JP3570888B2 - Waste treatment method - Google Patents

Waste treatment method Download PDF

Info

Publication number
JP3570888B2
JP3570888B2 JP12249698A JP12249698A JP3570888B2 JP 3570888 B2 JP3570888 B2 JP 3570888B2 JP 12249698 A JP12249698 A JP 12249698A JP 12249698 A JP12249698 A JP 12249698A JP 3570888 B2 JP3570888 B2 JP 3570888B2
Authority
JP
Japan
Prior art keywords
treatment
waste
compound
filtrate
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12249698A
Other languages
Japanese (ja)
Other versions
JPH11309438A (en
Inventor
廣二 関
玉友 李
芳男 奥野
宏 佐々木
和浩 赤嶺
Original Assignee
アタカ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アタカ工業株式会社 filed Critical アタカ工業株式会社
Priority to JP12249698A priority Critical patent/JP3570888B2/en
Publication of JPH11309438A publication Critical patent/JPH11309438A/en
Application granted granted Critical
Publication of JP3570888B2 publication Critical patent/JP3570888B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Landscapes

  • Treatment Of Sludge (AREA)
  • Fertilizers (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機物を含有する有機性廃棄物をメタン発酵処理する廃棄物処理方法に関する。
【0002】
【従来の技術】
従来、例えば図3に示すように、別途処理していた屎尿や畜産廃水、浄化槽汚泥、農業集落廃水、下水汚泥、食品加工汚泥などの流動性を有する液状の有機性廃棄物と、厨芥などの生ごみである固形状の有機性廃棄物とを、一つの系内で処理するとともに、処理の際に固形燃料や肥料、メタンガスなどの有価物を回収する廃棄物処理方法が知られている。
【0003】
この図3に示す廃棄物処理方法は、液状の有機性廃棄物を粉砕あるいは夾雑物を分離除去するなど第1の前処理工程21で前処理をした後に固液分離工程22で汚泥分と濾液とに固液分離し、汚泥分は別途第2の前処理工程23であらかじめ粉砕あるいは夾雑物を除去した固形状の有機性廃棄物とともにメタン発酵槽24でメタン発酵処理する。そして、メタン発酵処理にてメタンガスを有価物として回収した後、脱水工程25で汚泥と処理濾液とに脱水分離し、汚泥は肥料などにコンポスト化して有価物として回収し、処理濾液は固液分離工程22で液状の有機性廃棄物の固液分離にて分集した濾液とともに硝化脱窒工程26で硝化脱窒処理し、さらに高度処理工程27で凝集剤にて凝集処理し、処理水として処理する。なお、硝化脱窒処理および凝集処理により生じた余剰汚泥や凝集汚泥は、液状の有機性廃棄物の前処理や固液分離に返送して再び処理する。
【0004】
【発明が解決しようとする課題】
しかしながら、屎尿や畜産廃水、水産加工廃水などの液状の有機性廃棄物は、固液分離してメタン発酵処理するための汚泥分を分離しているが、濾液には以前高いBOD(Biochemical Oxygen Demand :生物化学的酸素要求量)が含まれているとともに多量の窒素化合物が溶解した状態となっている。このため、これらBODおよび窒素化合物の双方を処理する装置構成が複雑で大型となるとともに処理に大きなエネルギを必要とする硝化脱窒処理を行う必要がある。また、濾液中のBODや窒素化合物などを有価物として回収できない問題がある。
【0005】
本発明は、上記問題点に鑑みて、各種性状の有機性廃棄物を効率よく簡単に処理できるとともに、有価物としての回収効率を向上できる廃棄物処理方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
請求項1記載の廃棄物処理方法は、生物処理により生成した生物処理汚泥を汚泥分と濾液とに固液分離し、前記汚泥分と嫌気性生物にて分解可能な有機物を含有する流動性を有した液状有機性廃棄物と嫌気性生物にて分解可能な固形状の有機物を含有する固形状有機性廃棄物とを攪拌混合してメタン発酵処理した後に固液分離して処理濾液を分集し、この処理濾液を前記濾液とともに好気性微生物により生物処理するものである。
【0007】
そして、生物処理により生成した生物処理汚泥を固液分離して分集した全有機物の大半が存在する汚泥分と、嫌気性生物にて分解可能な有機物を含有する流動性を有し液体部分に多量の有機物が存在する液状有機性廃棄物と、嫌気性生物にて分解可能な固形状の有機物を含有する固形状有機性廃棄物とを攪拌混合してメタン発酵処理し、このメタン発酵処理した後に固液分離して分集した処理濾液と生物処理汚泥を固液分離して分集した濾液とを好気性微生物により生物処理するため、各種性状の異なる廃棄物の有機物をほとんどメタン発酵処理してメタンガスの有価物として回収可能となるとともに、後工程の好気性微生物による生物処理の負荷が低減して装置の小型化および運転エネルギの低減が得られ、効率よく処理できる。
【0008】
請求項2記載の廃棄物処理方法は、請求項1記載の廃棄物処理方法において、好気性微生物による生物処理により生成する余剰汚泥は、汚泥分、液状有機性廃棄物および固形状有機性廃棄物とともにメタン発酵処理するものである。
【0009】
そして、好気性微生物による生物処理により生成する余剰汚泥を、汚泥分、液状有機性廃棄物および固形状有機性廃棄物とともにメタン発酵処理してメタンガスの有価物として回収するため、有機物を確実にメタン発酵処理してメタンガスの有価物として回収するので、効率よく処理できる。
【0010】
請求項3記載の廃棄物処理方法は、請求項1または2記載の廃棄物処理方法において、メタン発酵処理する前に総固形物濃度を5%以上20%以下に水分調整するものである。
【0011】
そして、メタン発酵処理する前に総固形物濃度が5%以上20%以下となるように水分調整するため、メタン発酵処理する際の適性な濃度となり、メタン発酵処理効率が向上する。なお、総固形物濃度が5%より低いとメタン発酵処理する有機物の濃度が低減し、運転エネルギに対するメタンガスの発生量が低減してメタン発酵の効率が低下する。また、総固形物濃度が20%より高いと粘性が増大するとともに固形状の有機物の存在により、均一に短時間で有機物を分解処理できなくなりメタン発酵の効率が低下する。このため、メタン発酵処理する前に総固形物濃度を5%以上20%以下に設定する。
【0012】
請求項4記載の廃棄物処理方法は、請求項1ないし3いずれか一記載の廃棄物処理方法において、メタン発酵処理前に液状有機性廃棄物および固形状有機性廃棄物の少なくとも一方から夾雑物を除去するものである。
【0013】
そして、メタン発酵処理する前にあらかじめ液状有機性廃棄物および固形状有機性廃棄物の少なくとも一方から夾雑物を除去するため、夾雑物によるメタン発酵処理の阻害を防止し、メタン発酵処理効率が向上する。
【0014】
請求項5記載の廃棄物処理方法は、請求項1ないし4いずれか一記載の廃棄物処理方法において、メタン発酵処理する前または前記メタン発酵処理の際にマグネシウム化合物および燐酸化合物を添加するものである。
【0015】
そして、メタン発酵処理する前またはメタン発酵処理の際にマグネシウム化合物および燐酸化合物を添加するため、生物処理汚泥の汚泥分中に残留する窒素化合物、液状有機性廃棄物中に存在する窒素化合物がマグネシウム化合物および燐酸化合物と反応して燐酸マグネシウムアンモニウムを生成して析出させるので、窒素化合物によるメタン発酵処理の阻害を防止して、メタン発酵処理効率を向上する。
【0016】
請求項6記載の廃棄物処理方法は、請求項5記載の廃棄物処理方法において、マグネシウム化合物および燐酸化合物を添加する際に、鉄化合物、コバルト化合物およびニッケル化合物の少なくともいずれか一方を添加するものである。
【0017】
そして、マグネシウム化合物および燐酸化合物を添加する際に、鉄化合物、コバルト化合物およびニッケル化合物の少なくともいずれか一方を添加するため、メタン発酵処理の際に総固形物濃度や窒素化合物濃度が高くなる状態でも、栄養塩類の鉄分、コバルト分およびニッケル分の不活性効果の増大分が補給されて、栄養塩バランスが確保され、メタン発酵処理効率が向上する。
【0018】
請求項7記載の廃棄物処理方法は、請求項5または6記載の廃棄物処理方法において、マグネシウム化合物および燐酸化合物の添加量は、メタン発酵処理の際の窒素化合物の濃度が4000ppm 以下となる量であるものである。
【0019】
そして、マグネシウム化合物および燐酸化合物は、メタン発酵処理の際の窒素化合物の濃度が4000ppm 以下となるように添加するため、窒素化合物によるメタン発酵処理の阻害が確実に防止され、メタン発酵処理効率が向上する。
【0020】
請求項8記載の廃棄物処理方法は、請求項1ないし7いずれか一記載の廃棄物処理方法において、処理濾液と濾液とを生物処理する前に窒素化合物を除去するものである。
【0021】
そして、処理濾液と濾液とを生物処理する前に窒素化合物を除去するため、硝化脱窒処理による窒素化合物の分解処理が不要となり、装置構成の簡略化および処理エネルギの低減が得られるとともに、生物処理の負荷が低減し、処理効率が向上する。
【0022】
請求項9記載の廃棄物処理方法は、請求項8記載の廃棄物処理方法において、窒素化合物の除去は、アンモニアストリッピング処理するものである。
【0023】
そして、生物処理する前にアンモニアストリッピング処理により窒素化合物を除去するため、生物処理により生成した生物処理汚泥の固液分離により得られ比較的有機物が少なく窒素化合物が多い濾液、および、メタン発酵処理後の比較的有機物が少なく窒素化合物が多い処理濾液で、硝化脱窒処理では有機物を別途添加しなくては窒素化合物が処理できなくなる状態でも、簡単な構成で窒素化合物を除去できるとともに有価物として回収でき、また、好気性微生物による生物処理の負荷が低減し、処理効率が向上する。
【0024】
請求項10記載の廃棄物処理方法は、請求項8または9記載の廃棄物処理方法において、窒素化合物の除去は、生物処理する際の処理濾液および濾液の混合中の生物化学的酸素要求量(BOD)濃度が全窒素化合物濃度の15倍以上となるまで除去するものである。
【0025】
そして、生物処理する際の処理濾液および濾液の混合中の生物化学的酸素要求量(BOD)濃度が全窒素化合物濃度の15倍以上となるまで窒素化合物を除去するため、生物処理する好気性微生物が摂取する栄養源となる窒素化合物が確保され、処理効率が向上するとともに、窒素化合物が残留せず高度に低減する。
【0026】
【発明の実施の形態】
以下、本発明の廃棄物処理方法の実施の一形態の構成を図1を参照して説明する。
【0027】
図1において、1は第1の固液分離手段で、この第1の固液分離手段1は、別途好気性微生物による生物処理や硝化脱窒処理などにより生じた余剰汚泥、浄化槽汚泥、下水汚泥、畜産廃水汚泥、農業集落汚泥、食品加工汚泥などの微生物による生物処理の作用により生じた生物処理汚泥を、汚泥分と濾液とに脱水して固液分離するもので、例えばスクリュープレスなどの脱水機が用いられる。
【0028】
一方、2は第1の前処理手段で、この第1の前処理手段2は例えばドラムスクリーンなどを備え、屎尿や畜産廃水、農業集落廃水、下水、食品加工廃水などの流動性を有する液状有機性廃棄物から紙や布である繊維物などの屎渣や、金属片やガラス、プラスチックなどの夾雑物を除去する。
【0029】
また、3は第2の前処理手段で、この第2の前処理手段3は生ごみや厨芥、農水産廃棄物、食品加工廃棄物などの事業系ごみなど主に固形状の有機物を含有する固形状有機性廃棄物を破袋あるいは破砕する図示しない解破砕装置と、この解破砕装置にて解破砕された破砕物を磁気選別して金属片などの夾雑物を除去する図示しない金属除去手段と、固形状有機性廃棄物に含まれる合成樹脂製の袋やプラスチックなどの夾雑物を除去する図示しない分別装置とを備えている。
【0030】
そして、第1の固液分離手段1、第1の前処理手段2および第2の前処理手段3には、固液分離した汚泥分、夾雑物が除去された液状有機性廃棄物および夾雑物が除去された固形状有機性廃棄物が投入される調整手段としての調整槽4が接続されている。なお、すでに脱水された状態の生物処理汚泥、例えば脱水下水汚泥などは、第1の固液分離手段1を経ることなく直接調整槽4に投入してもよい。
【0031】
この調整槽4には、投入された汚泥分、液状有機性廃棄物および固形状有機性廃棄物を攪拌混合する図示しない攪拌手段と、例えば約55℃〜60℃に加温する手段と、水を適宜添加して水分を調整する水分調整手段と、マグネシウム化合物、燐酸化合物、鉄化合物、コバルト化合物およびニッケル化合物を添加する添加手段とを備えている。
【0032】
なお、水分の添加および加温に際してはスチームを用いるとよい。スチームを用いることにより、水を添加して別途加熱手段にて加熱する必要がなく、効率よく加温・給水できる。
【0033】
また、添加手段5にて添加するマグネシウム化合物としては、マグネシウムイオンを解離する例えばマグネシウム塩、水酸化マグネシウム、酸化マグネシウムなどが用いられ、燐酸化合物としては燐酸イオンを解離する例えば燐酸塩、燐酸、重縮合燐酸などが用いられる。さらに、鉄化合物、コバルト化合物およびニッケル化合物も同様に、鉄イオン、コバルトイオン、ニッケルイオンとして解離する例えば塩化物を用いる。
【0034】
また、調整槽4には、汚泥分、液状有機性廃棄物および固形状有機性廃棄物を加温しつつ攪拌混合して塊状物も混在するようなスラリ状に調質した混合物をメタン発酵処理するメタン発酵処理手段としてのメタン発酵槽6が接続されている。このメタン発酵槽6は、固形状や塊状の有機性廃棄物などを含有する濃度が濃いスラリ状の調質物でも処理可能な生物浮遊型で、加温、例えば55℃〜60℃で適宜攪拌してメタン生成菌などの嫌気性微生物にて有機性廃棄物中の有機性物質をメタン発酵処理する。そして、このメタン発酵槽6には、発生したメタンガスを回収する図示しないメタンガス回収手段が設けられている。なお、メタンガス回収手段には、回収したメタンガスを貯溜するガスタンクが接続されている。また、回収したメタンガスは、発電や処理の加温などに利用し、余剰エネルギは施設外にも供給できる。
【0035】
さらに、メタン発酵槽6には、混合物をメタン発酵処理して得られた処理物を処理濾液および汚泥とに脱水して固液分離する例えば、遠心脱水機、回転円盤形脱水機、スクリュープレスなどの脱水機が用いられる第2の固液分離手段7が接続されている。なお、この第2の固液分離手段7にて分離した汚泥は、別途肥料などに処理するコンポスト化するための工程に搬送する。なお、第2の固液分離手段7に、高分子凝集剤を添加して残留する汚染物質を凝集させる凝集手段を設けてもよい。
【0036】
また、第1の固液分離手段1および第2の固液分離手段7には、第1の固液分離手段1にて分集した濾液および第2の固液分離手段7にて分集した処理濾液が投入される窒素化合物除去手段8が接続されている。この窒素化合物除去手段8は、投入された濾液および処理濾液をアンモニアストリッピングしてアンモニア性窒素(NH−N)などの窒素化合物を除去するアンモニアストリッピング処理手段を備えている。すなわち、アンモニアストリッピング処理手段は、図示しない曝気手段を備えた曝気槽内に濾液および処理濾液を投入し、曝気して濾液および処理濾液中に溶解するアンモニア性窒素(NH−N)などの窒素化合物を空気中に移行させるという気曝によりストリッピングし、窒素化合物を含有する空気を、酸性槽に貯留する例えば硫酸や塩酸などの無機酸水溶液である酸性水溶液内の中に透過させ、窒素化合物を例えば硫酸アンモニウムや塩化アンモニウムなどとして析出させて回収する。
【0037】
そして、窒素化合物除去手段8のアンモニアストリッピング処理手段には、アンモニアストリッピング処理された濾液および処理濾液を好気性微生物により生物処理する好気性生物処理手段9が接続されている。この好気性生物処理手段9には、投入されたアンモニアストリッピング処理後の濾液および処理濾液に酸素を供給するための空気を曝気する図示しない曝気手段が設けられている。また、この好気性生物処理手段9には、余剰汚泥を固液分離する図示しない第3の固液分離手段が設けられ、この第3の固液分離手段にて分集した余剰汚泥を第1の固液分離手段1に返送する余剰汚泥返送手段10が接続されている。
【0038】
さらに、好気性生物処理手段9には、好気性微生物により生物処理された濾液および処理濾液を、例えば凝集剤の添加により溶解する汚染物質を凝集させて固液分離したり、活性炭などにより汚染物質を吸着分離したり、限外濾過や逆浸透膜などにより高度な膜分離により汚染物質を除去するなどの高度処理する高度処理手段11が接続され、この高度処理手段11により濾液および処理濾液が高度処理されて処理液として放流される。なお、高度処理手段11には、分集した凝集汚泥や膜分離により分離した膜分離汚泥を第1の固液分離手段1に返送する汚泥返送手段12が接続されている。なお、活性炭により高度処理する場合には、汚泥返送手段は設けない。
【0039】
次に、上記実施の一形態の動作について説明する。
【0040】
まず、生物処理汚泥を第1の固液分離手段1にて濾液と汚泥分とに脱水して固液分離する。
【0041】
また、液状有機性廃棄物を第1の前処理手段2にて夾雑物を除去する。
【0042】
さらに、固形状有機性廃棄物を第2の前処理手段3にて破袋あるいは破砕して合成樹脂製の袋やプラスチックなどの夾雑物を除去し、さらに磁気選別して金属片などの夾雑物を除去する。
【0043】
そして、第1の固液分離手段1からの汚泥分、第1の前処理手段2にて前処理された液状有機性廃棄物、および、第2の前処理手段3にて前処理した固形状有機性廃棄物を調整槽4に投入する。この調整槽4にて、例えばスチームを用いて約55℃に加温しつつ攪拌混合し、攪拌混合が可能な全蒸発残留物濃度である総固形物濃度(Total Solids:TS)が5%以上20%以下となる塊状物も混入するようなスラリ状の混合物を調質する。なお、TS濃度が20%より高くなると、メタン発酵処理の際の攪拌混合が不十分となり効率よく後工程のメタン発酵処理できなくなるため、TS濃度を20%以下、好ましくは18%以下にする。さらに、TS濃度が5%より低くなると、水分量が多くなって有機物の割合が少なくなった状態となり、後工程でのメタン発酵処理の効率が低下するため、5%以上、好ましくは7.5%以上に設定する。また、塊状物などが少ないもしくはほとんどないような状態のスラリ状とすることにより、微生物によるメタン発酵処理がより効率よく進行する。
