JP4271334B2 - Sludge treatment method, organic wastewater treatment method including the treatment method, and organic wastewater treatment apparatus - Google Patents

Sludge treatment method, organic wastewater treatment method including the treatment method, and organic wastewater treatment apparatus Download PDF

Info

Publication number
JP4271334B2
JP4271334B2 JP2000057000A JP2000057000A JP4271334B2 JP 4271334 B2 JP4271334 B2 JP 4271334B2 JP 2000057000 A JP2000057000 A JP 2000057000A JP 2000057000 A JP2000057000 A JP 2000057000A JP 4271334 B2 JP4271334 B2 JP 4271334B2
Authority
JP
Japan
Prior art keywords
phosphorus
sludge
liquid
treatment
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000057000A
Other languages
Japanese (ja)
Other versions
JP2001239298A (en
Inventor
久夫 大竹
章夫 黒田
純一 加藤
俊一 水上
正廣 加治
健治 桂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2000057000A priority Critical patent/JP4271334B2/en
Publication of JP2001239298A publication Critical patent/JP2001239298A/en
Application granted granted Critical
Publication of JP4271334B2 publication Critical patent/JP4271334B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【0001】
【発明の属する技術分野】
本発明は、下水処理場、屎尿処理場などの下水処理プロセス、または食品工場、化学工場などから排出される有機性廃水を処理する方法において、低コスト、高収率でリン成分を分離、回収できる汚泥の処理方法及び当該処理方法を採用した有機性廃水の処理方法と有機性廃水処理装置に関する。
【0002】
【従来の技術】
如上の有機性廃水を処理するための方法として、標準活性汚泥法が用いられてきたが、リンを多く含有する有機性廃水では、リン成分があまり除去されず処理水中にリン成分(すなわち、正リン酸(オルトリン酸)、ポリリン酸、リン酸塩、リン酸エステル、リンタンパク質、グリセロリン酸、リン脂質等)が多量に残存することがある。かかるリン成分を多量に含む処理水を湖沼などに排出すると水の富栄養化に伴う植物プランクトンの著しい増殖を招くために好ましくない。
【0003】
従って、廃水中に含まれるリンの除去プロセスとしては、▲1▼凝集剤添加法、▲2▼晶析脱リン法、▲3▼嫌気−好気活性汚泥法などが行われている(下水道施設計画・設計指針と解説(後編)1994年版、(社)日本下水道協会発行、第131〜136頁参照)。
【0004】
▲1▼の凝集剤添加法は、アルミニウムイオン、鉄イオンなどの三価金属陽イオンが正リン酸イオンと反応して難水溶性のリン酸塩を生成することを利用し、硫酸アルミニウム等の凝集剤を廃水に混和して、難溶性のリン酸塩から形成されるフロック(生物由来のフロックも含む)が沈殿分離されるものである。この方法では5〜20%程度の余剰汚泥の増加が認められており、リン成分を多量に含む余剰汚泥の大量廃棄は、環境保全が叫ばれている昨今、好ましいとはいい難い。
【0005】
▲2▼の晶析による方法とは、正リン酸イオンとカルシウムイオンとの反応による難溶性のヒドロキシアパタイトの生成に基づくものであり、余剰汚泥の増加を伴わない点では好ましいのであるが、アパタイト晶析のために必要な条件を厳密にコントロールする必要があるので(例えば、前処理による炭酸イオン等晶析妨害物質の除去、pH調整、温度調整等)、適用が限定され、またコスト増大を招く原因を含んでいるので、やはり廃水処理における手段として好ましい方法とはいえない。
【0006】
▲3▼の嫌気−好気活性汚泥法は、嫌気状態でエネルギー獲得のためにポリリン酸を正リン酸として放出した微生物が、好気状態で正リン酸を過剰摂取・代謝後ポリリン酸として蓄積することを利用した方法であり、廃水を嫌気槽、好気槽及び沈殿池における反復処理に付して、余剰汚泥にリン成分を内包させ、処理水中のリン成分を除去するものである。また、比較的大規模な処理設備では、ランニングコストの面で他の方法に比べて、この嫌気−好気活性汚泥法が有利なことが知られている。この方法で、処理水から有効にリン成分を除去できるが、余剰汚泥はリン成分に富み、さらにその他種々の有機成分や重金属成分などが含まれているので、その廃棄に問題を生じる。そして、リン成分は例えば肥料やリン化合物製造等への有効利用の可能性が考えれられるにも関わらず、かような雑多な成分と混合した汚泥状態にあっては無駄に破棄するほかない。
【0007】
そこで、生物学的処理により発生した汚泥からリンを回収し、有効利用する目的で、汚泥を嫌気的に処理することにより汚泥中のリン成分を溶出させ、その溶出したリン成分を凝集剤を添加して回収する方法(特開平9−267099号公報参照)が開発されており、さらに最近になって、オゾン処理法(特開平9−94596号公報参照)、アルカリ添加法(特開平8−39096号公報参照)、機械的粉砕による方法(特開平11−57791号公報参照)などにより汚泥中のリンを回収する方法が提案されている。
【0008】
【発明が解決しようとする課題】
しかしながら、オゾン処理法では薬品や廃棄物に起因した問題は少ないが、設備費及びランニングコストが非常に高いので、経済的な面から実用に供しうるとはいえない。そしてアルカリ添加法によればアルカリ廃液が発生し、これの処理のためにさらなる経費を必要とすることになる。また、汚泥を嫌気的処理工程に曝すことにより微生物体内からリン成分を放出させる工程を含む方法によれば、比較的低コストでリンを回収、再利用することが可能になったものの、長期の処理時間を要するうえ、リンの回収率が50%程度と低く、またリン酸として回収されるために凝集剤の添加量が多くなるものであった。そして機械的粉砕による方法にあっては金属羽根を高速回転したり、あるいはビーズを高速回転させるなど、特殊な装置が必要であってそのメインテナンスにもかなりのコストや時間を要することになる。
【0009】
ところで、近年、湖沼、閉鎖性海域などのCODの環境基準の達成率は、それぞれ40%、65%と低くなっており、この原因はアオコやプランクトンなどの内部発生物質にあると考えられている。このため、富栄養化の原因となるチッ素、リンの総量排出規制について環境庁は平成11年2月に中央環境審議会へ諮問し、平成12年2月には中央環境審議会によりこれらの規制に係る答申が行われており、有機性廃水に含まれるリン成分を効率よく再利用可能に回収し、環境に対しても悪影響を及ぼすことなく低コストにて実施し得る処理方法が希求され続けているところである。
【0010】
さらにリン成分の需要に着目してみると、現在我が国では年間90万トン以上(100億円以上に相当)のリン鉱石が諸外国より輸入されている。しかしながら、その原産地では永年の消費によって高品位のリン鉱石の採取が徐々に困難になってきており、今後安定的に日本に供給されうるか否かは明らかでない。また、アジア、欧米諸国等から年間約3000トン(4億円以上に相当)のポリリン酸塩が日本に輸入されている現状にあり、この輸入量は年々増大傾向にある。これはポリリン酸が、防錆剤の生産や、発ガン性を有するアスベストの代替物として期待されている鉱物繊維の製造の原料となりうる他、トリポリリン酸は合成洗剤、洗浄剤、金属イオン封鎖剤、食品添加剤の原料として、また、製紙、染色、写真技術などに用いる試薬原料などにおいて利用されるためであると考えられる。
【0011】
従って、このような国内での高い需要に応えるべく、リン鉱石の主要成分であるリン酸塩(リン酸カルシウム)を極めて高純度に含有する状態や、ポリリン酸塩として高純度な状態で、有機性廃水由来のリン成分を回収すれば、廃棄することによって環境汚染の原因となっていた如上のリン成分が極めて有効に活用できることとなり、種々の産業界に対して多大な貢献がもたらされるはずである。
【0012】
本発明は、このような現状に鑑みてなされたものであって、その目的は、汚泥から効率よく短時間でリン成分をポリリン酸として分離回収でき、固体として沈澱させる際の薬剤必要量を低減することができるという効果が達成され、リン成分の再利用に利する処理方法を提供することにある。
【0013】
【課題を解決するための手段】
上記目的を達成するための本願第一発明は、被処理汚泥を処理する方法において、以下の工程すなわち、被処理汚泥を、リン成分を液相に放出させるために60〜90℃で10〜120分間加熱処理を行う加熱工程、リン放出後の処理液の液温を70℃以下に調整する液温調整工程、液温調整後の処理液を、処理水と汚泥とに分離する固液分離工程、及び固液分離後に、処理水中のリンを反応温度20〜70℃で凝集剤の添加によって液相から沈殿させるリン凝集工程を含むことを特徴とする汚泥の処理方法である。
【0014】
この方法では、短時間の加熱という特段の設備も試薬も必要としない方法によって、被処理汚泥に含まれるリン成分を主にポリリン酸として液相に放出させた後、放出させたポリリン酸がリン酸等にまで分解され難い温度になるように処理液の温度を調整し、当該温度下に固液分離を行って安定にポリリン酸を含む処理水を得る。次いで、この処理水からポリリン酸を効率よく、また凝集後に特段に遠心分離等の操作を行わなくとも、自然沈降によって分離が容易な顆粒形状として回収することができる温度下にリン凝集を行う。従って、本願第一発明は、汚泥中のリン成分をポリリン酸として回収する効率を高めると共に、作業の簡素化にも利するものである。
【0015】
本願第一発明において、前記液温調整工程でリン放出後の処理液の液温は、50℃以下に調整されることが好ましい(本願第二発明)。かかる温度下では、ポリリン酸の分解をより確実に抑制することができる。
【0016】
また、本願第一または第二発明において、前記リン凝集工程における反応温度は20〜50℃とされることが好ましい(本願第三発明)。そうすれば、処理水からリンを凝集させて、より効率よく分離回収することが可能となる。
【0017】
本願第一乃至第三発明のいずれかにおける液温調整工程は、被処理汚泥とリン放出後の処理液との熱交換によって行われることが好ましい(本願第四発明)。熱交換を行うことによって、ポリリン酸の分解を抑制すると共に、加熱処理を受ける被処理汚泥の温度を熱の有効利用によって高めて、加熱工程で消費されるエネルギー量を低減することが可能となる。
【0018】
本願第五発明は、本願第一乃至第四発明のいずれかにかかる汚泥の処理方法における各工程を含むことを特徴とする有機性廃水の処理方法である。上記のごとき利点を有する汚泥の処理方法を有機性廃水の処理において実施することによって、有機性廃水中のリン成分をポリリン酸として高効率に種々の用途で利用しやすい形状にて単離することが可能となる。従って、従来余剰汚泥として破棄しても処理水として排出しても、土壌や海洋、河川、湖沼等の富栄養化をもたらすこととなっていたリン成分による環境汚染を、より確実に防止できることにもなる。
【0019】
本願第六発明は、有機性廃水の処理方法において、以下の工程すなわち、(1)廃水が好気的処理に付される曝気処理工程、(2)曝気処理後の廃水が一次処理水と一次汚泥とに分離される固液分離工程、(3)一次汚泥を、リン成分を液相に放出させるために60〜90℃で10〜120分間加熱処理を行う加熱工程、(4)一次汚泥とリン放出後の処理液との熱交換を行い、処理液の温度を70℃以下に調整する熱交換工程、(5)熱交換後の処理液を、二次処理水と二次汚泥とに分離する第二固液分離工程、及び(6)固液分離後に、二次処理水中のリンを反応温度20〜70℃で凝集剤の添加によって液相から沈殿させるリン凝集工程を含むことを特徴とする有機性廃水の処理方法である。
【0020】
この方法によって、曝気処理工程(1)において廃水中の微生物内にリン成分が蓄積され、この処理水は次の固液分離工程(2)によって一次処理水と、リン成分が濃縮された一次汚泥とに分離され、次いで短時間加熱という特段の設備も試薬も必要としない加熱工程(3)でこの一次汚泥からリン成分を主にポリリン酸として液相に放出させることができる。この処理液は次に、一次汚泥との熱交換工程(4)によってポリリン酸の分解を防止できる温度とされ、このような温度下に固液分離(5)することでリン成分を多含する処理水(二次処理水)とリン成分が除去された二次汚泥とに分離される。二次処理水中のリン成分は、ほとんどがポリリン酸の形態を保っているので、従来の処理方法に比較して、凝集、沈殿させるために必要な金属塩などの凝集剤の必要量も低くなる。そして、固液分離後に、二次処理水中のリンを反応温度20〜70℃で凝集剤の添加によって液相から沈殿させるリン凝集工程(6)を行って、ポリリン酸を効率よく、また凝集後に特段に遠心分離等の操作を行わなくとも、自然沈降によって分離が容易な顆粒形状として回収することができるのである。
【0021】
本願第六発明において、前記熱交換工程(4)で、リン放出後の処理液の液温は、50℃以下に調整されることが好ましい(本願第七発明)。かかる温度下では、ポリリン酸の分解をより確実に抑制することができる。
