使用し、その添加量をZ
rOとの合計に対して8モル%とするほかは実施例3
と同じ条件にして溶射用安定化ジルコニア粉末を得た。
Example 5 Y 2 O 3 was used as the yttria source, and the amount added was Z.
Example 3 except that the amount is 8 mol% based on the total of rO 2.
Under the same conditions as above, a stabilized zirconia powder for thermal spraying was obtained.

【0033】実施例6 安定化ジルコニア粉末(東ソー社製 TZ−8Y、Y
含有量8モル%)にAlを該安定化ジルコニ
ア粉末に対して14.0wt%添加し、振動ボールミル
で8時間粉砕混合し、それ以降は実施例2と同じ条件に
して溶射用安定化ジルコニア粉末を得た。 実施例7 Alの添加量を安定化ジルコニア粉末に対して1
0.5wt%とするほかは実施例6と同じ条件にして溶
射用安定化ジルコニア粉末を得た。
Example 6 Stabilized zirconia powder (Tosoh TZ-8Y, Y 2
Al 2 O 3 was added to the stabilized zirconia powder in an O 3 content of 8 mol%), and the mixture was pulverized and mixed for 8 hours in a vibrating ball mill. Thereafter, thermal spraying was performed under the same conditions as in Example 2. A stabilized zirconia powder was obtained. Example 7 The added amount of Al 2 O 3 was 1 with respect to the stabilized zirconia powder.
A stabilized zirconia powder for thermal spraying was obtained under the same conditions as in Example 6 except that the content was 0.5 wt%.

【0034】比較例1 Alを添加せず、その他の条件は実施例2と同じ
にして溶射用部分安定化ジルコニア粉末を得た。
Comparative Example 1 A partially stabilized zirconia powder for thermal spraying was obtained under the same conditions as in Example 2 except that Al 2 O 3 was not added.

【0035】比較例2 Alを0.04wt%添加し、その他の条件は実
施例2と同じにして溶射用部分安定化ジルコニア粉末を
得た。
Comparative Example 2 A partially stabilized zirconia powder for thermal spraying was obtained by adding Al 2 O 3 in an amount of 0.04 wt% and other conditions being the same as in Example 2.

【0036】比較例3 Alを5.0wt%添加し、その他の条件は実施
例2と同じにして溶射用部分安定化ジルコニア粉末を得
た。
Comparative Example 3 5.0 wt% of Al 2 O 3 was added, and other conditions were the same as in Example 2 to obtain a partially stabilized zirconia powder for thermal spraying.

【0037】比較例4 Alの添加量を安定化ジルコニア粉末に対して
5.0wt%とするほかは実施例6と同じ条件にして溶
射用安定化ジルコニア粉末を得た。
Comparative Example 4 A stabilized zirconia powder for thermal spraying was obtained under the same conditions as in Example 6 except that the added amount of Al 2 O 3 was 5.0 wt% with respect to the stabilized zirconia powder.

【0038】比較例5 Alの添加量を安定化ジルコニア粉末に対して2
5.0wt%とするほかは実施例6と同じ条件にして溶
射用安定化ジルコニア粉末を得た。
Comparative Example 5 The amount of Al 2 O 3 added was 2 with respect to the stabilized zirconia powder.
A stabilized zirconia powder for thermal spraying was obtained under the same conditions as in Example 6 except that the content was 5.0 wt%.

【0039】比較例6 Alの添加量を40.0wt%とし、Al
とともにSiOを添加するほかは実施例6と同じ条件
にして溶射用安定化ジルコニア粉末を得た。
[0039] The addition amount of Comparative Example 6 Al 2 O 3 and 40.0wt%, Al 2 O 3
A stabilized zirconia powder for thermal spraying was obtained under the same conditions as in Example 6 except that SiO 2 was also added.

【0040】比較例7 熱処理温度を1500℃とするほかは実施例6と同じ条
件にして溶射用安定化ジルコニア粉末を得た。
Comparative Example 7 A stabilized zirconia powder for thermal spraying was obtained under the same conditions as in Example 6 except that the heat treatment temperature was 1500 ° C.

【0041】溶射試験では、波打ち現象を生じ、粉末供
給量が不安定になり、均一な厚みの皮膜が得られなかっ
た。
In the thermal spraying test, a wave phenomenon was generated, the amount of powder supplied became unstable, and a film having a uniform thickness could not be obtained.