【0044】
この調整槽4での調質の際、混合物のTS濃度を測定し、TS濃度が5%以上、好ましくは7.5%以上となる場合には、添加手段5にて、栄養塩類である鉄化合物、ニッケル化合物およびコバルト化合物の少なくともいずれか一方を添加する。これら栄養塩類は、混合物中に鉄として10mg/リットル以上、好ましくは10〜300mg/リットル、ニッケルとして1mg/リットル以上、好ましくは1〜30mg/リットル、コバルトとして1mg/リットル以上、好ましくは1〜30mg/リットルを添加する。
【0045】
そして、TS濃度が5%より低い場合には、有機性廃棄物中に微量に含まれる鉄、ニッケル、コバルトは凝集や沈殿、スケールの生成などによる不活性効果が低くなり、嫌気性微生物の活性に必要な十分な栄養塩類量が得られるので、栄養塩類を別途添加する必要がない。
【0046】
また、鉄添加量が10mg/リットルより少なくなると、後段でのメタン発酵処理の改善が認められず、300mg/リットルより多くなっても鉄添加による効果の差異が認められずコストが増大するため、鉄添加量が10mg/リットル以上、好ましくは10〜300mg/リットルとなるように鉄化合物を添加する。また、同様に、ニッケル添加量が1mg/リットルより少なくなると、後段でのメタン発酵処理の改善が認められず、30mg/リットルより多くなってもニッケル添加による効果の差異が認められずコストが増大するため、ニッケル添加量が1mg/リットル以上、好ましくは1〜30mg/リットルとなるようにニッケル化合物を添加する。さらに、同様に、コバルト添加量が1mg/リットルより少なくなると、後段でのメタン発酵処理の改善が認められず、30mg/リットルより多くなってもコバルト添加による効果の差異が認められずコストが増大するため、コバルト添加量が1mg/リットル以上、好ましくは1〜30mg/リットルとなるようにコバルト化合物を添加する。
【0047】
さらに、添加手段5にて、マグネシウム塩、水酸化マグネシウム、酸化マグネシウムなどのマグネシウム化合物、および、燐酸塩、燐酸、重縮合燐酸などの燐酸化合物を添加する。なお、調整槽4ではすでにアンモニア性窒素(NH−N)が存在しているが、調整槽4では各性状の有機性廃棄物の酸発酵が進行しており、pHが5前後となっていることから、マグネシウム化合物および燐酸化合物の添加により、混合物中の窒素化合物であるアンモニア性窒素(NH−N)と反応して燐酸マグネシウムアンモニウム(Mg(NH)PO)が急に生成して調整槽4の壁面などにスケールとして固着することはない。
【0048】
また、マグネシウム化合物および燐酸化合物の添加量は、後工程のメタン発酵処理の際に窒素化合物がメタン発酵に影響しない程度の量まで低減する量を添加する。すなわち、メタン発酵処理が55℃〜60℃程度の高温発酵ではアンモニア性窒素濃度を2500ppm 以下、好ましくは、2000ppm 以下、35℃〜40℃程度の中温発酵では4000ppm 以下、好ましくは3000ppm 以下まで低減するように添加量を設定する。
【0049】
ここで、混合物中の窒素化合物であるアンモニア性窒素(NH−N)のすべてを燐酸マグネシウムアンモニウム(Mg(NH)PO)として生成させることも可能であるが、燐酸マグネシウムアンモニウムの分子量比からアンモニア性窒素濃度の10倍の燐酸マグネシウムアンモニウムが生成するため、例えば混合物中に4000ppm のアンモニア性窒素が存在する場合、40000ppm の燐酸マグネシウムアンモニウムが生成することとなり、この40000ppm の燐酸マグネシウムアンモニウムはTS濃度で4%に相当することとなり、上述したようにTS濃度が5%以上20%以下の適性範囲から外れるおそれがあるので、水分調整に留意する必要がある。
【0050】
また、マグネシウム化合物は、添加する燐酸化合物および混合物中の燐酸イオンの総合計である総燐酸濃度に対してマグネシウムのモル比が1以下となるように添加し、マグネシウムイオンが残留して後工程でのマグネシウム化合物の析出によるスケールの発生を防止する。
【0051】
そしてさらに、燐酸イオンは、後工程の好気性生物処理の際の好気性微生物の栄養源となるが除去作業は容易でないことから、燐酸イオン濃度として20ppm 以下、好ましくは10ppm 以下となるように、マグネシウム化合物および燐酸化合物の添加量を設定する。
【0052】
そして、鉄化合物、ニッケル化合物およびコバルト化合物などの栄養塩類が適宜添加されるとともにマグネシウム化合物および燐酸化合物を添加して調質した混合物をメタン発酵槽6に流入させ、例えば55℃で適宜攪拌しつつ8日滞留させて、メタン生成菌などにて有機物をメタン発酵処理する。なお、メタン発酵処理により発生するメタンガスは、図示しないメタンガス回収手段にて回収してガスタンクに貯溜し、発電などにて有機性廃棄物の処理の際の運転エネルギやその他の汚水処理、冷暖房などに利用する。
【0053】
このメタン発酵槽6ではpHが7以上のアルカリ性の雰囲気で安定した状態となっていることから、メタン発酵槽6に流入された混合物中の窒素化合物であるアンモニア性窒素(NH−N)が調整槽4であらかじめ添加したマグネシウム化合物および燐酸化合物と反応して燐酸マグネシウムアンモニウム(Mg(NH)PO)を生成する。
【0054】
また、鉄、ニッケル、コバルトは、メタン生成菌などの微生物の補酵素成分を構成する物質で、微生物の活性向上に欠かせない栄養元素である。なお、鉄は約1000mg/リットル、ニッケルは約80〜240mg/リットル、および、コバルトは約50〜150mg/リットル以上となると、逆に微生物の活性阻害を生じ始める。
【0055】
また、メタン発酵槽6内では、固形状の有機性廃棄物を含有する濃度が濃いスラリ状の混合物を処理するので、凝集・沈殿、スケール微粒子の形成や共沈吸着効果などの物理化学的反応が生じていると考えられる。
【0056】
このため、投入TS濃度であるメタン発酵槽6へ投入される調質物のTS濃度が5%より低い場合には、メタン発酵槽6における凝集・沈殿、スケール形成物質の濃度が比較的低く、凝集・沈殿、スケール形成などの物理化学的反応による微量栄養塩類である鉄、ニッケル、コバルトの不活性効果も相対的に低くなり、メタン生成菌などの嫌気性微生物は、調質物中の活性のある鉄、ニッケル、コバルトを栄養源として吸収して活性が増大し、効率よく有機性物質を分解処理する。なお、この場合には、固形状の有機性廃棄物を処理可能な生物浮遊型のメタン発酵処理方法では、BOD(Biochemical Oxygen Demand :生物化学的酸素要求量)濃度が3〜5万ppm で滞留時間が8日程度が処理のほぼ上限の負荷(BOD負荷で4〜6kg/m・日)、すなわち嫌気性微生物が調質物中の活性のある鉄、ニッケル、コバルトを栄養源として吸収して有機物を分解処理できる上限の処理条件である。
【0057】
一方、TS濃度が5%以上、特に7.5%以上となると、沈殿やスケール形成により、鉄、ニッケル、コバルトの不活性効果が増大し、嫌気性微生物が必要とする鉄、ニッケル、コバルトが不足して活性が低下し、上述した処理可能なTOC(Total Organic Carbon:全有機性炭素)負荷や化学的酸素要求量(CODCr)負荷、BOD負荷が同等または低くなる処理負荷の条件でもメタン発酵効率が大きく低減あるいは停止してしまう。
【0058】
したがって、上述したように、上記実施の形態では、生ごみや厨芥、農水産廃棄物などの固形状の有機物を含有する固形状有機性廃棄物をメタン発酵処理する際に、メタン発酵槽6に投入する際のTS濃度が5%以上となる場合に、鉄化合物、ニッケル化合物およびコバルト化合物の少なくともいずれか一方を鉄濃度が10〜300mg/リットル、ニッケル濃度が1〜30mg/リットル、コバルト濃度が1〜30mg/リットルとなるように添加する。
【0059】
次に、メタン発酵処理した発酵処理物を第2の固液分離手段7にて汚泥である脱水ケーキと処理濾液である分離水とに固液分離する。そして、分離液は、第1の固液分離手段1にて固液分離して分集した濾液とともに窒素化合物除去手段8のアンモニアストリッピング処理手段に搬送し、脱水ケーキは肥料などにコンポスト化したり、焼却処分する。なお、第1の前処理手段2および第2の前処理手段3にて夾雑物が充分に除去され、脱水ケーキに燐酸マグネシウムアンモニウムが含まれていることから、コンポスト化して窒素、リン、マグネシウムの無機性の栄養素を含有する肥料など、すなわち緩衝性の肥効成分が加わることによってコンポストの土壌改良剤としての働きにプラスした肥料などの有価物として回収する。
【0060】
この第2の固液分離手段7での固液分離の際、後工程で生物処理の負荷を低減するために、処理濾液中のBODを低減すべく凝集剤を添加してBODに起因する有機物を凝集させてから脱水して固液分離する。ここで、固液分離した汚泥である脱水ケーキは、肥料として利用するコンポスト化および乾燥用熱量を低減するための含水率を低減させるために高分子凝集剤の添加による脱水が好ましい。また、高分子凝集剤としては、各種カチオン系凝集剤が利用できるが、BOD濃度が500ppm 以下に低減できるアミジン系凝集剤が好ましい。
【0061】
そして、窒素化合物除去手段8のアンモニアストリッピング処理手段に搬送された濾液および処理濾液は図示しない曝気手段にてアルカリ雰囲気中で曝気され、濾液および処理濾液中に溶存する窒素化合物であるアンモニア性窒素を曝気された空気中に移行させる気曝によるストリッピングを実施する。ここで、アルカリ雰囲気としては、濾液および処理濾液に水酸化ナトリウム、水酸化カリウム、消石灰などのアルカリを添加してアルカリ性としてストリッピングする。そして、窒素化合物を含有する空気を、酸性槽に貯留する例えば硫酸や塩酸などの無機酸水溶液である酸性水溶液内の中に透過させ、窒素化合物を例えば硫酸アンモニウムや塩化アンモニウムなどとして析出させて回収する。なお、この窒素化合物の除去は、BOD/Nが15以上となるようにする。
【0062】
一方、ストリッピングされた濾液および処理濾液は、好気性生物処理手段9に流入し、好気性微生物により生物処理、すなわち残存する有機物を酸化分解してBODを低減する。この生物処理の際、アンモニアストリッピング処理にて除去されずに残存する窒素化合物、燐酸化合物などは、好気性微生物の栄養源として摂取され、BODが低減するとともに窒素化合物や燐酸化合物などの残存微量成分も低減する。
【0063】
さらに、生物処理された濾液および処理濾液は、高度処理手段11にて例えば酸性凝集沈殿、砂濾過、活性炭吸着処理、膜処理などの高度処理をし、色度、BOD濃度、COD濃度、燐酸化合物が低い良好な処理水を得る。なお、凝集処理の場合、塩化第二鉄や硫酸バンドなどの無機凝集剤を用いるとよい。また、凝集処理後に膜処理を利用することにより、安定した処理水が効率よく得られる。そして、高度処理により生じた凝集汚泥や膜分離汚泥などの汚泥は、汚泥返送手段12を介して第1の固液分離手段1に返送し、再び処理する。
【0064】
上述したように、廃棄物を生物処理により生成した生物処理汚泥と、嫌気性生物にて分解可能な有機物を含有する流動性を有し液体部分に多量の有機物が存在する液状有機性廃棄物と、嫌気性生物にて分解可能な固形状の有機物を含有する固形状有機性廃棄物との3種類に分け、廃棄物全体の大半の有機物が存在する生物処理汚泥を固液分離して分集した汚泥分、液状有機性廃棄物および固形状有機性廃棄物をメタン発酵処理して効率よくメタンガスの有価物として回収するとともに、廃棄物全体の有機物が低減して残留する有機物を簡単な構成の好気性微生物による生物処理するのみで処理でき、装置の小型化および運転エネルギ低減ができ、効率よく廃棄物全体を処理できる。
【0065】
また、好気性微生物による生物処理にて生じる余剰汚泥や高度処理により生じる汚泥を第1の固液分離手段1に返送して固液分離し、汚泥分、液状有機性廃棄物および固形状有機性廃棄物とともにメタン発酵処理してメタンガスの有価物として回収するため、有機物を確実にメタン発酵処理してメタンガスの有価物として回収でき、処理効率を向上できる。
【0066】
そして、生物処理汚泥を第1の固液分離手段1にて脱水して固液分離したため、メタン発酵処理する有機物が確実に汚泥分側に固液分離でき、メタンガスとしての回収効率を向上できるとともに、後工程の生物処理の負荷を低減でき、廃棄物の処理効率を向上できる。
【0067】
さらに、メタン発酵処理する前に総固形物濃度が5%以上20%以下となるように水分調整するため、メタン発酵処理する際の適性な濃度となり、メタン発酵処理効率を向上できる。
【0068】
また、メタン発酵処理する前に、あらかじめ液状有機性廃棄物および固形状有機性廃棄物から夾雑物を除去する前処理をしたため、夾雑物によるメタン発酵処理の阻害を防止でき、メタン発酵処理効率を向上できる。
【0069】
さらに、メタン発酵処理の前またはメタン発酵処理の際にマグネシウム化合物および燐酸化合物を添加して、pHがアルカリ性となるメタン発酵槽6で窒素化合物をマグネシウム化合物および燐酸化合物と反応させて燐酸マグネシウムアンモニウムとして生成して析出させるため、窒素化合物によるメタン発酵処理の阻害を防止でき、効率よくメタン発酵処理できる。
【0070】
また、マグネシウム化合物および燐酸化合物を、メタン発酵処理の際の窒素化合物の濃度が4000ppm 以下となるように添加するため、窒素化合物によるメタン発酵処理の阻害を確実に防止でき、メタン発酵処理効率を向上できる。
【0071】
そして、マグネシウム化合物および燐酸化合物を添加する際に、鉄化合物、コバルト化合物およびニッケル化合物の少なくともいずれか一方を添加するため、メタン発酵処理の際に総固形物濃度や窒素化合物濃度が高くなる状態でも、栄養塩類の鉄分、コバルト分およびニッケル分の不活性効果の増大分を補給でき、栄養塩バランスを確保して効率よくメタン発酵処理できる。
【0072】
また、生物処理汚泥の固液分離により分集した濾液と、メタン発酵処理後の固液分離により分集した処理濾液とを、好気性微生物による生物処理する前に窒素化合物を除去するため、硝化脱窒処理による窒素化合物の分解処理が不要となり、装置構成の簡略化および処理エネルギの低減が得られるとともに、生物処理の負荷を低減でき、処理効率を向上できる。
【0073】
さらに、この窒素化合物の除去として簡単な構成でアンモニアストリッピング処理するため、生物処理により生成した生物処理汚泥の固液分離により得られ比較的有機物が少なく窒素化合物が多い濾液、および、メタン発酵処理後の比較的有機物が少なく窒素化合物が多い処理濾液で、硝化脱窒処理では有機物を別途添加しなくては窒素化合物が処理できなくなる状態でも、簡単な構成で窒素化合物を除去できるとともに有価物として回収でき、また、好気性微生物による生物処理の負荷を低減でき処理効率を向上できる。そして、あらかじめ生物処理汚泥から汚泥分を除去した濾液と、メタン発酵処理後に固液分離した処理濾液とをアンモニアストリッピングするため、ストリッピングしても消泡せずに泡が発生してアンモニアストリッピング処理できなくなることはなく、安定して窒素化合物を除去できる。
【0074】
そして、マグネシウム化合物および燐酸化合物は、メタン発酵処理の際の窒素化合物の濃度が4000ppm 以下となるように添加するため、窒素化合物によるメタン発酵処理の阻害を確実に防止でき、メタン発酵処理効率を向上できる。
【0075】
また、生物処理する際の処理濾液および濾液の混合中の有機物濃度が全窒素化合物濃度の15倍以上となるまで窒素化合物を除去するため、生物処理する好気性微生物が摂取する栄養源となる窒素化合物が確保され、処理効率を向上できるとともに、窒素化合物が残留せず高度に低減できる。
【0076】
なお、上記実施の形態において、第1の固液分離手段1および第2の固液分離手段7として、脱水機を用いて脱水により固液分離して説明したが、スクリーンなどにて固液分離したり、沈殿分離などにて固液分離してもよい。
【0077】
また、生物処理汚泥や液状有機性廃棄物、固形状有機性廃棄物の各種形態の廃棄物中の窒素化合物の含有量や生物処理時の窒素化合物の残留量などにより、生物処理の際に硝化脱窒処理してもよい。また、簡単な構成とした硝化脱窒処理を用いることにより、前段のアンモニアストリッピング処理の構造を簡略化できる。
【0078】
さらに、含有する窒素化合物の量が少ない場合には、アンモニアストリッピング処理などの窒素化合物の除去する工程を設けなくてもよい。なお、有機物を含有する廃棄物全般を網羅する浄化槽汚泥や畜産廃水汚泥などの生物処理汚泥や屎尿や畜産廃水などの液状有機性廃棄物、固形状有機性廃棄物の各種形態の廃棄物は、窒素化合物を多く含有するため、一般的に廃棄物を処理する処理装置としては窒素化合物を除去する構成を設ける。そして、この窒素化合物の除去としては、アンモニアストリッピング処理に限られない。さらに、アンモニアストリッピング処理としては、液中散気方式に限らず、例えばラシヒリングなどによる充填塔方式などでも可能であるが、SSによる充填層の閉塞を考慮すると液中散気方式が好ましい。
【0079】
また、第2の固液分離手段7の際に、凝集分離処理したが、固液分離の方法により凝集処理しなくてもよい。なお、凝集処理を併用することにより、簡単な構成で短時間に固液分離できる。
【0080】
一方、液状有機性廃棄物および固形状有機性廃棄物をあらかじめ前処理して夾雑物を除去して説明したが、夾雑物の含有量が少ない場合には前処理しなくてもよい。
【0081】
そして、メタン発酵処理の前およびメタン発酵処理の際にマグネシウム化合物および燐酸化合物を添加して説明したが、含有する窒素化合物の量が少ない場合には、これらマグネシウム化合物および燐酸化合物を添加しなくてもよい。なお、有機物を含有する廃棄物全般を網羅する浄化槽汚泥や畜産廃水汚泥などの生物処理汚泥や屎尿や畜産廃水などの液状有機性廃棄物、固形状有機性廃棄物の各種形態の廃棄物は、窒素化合物を多く含有するため、一般的に廃棄物を処理する処理装置としてはこれらマグネシウム化合物および燐酸化合物を添加する構成を設ける。
【0082】
また、鉄化合物、コバルト化合物およびニッケル化合物のいずれか一方の栄養源を添加して説明したが、処理する性状により不活性効果が増大しない場合には、添加しなくてもよい。なお、同様に、有機物を含有する廃棄物全般を網羅する生物処理汚泥や液状有機性廃棄物、固形状有機性廃棄物の各種形態の廃棄物を処理する際においては、一般に不活性効果が増大するため、栄養塩バランスの確保のために添加する。
【0083】
【実施例】
処理する廃棄物の形態による処理効率の差異について比較検討した。
【0084】
なお、廃棄物の形態としては、野菜、果実、肉、魚、米飯などの残飯を混合攪拌によりスラリ状に破砕して含水率が約80%(TS濃度が約20%)の合成生ごみを固形状有機性廃棄物として調整する。また、液状有機性廃棄物としては、屎尿処理場より収集した屎尿を、10mm目の篩により屎渣を除去する前処理したものを用いた。さらに、生物処理汚泥としては、屎尿処理場より収集した浄化槽汚泥を用い、塩化第二鉄を1000ppm 添加して攪拌混合した後、カチオン系高分子凝集剤をTS濃度に対して2%添加して凝集処理し、目の粗い濾布で濾過して十分に絞り、汚泥分としての脱水汚泥と濾液とに固液分離した。これら性状を表1に示す。また、浄化槽汚泥の濾液の性状を表2に示す。
【0085】
【表1】