【0022】
また、本願第六または第七発明において、前記リン凝集工程における反応温度は20〜50℃とされることが好ましい(本願第八発明)。そうすれば、処理水からリンを凝集させて、より効率よく分離回収することが可能となる。
【0023】
また、前記固液分離工程(2)の実施後に、分離された一次汚泥が濃縮される濃縮工程(7)を行い(本願第九発明)、一次汚泥を低容量とすることによって、続く加熱工程(3)に必要とされる槽の減容化が可能となる。そうすれば当該工程での加熱に要するエネルギーの低減、その後の処理槽の減容化にもつながり、設備・維持費を大幅に削減することができる。
【0024】
本願第十発明の処理方法は、本願第六乃至第九発明における曝気処理工程(1)の前に、嫌気処理工程(8)をさらに含む。この嫌気処理によって、微生物へのリン成分の過剰摂取に先駆けて嫌気的条件にすることにより、微生物への有機物の摂取と微生物から液相へのリン成分の放出が行われるので、曝気処理におけるリン成分の過剰摂取がさらに効率よく行われることになる。
【0025】
本願第十一発明は、如上の有機性廃水の処理方法を実施するための、曝気処理槽、固液分離手段、加熱槽、熱交換手段、第二固液分離手段及びリン凝集槽、ならびにそれらを連結する経路を含む有機性廃水処理装置を提供する。この処理装置を用いると、リン成分を実質的に含有しない処理水及び比較的減容化された活性汚泥にまで、有機性廃水を低コストで変換することができ、しかもリン成分を利用性に優れたポリリン酸として高い効率をもって回収することが可能となる。
【0026】
【発明の実施の形態】
本発明の汚泥の処理方法は、先ず被処理汚泥を、リン成分を液相に放出させるために60〜90℃で10〜120分間、好ましくは70〜80℃で15〜120分間、さらに好ましくは70〜80℃で20〜60分間加熱処理を行うことによって、汚泥中のリン成分を液相に放出させることを特徴とするものである。このような条件で加熱すると、後述の実施例1に明らかなように、リン成分を主にポリリン酸として放出させることが可能となる。すると、従来の方法に従いオルトリン酸やその他のリン酸誘導体等としてリン成分が放出された場合に比較して、液相から沈澱としてリン成分を回収するために必要な金属塩などの凝集剤の必要量が格段に低減する。これは、リンの原子数に対する、凝集剤が結合可能なフリーのリン酸残基数が、ポリリン酸では低値であることによるものである。また、ポリリン酸の金属塩の方が、リン酸の金属塩よりも大きな顆粒状の沈澱塊を形成するので、その後の回収処理において、例えば沈澱分離や遠心分離での所要時間を短縮し、容量を減容化し、遠心分離の回転数を抑えることなどが可能となるので好都合である。上記処理温度が60℃より低いとポリリン酸としてのリン成分の放出が困難であり、90℃を越えるとポリリン酸の放出後速やかにリン酸へと分解されてしまうので回収のための凝集剤必要量が高まる上、加熱のコストも高沸するので好ましくない。
【0027】
次に、リン放出後の処理液の液温を調整する液温調整工程が実施される。放出させたポリリン酸は、さらに引き続いて高温下に曝されるとリン酸等へと分解されてしまうので、処理液の温度を70℃以下、好ましくは50℃以下、さらに好ましくは40℃以下に調整する。特に80℃以上の温度下に1時間以上処理液を曝すと、顕著にポリリン酸が分解されてしまうことが明らかになっている(実施例2及び3参照)。この液温調整工程は、単に水冷、通風による空冷等によって実施してもよいが、好ましくは被処理汚泥とリン放出後の処理液との熱交換によって行われる。そうすれば、被処理汚泥の温度を処理液の熱を有効利用して予め高めておくことができ、加熱工程において消費されるエネルギー量の低減につながる。
【0028】
液温を調整してから、当該温度下に沈殿、遠心、濾過(膜分離を含む)等の通常の手段で固液分離を行って、ポリリン酸を含む処理水を得る。加熱後の処理液は液温が調整されているから、固液分離工程にて使用される装置として、その耐熱性を問わず、繁用されている沈澱槽、遠心分離器、膜分離器、脱水機、浮上分離装置を広く利用でき、特に膜分離の採用が企図される場合、高温による膜のシュリンクを回避でき、膜の寿命も延長されうる。
【0029】
次いで、20〜70℃、好ましくは20〜50℃、さらに好ましくは30〜40℃、最も好ましくは30℃にて凝集剤を添加し、リン凝集を行う。すると、この処理水からポリリン酸を効率よく、また凝集後に特段に遠心分離等の操作を行わなくとも、自然沈降によって分離が容易な顆粒形状として回収することができる。従って、被処理汚泥中のリン成分をポリリン酸として回収する効率を高めると共に、作業の簡素化も実現できる。この温度が上記範囲を下回ると、凝集塊が形成されないため、遠心分離等によってリン成分を回収するようにせざるをえず、たとえそのような手段を講じても回収率に劣る場合もある。また。上記範囲を上回るということは別途加熱を行う必要が生じることになり実用的でない。
【0030】
凝集剤としては、例えばポリ塩化アルミニウム、硫酸アルミニウム、塩化第二鉄、硫酸第一鉄、塩化カルシウム、酸化カルシウム、水酸化カルシウム、塩化マグネシウム、硫酸マグネシウム、酸化マグネシウム、水酸化マグネシウム等を用いることができ、このなかでも塩化カルシウム、酸化カルシウム及び水酸化カルシウム等のカルシウム塩が、最終生成物の使用性、価格、環境に対する影響に鑑みて好ましい。
【0031】
こうしてリン放出後の処理液からポリリン酸を凝集させ沈殿として回収するためには、従来と同様の工程での凝集剤必要量の半分以下を添加すれば十分であるので、コストの低減だけでなく、金属含有化合物の産生量を抑制でき、環境保全の観点からも好ましいと云える。沈殿後、得られた固形成分を定法によって回収し、必要に応じて精製処理を施し、肥料やリン化合物製造のための原料に供することができる。
【0032】
以下に、本発明の有機性廃水の処理方法における実施の形態を図1のフローに基づき説明する。
【0033】
すなわち、図1に示す方法では、リンを含有する有機性廃水である原廃水Aを先ず嫌気処理槽8に付し、嫌気的条件下にて微生物体内に有機物を摂取せしめると共に、微生物体内にポリリン酸の顆粒として貯留されているリン成分を放出させる。この際リン成分は概ね、加水分解されて正リン酸として液相へと放出されることになる。この際の処理温度は特に限定されず、好ましくは常温下に行えばよい。ここで、嫌気処理槽8に攪拌手段を備えて、微生物と被処理水中の有機物を効率的に接触させリン放出を促進させるようにすることが好ましい。
【0034】
次いで、この処理液をエアポンプの曝気手段12を備えた曝気処理槽1に付し、ここで好ましくは常温下に好気的な微生物による有機物の分解及び微生物によるリン成分の摂取(体内貯留)を行う。嫌気処理で放出されたリン成分及び有機性廃水中のリン成分が、この工程において微生物体内に摂取され、濃縮されるのである。
【0035】
曝気処理槽1及び嫌気処理槽8のそれぞれの構造ならびに以下の種々の反応槽等を結ぶ経路は特に限定されるものではなく、本質的に、従来より利用されているものを用いることができる。本発明の装置のため、曝気処理槽1にはエアポンプ、ブロアなどの曝気手段12から送られる空気を曝気処理槽1内に行き渡らせることができる散気装置13を、そして嫌気処理槽8においては好ましくは攪拌手段などを具備するものであればよい。またこれらの工程における各々の条件等も、従来知られている処理方法に従って行うとよい(特開平9−10791号明細書等を参照されたい)。
【0036】
次に、曝気処理液を固液分離手段2に付し、リン成分が濃縮された一次汚泥xと、一次処理水aとに分ける。この固液分離手段2としては、従来より知られている、沈殿、膜分離を含む濾過等の手段が選択される。これらのうち、設備及び維持費が安価ですみ、且つ操作にも殆ど手間を必要としないことから沈殿が好ましい。
【0037】
一次汚泥xの一部は、適宜嫌気処理槽8に返送して、以下の工程に付される汚泥量を調節すると共に嫌気及び好気処理での有機物の分解及び微生物によるリン成分の摂取を十分に行うようにしてもよい。
【0038】
その後、固液分離手段2から得られた一次汚泥xは、さらに濃縮して高濃度とするための濃縮手段7に付される。濃縮手段7によって高濃度の汚泥を得ると、続く加熱処理以降の工程に要する装置の減容化やエネルギーの低減を図ることができる。この濃縮手段7には、沈殿、膜分離を含めた濾過、遠心、浮上濃縮等が利用可能である。実質的に汚泥を好気的状態に保つことができ、リン成分の再放出を防ぎつつ4%汚泥濃度以上の十分な濃縮が実現されるので、濃縮手段7として浮上濃縮を採用することが好ましい。浮上濃縮を実施する場合の好ましい条件は、汚泥容量の約4倍量の循環水を用いた循環系において、かかる循環水に対して約2〜3%の空気を溶解させるというものである。濃縮手段7を経て得られる、リン成分を多含しない分離水は前記一次処理水aと共に放流することができる。
【0039】
次いで、得られた一次汚泥xを、汚泥に含まれる微生物からリン成分を液相に放出させるために、次なる加熱槽3において、ヒーター、スチーム発生装置などの加熱手段10を用いて60〜90℃で10〜120分間、好ましくは70〜80℃で15〜120分間、さらに好ましくは70〜80℃で20〜60分間の加熱処理を行うことによって、リン成分を主にポリリン酸として微生物より放出させる。ポリリン酸としてリン成分が放出されると、液相から沈澱としてリン成分を回収するためのリン凝集槽6での処理のために必要な金属塩などの凝集剤Bの使用量が、上述したように嫌気処理、オゾン処理、アルカリ処理などにてリン酸として放出された場合に比較して格段に低減する。ポリリン酸の金属塩は大きな顆粒状の沈澱塊を形成するので、その後の回収処理が容易になるので好都合である。
【0040】
この加熱槽3における処理の終了後、一次汚泥xと加熱槽3から生じる処理液との熱交換が、熱交換器4にて行なわれる。加熱槽3で放出させたポリリン酸は、さらに引き続いて高温下に曝されるとリン酸等へと分解されてしまうので、熱交換により処理液の温度を70℃以下、好ましくは50℃以下、さらに好ましくは40℃以下に調整する。このように熱交換によって液温を調節すれば、熱の回収効率が良好となり、ヒートロスが少なくなるので、ランニングコストを削減することができる。また、熱交換を実施することにより、加熱後の処理液が冷却された後に次なる固液分離手段5に供されることになるため、固液分離手段5の耐熱性があまり要求されないことになる。なお、熱交換を行わずに水冷、通風による空冷等によって液温調整を場合に応じて実施してもよい。
【0041】
液温が調整された処理液は、次いで固液分離手段5によって比較的小容量のリン成分高含有処理水(二次処理水)bと二次汚泥zとに分離する。前記のとおり、固液分離手段5に高い耐熱性が要求されることはないので、繁用されている沈澱槽のほか、遠心分離器、膜分離器、ベルトプレス、フィルタープレス等の脱水機等を広く利用できる。特にベルトプレス型の脱水機の採用が企図される場合、高温による濾布のシュリンク等の不都合を回避でき、膜の寿命も延長されうる。
【0042】
こうして得られる二次処理水bは、従来の廃水処理法にて生じる、リン成分を含む処理水よりも格段にその容量が低減されているので、引き続き行なわれるリン成分回収を目的としたリン凝集工程のための設備が、非常に小規模なもので充分になる。また、二次汚泥zはリン成分をほとんど含んでいないので、埋立処分や建設資材等への有効利用も容易にできるので好ましい。
【0043】
次に、二次処理水bはリン凝集工程に付される。すなわち、二次処理水bをリン凝集槽6に導入し、20〜70℃、好ましくは20〜50℃、さらに好ましくは30〜40℃、最も好ましくは30℃にて凝集剤Bを攪拌下に添加することによってリン成分を凝集させ、液相から沈殿させる。
【0044】
凝集剤Bとしては汚泥の処理方法において記載したと同様の、好ましくはカルシウム塩が用いられる。二次処理水bに含まれるリン成分は主としてポリリン酸として得られているので、少量の凝集剤Bを用いても回収の容易な顆粒状の固形成分に凝集させることが可能となる。上記温度条件でリン凝集工程を実施すれば、ポリリン酸を効率よく、また凝集後に特段に遠心分離等の操作を行わなくとも、自然沈降によって分離が容易な顆粒形状として回収することができる。
【0045】
凝集剤Bの添加量は、二次処理水bに含まれる全リン成分及びポリリン酸の量から遊離リン酸残基数を割り出して、これに足るモル数の量だけ用いることが最も好ましい。なお、リン凝集槽6での凝集反応に際して固形成分としてのリン成分を回収するために、二次処理水bのpHは、リン酸を回収する場合と異なり、5〜10、好ましくは6〜9とするとよい。かような温和な条件下で回収することが可能となるので、塩基性物質をあえて添加する必要もなく、リン酸として回収する場合よりもコストを低く抑えることができ、また2次的な塩基性廃水の発生も阻止することができる。
【0046】
次いで固液分離手段9によって、リン成分を実質的に含まない三次処理水cとリン成分pを得る。固液分離手段9としては、例えば、沈殿、濾過(膜分離を含む)または遠心等の手段を選択することができるが、これらのうち、特別に高価な装置や手間を必要としないことから、沈殿または濾過が好ましい。本発明の方法によれば、上述のとおりリン成分は自然沈降による回収が容易な形態で得られるので、沈殿槽における沈殿分離を好適に採用することが可能である。
【0047】
最終的に回収されるリン成分pは、汚泥から分離濃縮されているだけでなくかなり純化されているので、肥料や、合成洗剤、洗浄剤、金属イオン封鎖剤、食品添加剤の原料として、また、製紙、染色、写真技術などに用いる試薬原料、リン化合物、薬剤製造のための原料などに利用しやすい。
【0048】
【実施例】
以下に本発明の実施例を説明するが、本発明の範囲はもとより、これら実施例によって限定的に解釈されるべきものではない。
【0049】
[実施例1]
実験室内回分式嫌気好気活性汚泥プロセスにて、1L容量の三角フラスコ中に、下水処理場由来の活性汚泥500mlを入れ、次いで以下の表1に示す組成を有する、リン成分を含有した有機性廃水500mlを投入した。
【0050】
【表1】