【0042】以上の各例で得られた溶射用粉末の特性を
表1に、溶射試験の結果を表2に示す。
The characteristics of the thermal spray powder obtained in each of the above examples are shown in Table 1, and the results of the thermal spray test are shown in Table 2.

【0043】平均顆粒圧壊強度は、島津制作所製 微小
圧縮試験機によって平均粒径に近い顆粒10個について
測定したものの平均値である。
The average crushing strength of granules is an average value obtained by measuring 10 granules close to the average particle diameter with a micro compression tester manufactured by Shimadzu Corporation.

【0044】皮膜形成評価は、ガスフレーム溶射により
50mm×50mm×5mmのブラスト処理された試験
片(炭素鋼SS41)にガス圧力と流量を変化させ、皮
膜厚さ200μmを目標にして行った(溶射機METC
O社、ガスO/C)。皮膜の評価は、溶射皮膜
断面の顕微鏡観察による。さらに、JIS H 866
6のセラミック溶射試験方法およびJIS H 830
4の品質規格による熱衝撃試験によって、試験片を90
0℃に加熱し、水中に投じて冷却するという操作を10
回繰り返すことによる耐熱衝撃性を測定した。
The film formation was evaluated by changing the gas pressure and flow rate to a blasted test piece (carbon steel SS41) having a size of 50 mm × 50 mm × 5 mm by gas flame spraying with a target film thickness of 200 μm (spraying). Machine METC
O company, gas O 2 / C 2 H 2) . The coating is evaluated by observing the cross section of the thermal spray coating under a microscope. Furthermore, JIS H 866
6 Ceramic spraying test method and JIS H 830
90 test pieces by the thermal shock test according to the quality standard of 4
The procedure of heating to 0 ° C, cooling by pouring it into water
The thermal shock resistance by repeating the measurement was measured.

【0045】耐食性試験は、SUS304全面をプラズ
マ溶射(溶射機METCO社、プラズマガスAr/
))した皮膜を用いて行った。試験方法としては、
100℃、30wt%HSO溶液による30日間の
静的浸漬条件で行い、皮膜表面のX線回折法による相転
移率(単斜晶量)の測定および操走査型電子顕微鏡によ
る皮膜表面の観察を行った。斜晶量は、次式を用いて算
出した。
The corrosion resistance test was carried out by plasma spraying the entire surface of SUS304 (spraying machine METCO, plasma gas Ar /
H 2 )). As a test method,
The film was subjected to static immersion conditions in a 30 wt% H 2 SO 4 solution at 100 ° C. for 30 days, the phase transition rate (monoclinic crystal amount) of the film surface was measured by an X-ray diffraction method, and the film surface was measured by a scanning electron microscope. Observed. The amount of crystallites was calculated using the following formula.

【0046】 単斜晶量(%)=[{I(11−1)+I(111)}/ {I(11−1)+I(111)+It,c(111)}]×100 ここで、I(11−1)は単斜晶の11−1面のX線
強度、I(111)は単斜晶の111面のX線強度、
t,c(111)は正方晶、立方晶の111面のX線
強度である。
Monoclinic Crystal Amount (%) = [{I m (11-1) + I m (111)} / {I m (11-1) + I m (111) + I t, c (111)}] × 100 where I m (11-1) is the X-ray intensity of the monoclinic crystal 11-1 plane, I m (111) is the X-ray intensity of the monoclinic crystal plane 111,
It , c (111) is the X-ray intensity of the tetragonal and cubic 111 planes.

【0047】導電率の測定は、プラズマ溶射した皮膜を
用いて行った。部分安定化領域のものは大気中600℃
で、安定化領域のものは大気中1000℃で複素インピ
−ダンスによるコ−ルコ−ルプロット法により測定し
た。
The electrical conductivity was measured using a plasma sprayed coating. 600 ° C in the atmosphere in the partially stabilized region
In the stabilized region, the temperature was measured at 1000 ° C. in the atmosphere by the Cole-Cole plot method using complex impedance.