Figure 0003570888
【表2】
Figure 0003570888
そして、処理方法としては、上記図1に示す実施の形態の廃棄物を生物処理汚泥、液状有機性廃棄物および固形状有機性廃棄物の3形態に廃棄物を分けて処理する方法と、従来例である図3に示す液状の有機性廃水と固形状の有機性廃棄物との2形態に廃棄物を分けて処理する方法と、従来例である図4に示す各種形態の廃棄物を混合して1形態の廃棄物として処理する方法とについて、処理状態を観察して比較評価した。
【0086】
まず、図1に示す3形態に廃棄物を分けて処理する工程について説明する。
【0087】
上述した前処理の除渣した屎尿10kg、浄化槽汚泥を固液分離して分集した脱水汚泥0.5kg(浄化槽汚泥10kgから得られる脱水汚泥量)および合成生ごみ5kgを攪拌混合して混合物を調質する。なお、この調質した混合物の性状を表3に示す。
【0088】
【表3】
Figure 0003570888
そして、調質した混合物を既に馴養の完了しているメタン発酵槽に投入して、約55℃でメタン発酵処理した。その結果を図2に示す。なお、処理当初は、滞留時間を30日とした。
【0089】
この図2に示す結果から、メタン発酵槽内のアンモニア濃度は、3200〜3800mg/リットルと高く、有機酸は4000〜8000mg/リットルとかなりの量が蓄積した。この有機酸の蓄積によりpHやメタン生成速度は変化しなかったが、メタン発酵処理後に固液分離した処理濾液中のBOD濃度が増大して後工程の生物処理の負荷が増大するため、有機酸の濃度を下げる必要がある。そこで、嫌気性微生物であるメタン生成菌の活性を増大させるべく、栄養元素として微量元素の鉄を塩化第二鉄として500mg/リットル、ニッケルを塩化ニッケルとして50mg/リットル、コバルトを塩化コバルトとして50mg/リットル連続的に添加した。この結果、有機酸濃度は約1000mg/リットルまで低減した。
【0090】
そして、有機酸の多量の蓄積が認められず処理状態が安定した時点で滞留時間を15日とした。この滞留時間の短縮によるメタン発酵処理の負荷の増大により、再び有機酸が蓄積し始め、10000mg/リットル程度まで増大した。
【0091】
この負荷の増大により、アンモニア性窒素(NH 3 −N)の影響を強く受けるようになり、その結果メタン発酵が阻害されたためと考えられる。
【0092】
一般に、アンモニアはメタン発酵を阻害するため、アンモニア性窒素濃度が2000mg/リットル程度で運転しているが、微量元素である栄養元素を添加してもアンモニア性窒素によるメタン発酵の阻害を防止できないことが分かる。
【0093】
そこで、マグネシウム化合物および燐酸化合物を添加し、アンモニア性窒素濃度を約2000mg/リットルまで低減させたところ、有機酸の蓄積が防止され、300〜560mg/リットルまで低減した。この状態で滞留時間を7.5日まで短縮しても有機酸は蓄積せずに安定して処理できた。そして、この状態での消化ガス中のメタン含有率は約59%で、消化ガス発生量は0.35リットル/g・投入CODCrとなり、良好な結果を示すことが分かる。
【0094】
この後、微量元素の添加を停止したところ、アンモニア性窒素濃度が約2000mg/リットル程度でも有機酸濃度が徐々に増大するとともにpHも酸性を示し、酸敗状態となった。
【0095】
このように、TS濃度および窒素化合物であるアンモニア性窒素が高い場合には、微量元素の添加によりある程度の有機酸の蓄積を防止することができるが、負荷が増大するとアンモニア性窒素の影響が現れ、有機酸の蓄積が生じることから、メタン発酵処理を安定して効率よく進行させるためには微量元素の添加とマグネシウム化合物および燐酸化合物の添加によるアンモニア性窒素の低減を図る必要があることが分かる。
【0096】
一方、滞留時間15日で有機酸濃度が500mg/リットル程度で安定した状態のメタン発酵処理した混合物を、ポリアミジン系強カチオン高分子凝集剤と一般的なポリアクリル酸エステル系強カチオン高分子凝集剤とを用いて凝集処理した後に脱水して汚泥である脱水ケーキと処理濾液とに固液分離した。この脱水ケーキと処理濾液との性状を表4に、ポリアミジン系強カチオン高分子凝集剤により凝集処理して得られた脱水ケーキ中の成分分析結果を表5に示す。
【0097】
【表4】
Figure 0003570888
【表5】
Figure 0003570888
この表4に示す結果から、ポリアクリル酸エステル系強カチオン高分子凝集剤では脱水ケーキの含水率が82.4%であるのに対し、ポリアミジン系強カチオン高分子凝集剤では77.8%となり、大きな差が認められた。また、処理濾液中のBODもポリアミジン系強カチオン高分子凝集剤では430mg/リットルとなり、500mg/リットル以下にすることができた。しかし、総窒素濃度(T−N)は約2200mg/リットルと非常に高いことがわかる。また、表5に示す結果から、乾燥重量当たり、窒素(N)7.2%、リン(P)12.1%、マグネシウム(Mg)5.3%で、肥料として効果を生じする肥効成分が多く含まれていることが分かる。
【0098】
そして、分集した処理濾液をあらかじめ浄化槽汚泥を固液分離して分集した濾液と一緒に好気性微生物処理することとなる。ここで、処理濾液と濾液との量比は、屎尿と浄化槽汚泥との比率が1:1であるためほぼ同量となる。このため、表2および表4に示す結果から、濾液および処理濾液の混合液は、BODが約700mg/リットル、総窒素濃度(T−N)が約1300mg/リットル程度となり、アンモニアストリッピング処理などにより窒素化合物を除去することにより、後工程の好気性微生物による生物処理は、BODが約700mg/リットルの汚水を処理する負荷が低い活性汚泥処理で済むこととなる。
【0099】
次に、濾液および処理濾液を等量混合し、アンモニアストリッピング処理をした。この処理方法は、まずpH調整槽に投入した濾液および処理濾液に水酸化ナトリウムを添加してpHを11に調整した後、容量1リットルの槽が2段直列に接続されたストリッピング槽に流入させ、それぞれの槽に設けた散気管より空気を散気してアンモニアストリッピング処理した。この結果を表6に示す。
【0100】
【表6】
Figure 0003570888
この表6に示す結果から、アンモニア性窒素濃度が1460mg/リットルから31mg/リットルまで低減できた。そして、このアンモニアストリッピング処理により、表7に示す性状となった。
【0101】
【表7】
Figure 0003570888
この後、好気性微生物による生物処理である活性汚泥法による処理により、表8に示すBOD、SS、総窒素が良好に低減した処理水が得られた。
【0102】
【表8】
Figure 0003570888
一方、図3に示す比較例1は、上記実施例の合成生ごみと、屎尿および浄化槽汚泥を1:1で混合した2形態の廃棄物を出発原料とし、固液分離工程22に相当する固液分離、すなわち混合した屎尿および浄化槽汚泥にカチオン系高分子凝集剤をTS濃度に対して2%添加して凝集処理し、目の粗い濾布で濾過して十分に絞り、約1.5kgの汚泥分としての脱水汚泥と約18.5kgの濾液とに固液分離した。これら脱水汚泥と濾液との性状を表9に示す。
【0103】
【表9】
Figure 0003570888
ここで、通常の硝化脱窒処理でのBOD/Nは3.5〜4程度の性状に設定する必要があることから、表9に示す濾液を後工程の硝化脱窒工程26で硝化脱窒処理する際、BODが不足する状態となり、メタノールなどの有機炭素源を添加する必要がある。このため、硝化脱窒処理の際の実際の負荷はBOD濃度が6700〜7680mg/リットル、総窒素濃度1920mg/リットルとなる。したがって、上記汚泥が3形態の実施例のBOD濃度700mg/リットルの活性汚泥処理に比して非常に大きな負荷となり、処理装置の大型化および消費処理エネルギの増大を生じることとなる、すなわち上記実施例によれば、後工程の生物処理の構成の簡略化および消費処理エネルギの低減が得られ、簡単な構成で効率よく廃棄物を処理できることがわかる。
【0104】
また、メタン発酵槽24でメタン発酵処理するために、屎尿と浄化槽汚泥との混合物から分集される脱水汚泥1.5kgに合成生ごみ5kgを加え、水を添加してTS濃度が10%程度となるように調質した。その性状を表10に示す。
【0105】
【表10】
Figure 0003570888
そして、表1および表9に示す結果から、脱水汚泥および合成生ごみの混合物を調質した調質物を流入するメタン発酵槽24に投入する際の屎尿10kg、浄化槽汚泥10kgおよび合成生ごみ5kg当たりのCODCr量を以下に示す方法により計算すると、
1.5[kg]×180[g/kg]+5[kg]×307[g/kg]
=1805[g]
となり、図3に示す比較例1は約1.8kgとなる。
【0106】
一方、上記実施例の廃棄物が3形態の屎尿10kg、浄化槽汚泥の固液分離した汚泥分0.5kg、合成生ごみ5kgが調質された混合物が流入するメタン発酵槽に投入されるCODCr量は、
10[kg]×32[g/kg]+0.5[kg]×307[g/kg]×5[kg]×169[g/kg]
=1940[g]
となり、約2.0kgとなる。そして、メタン発酵でのメタン回収率は投入されるCODCr量によりほぼ決定されることから、図3に示す比較例1による処理方法では上記実施例に比して1割程度メタン回収率が低下、すなわち本実施例のように処理することにより従来より1割増のメタン回収率の向上が得られることがわかる。
【0107】
次に、図4に示す比較例2は、上記実施の形態の合成生ごみ、屎尿および浄化槽汚泥を混合した1形態の廃棄物市を出発原料として処理するものである。すなわち、図3に示す比較例1である従来例の液状の有機性廃棄物と固形状の有機性廃棄物とを一括して前処理工程31で粉砕あるいは夾雑物の分離除去などの前処理をした後に固液分離工程32で汚泥分と濾液とに固液分離し、汚泥分はメタン発酵槽33でメタン発酵処理する。さらに、メタン発酵処理にてメタンガスを有価物として回収した後、脱水工程34で汚泥と処理濾液とに脱水分離し、汚泥は肥料などにコンポスト化して有価物として回収し、処理濾液は燐酸除去工程35でマグネシウム化合物および燐酸化合物の添加により燐酸マグネシウムアンモニウムを生成させて分離し、燐酸が除去させた処理濾液は固液分離工程32で分集した濾液とともに硝化脱窒工程36で硝化脱窒処理し、さらに高度処理工程37で凝集剤にて凝集処理し、処理水として処理する。なお、硝化脱窒処理により生じた余剰汚泥は、液状の有機性廃棄物の前処理や固液分離に返送して再び処理する。
【0108】
この図4に示す比較例2の処理工程に対応して、屎尿および浄化槽汚泥1:1の混合物20kgに、合成生ごみ5kgを混合し、固液分離工程32に相当する固液分離、すなわちカチオン系高分子凝集剤をTS濃度に対して2%添加して凝集処理し、目の粗い濾布で濾過して十分に絞り、約3.9kgの汚泥分としての脱水汚泥と約21.1kgの濾液とに固液分離した。これら脱水汚泥と濾液との性状を表11に示す。
【0109】
【表11】
Figure 0003570888
そして、メタン発酵槽33に投入されるCODCr量を上述と同様に計算すると、約1.4kgとなり、図4に示す比較例2による処理方法では、上記実施例に比して3割程度メタン回収率が低下することがわかる。さらに、濾液のBOD量を比較すると、表2および表11から、
(21.1[kg]×12000[mg/l])/(9.5[kg]×880[mg/l])
=30.3
となり、上記実施例に比して約30倍高く、後工程での生物処理の負荷が増大することがわかる。
【0110】
さらに、これら図3に示す比較例1および図4に示す比較例2を上記実施例と同様にアンモニアストリッピング処理した。その結果、発泡がひどくアンモニアストリッピング処理を続けることができなかった。これは、図3に示す比較例1および図4に示す比較例2では、屎尿である液状廃棄物や生ごみなどの生物処理を経ていない廃棄物は蛋白質や高分子有機物が多く含まれているためと考えられる。そこで、シリコンなどの消泡剤を添加して発泡を抑制して実施例と同じ条件でアンモニアストリッピング処理を継続した。その結果を表12に示す。
【0111】
【表12】
Figure 0003570888
この表12に示す結果から、上記実施例に比してアンモニア性窒素の除去割合が低いことがわかる。これは、消泡剤のシリコンが気液表面に集まってアンモニア性窒素が液相から気相へ気散することを抑制するためと考えられる。
【0112】
一方、これら発泡による弊害を防止するため、生物処理にてBODを低減した後、アンモニアストリッピング処理することも考えられるが、生物処理の際の溶存酸素の供給のための曝気により、アンモニア性窒素が硝化反応して硝酸や亜硝酸を生成し、BODの酸化分解のみを行うことはできない。そして、これら生成する硝酸や亜硝酸は、アンモニアストリッピング処理では除去できないため、生物処理後にアンモニアストリッピング処理しても総窒素濃度は余り低減しないので、高い窒素含有量となってしまう。このため、図3および図4に示す比較例では、簡単な構成のアンモニアストリッピング処理を利用することができず、装置が大型複雑で消費処理エネルギも大きな硝化脱窒処理を行わなければ、高度処理のための基準となる総窒素濃度が10mg/リットル以下の処理水が得られない。
【0113】
したがって、上記実施例では、総窒素濃度を数十mg/リットル程度まで低減させれば、後工程の生物処理によりさらに窒素化合物が高度処理のための基準となる総窒素濃度が10mg/リットル以下にまで低減できるので、処理装置の簡略小型化および消費処理エネルギの低減が図れることがわかる。
【0114】
【発明の効果】
請求項1記載の廃棄物処理方法によれば、生物処理汚泥を固液分離して分集した全有機物の大半が存在する汚泥分と、液体部分に多量の有機物が存在する液状有機性廃棄物と、固形状の有機物を含有する固形状有機性廃棄物とを攪拌混合してメタン発酵処理し、このメタン発酵処理した後に固液分離して分集した処理濾液と生物処理汚泥を固液分離して分集した濾液とを好気性微生物により生物処理するため、各種性状の異なる廃棄物の有機物のほとんどをメタン発酵処理してメタンガスの有価物として回収でき、メタンガスとしての回収効率を向上できるとともに、後工程の好気性微生物による生物処理の負荷を低減でき、装置の簡略化および小型化と運転エネルギの低減とができ、効率よく廃棄物を処理できる。
【0115】
請求項2記載の廃棄物処理方法によれば、請求項1記載の廃棄物処理方法の効果に加え、好気性微生物による生物処理により生成する余剰汚泥を、汚泥分、液状有機性廃棄物および固形状有機性廃棄物とともにメタン発酵処理してメタンガスの有価物として回収するため、有機物を確実にメタン発酵処理してメタンガスの有価物として回収できるので、さらに効率よく処理できる。
【0116】
請求項3記載の廃棄物処理方法によれば、請求項1または2記載の廃棄物処理方法の効果に加え、メタン発酵処理する前に総固形物濃度が5%以上20%以下となるように水分調整するため、メタン発酵処理する際の適性な濃度となり、メタン発酵処理効率を向上できる。
【0117】
請求項4記載の廃棄物処理方法によれば、請求項1ないし3いずれか一記載の廃棄物処理方法の効果に加え、メタン発酵処理する前にあらかじめ液状有機性廃棄物および固形状有機性廃棄物の少なくとも一方から夾雑物を除去するため、夾雑物によるメタン発酵処理の阻害を防止でき、運転エネルギに対するメタン回収率を向上でき、メタン発酵処理効率を向上できる。
【0118】
請求項5記載の廃棄物処理方法によれば、請求項1ないし4いずれか一記載の廃棄物処理方法の効果に加え、メタン発酵処理する前またはメタン発酵処理の際にマグネシウム化合物および燐酸化合物を添加するため、生物処理汚泥の汚泥分中に残留する窒素化合物、液状有機性廃棄物中に存在する窒素化合物がマグネシウム化合物および燐酸化合物と反応して燐酸マグネシウムアンモニウムを生成して析出させるので、窒素化合物によるメタン発酵処理の阻害を防止でき、メタン発酵処理効率を向上できる。
【0119】
請求項6記載の廃棄物処理方法によれば、請求項5記載の廃棄物処理方法の効果に加え、マグネシウム化合物および燐酸化合物を添加する際に、鉄化合物、コバルト化合物およびニッケル化合物の少なくともいずれか一方を添加するため、メタン発酵処理の際に総固形物濃度や窒素化合物濃度が高くなる状態でも、栄養塩類の鉄分、コバルト分およびニッケル分の不活性効果の増大分を補給でき、栄養塩バランスが確保されてメタン発酵処理効率を向上できる。
【0120】
請求項7記載の廃棄物処理方法によれば、請求項5または6記載の廃棄物処理方法の効果に加え、マグネシウム化合物および燐酸化合物は、メタン発酵処理の際の窒素化合物の濃度が4000ppm 以下となるように添加するため、窒素化合物によるメタン発酵処理の阻害を確実に防止でき、メタン発酵処理効率を向上できる。
【0121】
請求項8記載の廃棄物処理方法によれば、請求項1ないし7いずれか一記載の廃棄物処理方法の効果に加え、処理濾液と濾液とを生物処理する前に窒素化合物を除去するため、硝化脱窒処理による窒素化合物の分解処理が不要となり、装置構成の簡略小型化および処理エネルギの低減ができるとともに、生物処理の負荷を低減でき、処理効率を向上できる。
【0122】
請求項9記載の廃棄物処理方法によれば、請求項8記載の廃棄物処理方法の効果に加え、生物処理する前にアンモニアストリッピング処理により窒素化合物を除去するため、生物処理により生成した生物処理汚泥の固液分離により得られ比較的有機物が少なく窒素化合物が多い濾液、および、メタン発酵処理後の比較的有機物が少なく窒素化合物が多い処理濾液で、硝化脱窒処理では有機物を別途添加しなくては窒素化合物が処理できなくなる状態でも、簡単な構成で窒素化合物を除去できるとともに有価物として回収でき、また、好気性微生物による生物処理の負荷を低減でき、処理効率を向上できる。
【0123】
請求項10記載の廃棄物処理方法によれば、請求項8または9記載の廃棄物処理方法の効果に加え、生物処理する際の処理濾液および濾液の混合中の生物化学的酸素要求量(BOD)濃度が全窒素化合物濃度の15倍以上となるまで窒素化合物を除去するため、生物処理する好気性微生物が摂取する栄養源となる窒素化合物が確保され、処理効率を向上できるとともに、窒素化合物を残留させずに高度に低減できる。
【図面の簡単な説明】
【図1】本発明の廃棄物処理方法の実施の一形態の構成を示すブロック図である。
【図2】同上図1に示す処理工程において屎尿、浄化槽汚泥および合成生ごみを用いてメタン発酵処理した実験の結果を示すグラフである。
【図3】従来例の廃棄物処理方法の構成を示すブロック図である。
【図4】従来の他の廃棄物処理方法の構成を示すブロック図である。
【符号の説明】
1 第1の固液分離手段
2 第1の前処理手段
3 第2の前処理手段
6 メタン発酵処理手段としてのメタン発酵槽
7 第2の固液分離手段
8 窒素化合物除去手段としてのアンモニアストリッピング処理工程
9 生物処理手段
10 余剰汚泥返送手段[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a waste treatment method for subjecting organic waste containing organic matter to methane fermentation treatment.
[0002]
[Prior art]
Conventionally, as shown in FIG. 3, for example, liquid organic waste having fluidity such as human waste and livestock wastewater, septic tank sludge, agricultural settlement wastewater, sewage sludge, food processing sludge, and kitchen waste, which have been separately treated, BACKGROUND ART There is known a waste treatment method for treating solid organic waste as garbage in one system and collecting valuable resources such as solid fuel, fertilizer, and methane gas at the time of treatment.
[0003]
In the waste treatment method shown in FIG. 3, a pretreatment is performed in a first pretreatment step 21 such as pulverization of liquid organic waste or separation and removal of contaminants. The sludge is separately subjected to methane fermentation in a methane fermentation tank 24 together with solid organic waste from which pulverization or impurities have been removed in advance in a second pretreatment step 23. Then, after recovering methane gas as a valuable material in the methane fermentation treatment, it is dehydrated and separated into sludge and a treated filtrate in a dehydration step 25, and the sludge is composted into fertilizers and collected as a valuable material, and the treated filtrate is separated into a solid and a liquid. In step 22, nitrification and denitrification are carried out in a nitrification and denitrification step 26 together with the filtrate collected by solid-liquid separation of liquid organic waste, and in an advanced treatment step 27, coagulation is carried out with a coagulant and treated as treated water. . Excess sludge and coagulated sludge generated by the nitrification and denitrification treatment and coagulation treatment are returned to liquid organic waste pretreatment or solid-liquid separation for treatment again.
[0004]
[Problems to be solved by the invention]
However, liquid organic waste such as human waste, livestock wastewater, and fishery processing wastewater separates sludge for methane fermentation by solid-liquid separation, but the filtrate has a high BOD (Biochemical Oxygen Demand). : Biochemical oxygen demand) and a large amount of nitrogen compounds dissolved. Therefore, it is necessary to perform a nitrification denitrification treatment which requires a complicated and large-sized apparatus for treating both the BOD and the nitrogen compound and requires a large energy for the treatment. In addition, there is a problem that BOD, nitrogen compounds and the like in the filtrate cannot be recovered as valuable resources.
[0005]
In view of the above problems, an object of the present invention is to provide a waste treatment method capable of efficiently and easily treating various types of organic waste and improving the collection efficiency as valuable resources.
[0006]
[Means for Solving the Problems]
The waste treatment method according to claim 1, wherein the biologically treated sludge generated by the biological treatment is solid-liquid separated into a sludge component and a filtrate, and the fluidity containing the sludge component and an organic substance that can be decomposed by an anaerobic organism is used. The liquefied organic waste and the solid organic waste containing solid organic substances that can be decomposed by anaerobic organisms are stirred and mixed, and subjected to methane fermentation treatment, followed by solid-liquid separation to collect the treated filtrate. This treated filtrate is combined with the filtrate.TogetherBiological treatment with aerobic microorganisms.
[0007]
Then, a large amount of the sludge component, which contains most of the total organic matter obtained by solid-liquid separation and separation of the biologically treated sludge generated by the biological treatment, and the fluid part containing the organic matter that can be decomposed by anaerobic organisms, is contained in a large amount in the liquid part. Liquid organic waste in which organic matter is present, and solid organic waste containing solid organic matter that can be decomposed by anaerobic organisms are stirred and mixed for methane fermentation, and after this methane fermentation, In order to subject the treated filtrate separated and separated by solid-liquid separation and the filtrate separated and separated from biologically treated sludge to biological treatment with aerobic microorganisms, most of the organic substances of wastes with different properties are subjected to methane fermentation treatment and methane gas As well as being able to be recovered as valuables, the load of biological treatment by aerobic microorganisms in the post-process is reduced, the size of the apparatus is reduced, and the operating energy is reduced, so that efficient treatment can be performed.
[0008]
The waste treatment method according to claim 2 is the waste treatment method according to claim 1, wherein the excess sludge generated by the biological treatment with the aerobic microorganisms includes sludge, liquid organic waste, and solid organic waste. In addition, methane fermentation is performed.
[0009]
The surplus sludge generated by biological treatment with aerobic microorganisms is subjected to methane fermentation together with sludge, liquid organic waste, and solid organic waste to be collected as valuable methane gas. Since it is fermented and collected as valuable methane gas, it can be treated efficiently.
[0010]
According to a third aspect of the present invention, in the waste disposal method according to the first or second aspect, the water content is adjusted to a total solid concentration of 5% or more and 20% or less before the methane fermentation treatment.
[0011]
Then, since the water content is adjusted so that the total solid concentration becomes 5% or more and 20% or less before the methane fermentation treatment, the concentration becomes an appropriate concentration for the methane fermentation treatment, and the methane fermentation treatment efficiency is improved. If the total solids concentration is lower than 5%, the concentration of organic matter to be subjected to methane fermentation decreases, and the amount of methane gas generated with respect to the operation energy decreases, thereby lowering the efficiency of methane fermentation. On the other hand, when the total solid concentration is higher than 20%, the viscosity increases and the presence of the solid organic substance makes it impossible to uniformly decompose the organic substance in a short time, thereby lowering the efficiency of methane fermentation. Therefore, the total solid concentration is set to 5% or more and 20% or less before the methane fermentation treatment.
[0012]
According to a fourth aspect of the present invention, there is provided the waste disposal method according to any one of the first to third aspects, wherein at least one of a liquid organic waste and a solid organic waste is contaminated before the methane fermentation treatment. Is to be removed.
[0013]
In addition, prior to the methane fermentation treatment, impurities are removed from at least one of the liquid organic waste and the solid organic waste in advance, thereby preventing the methane fermentation treatment from being hindered by the impurities and improving the methane fermentation treatment efficiency. I do.
[0014]
The waste treatment method according to claim 5 is the waste treatment method according to any one of claims 1 to 4, wherein a magnesium compound and a phosphate compound are added before or during the methane fermentation treatment. is there.
[0015]
Since the magnesium compound and the phosphate compound are added before the methane fermentation treatment or during the methane fermentation treatment, the nitrogen compound remaining in the sludge of the biologically treated sludge and the nitrogen compound present in the liquid organic waste are magnesium. Since it reacts with the compound and the phosphoric acid compound to generate and precipitate magnesium ammonium phosphate, the inhibition of the methane fermentation treatment by the nitrogen compound is prevented, and the methane fermentation treatment efficiency is improved.
[0016]
According to a sixth aspect of the present invention, in the waste disposal method of the fifth aspect, at least one of an iron compound, a cobalt compound, and a nickel compound is added when the magnesium compound and the phosphate compound are added. It is.
[0017]
And, when adding the magnesium compound and the phosphate compound, to add at least one of the iron compound, the cobalt compound and the nickel compound, even in a state where the total solid concentration or the nitrogen compound concentration becomes high during the methane fermentation treatment. The nutrients are replenished with the increased inactive effect of iron, cobalt and nickel, thereby ensuring the balance of nutrients and improving the methane fermentation treatment efficiency.
[0018]
The waste treatment method according to claim 7 is the waste treatment method according to claim 5 or 6, wherein the addition amount of the magnesium compound and the phosphate compound is such that the concentration of the nitrogen compound in the methane fermentation treatment becomes 4000 ppm or less. It is what is.
[0019]
Since the magnesium compound and the phosphate compound are added so that the concentration of the nitrogen compound during the methane fermentation treatment becomes 4000 ppm or less, the inhibition of the methane fermentation treatment by the nitrogen compound is reliably prevented, and the methane fermentation treatment efficiency is improved. I do.
[0020]
According to an eighth aspect of the present invention, in the waste disposal method according to any one of the first to seventh aspects, a nitrogen compound is removed before biological treatment of the treated filtrate and the filtrate.
[0021]
Further, since the nitrogen compound is removed before the biological treatment of the treated filtrate and the filtrate, the decomposition treatment of the nitrogen compound by the nitrification denitrification treatment becomes unnecessary, and the apparatus configuration can be simplified and the processing energy can be reduced. The processing load is reduced, and the processing efficiency is improved.
[0022]
According to a ninth aspect of the present invention, in the waste disposal method of the eighth aspect, the removal of the nitrogen compound is performed by ammonia stripping.
[0023]
And, to remove nitrogen compounds by ammonia stripping treatment before biological treatment, the filtrate obtained by solid-liquid separation of biologically treated sludge generated by biological treatment and containing relatively few organic compounds and a large amount of nitrogen compounds, and methane fermentation treatment In a later treatment filtrate containing relatively few organic compounds and a large amount of nitrogen compounds, even in a state where nitrogen compounds can not be processed without additional organic substances in the nitrification denitrification treatment, nitrogen compounds can be removed with a simple configuration and as valuable resources It can be recovered, and the load of biological treatment by aerobic microorganisms is reduced, and the treatment efficiency is improved.
[0024]
In the waste treatment method according to the tenth aspect, in the waste treatment method according to the eighth or ninth aspect, the removal of the nitrogen compound is performed by a treatment filtrate during biological treatment and a biochemical oxygen demand during mixing of the filtrate ( BOD) is removed until the concentration becomes 15 times or more of the total nitrogen compound concentration.