Figure 0004271334
【0051】
この原廃水1Lに対して、嫌気処理を20℃、pH7にて滞留時間2時間にわたって行い、続いて20℃、曝気量2vvm(エアレーションポンプを使用)、pH7にて滞留時間5時間にわたり好気処理を実施した。この処理の間、液体をスターラーで攪拌し続け、液量は1Lに維持するようにした。
【0052】
好気処理終了後に、汚泥を1mlずつエッペンドルフチューブ25本に分取し、それぞれ5本ずつを50℃、60℃、70℃、80℃及び90℃に設定した恒温槽に静置した。20分毎に1チューブずつサンプリングし、各試料を8,000×gにて5分間遠心分離してから、上清に含まれる全リン量、ポリリン酸量及びリン酸量を以下の方法に従って定量した。
全リン量:過硫酸アンモニウム存在下に熱水分解(121℃、30分間)した後、下記方法によりリン酸として定量
ポリリン酸量:1N塩酸の存在下に加熱分解(100℃、7分間)した後、下記方法によりリン酸として定量
リン酸量:JIS K 0102によるモリブデン青(アスコルビン酸還元)吸光光度法に基づくリン酸イオン量測定
次いで、これらの上清中のリン成分が凝集沈殿によって分離できるか否かを調べるため、塩化カルシウム(CaCl2)を最終濃度が50mMとなるように添加し、8,000×gにて5分間遠心分離することによって得られる沈殿物の全リン量を上記全リン定量法により測定した。
【0053】
こうして得られた結果を図2に示す。図2において、(a)は50℃、(b)は60℃、(c)は70℃、(d)は80℃、(e)は90℃での加熱処理による各定量値の経時変化を示し、(f)には、上記加熱処理前の活性汚泥中のリン組成(▲1▼:リン酸、▲2▼:ポリリン酸及び▲3▼:その他のリン酸化合物量)を示す。
【0054】
図2より、活性汚泥試料の加熱処理を50℃で行った場合、汚泥から放出されるリン成分の量はすべて少なく、しかもポリリン酸よりもリン酸として放出される量が多いことが判る(図2(a))。この温度では、汚泥中のポリリン酸顆粒は殆ど遊離して来ないようであった。処理温度70℃では(図2(c))、加熱開始後1時間で活性汚泥中に存在していたポリリン酸量(図2(f)、▲2▼)の約90%が遊離、放出されていた。そしてこの時点では、ポリリン酸の約20%に該当する量が、リン酸にまで分解されている。加熱開始2時間後に塩化カルシウムを添加して遠心分離を行うと、遊離していた全リン量のほとんどが、沈殿物として回収できた。処理温度を90℃とすると(図2(e))、ポリリン酸の放出は急速に進行し、この条件下では約10分で終了してしまう。この時点でリン酸に分解していた量は約10%であった。ポリリン酸の放出が終了すると、このポリリン酸は急速にリン酸へと分解され、加熱開始2時間後には遊離したポリリン酸の約60%がリン酸になっていた。この時点で塩化カルシウムによる凝集沈殿を行っても、回収できるリン成分の量は放出された量の約20%程度に過ぎなかった。従って、本発明の方法を90℃の温度で実施する場合には、放出されたポリリン酸を速やかに凝集沈殿に付すことが好ましいことが示される。
【0055】
[実施例2]
加熱処理によって放出させたポリリン酸の熱安定性について検討した。
【0056】
先ず、実施例1に記載の汚泥を1mlずつエッペンドルフチューブ16本に分取し、70℃、120分間の加熱処理を行って汚泥から液相にリンを放出させた。加熱後の処理液のpHは約7.0であった。チューブを4本ずつの4群に分け、30、50、70及び90℃に設定した恒温槽に4本ずつを入れて静置下に加熱した。それぞれ15、30、60及び120分後に各群1本ずつを取り出し、8,000 x gにて5分間遠心分離して各上清中に含まれるポリリン酸及びリン酸量と、70℃で120分間加熱を行った直後の汚泥の上清中のそれらの数値を、実施例1に記載したと同様の方法で測定した。
【0057】
その結果を図3に示す。図3(a)には、各温度でのポリリン酸量の経時変化が、図3(b)にはリン酸量の推移が表されている。この図から、熱処理温度70〜90℃で顕著にリン酸量が増大することが示され、ポリリン酸からリン酸への分解が疑われた。実際ポリリン酸量は特に90℃にて顕著な低下傾向を示していた。70℃ではリン酸量の増大に見合う程にはポリリン酸量が減衰していないが、これは汚泥から引き続きポリリン酸が液相に放出されているためと推察された。
【0058】
[実施例3]
加熱処理によって放出させたポリリン酸の熱安定性について、ポリリン酸を放出する汚泥を含まない処理液でさらに検討した。
【0059】
先ず、実施例2に記載したと同様に、汚泥を1mlずつエッペンドルフチューブ24本に分取し、70℃、120分間の加熱処理を行って汚泥から液相にリンを放出させた。加熱後の処理液のpHは約7.0であった。次いで、各チューブを8,000 x gにて5分間遠心分離して上清をやはりエッペンドルフチューブに取り、20、30、40、50、60、70、80及び90℃に設定した恒温槽にそれぞれ3本ずつ入れて、静置下に各温度における加熱を行った。1時間、2時間及び3時間後に各恒温槽から1本ずつを取り出し、各上清中に含まれるポリリン酸量と、70℃で120分間加熱を行った直後の汚泥の上清中のポリリン酸量を、実施例1に記載したと同様の方法で測定した。
【0060】
その結果を図4に示す。この図から、熱処理温度70〜90℃、特に80〜90℃では顕著にポリリン酸量が低下し、ポリリン酸が分解していることが明らかになった。
【0061】
以上、実施例2及び3の結果より、加熱処理によって放出したポリリン酸を安定化させるためには、加熱処理後速やかに70℃以下、好ましくは50℃以下、さらに好ましくは40℃以下に冷却して液温を調整することが望ましいことが示唆された。汚泥及び/または有機性廃水の処理においては、液温をこのような数値範囲に調整するために、通常室温に平衡化している加熱処理前の汚泥と熱交換を行うことが望ましいといえる。
【0062】
[実施例4]
リン成分を凝集させて固形成分として回収する際のリンの回収率に及ぼす反応温度の影響について検討した。
【0063】
先ず、実施例1に記載の汚泥を1mlずつエッペンドルフチューブ15本に分取して5本ずつ3群に分け、70℃にて90、120及び150分間の加熱処理を行って汚泥から液相にリンを放出させた。各チューブを8,000 x gにて5分間遠心分離し、上清(pH=約7.0)をやはりエッペンドルフチューブ15本に分取した。各上清に、塩化カルシウムをカルシウムとしての最終濃度が50mMとなるように添加、撹拌した後、各群1本ずつを0、20、30、40及び50℃に設定した恒温槽に入れて静置下に加熱した。60分後にすべてのチューブを取り出し、8,000 x gにて5分間遠心分離して上清を除き、沈殿物を1mlの純水に懸濁させて、その懸濁液中のポリリン酸量、リン酸量及びカルシウム量を定量した。70℃で各時間加熱処理を行った直後の汚泥の上清中のポリリン酸量及びリン酸量も併せて定量した。ポリリン酸量及びリン酸量は実施例1に記載したと同様の方法で測定し、カルシウム量はキレート発色法(オルトクレゾールフタレインコンプレクソン(OCPC)法)によって定量した。
【0064】
その結果を図5に示す。この結果から、リン凝集時の反応温度0〜30℃にかけてポリリン酸の回収率は高くなるが、それ以上は反応温度を高めても回収率は向上しないことがわかる。従って、凝集沈殿時の反応温度としては、20〜50℃、好ましくは30〜40℃とすることが望ましいといえる。通常液体から固体物質を析出・凝集させるには、液体をより低温下に維持して固体の溶解度を低下させておく方が、回収率が高くなると考えられるが、本実施例により、ポリリン酸を多含するリン成分の回収においては、逆に0℃よりも20℃以上でより良好な回収率が得られることが明らかになった。実際には、リン凝集工程に至る処理水の温度は30℃前後になることが予想されるので、外部から特段に加温する必要はないと考えられる。
【0065】
[実施例5]
リン成分を凝集させて固形成分として回収する際のリンの回収率に及ぼす反応温度の影響についてさらに検討した。
【0066】
先ず、実施例1に記載の汚泥を1mlずつエッペンドルフチューブ30本に分取して、70℃にて120分間の加熱処理を行って汚泥から液相にリンを放出させた。各チューブを8,000 x gにて5分間遠心分離し、上清(pH=約7.0)を試験管2本に10mlずつ分取した。そして、塩化カルシウムをカルシウムとしての最終濃度が50mMとなるように添加、撹拌した後、0及び30℃に設定した恒温槽に1本ずつ入れて静置下に保持した。10、30及び120分後に試験管を取り出して、目視による凝集物の形状の観察を行った。
【0067】
各試験管での凝集物の発生状態を、図6に示す。図6より明らかなとおり、反応温度30℃では経過時間10分後から凝集物が形成されて沈殿し、試験管底部に重力沈降していた。この凝集物は経時的により強固な凝集塊を形成していくことがわかった。一方反応温度0℃においては、120分経過後にも目視可能な凝集物の形成は認められなかった。そして、0℃でカルシウムを用いた凝集反応を行った場合には、遠心分離を行わない限りリン成分を回収することはできなかった。
【0068】
[実施例6]
リン成分を凝集させて固形成分として回収する方法が、リンの回収率に及ぼす影響について検討した。
【0069】
実施例5と同様の方法で、汚泥から液相にリン放出させてその上清を得、試験管中で30℃にて塩化カルシウムを添加して同温度にて静置して、添加直後から15、30、60、120、180、240分後の上清中の全リン量を定量した。同時に、各時間経過後、8,000 x gにて5分間遠心分離して得られる上清に含まれる全リン量を定量した。
【0070】
こうして求められる自然沈降により回収可能な全リン量と、遠心分離によって回収可能な全リン量を、図7に示す。図7から、30℃で凝集反応を行えば、自然沈降によっても60分程度放置するだけで遠心分離と遜色のない回収率を達成することが可能となることが示唆された。従って、実施例5の結果と考え併せて、20〜70℃、好ましくは20〜50℃程度、より好ましくは30〜40℃、最も好ましくは30℃にてリン凝集工程を実施することにより、リン凝集槽だけでも沈降物としてリン成分を容易に回収することができ、凝集工程終了後に遠心分離等の固液分離装置を省略できる可能性が示唆された。これにより有機性廃水処理のシステムが簡素化され、設備費、ランニングコストの低減につながると考えられる。
【0071】
【発明の効果】
本発明によって、有機性廃水中に含まれるリン成分を、短時間で分離回収でき、リンの再利用を容易にすることができるという効果が奏される。この際、リン成分がポリリン酸として濃縮されているので、必要とされる凝集剤の量は、従来知られている方法よりも極めて少量で十分である。
【0072】
本発明の方法は、特に試薬や高価な設備を要さずリン成分を高率で回収でき、システムの簡素化が可能となるうえ、エネルギーの有効利用も行えるので、低コストでの処理が実現されるという点で有利なものである。
【図面の簡単な説明】
【図1】本発明の有機性廃水の処理方法の一実施態様の概略構成図である。
【図2】活性汚泥を50〜90℃の範囲の温度で処理した場合の、種々のリン成分の放出量の経時的変化を示すグラフである。
【図3】活性汚泥を加熱処理した後、種々の温度下に放置した際のポリリン酸の安定性を経時的に示すグラフである。(a)には、各温度でのポリリン酸量の経時変化を、(b)にはリン酸量の推移を表す。
【図4】活性汚泥を加熱処理して固液分離した後、種々の温度下に上清を放置した際のポリリン酸の分解を経時的に示すグラフである。
【図5】リン成分を凝集させて回収する際のリンの回収に及ぼす反応温度の影響を示すグラフである。
【図6】0℃及び30℃にてリン凝集反応を行った場合の凝集物の形成を示す図である。
【図7】30℃にてリン凝集反応を行った場合の、自然沈降と遠心分離によるリン成分の回収を示すグラフである。
【符号の説明】
1…曝気処理槽
2,5,9…固液分離手段
3…加熱槽
4…熱交換器
6…リン凝集槽
7…濃縮手段
8…嫌気処理槽
10…加熱手段
12…曝気手段
13…散気手段
A…原廃水
B…凝集剤
a…一次処理水
b…二次処理水
c…三次処理水
x…一次汚泥
z…二次汚泥
p…リン成分[0001]
BACKGROUND OF THE INVENTION
The present invention separates and recovers phosphorus components at a low cost and in a high yield in a sewage treatment process such as a sewage treatment plant and a manure treatment plant, or a method of treating organic wastewater discharged from a food factory, a chemical factory, etc. The present invention relates to a method for treating sludge, an organic wastewater treatment method and an organic wastewater treatment apparatus employing the treatment method.
[0002]
[Prior art]
The standard activated sludge method has been used as a method for treating the above organic wastewater. However, in the organic wastewater containing a large amount of phosphorus, the phosphorus component is not removed so much in the treated water (i.e. A large amount of phosphoric acid (orthophosphoric acid), polyphosphoric acid, phosphate, phosphate ester, phosphoprotein, glycerophosphoric acid, phospholipid, etc. may remain. Discharge of treated water containing a large amount of such phosphorus component to a lake or the like is not preferable because it causes remarkable growth of phytoplankton accompanying water eutrophication.
[0003]
Therefore, (1) flocculant addition method, (2) crystallization dephosphorization method, (3) anaerobic-aerobic activated sludge method, etc. are carried out as removal processes of phosphorus contained in wastewater (sewerage facilities) Plan / Design Guidelines and Explanation (Part 2), 1994 edition, published by Japan Sewerage Association, pages 131-136).
[0004]
(1) The flocculant addition method utilizes the fact that trivalent metal cations such as aluminum ions and iron ions react with normal phosphate ions to form slightly water-soluble phosphates. A floc (including a biological floc) formed from a poorly soluble phosphate is precipitated and separated by mixing a flocculant with waste water. In this method, an increase in surplus sludge of about 5 to 20% is recognized, and mass disposal of surplus sludge containing a large amount of phosphorus component is not preferable in recent years when environmental preservation is screamed.
[0005]
The method (2) by crystallization is based on the production of poorly soluble hydroxyapatite by the reaction of normal phosphate ions and calcium ions, and is preferable in that it does not increase surplus sludge. Since the conditions necessary for crystallization need to be strictly controlled (for example, removal of crystallization interfering substances such as carbonate ions by pretreatment, pH adjustment, temperature adjustment, etc.), application is limited and cost increases Since the cause is included, it cannot be said to be a preferable method as a means in wastewater treatment.
[0006]
The anaerobic-aerobic activated sludge method in (3) shows that microorganisms that have released polyphosphoric acid as normal phosphoric acid to gain energy in anaerobic conditions accumulate excessive phosphate in the aerobic state and post-metabolized polyphosphoric acid. In this method, waste water is subjected to repeated treatment in an anaerobic tank, an aerobic tank, and a sedimentation basin, and the phosphorus component is included in the excess sludge to remove the phosphorus component in the treated water. Moreover, it is known that this anaerobic-aerobic activated sludge method is advantageous in terms of running cost compared to other methods in a relatively large-scale treatment facility. Although this method can effectively remove the phosphorus component from the treated water, the excess sludge is rich in the phosphorus component and further contains various organic components and heavy metal components, which causes a problem in its disposal. In spite of the possibility of effective use for fertilizer, phosphorus compound production, and the like, the phosphorus component must be discarded in vain in the sludge mixed with such miscellaneous components.
[0007]
Therefore, for the purpose of recovering phosphorus from sludge generated by biological treatment and using it effectively, sludge is treated anaerobically to elute the phosphorus component in the sludge and add the flocculant to the eluted phosphorus component. In recent years, an ozone treatment method (see Japanese Patent Application Laid-Open No. 9-94596) and an alkali addition method (Japanese Patent Application Laid-Open No. 8-39096) have been developed. And a method of recovering phosphorus in sludge by a method by mechanical pulverization (see Japanese Patent Application Laid-Open No. 11-57991) or the like.
[0008]
[Problems to be solved by the invention]
However, the ozone treatment method has few problems caused by chemicals and wastes, but the equipment cost and running cost are very high, so it cannot be practically used from the economical viewpoint. And according to the alkali addition method, an alkaline waste liquid is generated, and further costs are required for the treatment thereof. Further, according to the method including the step of releasing the phosphorus component from the microbial body by exposing the sludge to the anaerobic treatment step, phosphorus can be recovered and reused at a relatively low cost. In addition to the treatment time, the recovery rate of phosphorus was as low as about 50%, and the amount of flocculant added was increased because it was recovered as phosphoric acid. In the mechanical pulverization method, a special device such as a high-speed rotation of metal blades or a high-speed rotation of beads is required, and the maintenance requires considerable cost and time.
[0009]
By the way, in recent years, the achievement rates of environmental standards for COD such as lakes and closed waters have been lowered to 40% and 65%, respectively, and this is considered to be caused by internally generated substances such as sea lions and plankton. . For this reason, the Environment Agency consulted the Central Environmental Council in February 1999 regarding restrictions on the total amount of nitrogen and phosphorus that cause eutrophication, and in February 2000, the Central Environmental Council There is a report on regulations, and there is a demand for a treatment method that can recover phosphorus components contained in organic wastewater efficiently and reusably, and that can be implemented at low cost without adversely affecting the environment. We are continuing.
[0010]
Looking further at the demand for phosphorus components, Japan currently imports more than 900,000 tons (corresponding to more than 10 billion yen) of phosphorus ore from other countries. However, it has become increasingly difficult to collect high-grade phosphorus ore in the country of origin due to long-term consumption, and it is not clear whether it can be stably supplied to Japan in the future. In addition, about 3000 tons (corresponding to more than 400 million yen) of polyphosphate is imported into Japan annually from Asia, Europe and the United States, and this import amount is increasing year by year. This is because polyphosphoric acid can be used as a raw material for the production of rust preventives and mineral fibers that are expected to replace asbestos with carcinogenic properties. Tripolyphosphoric acid is a synthetic detergent, detergent, and sequestering agent. This is considered to be because it is used as a raw material for food additives and as a raw material for reagents used in papermaking, dyeing, photographic technology, and the like.
[0011]
Therefore, in order to meet such a high domestic demand, organic wastewater in a state containing a very high purity phosphate (calcium phosphate), which is a major component of phosphate ore, or in a high purity state as polyphosphate. If the phosphorus component derived is recovered, it would be possible to use the phosphorus component that caused the environmental pollution by discarding it very effectively, which would greatly contribute to various industries.
[0012]
The present invention has been made in view of such a current situation, and its purpose is to efficiently separate and recover the phosphorus component from the sludge as polyphosphoric acid in a short time, and to reduce the amount of the drug required for precipitation as a solid. It is an object of the present invention to provide a treatment method that achieves the effect of being able to be performed and is advantageous for the reuse of the phosphorus component.
[0013]
[Means for Solving the Problems]