【0048】 表1 Y SiO Al 結晶子径 平均顆粒 平均顆粒 /ZrO 径 圧壊強度 モル比 wt% wt% μm 実施例 1 3 0.006 11.0 520 45 0.26 2 3 0.007 14.0 365 47 0.19 3 3 0.007 19.5 360 48 0.18 4 3 0.005 17.0 270 51 0.10 5 8 0.006 19.5 358 48 0.16 6 8 0.007 14.0 365 50 0.17 7 8 0.006 10.5 368 49 0.16 比較例 1 3 0.006 0.01 355 55 0.22 2 3 0.006 0.04 360 53 0.21 3 3 0.007 5.0 370 52 0.22 4 8 0.007 5.0 365 52 0.20 5 8 0.007 25.0 370 49 0.18 6 8 0.025 40.0 375 48 0.17 7 8 0.006 10.5 1650 43 4.50 注)平均顆粒圧壊強度の単位:kgf/mm Table 1 Y 2 O 3 SiO 2 Al 2 O 3 crystallite size average granule average granule / ZrO 2 diameter crush strength molar ratio wt% wt% A μm Example 1 3 0.006 11.0 520 45 0.26 2 3 0.007 14.0 365 47 47 0.19 3 3 0.007 19.5 360 48 0.18 4 3 0.005 17.0 270 51 0.10 5 8 0.006 19.5 358 48 0.16 6 8 0.007 14.0 365 50 0.17 7 8 0.006 10.5 368 49 0.16 Comparative Example 1 3 0.006 0.01 355 55 0.22 2 3 0.006 0.04 360 53 0.21 3 3 0.007 5.0 370 52 52 0.22 4 8 0.007 5.0 365 365 52 0.20 5 8 0 0.007 25.0 370 49 0.18 6 8 0.025 40.0 375 48 0.17 7 8 0.006 10.5 1650 43 4.50 Note) Unit of average granule crushing strength: k gf / mm 2

【0049】 表2 単斜晶量 耐食性 皮膜の 皮膜の 耐熱衝 導 電 率 形成 評価 撃性 S/cm 実施例1 28 ○ ○ ○ ○ 0.23 2 23 ○ ○ ○ ○ 0.24 3 18 ○ ○ ○ ○ 0.30 4 20 ○ ○ ○ ○ 0.28 5 0 ○ ○ ○ ○ 0.14 6 0 ○ ○ ○ ○ 0.18 7 0 ○ ○ ○ ○ 0.14 比較例1 70 × × × × 0.21 2 55 × × × × 0.25 3 22 ○ △ ○ ○ 0.17 4 0 ○ △ ○ ○ 0.06 5 0 ○ ○ △ ○ 0.10 6 0 ○ ○ △ ○ 0.09 7 − − × × × 測定不可能 注)耐食性試験 ○:皮膜変化なし ×:皮膜腐食あり 皮膜の形成 ○:どの条件においても皮膜が形成された △:条件によっては皮膜が形成されなかった ×:皮膜が形成されなかった 皮膜の評価 ○:厚みが均一で気孔が少ない △:厚みが不均一だが気孔が少ない ×:皮膜が形成されず評価できなかった 熱衝撃試験 ○:まったく剥離しない △:5〜10回で剥離した ×:皮膜が形成されず評価できなかったTable 2 Monoclinic Amount Corrosion Resistance Coating Heat Resistance Conductivity % Formation evaluation Hammerability S / cm Example 1 28 ○ ○ ○ ○ 0.23 2 23 ○ ○ ○ ○ 0.24 3 18 ○ ○ ○ ○ 0.30 4 20 ○ ○ ○ ○ 0.28 50 ○ ○ ○ ○ ○ 0.14 60 ○ ○ ○ ○ 0.18 7 0 ○ ○ ○ ○ 0.14 Comparative Example 1 70 × × × × 0.21 2 55 × × × × 0.25 3 22 ○ △ ○ ○ 0. 17 40 ○ △ ○ ○ 0.06 5 0 ○ ○ △ ○ 0.10 60 0 ○ ○ △ ○ 0.09 7 − − × × × Cannot be measured Note) Corrosion resistance test ○: No change in film ×: Film corrosion Yes Film formation ○: Film was formed under all conditions Δ: Film was not formed under some conditions ×: Film was not formed Evaluation of film ○: Uniform thickness with few pores Δ: Thickness Non-uniform but few pores ×: Thermal shock test that could not be evaluated because no film was formed ○: absolutely no peeling △: × was peeled at 5-10 times: could not be evaluated without coating formed