[0025]
Then, to remove nitrogen compounds until the biological filtrate oxygen concentration (BOD) concentration during the treatment filtrate and the mixing of the filtrate during the biological treatment becomes 15 times or more of the total nitrogen compound concentration, the aerobic microorganism to be biologically treated is removed. As a result, a nitrogen compound serving as a nutrient source to be ingested is ensured, the treatment efficiency is improved, and the nitrogen compound is reduced to a high level without remaining.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the configuration of an embodiment of the waste disposal method of the present invention will be described with reference to FIG.
[0027]
In FIG. 1, reference numeral 1 denotes a first solid-liquid separation unit. The first solid-liquid separation unit 1 is provided with surplus sludge, septic tank sludge, and sewage sludge generated by biological treatment with an aerobic microorganism or nitrification and denitrification. The biological treatment sludge generated by the biological treatment of microorganisms such as livestock wastewater sludge, agricultural settlement sludge, food processing sludge, etc., is dehydrated into sludge and filtrate to separate solid and liquid. Machine is used.
[0028]
On the other hand, reference numeral 2 denotes a first pretreatment means. The first pretreatment means 2 is provided with, for example, a drum screen or the like, and is a liquid organic liquid having fluidity such as human waste, livestock wastewater, agricultural settlement wastewater, sewage, and food processing wastewater. It removes wastes such as paper and cloth, textiles, and other contaminants such as metal pieces, glass, and plastic from sexual waste.
[0029]
Reference numeral 3 denotes a second pretreatment means. The second pretreatment means 3 mainly contains solid organic matter such as business waste such as garbage, kitchen garbage, agricultural and marine waste, and food processing waste. A crushing device (not shown) for breaking or crushing the solid organic waste, and a metal removing means (not shown) for magnetically sorting the crushed material crushed by the crushing device to remove impurities such as metal pieces. And a separator (not shown) for removing impurities such as synthetic resin bags and plastic contained in the solid organic waste.
[0030]
The first solid-liquid separation means 1, the first pretreatment means 2 and the second pretreatment means 3 are provided with solid-liquid separated sludge, liquid organic waste from which contaminants are removed, and contaminants. An adjustment tank 4 is connected as an adjusting means into which the solid organic waste from which is removed. The biologically treated sludge that has already been dehydrated, for example, dewatered sewage sludge, may be directly charged into the adjustment tank 4 without passing through the first solid-liquid separation means 1.
[0031]
The adjusting tank 4 includes a stirring means (not shown) for stirring and mixing the inputted sludge, the liquid organic waste and the solid organic waste, a means for heating to, for example, about 55 ° C to 60 ° C, And a means for adding a magnesium compound, a phosphoric acid compound, an iron compound, a cobalt compound, and a nickel compound.
[0032]
Note that steam is preferably used for adding water and heating. By using steam, there is no need to add water and separately heat with a heating means, so that heating and water supply can be performed efficiently.
[0033]
Further, as the magnesium compound added by the adding means 5, for example, a magnesium salt, magnesium hydroxide, magnesium oxide or the like which dissociates magnesium ions is used, and as the phosphate compound, for example, phosphate, phosphoric acid, heavy metal which dissociates phosphate ions is used. Condensed phosphoric acid or the like is used. Further, iron compounds, cobalt compounds and nickel compounds also use, for example, chlorides which dissociate as iron ions, cobalt ions and nickel ions.
[0034]
In addition, the sludge, the liquid organic waste, and the solid organic waste are heated and stirred and mixed in the adjusting tank 4 to prepare a slurry-conditioned mixture in which lumps are mixed with the methane fermentation treatment. A methane fermentation tank 6 is connected as methane fermentation treatment means. This methane fermentation tank 6 is a biological suspension type that can process even a concentrated slurry-like refining material containing solid or bulky organic waste, etc., and is heated, for example, appropriately stirred at 55 ° C to 60 ° C. The organic substances in the organic waste are subjected to methane fermentation by anaerobic microorganisms such as methanogens. The methane fermenter 6 is provided with methane gas recovery means (not shown) for recovering the generated methane gas. The methane gas recovery means is connected to a gas tank for storing the recovered methane gas. In addition, the recovered methane gas is used for heating of power generation and processing, and surplus energy can be supplied outside the facility.
[0035]
Further, the methane fermentation tank 6 includes a methane fermentation treatment of the mixture to dehydrate the treated product into a treated filtrate and sludge for solid-liquid separation. For example, a centrifugal dehydrator, a rotating disk dehydrator, a screw press, etc. The second solid-liquid separation means 7 using the dehydrator is connected. The sludge separated by the second solid-liquid separation means 7 is conveyed to a composting step which is separately processed into fertilizer or the like. The second solid-liquid separating means 7 may be provided with an aggregating means for adding a polymer flocculant and aggregating the remaining contaminants.
[0036]
The first solid-liquid separation means 1 and the second solid-liquid separation means 7 have a filtrate collected by the first solid-liquid separation means 1 and a treated filtrate collected by the second solid-liquid separation means 7. Is connected. The nitrogen compound removing means 8 performs ammonia stripping of the fed filtrate and the treated filtrate by ammonia stripping.3-N) for removing ammonia compounds. That is, the ammonia stripping treatment means puts the filtrate and the treatment filtrate into an aeration tank provided with an aeration means (not shown), aerates the ammonia nitrogen (NH) dissolved in the filtrate and the treatment filtrate.3-N) is stripped by aeration to transfer nitrogen compounds into the air, and the air containing the nitrogen compounds is stored in an acidic tank in an acidic aqueous solution that is an aqueous solution of an inorganic acid such as sulfuric acid or hydrochloric acid. And precipitates and recovers the nitrogen compound as, for example, ammonium sulfate or ammonium chloride.
[0037]
The ammonia stripping treatment means of the nitrogen compound removing means 8 is connected to an aerobic biological treatment means 9 for biologically treating the filtrate subjected to the ammonia stripping treatment and the treated filtrate with an aerobic microorganism. The aerobic biological treatment means 9 is provided with an aeration means (not shown) for aerating the fed filtrate after the ammonia stripping treatment and air for supplying oxygen to the treated filtrate. The aerobic biological treatment means 9 is provided with third solid-liquid separation means (not shown) for solid-liquid separation of excess sludge, and the excess sludge collected by the third solid-liquid separation means is separated into first solid-liquid separation means. An excess sludge returning means 10 for returning to the solid-liquid separating means 1 is connected.
[0038]
Further, the aerobic biological treatment means 9 includes a filtrate which has been biologically treated by the aerobic microorganisms and a treated filtrate, for example, agglutinating a contaminant which is dissolved by adding a flocculant to form a solid-liquid separation, A high-level processing means 11 for performing high-level processing such as adsorption separation of ultrafiltration or removing contaminants by high-level membrane separation using ultrafiltration or reverse osmosis membrane is connected. It is processed and discharged as a processing liquid. The advanced treatment means 11 is connected to a sludge return means 12 for returning the collected coagulated sludge and the membrane separation sludge separated by membrane separation to the first solid-liquid separation means 1. In the case of advanced treatment with activated carbon, no sludge return means is provided.
[0039]
Next, the operation of the embodiment will be described.
[0040]
First, the biologically treated sludge is dewatered by the first solid-liquid separation means 1 into a filtrate and a sludge component to be subjected to solid-liquid separation.
[0041]
Further, foreign substances are removed from the liquid organic waste by the first pretreatment means 2.
[0042]
Further, the solid organic waste is broken or crushed by the second pretreatment means 3 to remove impurities such as synthetic resin bags and plastics, and is further subjected to magnetic sorting to remove impurities such as metal pieces. Is removed.
[0043]
Then, the sludge component from the first solid-liquid separation unit 1, the liquid organic waste pretreated by the first pretreatment unit 2, and the solid state pretreated by the second pretreatment unit 3 The organic waste is charged into the adjustment tank 4. In the adjusting tank 4, the mixture is stirred and mixed while being heated to about 55 ° C. using steam, for example, and the total solids concentration (Total Solids: TS), which is the concentration of all evaporation residues that can be stirred and mixed, is 5% or more. The slurry mixture is refined so that a lump of 20% or less is mixed. If the TS concentration is higher than 20%, the stirring and mixing during the methane fermentation treatment become insufficient and the methane fermentation treatment in the subsequent step cannot be performed efficiently, so the TS concentration is set to 20% or less, preferably 18% or less. Further, when the TS concentration is lower than 5%, the amount of water is increased and the ratio of organic substances is reduced, and the efficiency of the methane fermentation treatment in the subsequent step is reduced, so that the TS concentration is 5% or more, preferably 7.5. Set to% or more. In addition, by forming the slurry into a state in which there are few or almost no lumps, the methane fermentation treatment by the microorganism proceeds more efficiently.
[0044]
At the time of refining in the adjusting tank 4, the TS concentration of the mixture is measured, and when the TS concentration becomes 5% or more, preferably 7.5% or more, the adding means 5 causes At least one of a compound, a nickel compound and a cobalt compound is added. These nutrients are contained in the mixture in an amount of 10 mg / L or more, preferably 10 to 300 mg / L as iron, 1 mg / L or more as nickel, preferably 1 to 30 mg / L, and 1 mg / L or more as cobalt, preferably 1 to 30 mg as nickel. Per liter.
[0045]
When the TS concentration is lower than 5%, trace amounts of iron, nickel, and cobalt contained in the organic waste are less inactive due to aggregation, sedimentation, and scale formation, and the activity of anaerobic microorganisms is reduced. Therefore, it is not necessary to separately add nutrients since a sufficient amount of nutrients necessary for the above is obtained.
[0046]
Further, when the iron addition amount is less than 10 mg / liter, no improvement in the methane fermentation treatment in the subsequent stage is observed, and when the iron addition amount exceeds 300 mg / liter, no difference in the effect due to iron addition is recognized and the cost increases. The iron compound is added so that the amount of iron added is 10 mg / liter or more, preferably 10 to 300 mg / liter. Similarly, when the amount of nickel added is less than 1 mg / liter, no improvement in the methane fermentation treatment in the subsequent stage is observed, and when the amount is more than 30 mg / liter, no difference in the effect of the nickel addition is observed and the cost increases. Therefore, the nickel compound is added so that the amount of nickel added is 1 mg / liter or more, preferably 1 to 30 mg / liter. Similarly, when the amount of cobalt added is less than 1 mg / liter, no improvement in the methane fermentation treatment in the subsequent stage is observed, and when the amount exceeds 30 mg / liter, no difference in the effect due to the addition of cobalt is recognized and the cost increases. Therefore, the cobalt compound is added so that the amount of cobalt added is 1 mg / L or more, preferably 1 to 30 mg / L.
[0047]
Further, a magnesium compound such as a magnesium salt, magnesium hydroxide and magnesium oxide, and a phosphoric acid compound such as a phosphate, phosphoric acid and polycondensed phosphoric acid are added by the adding means 5. In addition, in the adjustment tank 4, the ammonia nitrogen (NH3-N), but the acid fermentation of the organic waste of each property is progressing in the adjusting tank 4 and the pH is about 5, so that the addition of the magnesium compound and the phosphoric acid compound The nitrogen compound, ammoniacal nitrogen (NH3-N) to react with magnesium ammonium phosphate (Mg (NH4) PO4) Is not suddenly generated and adheres to the wall surface of the adjustment tank 4 as a scale.
[0048]
Further, the amounts of the magnesium compound and the phosphate compound to be added are such that the nitrogen compound is reduced to an amount that does not affect the methane fermentation in the methane fermentation treatment in the subsequent step. That is, the ammonia nitrogen concentration is reduced to 2500 ppm or less, preferably 2000 ppm or less for high temperature fermentation in which the methane fermentation treatment is about 55 ° C. to 60 ° C., and 4000 ppm or less, preferably 3000 ppm or less for medium temperature fermentation of about 35 ° C. to 40 ° C. Is set as described above.
[0049]
Here, ammoniacal nitrogen (NH) which is a nitrogen compound in the mixture is used.3-N) was converted to magnesium ammonium phosphate (Mg (NH4) PO4) Can be produced, but magnesium ammonium phosphate whose concentration is 10 times the ammonia nitrogen concentration is produced from the molecular weight ratio of magnesium ammonium phosphate. For example, when 4000 ppm of ammonia nitrogen is present in the mixture, 40,000 ppm of ammonium nitrogen is present. Magnesium ammonium phosphate is produced, and this 40000 ppm of magnesium ammonium phosphate corresponds to a TS concentration of 4%. As described above, there is a possibility that the TS concentration is out of an appropriate range of 5% or more and 20% or less. It is necessary to pay attention to moisture control.
[0050]
Further, the magnesium compound is added so that the molar ratio of magnesium becomes 1 or less with respect to the total phosphoric acid concentration, which is the total of the phosphate compound to be added and the phosphate ions in the mixture, and the magnesium ions remain in the subsequent step. Of scale due to the precipitation of magnesium compound.
[0051]
Further, the phosphate ion becomes a nutrient source of the aerobic microorganisms in the post-process aerobic biological treatment, but the removal operation is not easy, so that the phosphate ion concentration is 20 ppm or less, preferably 10 ppm or less. The addition amounts of the magnesium compound and the phosphate compound are set.
[0052]
Then, nutrients such as an iron compound, a nickel compound, and a cobalt compound are appropriately added, and a mixture prepared by adding a magnesium compound and a phosphoric acid compound is allowed to flow into the methane fermentation tank 6, for example, while appropriately stirring at 55 ° C. After being retained for 8 days, the organic matter is subjected to methane fermentation treatment with methane-producing bacteria or the like. The methane gas generated by the methane fermentation treatment is collected by a methane gas collection means (not shown) and stored in a gas tank, which is used for the operation energy of organic waste treatment such as power generation, other sewage treatment, and cooling and heating. Use.
[0053]
Since the methane fermentation tank 6 is in a stable state in an alkaline atmosphere having a pH of 7 or more, ammonia nitrogen (NH) which is a nitrogen compound in the mixture flowing into the methane fermentation tank 63-N) reacts with the magnesium compound and the phosphate compound added in advance in the adjusting tank 4 to react with magnesium ammonium phosphate (Mg (NH4) PO4).
[0054]
Further, iron, nickel and cobalt are substances constituting coenzyme components of microorganisms such as methanogens, and are nutrient elements indispensable for improving the activity of microorganisms. When iron is about 1000 mg / l, nickel is about 80 to 240 mg / l, and cobalt is about 50 to 150 mg / l or more, on the contrary, the activity of microorganisms starts to be inhibited.
[0055]
In the methane fermenter 6, a slurry-like mixture containing a solid organic waste and having a high concentration is treated, so that physicochemical reactions such as coagulation / precipitation, formation of scale particles, and coprecipitation adsorption effects are performed. Is considered to have occurred.
[0056]
For this reason, when the TS concentration of the refining material fed into the methane fermentation tank 6, which is the input TS concentration, is lower than 5%, the concentration of the coagulation / sedimentation and scale-forming substances in the methane fermentation tank 6 is relatively low,・ The inactive effects of iron, nickel and cobalt, which are trace nutrients due to physicochemical reactions such as precipitation and scale formation, are relatively low, and anaerobic microorganisms such as methanogens have activity in the refining products. It absorbs iron, nickel, and cobalt as nutrients, increases its activity, and efficiently decomposes organic substances. In this case, in the bio-suspended methane fermentation treatment method capable of treating solid organic waste, the BOD (Biochemical Oxygen Demand: biochemical oxygen demand) concentration is 30 to 50,000 ppm, When the time is about 8 days, the load is almost the upper limit of the processing (4 to 6 kg / m in BOD load).3Day), that is, the upper limit of the processing conditions under which the anaerobic microorganism can absorb the active iron, nickel, and cobalt in the refined material as a nutrient source and decompose the organic matter.
[0057]
On the other hand, when the TS concentration is 5% or more, particularly 7.5% or more, the inactive effect of iron, nickel, and cobalt increases due to precipitation and scale formation, and iron, nickel, and cobalt required by anaerobic microorganisms are reduced. Insufficiency causes the activity to decrease, and the above-mentioned treatable TOC (Total Organic Carbon) load and chemical oxygen demand (COD)Cr) The methane fermentation efficiency is greatly reduced or stopped even under the condition of the processing load at which the load and the BOD load become equal or lower.
[0058]
Therefore, as described above, in the above-described embodiment, when performing methane fermentation treatment on solid organic waste containing solid organic matter such as garbage, kitchen waste, and agricultural and marine waste, the methane fermentation tank 6 When the TS concentration at the time of charging is 5% or more, at least one of an iron compound, a nickel compound, and a cobalt compound has an iron concentration of 10 to 300 mg / liter, a nickel concentration of 1 to 30 mg / liter, and a cobalt concentration of Add to 1 to 30 mg / liter.
[0059]