The first invention of the present application for achieving the above object is a method for treating a sludge to be treated. In the following process, that is, to treat a sludge to be treated at a temperature of 60 to 90 ° C. at 10 to 120 for releasing a phosphorus component into a liquid phase. A heating step for performing heat treatment for minutes, a liquid temperature adjusting step for adjusting the liquid temperature of the processing liquid after phosphorus release to 70 ° C. or less, and a solid-liquid separation step for separating the processing liquid after liquid temperature adjustment into treated water and sludge And a process for treating sludge characterized by including a phosphorus coagulation step in which phosphorus in the treated water is precipitated from the liquid phase by addition of a coagulant at a reaction temperature of 20 to 70 ° C. after solid-liquid separation.
[0014]
In this method, the phosphorus component contained in the sludge to be treated is mainly released as polyphosphoric acid into the liquid phase by a method that does not require special equipment or reagents such as short heating, and then the released polyphosphoric acid is phosphorylated. The temperature of the treatment liquid is adjusted to a temperature at which it is difficult to be decomposed into an acid or the like, and solid-liquid separation is performed at the temperature to obtain treated water containing polyphosphoric acid stably. Subsequently, polyphosphoric acid is efficiently aggregated from the treated water, and phosphorous aggregation is performed at a temperature at which it can be recovered as a granule shape that can be easily separated by natural sedimentation without any special operation such as centrifugation after the aggregation. Therefore, the first invention of the present application increases the efficiency of recovering the phosphorus component in the sludge as polyphosphoric acid, and also helps simplify the work.
[0015]
In the first invention of the present application, it is preferable that the liquid temperature of the treatment liquid after the release of phosphorus in the liquid temperature adjusting step is adjusted to 50 ° C. or less (second invention of the present application). Under such a temperature, the decomposition of polyphosphoric acid can be more reliably suppressed.
[0016]
Moreover, in this application 1st or 2nd invention, it is preferable that the reaction temperature in the said phosphorus aggregation process shall be 20-50 degreeC (this invention 3rd invention). Then, phosphorus can be aggregated from the treated water and can be separated and recovered more efficiently.
[0017]
The liquid temperature adjusting step in any one of the first to third inventions of the present application is preferably performed by heat exchange between the sludge to be treated and the treatment liquid after the release of phosphorus (the fourth invention of the present application). By performing heat exchange, it is possible to suppress the decomposition of polyphosphoric acid and increase the temperature of the sludge to be subjected to the heat treatment by effective use of heat, thereby reducing the amount of energy consumed in the heating step. .
[0018]
A fifth invention of the present application is an organic wastewater treatment method characterized by including each step in the sludge treatment method according to any of the first to fourth inventions of the present application. By implementing the sludge treatment method having the above-mentioned advantages in the treatment of organic wastewater, the phosphorous component in the organic wastewater is isolated as polyphosphoric acid in a form that can be used in various applications with high efficiency. Is possible. Therefore, it is possible to more reliably prevent environmental pollution caused by phosphorus components, which has conventionally caused eutrophication of soil, ocean, rivers, lakes and marshes, even if discarded as excess sludge or discharged as treated water. Also become.
[0019]
The sixth invention of the present application relates to a method for treating organic wastewater in the following steps: (1) an aeration treatment step in which the wastewater is subjected to an aerobic treatment; (2) wastewater after the aeration treatment is treated as primary treated water and primary treated water. A solid-liquid separation step separated into sludge, (3) a heating step in which primary sludge is subjected to heat treatment at 60 to 90 ° C. for 10 to 120 minutes in order to release the phosphorus component into the liquid phase, (4) primary sludge and A heat exchange step of performing heat exchange with the treatment liquid after the release of phosphorus and adjusting the temperature of the treatment liquid to 70 ° C. or less, (5) separating the treatment liquid after heat exchange into secondary treated water and secondary sludge A second solid-liquid separation step, and (6) a phosphorus agglomeration step of precipitating phosphorus in the secondary treated water from the liquid phase by addition of a flocculant at a reaction temperature of 20 to 70 ° C. after the solid-liquid separation. This is a method for treating organic wastewater.
[0020]
By this method, the phosphorus component is accumulated in the microorganisms in the wastewater in the aeration treatment step (1), and this treated water is the primary treated water and the primary sludge in which the phosphorus component is concentrated in the next solid-liquid separation step (2). Then, in the heating step (3) which requires no special equipment or reagent for heating for a short time, the phosphorus component can be released from the primary sludge to the liquid phase mainly as polyphosphoric acid. Next, the treatment liquid is brought to a temperature at which polyphosphoric acid can be prevented from being decomposed by the heat exchange step (4) with the primary sludge, and contains a phosphorus component by solid-liquid separation (5) at such a temperature. Separated into treated water (secondary treated water) and secondary sludge from which the phosphorus component has been removed. Since most of the phosphorus components in the secondary treated water maintain the form of polyphosphoric acid, the required amount of aggregating agent such as a metal salt required for aggregation and precipitation is lower than that of conventional treatment methods. . And after solid-liquid separation, the phosphorus aggregation process (6) which precipitates phosphorus in secondary treated water from the liquid phase by adding a flocculant at a reaction temperature of 20 to 70 ° C. is performed, and polyphosphoric acid is efficiently and after aggregation. Even if the operation such as centrifugal separation is not performed, it can be recovered as a granule shape that can be easily separated by natural sedimentation.
[0021]
In the sixth invention of the present application, in the heat exchange step (4), it is preferable that the temperature of the treatment liquid after releasing phosphorus is adjusted to 50 ° C. or less (the seventh invention of the present application). Under such a temperature, the decomposition of polyphosphoric acid can be more reliably suppressed.
[0022]
In the sixth or seventh invention of the present application, the reaction temperature in the phosphorus aggregation step is preferably 20 to 50 ° C. (the eighth invention of the present application). Then, phosphorus can be aggregated from the treated water and can be separated and recovered more efficiently.
[0023]
Further, after the solid-liquid separation step (2), the concentration step (7) in which the separated primary sludge is concentrated is performed (the ninth invention of the present application), and the primary sludge is made to have a low capacity, thereby continuing the heating step. The volume of the tank required for (3) can be reduced. If it does so, it will also lead to the reduction of the energy required for the heating at the said process, and volume reduction of a subsequent processing tank, and can reduce installation and a maintenance cost significantly.
[0024]
The treatment method of the tenth invention of the present application further includes an anaerobic treatment process (8) before the aeration treatment process (1) in the sixth to ninth inventions of the present application. By this anaerobic treatment, the intake of organic matter to the microorganism and the release of the phosphorus component from the microorganism to the liquid phase are performed by making the anaerobic condition prior to the excessive intake of the phosphorus component to the microorganism. An overdose of ingredients will be performed more efficiently.
[0025]
The eleventh invention of the present application includes an aeration treatment tank, a solid-liquid separation means, a heating tank, a heat exchange means, a second solid-liquid separation means, a phosphorus agglomeration tank, and the like, for carrying out the above organic wastewater treatment method. An organic wastewater treatment apparatus including a path connecting the two is provided. Using this treatment device, organic wastewater can be converted at low cost to treated water substantially free of phosphorus components and relatively reduced activated sludge. As an excellent polyphosphoric acid, it can be recovered with high efficiency.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
In the sludge treatment method of the present invention, first, the sludge to be treated is discharged at 60 to 90 ° C. for 10 to 120 minutes, preferably at 70 to 80 ° C. for 15 to 120 minutes, more preferably for releasing the phosphorus component into the liquid phase. By performing heat treatment at 70 to 80 ° C. for 20 to 60 minutes, the phosphorus component in the sludge is released to the liquid phase. Heating under such conditions makes it possible to release the phosphorus component mainly as polyphosphoric acid, as will be apparent from Example 1 described later. Then, compared with the case where the phosphorus component is released as orthophosphoric acid or other phosphoric acid derivatives according to the conventional method, a coagulant such as a metal salt required for recovering the phosphorus component as a precipitate from the liquid phase is necessary. The amount is greatly reduced. This is because the number of free phosphate residues that can be bound by the flocculant with respect to the number of phosphorus atoms is low in polyphosphoric acid. In addition, since the metal salt of polyphosphoric acid forms a larger granular lump than the metal salt of phosphoric acid, the time required for separation and centrifugation, for example, in the subsequent recovery process is shortened. This is advantageous because it is possible to reduce the volume and reduce the rotation speed of the centrifugal separation. When the treatment temperature is lower than 60 ° C., it is difficult to release the phosphorus component as polyphosphoric acid, and when it exceeds 90 ° C., the polyphosphoric acid is rapidly decomposed into phosphoric acid after the release, so a flocculant is required for recovery. This is not preferable because the amount increases and the heating cost is high.
[0027]
Next, a liquid temperature adjustment step for adjusting the liquid temperature of the treatment liquid after the release of phosphorus is performed. Since the released polyphosphoric acid is further decomposed into phosphoric acid and the like when exposed to a high temperature, the temperature of the treatment liquid is 70 ° C. or lower, preferably 50 ° C. or lower, more preferably 40 ° C. or lower. adjust. In particular, it has been clarified that when the treatment liquid is exposed to a temperature of 80 ° C. or higher for 1 hour or longer, polyphosphoric acid is significantly decomposed (see Examples 2 and 3). This liquid temperature adjustment step may be performed simply by water cooling, air cooling by ventilation, or the like, but is preferably performed by heat exchange between the sludge to be treated and the treatment liquid after the release of phosphorus. If it does so, the temperature of to-be-processed sludge can be raised beforehand using the heat | fever of a process liquid effectively, and it will lead to reduction of the energy amount consumed in a heating process.
[0028]
After adjusting the liquid temperature, solid-liquid separation is performed at the temperature by ordinary means such as precipitation, centrifugation, and filtration (including membrane separation) to obtain treated water containing polyphosphoric acid. Since the liquid temperature of the treatment liquid after heating is adjusted, regardless of its heat resistance, as a device used in the solid-liquid separation process, a precipitation tank, a centrifuge, a membrane separator, When a dehydrator and a flotation separator can be widely used, and particularly when membrane separation is intended, shrinkage of the membrane due to high temperatures can be avoided, and the lifetime of the membrane can be extended.
[0029]
Subsequently, a flocculant is added at 20-70 degreeC, Preferably it is 20-50 degreeC, More preferably, it is 30-40 degreeC, Most preferably, it is 30 degreeC, and phosphorus aggregation is performed. Then, polyphosphoric acid can be efficiently recovered from the treated water, and can be recovered as a granule shape that can be easily separated by natural sedimentation without any special operation such as centrifugation after aggregation. Therefore, the efficiency of recovering the phosphorus component in the treated sludge as polyphosphoric acid can be increased, and the work can be simplified. If this temperature falls below the above range, no agglomerates are formed, so the phosphorus component must be recovered by centrifugation or the like, and even if such measures are taken, the recovery rate may be inferior. Also. Exceeding the above range is not practical because it requires heating separately.