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】主として結晶子径1500A以下の酸化ジ
ルコニウム、酸化イットリウムおよび酸化アルミニウム
からなり、Y/ZrOモル比が1.5/98.
5〜12/88の範囲であり、酸化ジルコニウムと酸化
イットリウムとの合計に対するAlの量が10.
5〜19.5wt%であり、酸化ジルコニウムと酸化イ
ットリウムとの合計に対するSiOの量が0.01w
t%以下であり、平均顆粒圧壊強度が0.10kgf/
mm以上であることを特徴とする、溶射用ジルコニア
粉末。
1. A zirconium oxide having a crystallite diameter of 1500 A or less, yttrium oxide, and aluminum oxide, and having a Y 2 O 3 / ZrO 2 molar ratio of 1.5 / 98.
It is in the range of 5 to 12/88, and the amount of Al 2 O 3 with respect to the total of zirconium oxide and yttrium oxide is 10.
5 to 19.5 wt%, and the amount of SiO 2 is 0.01 w with respect to the total of zirconium oxide and yttrium oxide.
t% or less and the average crush strength of granules is 0.10 kgf /
mm 2 or more, a zirconia powder for thermal spraying.
JP4241397A 1992-08-19 1992-08-19 Ziconia powder for thermal spraying Pending JPH0665706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4241397A JPH0665706A (en) 1992-08-19 1992-08-19 Ziconia powder for thermal spraying

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4241397A JPH0665706A (en) 1992-08-19 1992-08-19 Ziconia powder for thermal spraying

Publications (1)

Publication Number Publication Date
JPH0665706A true JPH0665706A (en) 1994-03-08

Family

ID=17073676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4241397A Pending JPH0665706A (en) 1992-08-19 1992-08-19 Ziconia powder for thermal spraying

Country Status (1)

Country Link
JP (1) JPH0665706A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348653A (en) * 2001-03-21 2002-12-04 Shin Etsu Chem Co Ltd Particles of rare-earths oxide for thermal spraying, thermal sprayed member and corrosion resistant member
JP2002363725A (en) * 2001-04-06 2002-12-18 Shin Etsu Chem Co Ltd Particle for thermal spraying and thermal spraying material using the same
WO2007053493A1 (en) * 2005-10-31 2007-05-10 Praxair S.T. Technology, Inc. Ceramic powders and thermal barrier coatings
KR100863456B1 (en) * 2008-01-14 2008-11-18 주식회사 코미코 Spray coating powder and method of manufacturing the spray coating powder
US7550551B2 (en) 2006-08-22 2009-06-23 Chemtura Corporation Brominated flame retardant
KR101293766B1 (en) * 2011-02-11 2013-08-05 충남대학교산학협력단 Coating material for thermal spray and fabrication method and coating method thereof
US20130344255A1 (en) * 2012-06-13 2013-12-26 Korea Institute Of Science And Technology Multi-component thermal spray coating material and production method and coating method thereof
US9192891B2 (en) 2010-11-12 2015-11-24 Cabot Corporation Method and apparatus for reducing NOx emissions in the incineration of tail gas
US10242888B2 (en) * 2007-04-27 2019-03-26 Applied Materials, Inc. Semiconductor processing apparatus with a ceramic-comprising surface which exhibits fracture toughness and halogen plasma resistance
JP2019512611A (en) * 2016-09-08 2019-05-16 セウォン ハードフェイシング カンパニー リミテッドSewon Hard Facing Co.,Ltd. High flowability thermal spray powder and method for producing the same
US10622194B2 (en) 2007-04-27 2020-04-14 Applied Materials, Inc. Bulk sintered solid solution ceramic which exhibits fracture toughness and halogen plasma resistance
US11014853B2 (en) 2018-03-07 2021-05-25 Applied Materials, Inc. Y2O3—ZrO2 erosion resistant material for chamber components in plasma environments