Next, the fermentation product subjected to the methane fermentation treatment is subjected to solid-liquid separation by a second solid-liquid separation means 7 into a dewatered cake as sludge and a separated water as a treated filtrate. Then, the separated liquid is conveyed to the ammonia stripping treatment means of the nitrogen compound removing means 8 together with the filtrate separated and solidified by the first solid-liquid separation means 1, and the dewatered cake is composted into fertilizer or the like, Incinerate. In addition, since impurities are sufficiently removed by the first pretreatment means 2 and the second pretreatment means 3 and the dehydrated cake contains magnesium ammonium phosphate, it is composted to form nitrogen, phosphorus, and magnesium. It is recovered as valuable resources such as fertilizers containing inorganic nutrients, that is, fertilizers added to the function of compost as a soil conditioner by adding a buffering fertilizer.
[0060]
At the time of the solid-liquid separation by the second solid-liquid separation means 7, in order to reduce the load of biological treatment in a later step, a coagulant is added to reduce the BOD in the treated filtrate, and the organic matter caused by the BOD is added. Are aggregated and then dehydrated to perform solid-liquid separation. Here, the dewatered cake as sludge separated into solid and liquid is preferably dewatered by adding a polymer flocculant in order to reduce the water content for composting used as a fertilizer and for reducing the amount of heat for drying. As the polymer flocculant, various cationic flocculants can be used, but an amidine flocculant capable of reducing the BOD concentration to 500 ppm or less is preferable.
[0061]
Then, the filtrate and the treatment filtrate conveyed to the ammonia stripping treatment means of the nitrogen compound removal means 8 are aerated in an alkaline atmosphere by aeration means (not shown), and ammonia nitrogen, which is a nitrogen compound dissolved in the filtrate and the treatment filtrate, is removed. Is carried out by aeration to transfer the air into the aerated air. Here, as the alkaline atmosphere, an alkali such as sodium hydroxide, potassium hydroxide, slaked lime or the like is added to the filtrate and the treated filtrate, and stripping is performed by adding alkali. Then, the air containing the nitrogen compound is permeated into an acidic aqueous solution which is an inorganic acid aqueous solution such as sulfuric acid or hydrochloric acid stored in an acid tank, and the nitrogen compound is precipitated and recovered as, for example, ammonium sulfate or ammonium chloride. . The removal of the nitrogen compound is performed so that the BOD / N is 15 or more.
[0062]
On the other hand, the stripped filtrate and the treated filtrate flow into the aerobic biological treatment means 9 and are biologically treated by the aerobic microorganisms, that is, oxidatively decompose remaining organic substances to reduce BOD. During this biological treatment, nitrogen compounds and phosphate compounds remaining without being removed by the ammonia stripping treatment are ingested as nutrients of aerobic microorganisms, and the BOD is reduced and the remaining trace amounts of nitrogen compounds and phosphate compounds are reduced. The components are also reduced.
[0063]
Further, the biologically treated filtrate and the treated filtrate are subjected to advanced treatment such as acid coagulation sedimentation, sand filtration, activated carbon adsorption treatment, membrane treatment, etc., in the advanced treatment means 11 to obtain chromaticity, BOD concentration, COD concentration, phosphate compound. To obtain good treated water. In the case of the coagulation treatment, an inorganic coagulant such as a ferric chloride or a sulfate band may be used. Further, by using the membrane treatment after the coagulation treatment, stable treated water can be efficiently obtained. Then, sludge such as coagulated sludge and membrane separation sludge generated by the advanced treatment is returned to the first solid-liquid separation unit 1 via the sludge return unit 12 and processed again.
[0064]
As described above, biologically treated sludge produced by biological treatment of waste, and liquid organic waste having fluidity and containing a large amount of organic matter in a liquid portion containing organic matter that can be decomposed by anaerobic organisms And solid organic waste containing solid organic matter that can be degraded by anaerobic organisms, and the biologically treated sludge containing most of the organic matter in the entire waste is collected by solid-liquid separation and collected. The sludge, liquid organic waste, and solid organic waste are subjected to methane fermentation treatment to efficiently recover them as valuable methane gas, and the organic matter in the entire waste is reduced to reduce the remaining organic matter. The waste can be treated only by biological treatment with a gaseous microorganism, the size of the apparatus can be reduced, the operating energy can be reduced, and the entire waste can be efficiently treated.
[0065]
Further, excess sludge generated by biological treatment with aerobic microorganisms and sludge generated by advanced treatment are returned to the first solid-liquid separation means 1 to be separated into solid and liquid, and the sludge, liquid organic waste and solid organic waste are separated. Since the methane fermentation is performed together with the waste and collected as valuable methane gas, the organic matter can be surely subjected to methane fermentation and collected as valuable methane gas, thereby improving the processing efficiency.
[0066]
Since the biologically treated sludge is dehydrated and solid-liquid separated by the first solid-liquid separation means 1, the organic matter to be subjected to methane fermentation can be surely solid-liquid separated to the sludge side, and the recovery efficiency as methane gas can be improved. In addition, the load of post-process biological treatment can be reduced, and the efficiency of waste treatment can be improved.
[0067]
Furthermore, since the water content is adjusted so that the total solid content concentration becomes 5% or more and 20% or less before the methane fermentation treatment, an appropriate concentration for the methane fermentation treatment is obtained, and the methane fermentation treatment efficiency can be improved.
[0068]
In addition, prior to the methane fermentation treatment, the pretreatment to remove impurities from the liquid organic waste and solid organic waste in advance can prevent the methane fermentation treatment from being hindered by impurities, and improve the methane fermentation treatment efficiency. Can be improved.
[0069]
Further, before or during the methane fermentation treatment, a magnesium compound and a phosphate compound are added, and the nitrogen compound is reacted with the magnesium compound and the phosphate compound in the methane fermentation tank 6 where the pH becomes alkaline to form magnesium ammonium phosphate. Since the methane fermentation treatment is generated and precipitated, inhibition of the methane fermentation treatment by the nitrogen compound can be prevented, and the methane fermentation treatment can be performed efficiently.
[0070]
In addition, since the magnesium compound and the phosphate compound are added so that the concentration of the nitrogen compound at the time of the methane fermentation treatment becomes 4000 ppm or less, the inhibition of the methane fermentation treatment by the nitrogen compound can be reliably prevented, and the methane fermentation treatment efficiency is improved. it can.
[0071]
And, when adding the magnesium compound and the phosphate compound, to add at least one of the iron compound, the cobalt compound and the nickel compound, even in a state where the total solid concentration or the nitrogen compound concentration becomes high during the methane fermentation treatment. , Nutrients, iron, cobalt and nickel can be replenished with an increased amount of inactive effect, and nutrient balance can be ensured and methane fermentation can be performed efficiently.
[0072]
In addition, the filtrate collected by solid-liquid separation of the biologically treated sludge and the treated filtrate collected by solid-liquid separation after the methane fermentation treatment are subjected to nitrification and denitrification in order to remove nitrogen compounds before biological treatment by aerobic microorganisms. Decomposition treatment of nitrogen compounds by the treatment becomes unnecessary, so that the apparatus configuration can be simplified and the treatment energy can be reduced, the load of biological treatment can be reduced, and the treatment efficiency can be improved.
[0073]
Furthermore, since ammonia stripping treatment is carried out with a simple structure to remove this nitrogen compound, the filtrate obtained by solid-liquid separation of the biologically treated sludge generated by the biological treatment is relatively free from organic matter and contains a large amount of nitrogen compound. In a later treatment filtrate containing relatively few organic compounds and a large amount of nitrogen compounds, even in a state where nitrogen compounds can not be processed without additional organic substances in the nitrification denitrification treatment, nitrogen compounds can be removed with a simple configuration and as valuable resources It can be recovered, and the load of biological treatment by aerobic microorganisms can be reduced and the treatment efficiency can be improved. Then, ammonia stripping is performed on the filtrate from which the sludge has been removed from the biologically treated sludge in advance and the treated filtrate that has been subjected to solid-liquid separation after the methane fermentation treatment. The nitrogen compound can be stably removed without preventing the ripping treatment.
[0074]
Since the magnesium compound and the phosphate compound are added so that the concentration of the nitrogen compound during the methane fermentation treatment becomes 4000 ppm or less, the inhibition of the methane fermentation treatment by the nitrogen compound can be reliably prevented, and the methane fermentation treatment efficiency is improved. it can.
[0075]
In addition, since nitrogen compounds are removed until the concentration of organic substances in the treated filtrate and the mixture of the filtrate at the time of biological treatment becomes 15 times or more of the total nitrogen compound concentration, nitrogen as a nutrient source ingested by the aerobic microorganisms undergoing biological treatment. The compound can be secured, the treatment efficiency can be improved, and the nitrogen compound can be reduced to a high degree without remaining.
[0076]
In the above embodiment, the first and second solid-liquid separation means 1 and the second solid-liquid separation means 7 are described by solid-liquid separation by dehydration using a dehydrator. Or solid-liquid separation by precipitation separation or the like.
[0077]
In addition, nitrification during biological treatment depends on the content of nitrogen compounds in various types of waste such as biologically treated sludge, liquid organic waste, and solid organic waste, and the residual amount of nitrogen compounds during biological treatment. Denitrification treatment may be performed. Further, by using the nitrification and denitrification treatment having a simple structure, the structure of the preceding ammonia stripping treatment can be simplified.
[0078]
Further, when the amount of the contained nitrogen compound is small, a step of removing the nitrogen compound such as an ammonia stripping treatment may not be provided. In addition, liquid organic waste such as septic tank sludge and livestock wastewater sludge covering all waste containing organic matter, liquid organic waste such as human waste and livestock wastewater, and various forms of solid organic waste are: Since a large amount of nitrogen compounds is contained, a treatment apparatus for treating waste is generally provided with a structure for removing nitrogen compounds. The removal of the nitrogen compound is not limited to the ammonia stripping treatment. Further, the ammonia stripping treatment is not limited to the submerged air diffusion method, but may be, for example, a packed tower method using Raschig rings or the like, but the liquid submerged air diffusion method is preferable in consideration of clogging of the packed bed by SS.
[0079]
In addition, the coagulation / separation treatment is performed at the time of the second solid / liquid separation means 7, but the coagulation treatment may not be performed by the solid / liquid separation method. By using the coagulation treatment together, solid-liquid separation can be performed in a short time with a simple configuration.
[0080]
On the other hand, the liquid organic waste and the solid organic waste are pretreated in advance to remove impurities, but the pretreatment may be omitted when the content of the impurities is small.
[0081]
And although the magnesium compound and the phosphate compound were added before and during the methane fermentation treatment and explained, when the amount of the nitrogen compound contained is small, these magnesium compounds and the phosphate compound are not added. Is also good. In addition, liquid organic waste such as septic tank sludge and livestock wastewater sludge covering all waste containing organic matter, liquid organic waste such as human waste and livestock wastewater, and various forms of solid organic waste are: Since a large amount of nitrogen compounds is contained, a treatment apparatus for treating waste is generally provided with a configuration in which these magnesium compounds and phosphoric acid compounds are added.
[0082]
Further, although the description has been made by adding any one of the nutrients of the iron compound, the cobalt compound and the nickel compound, it is not necessary to add the nutrient when the property of the treatment does not increase the inactive effect. In addition, similarly, when processing various forms of waste such as biologically treated sludge, liquid organic waste, and solid organic waste covering all waste containing organic matter, the inert effect generally increases. To ensure a good balance of nutrients.
[0083]
【Example】
The difference in treatment efficiency depending on the type of waste to be treated was compared.
[0084]
In addition, as for the form of the waste, synthetic food garbage having a water content of about 80% (TS concentration of about 20%) is obtained by crushing residual food such as vegetables, fruits, meat, fish, cooked rice and the like into a slurry by mixing and stirring. Prepare as solid organic waste. As the liquid organic waste, used was human waste collected from a human waste processing plant, which had been pre-treated to remove the waste by a 10-mm sieve. Further, as the biologically treated sludge, a septic tank sludge collected from a human waste treatment plant was used, and 1000 ppm of ferric chloride was added thereto, followed by stirring and mixing, and then 2% of a cationic polymer flocculant was added to the TS concentration. The coagulation treatment was carried out, the mixture was filtered with a coarse filter cloth, sufficiently squeezed, and solid-liquid separated into dehydrated sludge as a sludge component and a filtrate. Table 1 shows these properties. Table 2 shows the properties of the filtrate of the septic tank sludge.
[0085]
[Table 1]
Figure 0003570888
[Table 2]
Figure 0003570888
As a treatment method, there is a method of dividing waste into three forms of biologically treated sludge, liquid organic waste, and solid organic waste by treating the waste of the embodiment shown in FIG. A method of separating waste into two forms, liquid organic wastewater and solid organic waste shown in FIG. 3 as an example, and mixing various forms of waste shown in FIG. 4 as a conventional example. Then, the method of treating the waste as one form of waste was compared and evaluated by observing the treatment state.
[0086]
First, a process of dividing waste into three forms shown in FIG. 1 and treating the waste will be described.
[0087]
A mixture was prepared by stirring and mixing 10 kg of the excrement removed from the above-mentioned pretreatment, 0.5 kg of dewatered sludge separated by solid-liquid separation of septic tank sludge (the amount of dewatered sludge obtained from 10 kg of septic tank sludge) and 5 kg of synthetic garbage. Qualify. Table 3 shows the properties of the tempered mixture.
[0088]
[Table 3]
Figure 0003570888
Then, the tempered mixture was put into a methane fermentation tank which had been completely acclimated, and subjected to methane fermentation at about 55 ° C. The result is shown in FIG. At the beginning of the treatment, the residence time was 30 days.
[0089]
From the results shown in FIG. 2, the ammonia concentration in the methane fermentation tank was as high as 3200 to 3800 mg / l, and the organic acid accumulated in a considerable amount of 4000 to 8000 mg / l. Although the pH and the methane production rate did not change due to the accumulation of the organic acid, the BOD concentration in the treated filtrate obtained by solid-liquid separation after the methane fermentation treatment increased, and the load of the biological treatment in the subsequent process increased. Needs to be reduced. Therefore, in order to increase the activity of the anaerobic microorganism methanogen, 500 mg / liter of ferric chloride as a nutrient element as ferric chloride, 50 mg / liter of nickel as nickel chloride, and 50 mg / liter as cobalt as cobalt chloride. One liter was added continuously. As a result, the organic acid concentration was reduced to about 1000 mg / liter.
[0090]
Then, when a large amount of organic acid was not recognized and the treatment state was stabilized, the residence time was set to 15 days. Due to the increase in the load of the methane fermentation treatment due to the shortening of the residence time, the organic acids started to accumulate again and increased to about 10,000 mg / liter.
[0091]
Due to this increase in load, ammonia nitrogen (NH Three  -N), which is considered to be because the methane fermentation was inhibited as a result.
[0092]
In general, since ammonia inhibits methane fermentation, operation is performed at an ammonia nitrogen concentration of about 2000 mg / liter. However, even if a trace element such as a nutrient element is added, inhibition of methane fermentation by ammonia nitrogen cannot be prevented. I understand.
[0093]
Then, when a magnesium compound and a phosphoric acid compound were added and the ammonia nitrogen concentration was reduced to about 2000 mg / l, the accumulation of organic acids was prevented, and the concentration was reduced to 300 to 560 mg / l. In this state, even if the residence time was reduced to 7.5 days, the organic acid could not be accumulated and could be treated stably. In this state, the methane content in the digested gas is about 59%, and the amount of digested gas generated is 0.35 liter / g · input COD.CrIt turns out that it shows and a favorable result is shown.
[0094]
After that, when the addition of the trace element was stopped, the organic acid concentration gradually increased and the pH became acidic even when the ammonia nitrogen concentration was about 2000 mg / liter, and it became rancid.
[0095]
As described above, when the TS concentration and the ammonia nitrogen, which is a nitrogen compound, are high, the addition of trace elements can prevent a certain amount of organic acid from accumulating. However, when the load increases, the effect of ammonia nitrogen appears. Since the accumulation of organic acids occurs, it is understood that it is necessary to reduce the amount of ammonia nitrogen by adding a trace element and adding a magnesium compound and a phosphate compound in order to allow the methane fermentation treatment to proceed stably and efficiently. .