[0030]
As the flocculant, for example, polyaluminum chloride, aluminum sulfate, ferric chloride, ferrous sulfate, calcium chloride, calcium oxide, calcium hydroxide, magnesium chloride, magnesium sulfate, magnesium oxide, magnesium hydroxide, etc. may be used. Of these, calcium salts such as calcium chloride, calcium oxide, and calcium hydroxide are preferable in view of the end product usability, cost, and environmental impact.
[0031]
In order to agglomerate polyphosphoric acid from the treatment solution after the release of phosphorus and collect it as a precipitate, it is sufficient to add less than half of the amount of coagulant required in the same process as in the past. In addition, the production amount of the metal-containing compound can be suppressed, which is preferable from the viewpoint of environmental conservation. After precipitation, the obtained solid component can be recovered by a conventional method, subjected to purification treatment as necessary, and used as a raw material for producing fertilizers and phosphorus compounds.
[0032]
Below, embodiment in the processing method of the organic wastewater of this invention is described based on the flow of FIG.
[0033]
That is, in the method shown in FIG. 1, the raw waste water A, which is an organic waste water containing phosphorus, is first attached to the anaerobic treatment tank 8 to ingest organic matter into the microorganism body under anaerobic conditions, The phosphorus component stored as acid granules is released. At this time, the phosphorus component is generally hydrolyzed and released into the liquid phase as normal phosphoric acid. The processing temperature at this time is not particularly limited, and it may be performed at room temperature. Here, it is preferable that the anaerobic treatment tank 8 is provided with a stirring means so that the microorganisms and the organic matter in the water to be treated are efficiently brought into contact with each other to promote the release of phosphorus.
[0034]
Next, this treatment liquid is applied to an aeration treatment tank 1 equipped with an aeration means 12 of an air pump, where decomposition of organic matter by aerobic microorganisms and intake of phosphorus components by microorganisms (retention in the body) are preferably performed at room temperature. Do. In this process, the phosphorus component released by the anaerobic treatment and the phosphorus component in the organic wastewater are ingested and concentrated in the microorganism.
[0035]
The respective structures of the aeration treatment tank 1 and the anaerobic treatment tank 8 and the routes connecting the following various reaction tanks are not particularly limited, and essentially those conventionally used can be used. Because of the apparatus of the present invention, the aeration treatment tank 1 is provided with an air diffuser 13 that can distribute the air sent from the aeration means 12 such as an air pump and a blower into the aeration treatment tank 1, and in the anaerobic treatment tank 8. Preferably, what is necessary is just to comprise a stirring means. In addition, each condition in these steps may be performed in accordance with a conventionally known processing method (see JP-A-9-10791).
[0036]
Next, the aeration treatment liquid is applied to the solid-liquid separation means 2 and divided into the primary sludge x in which the phosphorus component is concentrated and the primary treatment water a. As the solid-liquid separation means 2, conventionally known means such as precipitation and filtration including membrane separation are selected. Of these, precipitation is preferred because equipment and maintenance costs are low, and little effort is required for operation.
[0037]
A part of the primary sludge x is appropriately returned to the anaerobic treatment tank 8 to adjust the amount of sludge applied to the following processes and to sufficiently decompose the organic matter in the anaerobic and aerobic treatment and ingest the phosphorus component by the microorganisms. You may make it carry out.
[0038]
Thereafter, the primary sludge x obtained from the solid-liquid separation means 2 is further subjected to concentration means 7 for further concentration to obtain a high concentration. When a high-concentration sludge is obtained by the concentrating means 7, it is possible to reduce the volume of the apparatus and the energy required for the subsequent steps after the heat treatment. For the concentration means 7, precipitation, filtration including membrane separation, centrifugation, levitation concentration, and the like can be used. Since the sludge can be substantially maintained in an aerobic state and sufficient concentration of 4% sludge concentration or more is realized while preventing the re-release of the phosphorus component, it is preferable to employ the floating concentration as the concentration means 7. . A preferable condition for carrying out the flotation concentration is that about 2-3% of air is dissolved in the circulating water in the circulating system using the circulating water of about 4 times the sludge capacity. The separated water that does not contain a large amount of phosphorus component obtained through the concentration means 7 can be discharged together with the primary treated water a.
[0039]
Next, in order to release the phosphorus component from the microorganisms contained in the sludge into the liquid phase, the obtained primary sludge x is 60 to 90 using the heating means 10 such as a heater or a steam generator in the next heating tank 3. The phosphorous component is mainly released from the microorganism as polyphosphoric acid by heat treatment at 10 to 120 minutes at 70 ° C., preferably 15 to 120 minutes at 70 to 80 ° C., more preferably 20 to 60 minutes at 70 to 80 ° C. Let When the phosphorus component is released as polyphosphoric acid, the amount of the coagulant B such as a metal salt required for the treatment in the phosphorus coagulation tank 6 for recovering the phosphorus component as a precipitate from the liquid phase is as described above. Compared with the case where it is released as phosphoric acid by anaerobic treatment, ozone treatment, alkali treatment, etc., it is significantly reduced. The metal salt of polyphosphoric acid is advantageous because it forms a large granular precipitate lump, which facilitates subsequent recovery.
[0040]
After the treatment in the heating tank 3 is completed, heat exchange between the primary sludge x and the treatment liquid generated from the heating tank 3 is performed in the heat exchanger 4. Since the polyphosphoric acid released in the heating tank 3 is further decomposed into phosphoric acid or the like when exposed to a high temperature, the temperature of the treatment liquid is 70 ° C. or less, preferably 50 ° C. or less by heat exchange. More preferably, it adjusts to 40 degrees C or less. If the liquid temperature is adjusted by heat exchange in this way, the heat recovery efficiency is improved and the heat loss is reduced, so that the running cost can be reduced. In addition, by performing heat exchange, the heated treatment liquid is cooled and then supplied to the next solid-liquid separation means 5, so that the heat resistance of the solid-liquid separation means 5 is not so required. Become. In addition, you may implement liquid temperature adjustment by water cooling, the air cooling by ventilation, etc., without performing heat exchange according to the case.
[0041]
The treatment liquid whose liquid temperature has been adjusted is then separated by the solid-liquid separation means 5 into relatively small volumes of high-phosphorus component-containing treatment water (secondary treatment water) b and secondary sludge z. As described above, since the solid-liquid separation means 5 is not required to have high heat resistance, the dehydrator such as a centrifugal separator, a membrane separator, a belt press, a filter press, etc. in addition to a commonly used precipitation tank Widely available. In particular, when the adoption of a belt press type dehydrator is intended, inconveniences such as shrinking of the filter cloth due to high temperature can be avoided, and the life of the membrane can be extended.
[0042]
The secondary treated water b thus obtained has a much reduced capacity compared to the treated water containing the phosphorus component produced by the conventional wastewater treatment method. Very small equipment for the process is sufficient. Moreover, since the secondary sludge z contains almost no phosphorus component, it is preferable because it can be easily used for landfill disposal or construction materials.
[0043]
Next, the secondary treated water b is subjected to a phosphorus aggregation process. That is, the secondary treated water b is introduced into the phosphorus coagulation tank 6 and the flocculant B is stirred at 20 to 70 ° C., preferably 20 to 50 ° C., more preferably 30 to 40 ° C., and most preferably 30 ° C. Addition causes the phosphorus component to agglomerate and precipitate from the liquid phase.
[0044]
As the flocculant B, the same calcium salt as described in the sludge treatment method is preferably used. Since the phosphorus component contained in the secondary treated water b is mainly obtained as polyphosphoric acid, it can be aggregated into a granular solid component that can be easily recovered even if a small amount of the flocculant B is used. If the phosphorus aggregation step is carried out under the above temperature conditions, the polyphosphoric acid can be efficiently recovered and recovered in the form of granules that can be easily separated by natural sedimentation without any special operation such as centrifugation after the aggregation.
[0045]
As for the addition amount of the flocculant B, it is most preferable to calculate the number of free phosphoric acid residues from the amount of total phosphorus components and polyphosphoric acid contained in the secondary treated water b, and use only the amount of moles sufficient for this. In addition, in order to collect | recover the phosphorus component as a solid component in the aggregation reaction in the phosphorus aggregating tank 6, the pH of the secondary treated water b is 5 to 10, preferably 6 to 9, unlike the case of recovering phosphoric acid. It is good to do. Since it is possible to recover under such mild conditions, there is no need to add a basic substance, the cost can be kept lower than when recovering as phosphoric acid, and a secondary base is used. The generation of toxic wastewater can also be prevented.
[0046]
Subsequently, the tertiary treatment water c and the phosphorus component p substantially not including the phosphorus component are obtained by the solid-liquid separation means 9. As the solid-liquid separation means 9, for example, precipitation, filtration (including membrane separation) or centrifugation can be selected, but among these, a particularly expensive apparatus or labor is not required. Precipitation or filtration is preferred. According to the method of the present invention, as described above, the phosphorus component can be obtained in a form that can be easily recovered by natural sedimentation, and therefore precipitation separation in a precipitation tank can be suitably employed.
[0047]
The phosphorus component p finally recovered is not only separated and concentrated from sludge but also highly purified, so as a raw material for fertilizers, synthetic detergents, cleaning agents, sequestering agents, food additives, It can be easily used as a raw material for reagents, phosphorous compounds, and pharmaceuticals used in papermaking, dyeing, and photographic technology.
[0048]
【Example】
Examples of the present invention will be described below, but the scope of the present invention should not be construed as being limited to these examples.
[0049]
[Example 1]
In a laboratory batch-type anaerobic aerobic activated sludge process, 500 ml of activated sludge derived from a sewage treatment plant is placed in a 1 L Erlenmeyer flask, and then has an organic composition containing a phosphorus component having the composition shown in Table 1 below. 500 ml of waste water was added.
[0050]
[Table 1]
Figure 0004271334
[0051]
1 L of this raw wastewater is subjected to anaerobic treatment at 20 ° C. and pH 7 for a residence time of 2 hours, followed by aerobic treatment at 20 ° C., an aeration amount of 2 vvm (using an aeration pump) and a pH of 7 for a residence time of 5 hours. Carried out. During this treatment, the liquid was continuously stirred with a stirrer so that the liquid volume was maintained at 1 L.
[0052]
After completion of the aerobic treatment, 1 ml of sludge was fractionated into 25 Eppendorf tubes, and 5 each was placed in a thermostat set at 50 ° C., 60 ° C., 70 ° C., 80 ° C. and 90 ° C. Sample one tube every 20 minutes, centrifuge each sample at 8,000 xg for 5 minutes, and then quantify the total phosphorus, polyphosphate and phosphate amounts in the supernatant according to the following method did.
Total phosphorus content: after hydrothermal decomposition (121 ° C, 30 minutes) in the presence of ammonium persulfate, quantified as phosphoric acid by the following method
Amount of polyphosphoric acid: After thermal decomposition (100 ° C, 7 minutes) in the presence of 1N hydrochloric acid, quantified as phosphoric acid by the following method
Phosphoric acid content: phosphate ion content measurement based on molybdenum blue (ascorbic acid reduction) spectrophotometry according to JIS K 0102
Then, in order to examine whether the phosphorus component in these supernatants can be separated by coagulation precipitation, calcium chloride (CaCl 2 ) Was added to a final concentration of 50 mM, and the total phosphorus content of the precipitate obtained by centrifugation at 8,000 × g for 5 minutes was measured by the above total phosphorus assay.