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348653A (en) * 2001-03-21 2002-12-04 Shin Etsu Chem Co Ltd Particles of rare-earths oxide for thermal spraying, thermal sprayed member and corrosion resistant member
JP2002363725A (en) * 2001-04-06 2002-12-18 Shin Etsu Chem Co Ltd Particle for thermal spraying and thermal spraying material using the same
US8283048B2 (en) 2005-10-31 2012-10-09 Praxair S. T. Technology, Inc. Thermal barrier coatings and articles made therefrom
WO2007053493A1 (en) * 2005-10-31 2007-05-10 Praxair S.T. Technology, Inc. Ceramic powders and thermal barrier coatings
US8017230B2 (en) 2005-10-31 2011-09-13 Praxair S.T. Technology, Inc. Ceramic powders and thermal barrier coatings made therefrom
US7550551B2 (en) 2006-08-22 2009-06-23 Chemtura Corporation Brominated flame retardant
US10840113B2 (en) 2007-04-27 2020-11-17 Applied Materials, Inc. Method of forming a coated article and semiconductor chamber apparatus from yttrium oxide and zirconium oxide
US10622194B2 (en) 2007-04-27 2020-04-14 Applied Materials, Inc. Bulk sintered solid solution ceramic which exhibits fracture toughness and halogen plasma resistance
US11373882B2 (en) 2007-04-27 2022-06-28 Applied Materials, Inc. Coated article and semiconductor chamber apparatus formed from yttrium oxide and zirconium oxide
US10847386B2 (en) 2007-04-27 2020-11-24 Applied Materials, Inc. Method of forming a bulk article and semiconductor chamber apparatus from yttrium oxide and zirconium oxide
US10840112B2 (en) 2007-04-27 2020-11-17 Applied Materials, Inc. Coated article and semiconductor chamber apparatus formed from yttrium oxide and zirconium oxide
US10242888B2 (en) * 2007-04-27 2019-03-26 Applied Materials, Inc. Semiconductor processing apparatus with a ceramic-comprising surface which exhibits fracture toughness and halogen plasma resistance
KR100863456B1 (en) * 2008-01-14 2008-11-18 주식회사 코미코 Spray coating powder and method of manufacturing the spray coating powder
US9192891B2 (en) 2010-11-12 2015-11-24 Cabot Corporation Method and apparatus for reducing NOx emissions in the incineration of tail gas
KR101293766B1 (en) * 2011-02-11 2013-08-05 충남대학교산학협력단 Coating material for thermal spray and fabrication method and coating method thereof
US9309413B2 (en) 2012-06-13 2016-04-12 Korea Institute Of Science And Technology Multi-component thermal spray coating material and production method and coating method thereof
KR101466967B1 (en) * 2012-06-13 2014-12-15 한국과학기술연구원 Multi-component ceramic coating material for thermal spray and fabrication method and coating method thereof
US20130344255A1 (en) * 2012-06-13 2013-12-26 Korea Institute Of Science And Technology Multi-component thermal spray coating material and production method and coating method thereof
JP2019512611A (en) * 2016-09-08 2019-05-16 セウォン ハードフェイシング カンパニー リミテッドSewon Hard Facing Co.,Ltd. High flowability thermal spray powder and method for producing the same
US11014853B2 (en) 2018-03-07 2021-05-25 Applied Materials, Inc. Y2O3—ZrO2 erosion resistant material for chamber components in plasma environments
US11667577B2 (en) 2018-03-07 2023-06-06 Applied Materials, Inc. Y2O3—ZrO2 erosion resistant material for chamber components in plasma environments

Similar Documents

Publication Publication Date Title
EP1339533B1 (en) Pre-alloyed stabilized zirconia powder and improved thermal barrier coating
TWI598300B (en) Film-forming powder and film-forming material
US7842383B2 (en) Yttrium-aluminum double oxide thermal spraying powder
EP1239055B1 (en) Thermal spray spherical particles, and sprayed components
US7279221B2 (en) Thermal spraying powder
JP7069469B2 (en) Powder for film formation or sintering
JP2002080954A (en) Thermal-spraying powder and thermal-sprayed film
JP6742341B2 (en) Material for film formation
US7837967B2 (en) Thermal spray powder and method for forming thermal spray coating
JPH0665706A (en) Ziconia powder for thermal spraying
JP3523216B2 (en) Rare earth-containing compound particles for thermal spraying, thermal spraying member sprayed with the same
JP2002348653A (en) Particles of rare-earths oxide for thermal spraying, thermal sprayed member and corrosion resistant member
JPH05320860A (en) Zirconia powder for thermal spraying
JP3127582B2 (en) Zirconia granulated dry powder for thermal spraying
JPH0665707A (en) Zirconia powder for thermal spraying
JP7283026B1 (en) Materials for sintered bodies and sintered bodies
JP6659073B1 (en) Powder for film formation or sintering
JPH07187817A (en) Material for thermal spraying and its production
TW202244286A (en) Film-forming material, film-forming slurry, spray coated film, and spray coated member
JP2005097747A (en) Thermal-spraying powder and thermal-sprayed film
JP7380966B2 (en) cold spray material
JP3254730B2 (en) Zirconia powder for thermal spraying
WO2023162290A1 (en) Material for sintered body, and sintered body
JP2022071737A (en) Powder for cold spray, cold spray film, and production method of film
JPH05330826A (en) Zirconia powder composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20051227

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Effective date: 20070322

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080219