[0096]
On the other hand, a mixture obtained by performing methane fermentation treatment in a stable state at an organic acid concentration of about 500 mg / liter for a residence time of 15 days was mixed with a polyamidine-based strong cationic polymer flocculant and a general polyacrylate ester-based strong cationic polymer flocculant. And then dewatered to obtain a dewatered cake, which is sludge, and solid-liquid separation into a treated filtrate. Table 4 shows the properties of the dehydrated cake and the treated filtrate, and Table 5 shows the results of component analysis in the dehydrated cake obtained by coagulation treatment with a polyamidine-based strong cationic polymer coagulant.
[0097]
[Table 4]
Figure 0003570888
[Table 5]
Figure 0003570888
From the results shown in Table 4, the water content of the dehydrated cake was 82.4% for the polyacrylate ester-based strong cationic polymer flocculant, and 77.8% for the polyamidine-based strong cationic polymer flocculant. , A big difference was recognized. Also, the BOD in the treated filtrate was 430 mg / liter for the polyamidine-based strong cationic polymer flocculant, and could be reduced to 500 mg / liter or less. However, it can be seen that the total nitrogen concentration (TN) is as high as about 2200 mg / liter. Also, from the results shown in Table 5, fertilizer components that produce an effect as a fertilizer at 7.2% of nitrogen (N), 12.1% of phosphorus (P), and 5.3% of magnesium (Mg) per dry weight. It can be seen that many are included.
[0098]
Then, the separated treated filtrate is subjected to aerobic microorganism treatment together with the separated filtrate by subjecting the septic tank sludge to solid-liquid separation in advance. Here, the volume ratio between the treated filtrate and the filtrate is almost the same since the ratio between human waste and septic tank sludge is 1: 1. For this reason, from the results shown in Tables 2 and 4, the mixture of the filtrate and the treated filtrate has a BOD of about 700 mg / L and a total nitrogen concentration (TN) of about 1300 mg / L, and the ammonia stripping treatment and the like. As a result, the biological treatment by the aerobic microorganism in the subsequent step can be performed by activated sludge treatment with a low load of treating wastewater having a BOD of about 700 mg / liter.
[0099]
Next, equal amounts of the filtrate and the treated filtrate were mixed and subjected to an ammonia stripping treatment. In this treatment method, first, sodium hydroxide is added to a filtrate and a treatment filtrate put in a pH adjustment tank to adjust the pH to 11, and then a 1-liter tank is poured into a stripping tank in which two stages are connected in series. Then, air was diffused from an air diffuser provided in each tank to perform an ammonia stripping treatment. Table 6 shows the results.
[0100]
[Table 6]
Figure 0003570888
From the results shown in Table 6, the ammonia nitrogen concentration was reduced from 1460 mg / liter to 31 mg / liter. The properties shown in Table 7 were obtained by the ammonia stripping treatment.
[0101]
[Table 7]
Figure 0003570888
Thereafter, the treated water by the activated sludge method, which is a biological treatment with aerobic microorganisms, provided treated water in which the BOD, SS, and total nitrogen shown in Table 8 were satisfactorily reduced.
[0102]
[Table 8]
Figure 0003570888
On the other hand, in Comparative Example 1 shown in FIG. 3, two types of waste in which the synthetic garbage of the above example, human waste and septic tank sludge were mixed at a ratio of 1: 1 were used as starting materials, and a solid-liquid separation step 22 was performed. Liquid separation, that is, coagulation treatment by adding a cationic polymer coagulant to the mixed human waste and septic tank sludge at a concentration of 2% with respect to the TS concentration, filtering through a coarse filter cloth and sufficiently squeezing to obtain about 1.5 kg of Solid-liquid separation was performed on dehydrated sludge as sludge and about 18.5 kg of filtrate. Table 9 shows the properties of the dewatered sludge and the filtrate.
[0103]
[Table 9]
Figure 0003570888
Here, since the BOD / N in the ordinary nitrification and denitrification treatment needs to be set to a property of about 3.5 to 4, the filtrate shown in Table 9 is subjected to nitrification and denitrification in the subsequent nitrification and denitrification step 26. During the treatment, BOD becomes insufficient, and it is necessary to add an organic carbon source such as methanol. Therefore, the actual load during the nitrification denitrification treatment is a BOD concentration of 6700 to 7680 mg / liter and a total nitrogen concentration of 1920 mg / liter. Therefore, the above-mentioned sludge has an extremely large load as compared with the activated sludge treatment having a BOD concentration of 700 mg / liter in the three embodiments, which results in an increase in the size of the treatment apparatus and an increase in consumption energy. According to the example, it is understood that the configuration of the biological treatment in the post-process can be simplified and the energy consumption can be reduced, and the waste can be efficiently treated with the simple configuration.
[0104]
Further, in order to perform methane fermentation in the methane fermentation tank 24, 5 kg of synthetic garbage is added to 1.5 kg of dehydrated sludge collected from a mixture of human waste and septic tank sludge, and water is added to reduce the TS concentration to about 10%. Tempered to be. Table 10 shows the properties.
[0105]
[Table 10]
Figure 0003570888
From the results shown in Tables 1 and 9, it is found that the mixture of the dewatered sludge and the synthetic garbage is tempered into the methane fermentation tank 24 into which the reconditioned material flows, and the waste per 10 kg, the septic tank sludge 10 kg, and the synthetic garbage 5 kg CODCrWhen the amount is calculated by the method shown below,
1.5 [kg] x 180 [g / kg] + 5 [kg] x 307 [g / kg]
= 1805 [g]
Thus, Comparative Example 1 shown in FIG. 3 weighs about 1.8 kg.
[0106]
On the other hand, the COD fed into the methane fermentation tank into which a mixture of 10 kg of human waste of the above-mentioned embodiment, 0.5 kg of solid-liquid separated sludge of septic tank sludge, and 5 kg of synthetic garbage flows into the septic tank sludge flows.CrThe quantity is
10 [kg] x 32 [g / kg] + 0.5 [kg] x 307 [g / kg] x 5 [kg] x 169 [g / kg]
= 1940 [g]
It becomes about 2.0 kg. And the methane recovery rate in methane fermentation is the input CODCrSince the amount is substantially determined by the amount, the methane recovery rate is reduced by about 10% in the treatment method according to Comparative Example 1 shown in FIG. It can be seen that an extra improvement in methane recovery can be obtained.
[0107]
Next, in Comparative Example 2 shown in FIG. 4, one type of waste city in which the synthetic garbage, human waste, and septic tank sludge of the above embodiment are mixed is treated as a starting material. That is, the liquid organic waste and the solid organic waste of the conventional example which is Comparative Example 1 shown in FIG. 3 are subjected to a pretreatment such as pulverization or separation and removal of impurities in a pretreatment step 31 at a time. After that, in a solid-liquid separation step 32, solid-liquid separation into sludge and filtrate is performed, and the sludge is subjected to methane fermentation in a methane fermentation tank 33. Further, after recovering methane gas as a valuable material in the methane fermentation treatment, the sludge is dewatered and separated into a treated filtrate in a dehydration step 34, and the sludge is composted into fertilizers and collected as a valuable material, and the treated filtrate is subjected to a phosphate removing step. At 35, a magnesium compound and a phosphate compound are added to generate and separate magnesium ammonium phosphate, and the treated filtrate from which phosphoric acid has been removed is subjected to nitrification and denitrification in a nitrification and denitrification step 36 together with the filtrate collected in the solid-liquid separation step 32, Further, in the advanced treatment step 37, a coagulation treatment is performed with a coagulant, and the treated water is treated. The excess sludge generated by the nitrification denitrification treatment is returned to the pretreatment of the liquid organic waste or to the solid-liquid separation to be treated again.
[0108]
In accordance with the processing step of Comparative Example 2 shown in FIG. 4, 5 kg of synthetic garbage is mixed with 20 kg of a mixture of human waste and septic tank sludge 1: 1 and solid-liquid separation corresponding to the solid-liquid separation step 32, that is, cation A 2% polymer-based flocculant is added to the TS concentration for flocculation treatment, filtered with a coarse filter cloth and sufficiently squeezed, and about 3.9 kg of dehydrated sludge as sludge and about 21.1 kg of dewatered sludge Solid-liquid separation was performed with the filtrate. Table 11 shows the properties of the dewatered sludge and the filtrate.
[0109]
[Table 11]
Figure 0003570888
And COD put into the methane fermentation tank 33CrWhen the amount is calculated in the same manner as described above, the amount is about 1.4 kg, and it is understood that the methane recovery rate is reduced by about 30% in the treatment method according to Comparative Example 2 shown in FIG. Furthermore, comparing the BOD amounts of the filtrates, from Tables 2 and 11,
(21.1 [kg] × 12000 [mg / l]) / (9.5 [kg] × 880 [mg / l])
= 30.3
This is about 30 times higher than that of the above example, and it can be seen that the load of biological treatment in the subsequent process increases.
[0110]
Further, the comparative example 1 shown in FIG. 3 and the comparative example 2 shown in FIG. 4 were subjected to an ammonia stripping treatment in the same manner as in the above example. As a result, the foaming was so severe that the ammonia stripping treatment could not be continued. This is because, in Comparative Example 1 shown in FIG. 3 and Comparative Example 2 shown in FIG. 4, liquid waste that is human waste or waste that has not undergone biological treatment such as garbage contains a large amount of protein and high-molecular organic matter. It is thought that it is. Therefore, an antifoaming agent such as silicon was added to suppress foaming, and the ammonia stripping treatment was continued under the same conditions as in the example. Table 12 shows the results.
[0111]
[Table 12]
Figure 0003570888
From the results shown in Table 12, it can be seen that the removal ratio of ammonia nitrogen is lower than that of the above-mentioned Example. This is considered to be because the defoaming agent silicon is prevented from accumulating on the gas-liquid surface and the ammonia nitrogen is diffused from the liquid phase to the gas phase.
[0112]
On the other hand, in order to prevent the adverse effects caused by these foaming, it is conceivable to reduce the BOD by biological treatment and then perform ammonia stripping treatment. However, aeration for supplying dissolved oxygen during biological treatment may result in ammonia nitrogen. Nitric acid reacts to produce nitric acid or nitrous acid, and cannot perform only oxidative decomposition of BOD. Since the generated nitric acid and nitrous acid cannot be removed by the ammonia stripping treatment, the total nitrogen concentration does not decrease so much even if the ammonia stripping treatment is performed after the biological treatment, resulting in a high nitrogen content. For this reason, in the comparative examples shown in FIGS. 3 and 4, the ammonia stripping process having a simple configuration cannot be used, and if the apparatus is large and complicated, and the nitrification denitrification process that consumes a large amount of processing energy is not performed, the advanced ammonia stripping processing is not performed. Processed water having a total nitrogen concentration of 10 mg / liter or less as a reference for the treatment cannot be obtained.
[0113]
Therefore, in the above embodiment, if the total nitrogen concentration is reduced to about several tens of mg / liter, the total nitrogen concentration, which is a reference for advanced treatment of nitrogen compounds, is reduced to 10 mg / liter or less by the biological treatment in the subsequent step. It can be seen that the processing apparatus can be simplified and downsized and the energy consumption for processing can be reduced.
[0114]
【The invention's effect】
According to the waste treatment method of the present invention, the sludge portion in which most of the total organic matter separated and separated from the biologically treated sludge is present, and the liquid organic waste in which a large amount of organic matter is present in the liquid portion. The solid organic waste containing solid organic matter is stirred and mixed and subjected to methane fermentation treatment, and after the methane fermentation treatment, the treated filtrate and the biologically treated sludge separated by solid-liquid separation and solid-liquid separation are separated. Biological treatment of the separated filtrate with aerobic microorganisms allows most of the organic matter in wastes with different properties to be methane fermented and recovered as valuable methane gas, improving the efficiency of methane gas recovery and improving post-processing. The load of the biological treatment by the aerobic microorganism can be reduced, the apparatus can be simplified and downsized, the operating energy can be reduced, and the waste can be efficiently treated.
[0115]
According to the waste treatment method of the second aspect, in addition to the effect of the waste treatment method of the first aspect, the excess sludge generated by the biological treatment with the aerobic microorganisms is used to remove sludge, liquid organic waste and solid waste. Since the methane fermentation treatment is performed together with the shaped organic waste and collected as valuable methane gas, the organic matter can be surely methane fermented and collected as valuable methane gas.
[0116]
According to the waste treatment method of the third aspect, in addition to the effect of the waste treatment method of the first or second aspect, before the methane fermentation treatment, the total solid concentration is 5% or more and 20% or less. Since the water content is adjusted, the concentration becomes suitable for methane fermentation treatment, and the methane fermentation treatment efficiency can be improved.
[0117]
According to the waste treatment method according to the fourth aspect, in addition to the effects of the waste treatment method according to any one of the first to third aspects, the liquid organic waste and the solid organic waste are prepared before the methane fermentation treatment. Since impurities are removed from at least one of the substances, it is possible to prevent the methane fermentation treatment from being hindered by the impurities, improve the methane recovery rate with respect to the operating energy, and improve the methane fermentation treatment efficiency.
[0118]
According to the waste treatment method of the fifth aspect, in addition to the effects of the waste treatment method of any one of the first to fourth aspects, a magnesium compound and a phosphate compound are added before or during the methane fermentation treatment. Nitrogen compounds remaining in the sludge component of the biologically treated sludge and nitrogen compounds present in the liquid organic waste react with the magnesium compounds and the phosphate compounds to generate and precipitate magnesium ammonium phosphate. Inhibition of methane fermentation treatment by compounds can be prevented, and methane fermentation treatment efficiency can be improved.
[0119]
According to the waste treatment method of claim 6, in addition to the effect of the waste treatment method of claim 5, when adding a magnesium compound and a phosphate compound, at least one of an iron compound, a cobalt compound and a nickel compound is used. The addition of one can supply the increased amount of the inactive effect of nutrients such as iron, cobalt and nickel even when the concentration of total solids and the concentration of nitrogen compounds are high during methane fermentation, and the nutrient balance Methane fermentation treatment efficiency can be improved.
[0120]
According to the waste treatment method of claim 7, in addition to the effects of the waste treatment method of claim 5 or 6, the magnesium compound and the phosphate compound have a nitrogen compound concentration of 4,000 ppm or less during the methane fermentation treatment. Therefore, the methane fermentation treatment can be prevented from being inhibited by the nitrogen compound, and the methane fermentation treatment efficiency can be improved.
[0121]
According to the waste treatment method of claim 8, in addition to the effect of the waste treatment method of any one of claims 1 to 7, in order to remove nitrogen compounds before biological treatment of the treated filtrate and the filtrate, Decomposition treatment of nitrogen compounds by nitrification denitrification treatment is not required, so that the size of the apparatus can be simplified and treatment energy can be reduced, the load of biological treatment can be reduced, and treatment efficiency can be improved.
[0122]
According to the waste treatment method of the ninth aspect, in addition to the effect of the waste treatment method of the eighth aspect, the nitrogen compound is removed by the ammonia stripping treatment before the biological treatment, so that the biological matter produced by the biological treatment is obtained. A filtrate obtained by solid-liquid separation of the treated sludge and containing relatively few organic compounds and a large amount of nitrogen compounds, and a treated filtrate containing relatively few organic compounds and a large amount of nitrogen compounds after the methane fermentation treatment. Even if the nitrogen compound cannot be treated otherwise, the nitrogen compound can be removed with a simple structure and can be recovered as a valuable resource, and the load of biological treatment by aerobic microorganisms can be reduced and the treatment efficiency can be improved.
[0123]
According to the waste treatment method according to the tenth aspect, in addition to the effect of the waste treatment method according to the eighth or ninth aspect, the treatment filtrate during the biological treatment and the biochemical oxygen demand (BOD) during the mixing of the filtrate. ) Nitrogen compounds are removed until the concentration becomes 15 times or more of the total nitrogen compound concentration, so that nitrogen compounds serving as nutrients to be taken in by aerobic microorganisms to be biologically treated can be secured, and treatment efficiency can be improved and nitrogen compounds can be reduced. It can be highly reduced without remaining.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of an embodiment of a waste disposal method of the present invention.
FIG. 2 is a graph showing the results of an experiment in which methane fermentation was performed using human waste, septic tank sludge, and synthetic garbage in the processing step shown in FIG.
FIG. 3 is a block diagram showing a configuration of a conventional waste disposal method.
FIG. 4 is a block diagram showing a configuration of another conventional waste disposal method.
[Explanation of symbols]
1 First solid-liquid separation means
2 First preprocessing means
3. Second preprocessing means
6 Methane fermentation tank as methane fermentation treatment means
7. Second solid-liquid separation means
8 Ammonia stripping process as nitrogen compound removing means
9 biological treatment means
10 Excess sludge return means