[0053]
The results thus obtained are shown in FIG. In FIG. 2, (a) is 50 ° C., (b) is 60 ° C., (c) is 70 ° C., (d) is 80 ° C., and (e) is the change over time of each quantitative value by heat treatment at 90 ° C. (F) shows the phosphorus composition in the activated sludge before the heat treatment ((1): phosphoric acid, (2): polyphosphoric acid and (3): the amount of other phosphoric acid compounds).
[0054]
FIG. 2 shows that when the heat treatment of the activated sludge sample is carried out at 50 ° C., the amount of phosphorus components released from the sludge is all small, and more is released as phosphoric acid than polyphosphoric acid (FIG. 2). 2 (a)). At this temperature, the polyphosphoric acid granules in the sludge seemed almost free. At a treatment temperature of 70 ° C. (FIG. 2 (c)), about 90% of the amount of polyphosphoric acid (FIG. 2 (f), (2)) present in the activated sludge 1 hour after the start of heating is released and released. It was. At this point, the amount corresponding to about 20% of the polyphosphoric acid has been decomposed into phosphoric acid. When calcium chloride was added and centrifuged 2 hours after the start of heating, most of the total phosphorus released was recovered as a precipitate. When the treatment temperature is 90 ° C. (FIG. 2 (e)), the release of polyphosphoric acid proceeds rapidly, and under this condition, it is completed in about 10 minutes. The amount decomposed into phosphoric acid at this point was about 10%. When the release of polyphosphoric acid was completed, the polyphosphoric acid was rapidly decomposed into phosphoric acid, and about 2% of the released polyphosphoric acid became phosphoric acid 2 hours after the start of heating. Even if coagulation precipitation with calcium chloride was performed at this time, the amount of the phosphorus component that could be recovered was only about 20% of the released amount. Therefore, when the method of the present invention is carried out at a temperature of 90 ° C., it is indicated that it is preferable to subject the released polyphosphoric acid to aggregation precipitation promptly.
[0055]
[Example 2]
The thermal stability of polyphosphoric acid released by heat treatment was investigated.
[0056]
First, 1 ml of the sludge described in Example 1 was dispensed into 16 Eppendorf tubes, and heat treatment was performed at 70 ° C. for 120 minutes to release phosphorus from the sludge into the liquid phase. The pH of the treatment liquid after heating was about 7.0. The tubes were divided into 4 groups of 4 tubes, and 4 tubes were placed in a thermostat set at 30, 50, 70 and 90 ° C. and heated under standing. Each group was taken out after 15, 30, 60 and 120 minutes, centrifuged at 8,000 × g for 5 minutes, and the amount of polyphosphoric acid and phosphoric acid contained in each supernatant and 120 ° C. at 120 ° C. Those values in the sludge supernatant immediately after heating for minutes were measured in the same manner as described in Example 1.
[0057]
The result is shown in FIG. FIG. 3A shows the change over time in the amount of polyphosphoric acid at each temperature, and FIG. 3B shows the change in the amount of phosphoric acid. From this figure, it was shown that the amount of phosphoric acid increased remarkably at a heat treatment temperature of 70 to 90 ° C., and decomposition of polyphosphoric acid into phosphoric acid was suspected. Actually, the amount of polyphosphoric acid showed a remarkable decreasing tendency especially at 90 ° C. At 70 ° C., the amount of polyphosphoric acid was not attenuated enough to meet the increase in the amount of phosphoric acid, but this was presumably because polyphosphoric acid was continuously released from the sludge into the liquid phase.
[0058]
[Example 3]
The thermal stability of the polyphosphoric acid released by the heat treatment was further examined using a treatment liquid that does not contain sludge that releases polyphosphoric acid.
[0059]
First, as described in Example 2, 1 ml of sludge was fractionated into 24 Eppendorf tubes, and heat treatment was performed at 70 ° C. for 120 minutes to release phosphorus from the sludge into the liquid phase. The pH of the treatment liquid after heating was about 7.0. Next, each tube was centrifuged at 8,000 × g for 5 minutes, and the supernatant was again taken into an Eppendorf tube and placed in a thermostat set at 20, 30, 40, 50, 60, 70, 80 and 90 ° C., respectively. Three of them were put and heated at each temperature while standing still. After 1 hour, 2 hours and 3 hours, one bottle is taken out from each thermostat, the amount of polyphosphoric acid contained in each supernatant, and the polyphosphoric acid in the sludge supernatant immediately after heating at 70 ° C. for 120 minutes The amount was measured in the same manner as described in Example 1.
[0060]
The result is shown in FIG. From this figure, it has been clarified that the amount of polyphosphoric acid is remarkably lowered and the polyphosphoric acid is decomposed at a heat treatment temperature of 70 to 90 ° C., particularly 80 to 90 ° C.
[0061]
As described above, from the results of Examples 2 and 3, in order to stabilize the polyphosphoric acid released by the heat treatment, it is rapidly cooled to 70 ° C. or less, preferably 50 ° C. or less, more preferably 40 ° C. or less immediately after the heat treatment. It was suggested that adjusting the liquid temperature was desirable. In the treatment of sludge and / or organic wastewater, it can be said that it is desirable to exchange heat with the sludge before heat treatment that is normally equilibrated to room temperature in order to adjust the liquid temperature to such a numerical range.
[0062]
[Example 4]
The effect of reaction temperature on the recovery rate of phosphorus when the phosphorus component was aggregated and recovered as a solid component was investigated.
[0063]
First, 1 ml of the sludge described in Example 1 was dispensed into 15 Eppendorf tubes and divided into 3 groups of 5 each and subjected to heat treatment at 70 ° C. for 90, 120 and 150 minutes to convert the sludge into a liquid phase. Phosphorus was released. Each tube was centrifuged at 8,000 × g for 5 minutes, and the supernatant (pH = about 7.0) was again collected into 15 Eppendorf tubes. After adding and stirring calcium chloride to each supernatant so that the final concentration as calcium is 50 mM, each group is placed in a thermostat set at 0, 20, 30, 40 and 50 ° C. Heated in place. After 60 minutes, all the tubes were removed, centrifuged at 8,000 × g for 5 minutes, the supernatant was removed, the precipitate was suspended in 1 ml of pure water, the amount of polyphosphoric acid in the suspension, The amount of phosphoric acid and the amount of calcium were quantified. The amount of polyphosphoric acid and the amount of phosphoric acid in the supernatant of the sludge immediately after the heat treatment at 70 ° C. for each time were also quantified. The amount of polyphosphoric acid and the amount of phosphoric acid were measured by the same method as described in Example 1, and the amount of calcium was quantified by a chelate coloring method (orthocresolphthalein complexone (OCPC) method).
[0064]
The result is shown in FIG. From this result, it can be seen that the recovery rate of polyphosphoric acid increases over the reaction temperature of 0 to 30 ° C. during phosphorus aggregation, but the recovery rate does not improve even if the reaction temperature is increased beyond that. Therefore, it can be said that the reaction temperature at the time of aggregation and precipitation is desirably 20 to 50 ° C., preferably 30 to 40 ° C. Usually, in order to precipitate and agglomerate a solid substance from a liquid, it is considered that the recovery rate is higher when the liquid is kept at a lower temperature and the solid solubility is lowered. In the recovery of the phosphorus component containing a large amount, on the contrary, it became clear that a better recovery rate was obtained at 20 ° C. or higher than 0 ° C. Actually, the temperature of the treated water leading to the phosphorus aggregation step is expected to be around 30 ° C., so it is considered unnecessary to heat from the outside.
[0065]
[Example 5]
The influence of reaction temperature on the recovery rate of phosphorus when the phosphorus component was aggregated and recovered as a solid component was further investigated.
[0066]
First, 1 ml of the sludge described in Example 1 was dispensed into 30 Eppendorf tubes, and heat treatment was performed at 70 ° C. for 120 minutes to release phosphorus from the sludge into the liquid phase. Each tube was centrifuged at 8,000 × g for 5 minutes, and 10 ml of the supernatant (pH = about 7.0) was collected into two test tubes. And after adding and stirring calcium chloride so that the final density | concentration as calcium might be set to 50 mM, it put one by one in the thermostat set to 0 and 30 degreeC, and hold | maintained still. The test tube was taken out after 10, 30, and 120 minutes, and the shape of the aggregate was visually observed.
[0067]
The state of occurrence of aggregates in each test tube is shown in FIG. As is apparent from FIG. 6, at the reaction temperature of 30 ° C., aggregates were formed and settled after 10 minutes from the elapsed time, and were gravity settled at the bottom of the test tube. This agglomerate was found to form stronger aggregates over time. On the other hand, at the reaction temperature of 0 ° C., no visible aggregate formation was observed after 120 minutes. And when the aggregation reaction using calcium was performed at 0 degreeC, the phosphorus component could not be collect | recovered unless it centrifuged.
[0068]
[Example 6]
The effect of the method of aggregating the phosphorus component and collecting it as a solid component on the phosphorus recovery rate was examined.
[0069]
In the same manner as in Example 5, phosphorus was released from the sludge into the liquid phase to obtain the supernatant, and calcium chloride was added at 30 ° C. in a test tube and allowed to stand at the same temperature. The total amount of phosphorus in the supernatant after 15, 30, 60, 120, 180, and 240 minutes was quantified. At the same time, after each time, the total amount of phosphorus contained in the supernatant obtained by centrifugation at 8,000 xg for 5 minutes was quantified.
[0070]
FIG. 7 shows the total phosphorus amount that can be recovered by natural sedimentation and the total phosphorus amount that can be recovered by centrifugation. From FIG. 7, it was suggested that if the agglutination reaction is performed at 30 ° C., it is possible to achieve a recovery rate that is inferior to that of centrifugation by simply allowing it to stand for about 60 minutes even by natural sedimentation. Therefore, in combination with the results of Example 5, 20 to 70 ° C., preferably about 20 to 50 ° C., more preferably 30 to 40 ° C., and most preferably 30 ° C. It was suggested that the phosphorus component can be easily recovered as a sediment only in the coagulation tank, and that a solid-liquid separation device such as centrifugation may be omitted after the coagulation step. This simplifies the organic wastewater treatment system and is thought to lead to a reduction in equipment costs and running costs.
[0071]
【The invention's effect】
According to the present invention, the phosphorus component contained in the organic wastewater can be separated and recovered in a short time, and the reuse of phosphorus can be facilitated. At this time, since the phosphorus component is concentrated as polyphosphoric acid, the amount of the flocculant required is much smaller than that of a conventionally known method.
[0072]
The method of the present invention can recover phosphorus components at a high rate without requiring any reagent or expensive equipment, and can simplify the system and also can effectively use energy, thereby realizing low-cost processing. It is advantageous in that it is done.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of one embodiment of a method for treating organic wastewater according to the present invention.
FIG. 2 is a graph showing changes over time in the release amounts of various phosphorus components when activated sludge is treated at a temperature in the range of 50 to 90 ° C.
FIG. 3 is a graph showing the stability of polyphosphoric acid over time when activated sludge is heat-treated and allowed to stand at various temperatures. (A) shows the change over time in the amount of polyphosphoric acid at each temperature, and (b) shows the change in the amount of phosphoric acid.
FIG. 4 is a graph showing the degradation of polyphosphoric acid over time when activated sludge is heat-treated and separated into solid and liquid and the supernatant is left under various temperatures.
FIG. 5 is a graph showing the influence of reaction temperature on the recovery of phosphorus when a phosphorus component is aggregated and recovered.
FIG. 6 is a diagram showing the formation of aggregates when phosphorus aggregation reaction is performed at 0 ° C. and 30 ° C.
FIG. 7 is a graph showing the recovery of phosphorus components by natural sedimentation and centrifugation when a phosphorus agglutination reaction is performed at 30 ° C.
[Explanation of symbols]
1 ... Aeration tank
2, 5, 9 ... Solid-liquid separation means
3 ... Heating tank
4 ... Heat exchanger
6 ... Phosphorus flocculation tank
7. Concentration means
8 ... Anaerobic treatment tank
10 ... heating means
12 ... Aeration means
13 ... Aeration means
A ... Raw wastewater
B ... Flocculant
a ... Primary treated water
b ... Secondary treated water
c ... Tertiary treated water
x ... Primary sludge
z ... secondary sludge
p ... phosphorus component