Claims (10)

生物処理により生成した生物処理汚泥を汚泥分と濾液とに固液分離し、
前記汚泥分と嫌気性生物にて分解可能な有機物を含有する流動性を有した液状有機性廃棄物と嫌気性生物にて分解可能な固形状の有機物を含有する固形状有機性廃棄物とを攪拌混合してメタン発酵処理した後に固液分離して処理濾液を分集し、
この処理濾液を前記濾液とともに好気性微生物により生物処理する
ことを特徴とする廃棄物処理方法。
The biologically treated sludge generated by biological treatment is separated into sludge and filtrate by solid-liquid separation,
A liquid organic waste having fluidity containing the sludge component and an organic substance decomposable in anaerobic organisms and a solid organic waste containing solid organic substances decomposable in anaerobic organisms After stirring and mixing and performing methane fermentation treatment, solid-liquid separation is performed to collect the treated filtrate,
Waste treatment method characterized by biological processes this process the filtrate by both aerobic microorganisms and the filtrate.
好気性微生物による生物処理により生成する余剰汚泥は、汚泥分、液状有機性廃棄物および固形状有機性廃棄物とともにメタン発酵処理する
ことを特徴とする請求項1記載の廃棄物処理方法。
The waste treatment method according to claim 1, wherein the excess sludge generated by the biological treatment with the aerobic microorganism is subjected to methane fermentation together with the sludge, the liquid organic waste, and the solid organic waste.
メタン発酵処理する前に総固形物濃度を5%以上20%以下に水分調整する
ことを特徴とする請求項1または2記載の廃棄物処理方法。
The waste treatment method according to claim 1 or 2, wherein the water content is adjusted to a total solid concentration of 5% or more and 20% or less before the methane fermentation treatment.
メタン発酵処理前に液状有機性廃棄物および固形状有機性廃棄物の少なくとも一方から夾雑物を除去する
ことを特徴とする請求項1ないし3いずれか一記載の廃棄物処理方法。
The waste treatment method according to any one of claims 1 to 3, wherein contaminants are removed from at least one of the liquid organic waste and the solid organic waste before the methane fermentation treatment.
メタン発酵処理する前または前記メタン発酵処理の際にマグネシウム化合物および燐酸化合物を添加する
ことを特徴とする請求項1ないし4いずれか一記載の廃棄物処理方法。
The method according to any one of claims 1 to 4, wherein a magnesium compound and a phosphate compound are added before or during the methane fermentation treatment.
マグネシウム化合物および燐酸化合物を添加する際に、鉄化合物、コバルト化合物およびニッケル化合物の少なくともいずれか一方を添加する
ことを特徴とする請求項5記載の廃棄物処理方法。
The waste disposal method according to claim 5, wherein at least one of an iron compound, a cobalt compound, and a nickel compound is added when the magnesium compound and the phosphate compound are added.
マグネシウム化合物および燐酸化合物の添加量は、メタン発酵処理の際の窒素化合物の濃度が4000ppm 以下となる量である
ことを特徴とする請求項5または6記載の廃棄物処理方法。
The waste treatment method according to claim 5 or 6, wherein the amounts of the magnesium compound and the phosphate compound added are such that the concentration of the nitrogen compound during the methane fermentation treatment is 4000 ppm or less.
処理濾液と濾液とを生物処理する前に窒素化合物を除去する
ことを特徴とする請求項1ないし7いずれか一記載の廃棄物処理方法。
The waste treatment method according to any one of claims 1 to 7, wherein a nitrogen compound is removed before biological treatment of the treated filtrate and the filtrate.
窒素化合物の除去は、アンモニアストリッピング処理する
ことを特徴とする請求項8記載の廃棄物処理方法。
The waste treatment method according to claim 8, wherein the removal of the nitrogen compound is performed by ammonia stripping.
窒素化合物の除去は、生物処理する際の処理濾液および濾液の混合中の生物化学的酸素要求量(BOD)濃度が全窒素化合物濃度の15倍以上となるまで除去する
ことを特徴とする請求項8または9記載の廃棄物処理方法。
The removal of nitrogen compounds is carried out until the biological filtrate oxygen concentration (BOD) concentration in the treated filtrate and the mixture of the filtrate during biological treatment becomes 15 times or more the total nitrogen compound concentration. 10. The waste disposal method according to 8 or 9.
JP12249698A 1998-05-01 1998-05-01 Waste treatment method Expired - Fee Related JP3570888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12249698A JP3570888B2 (en) 1998-05-01 1998-05-01 Waste treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12249698A JP3570888B2 (en) 1998-05-01 1998-05-01 Waste treatment method