Claims (11)

汚泥を処理する方法において、以下の工程すなわち、
被処理汚泥を、リン成分を液相に放出させるために60〜90℃で10〜120分間加熱処理を行う加熱工程、
リン放出後の処理液の液温を70℃以下に調整する液温調整工程、
液温調整後の処理液を、処理水と汚泥とに分離する固液分離工程、及び
固液分離後に、処理水中のリンを反応温度20〜70℃で凝集剤の添加によって液相から沈殿させるリン凝集工程
を含むことを特徴とする汚泥の処理方法。
In the method of treating sludge, the following steps:
A heating step in which the treatment sludge is subjected to a heat treatment at 60 to 90 ° C. for 10 to 120 minutes in order to release the phosphorus component into the liquid phase;
A liquid temperature adjusting step for adjusting the liquid temperature of the treatment liquid after the release of phosphorus to 70 ° C. or lower;
A solid-liquid separation step for separating the treated liquid after adjusting the liquid temperature into treated water and sludge, and after solid-liquid separation, phosphorus in the treated water is precipitated from the liquid phase by adding a flocculant at a reaction temperature of 20 to 70 ° C. A method for treating sludge, comprising a phosphorus aggregation step.
前記液温調整工程において、リン放出後の処理液の液温が50℃以下に調整される請求項1記載の汚泥の処理方法。The sludge treatment method according to claim 1, wherein in the liquid temperature adjustment step, the liquid temperature of the treatment liquid after phosphorus release is adjusted to 50 ° C or lower. 前記リン凝集工程における反応温度が20〜50℃である請求項1または2に記載の汚泥の処理方法。The method for treating sludge according to claim 1 or 2, wherein a reaction temperature in the phosphorus aggregation step is 20 to 50 ° C. 液温調整工程が、被処理汚泥とリン放出後の処理液との熱交換によって行われる請求項1乃至3のいずれかに記載の汚泥の処理方法。The sludge treatment method according to any one of claims 1 to 3, wherein the liquid temperature adjustment step is performed by heat exchange between the treated sludge and the treatment liquid after the release of phosphorus. 請求項1乃至4のいずれかに記載の汚泥の処理方法における各工程を含むことを特徴とする有機性廃水の処理方法。The processing method of the organic wastewater characterized by including each process in the processing method of the sludge in any one of Claims 1 thru | or 4. 有機性廃水の処理方法において、以下の工程すなわち、
(1)廃水が好気的処理に付される曝気処理工程、
(2)曝気処理後の廃水が一次処理水と一次汚泥とに分離される固液分離工程、
(3)一次汚泥を、リン成分を液相に放出させるために60〜90℃で10〜120分間加熱処理を行う加熱工程、
(4)一次汚泥とリン放出後の処理液との熱交換を行い、処理液の温度を70℃以下に調整する熱交換工程、
(5)熱交換後の処理液を、二次処理水と二次汚泥とに分離する第二固液分離工程、及び
(6)固液分離後に、二次処理水中のリンを反応温度20〜70℃で凝集剤の添加によって液相から沈殿させるリン凝集工程
を含むことを特徴とする有機性廃水の処理方法。
In the method for treating organic wastewater, the following steps, namely:
(1) An aeration process in which wastewater is subjected to an aerobic process,
(2) Solid-liquid separation process in which waste water after aeration treatment is separated into primary treated water and primary sludge,
(3) A heating process in which primary sludge is subjected to heat treatment at 60 to 90 ° C. for 10 to 120 minutes in order to release the phosphorus component into the liquid phase,
(4) A heat exchange step of performing heat exchange between the primary sludge and the treatment liquid after phosphorus release, and adjusting the temperature of the treatment liquid to 70 ° C. or less,
(5) a second solid-liquid separation step for separating the treated liquid after heat exchange into secondary treated water and secondary sludge; and (6) after solid-liquid separation, phosphorus in the secondary treated water is reacted at a reaction temperature of 20 to 20%. A method for treating organic wastewater, comprising a phosphorus flocculation step of precipitating from a liquid phase by adding a flocculant at 70 ° C.
前記熱交換工程(4)において、リン放出後の処理液の液温が50℃以下に調整される請求項6記載の有機性廃水の処理方法。The method for treating organic wastewater according to claim 6, wherein in the heat exchange step (4), the temperature of the treatment liquid after phosphorus release is adjusted to 50 ° C or lower. 前記リン凝集工程(6)における反応温度が20〜50℃である請求項6または7に記載の有機性廃水の処理方法。The method for treating organic wastewater according to claim 6 or 7, wherein a reaction temperature in the phosphorus aggregation step (6) is 20 to 50 ° C. 前記固液分離工程(2)の実施後に、分離された一次汚泥が濃縮される濃縮工程(7)をさらに含む請求項6乃至8のいずれかに記載の有機性廃水の処理方法。The method for treating organic wastewater according to any one of claims 6 to 8, further comprising a concentration step (7) in which the separated primary sludge is concentrated after the solid-liquid separation step (2). 前記曝気処理工程(1)の前に、嫌気処理工程(8)をさらに含む請求項6乃至9のいずれかに記載の処理方法。The processing method according to any one of claims 6 to 9, further comprising an anaerobic processing step (8) before the aeration processing step (1). 有機性廃水処理装置であって、曝気処理槽、固液分離手段、加熱槽、熱交換手段、第二固液分離手段及びリン凝集槽、ならびにそれらを連結する経路を含み、請求項6乃至10のいずれかに記載の有機性廃水の処理方法を実施するための装置。An organic wastewater treatment apparatus comprising an aeration treatment tank, a solid-liquid separation means, a heating tank, a heat exchange means, a second solid-liquid separation means and a phosphorus agglomeration tank, and a path connecting them. The apparatus for implementing the processing method of the organic wastewater in any one of.
JP2000057000A 2000-03-02 2000-03-02 Sludge treatment method, organic wastewater treatment method including the treatment method, and organic wastewater treatment apparatus Expired - Lifetime JP4271334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000057000A JP4271334B2 (en) 2000-03-02 2000-03-02 Sludge treatment method, organic wastewater treatment method including the treatment method, and organic wastewater treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000057000A JP4271334B2 (en) 2000-03-02 2000-03-02 Sludge treatment method, organic wastewater treatment method including the treatment method, and organic wastewater treatment apparatus

Publications (2)

Publication Number Publication Date
JP2001239298A JP2001239298A (en) 2001-09-04
JP4271334B2 true JP4271334B2 (en) 2009-06-03

Family

ID=18577865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000057000A Expired - Lifetime JP4271334B2 (en) 2000-03-02 2000-03-02 Sludge treatment method, organic wastewater treatment method including the treatment method, and organic wastewater treatment apparatus

Country Status (1)

Country Link
JP (1) JP4271334B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4373700B2 (en) 2002-06-05 2009-11-25 三菱電機株式会社 Organic waste liquid processing method and processing apparatus
JP4786332B2 (en) * 2005-12-21 2011-10-05 東和環境科学株式会社 Sludge treatment apparatus, organic wastewater treatment apparatus, phosphorus production method and sludge production method
CN108585439B (en) * 2018-03-13 2019-07-19 山东科技大学 A method of separating metallic particles from cupric zinc organic sludge
JP7265077B1 (en) 2022-07-27 2023-04-25 日本エイアンドエル株式会社 Sludge treatment method

Also Published As

Publication number Publication date
JP2001239298A (en) 2001-09-04

Similar Documents

Publication Publication Date Title
CN104761114B (en) Enhanced wastewater phosphorus removal method
CN103304104B (en) Zero-sewage discharge novel process for development of natural gas fields
CN103813987A (en) Treatment of phosphate-containing wastewater with fluorosilicate and phosphate recovery
US6106717A (en) Method for treating organic waste water
CN103880238A (en) Device and method for treating condensed water of flue gas
CN110818000B (en) Garbage leachate membrane concentrated solution reduction and recycling treatment system and method
JP6376951B2 (en) Phosphorus recovery equipment and phosphorus recovery method
JP3570888B2 (en) Waste treatment method
JP4271334B2 (en) Sludge treatment method, organic wastewater treatment method including the treatment method, and organic wastewater treatment apparatus
TW476736B (en) A method of treating sludge and a method of treating organic waste water using the same
JP4248086B2 (en) Organic wastewater treatment method
CN206927750U (en) A kind of power plant waste water processing system
JP4871384B2 (en) Treatment equipment for phosphorus-containing wastewater
Bogdan et al. Municipal wastewater as a source for phosphorus
JP5530703B2 (en) Phosphorus recovery method
JP4527889B2 (en) Sludge and organic wastewater treatment method and organic wastewater treatment apparatus
JP4714350B2 (en) Organic wastewater treatment method
JP2005040739A (en) Phosphate-containing wastewater treatment method
CN104609641B (en) Sebacic acid wastewater evaporative desalination pretreatment method
CN109796106A (en) A kind of MAP-SBR method of novel phosphorus source processing digester of pig farm water outlet
CN115028479B (en) Method for preparing humic acid plant nutrient solution by utilizing sludge continuous thermal hydrolysis dehydration liquid
KR20050026294A (en) Method for treating and reusing high-strength organic wastewater
JPH10235398A (en) Sludge treatment
JPH10156391A (en) Treatment of phosphorus recovered from treated water of sewerage
JPS63258692A (en) Treatment of organic sewage

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060613

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4271334

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term