Publications (2)

Publication Number Publication Date
JPH11309438A JPH11309438A (en) 1999-11-09
JP3570888B2 true JP3570888B2 (en) 2004-09-29

Family

ID=14837292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12249698A Expired - Fee Related JP3570888B2 (en) 1998-05-01 1998-05-01 Waste treatment method

Country Status (1)

Country Link
JP (1) JP3570888B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3835930B2 (en) * 1998-07-06 2006-10-18 株式会社クボタ Organic waste treatment methods
JP4367876B2 (en) * 2000-03-31 2009-11-18 アタカ大機株式会社 Waste treatment method and apparatus
JP4631204B2 (en) * 2001-04-27 2011-02-16 栗田工業株式会社 Dry methane fermentation of organic waste
JP2003039039A (en) * 2001-07-30 2003-02-12 Toshiba Corp Treatment system for organic waste
JP4225866B2 (en) * 2003-09-01 2009-02-18 株式会社栗本鐵工所 Organic sludge treatment method
JP5301788B2 (en) * 2007-03-30 2013-09-25 三井造船環境エンジニアリング株式会社 Co-fermentation method
JP2012135705A (en) * 2010-12-24 2012-07-19 Mitsubishi Kakoki Kaisha Ltd Method and apparatus for anaerobic digestion treatment
CN103435240A (en) * 2013-08-02 2013-12-11 轻工业环境保护研究所 Fermentation and re-dewatering method of dewatered sludge
JP6432226B2 (en) * 2014-09-05 2018-12-05 栗田工業株式会社 Method and apparatus for anaerobic digestion of sewage treatment sludge
CN106734118B (en) * 2017-02-17 2020-03-20 刘波 Treatment method of household garbage odor
JP6781660B2 (en) * 2017-04-03 2020-11-04 三井E&S環境エンジニアリング株式会社 Garbage methane fermentation processing system
JP7015893B2 (en) * 2020-10-16 2022-02-03 Jfe環境テクノロジー株式会社 Swill methane fermentation processing system
WO2023223549A1 (en) * 2022-05-20 2023-11-23 株式会社クボタ Organic waste treatment method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3452439B2 (en) * 1996-01-26 2003-09-29 株式会社クボタ Recovery and recycling of useful substances from organic waste
JP3533064B2 (en) * 1997-02-07 2004-05-31 株式会社荏原製作所 Method and apparatus for treating night soil, kitchen waste and sludge

Also Published As

Publication number Publication date
JPH11309438A (en) 1999-11-09

Similar Documents

Publication Publication Date Title
JP3452439B2 (en) Recovery and recycling of useful substances from organic waste
KR101368459B1 (en) Food waste effluent anaerobic advanced treatment system
EP1157972A1 (en) A method of processing oil-plant wastes
JP4367876B2 (en) Waste treatment method and apparatus
EP3394009A1 (en) Recovery of phosphorus compounds from wastewater
CN103524001B (en) Treatment method for high fat food processing wastewater
JP3570888B2 (en) Waste treatment method
JP2000015231A (en) Method for methane fermentation of organic waste
JP2001129590A (en) Method for anaerobic treatment of waste water from starch production
JP3554689B2 (en) Waste disposal method
JP3609332B2 (en) Treatment method for oil-containing waste
JP3145957B2 (en) Waste treatment method
JP3835927B2 (en) Organic waste treatment methods
JP3400292B2 (en) Waste treatment method
JPH11197636A (en) Method for treatment of organic waste
JP3844347B2 (en) Method and apparatus for removing and recovering phosphorus from organic wastewater
JP3835930B2 (en) Organic waste treatment methods
CN103524002A (en) Treatment device for high grease food processing wastewater
JP3970163B2 (en) Organic waste treatment method and apparatus
JP3276138B2 (en) Organic waste treatment
CN211111411U (en) High concentration phosphorus-containing wastewater treatment system of phenolic resin enterprise
JPH10337594A (en) Apparatus for waste disposal
CN203498230U (en) High-fat food processing waste water treatment device
JP3303906B2 (en) Biological treatment of garbage and organic wastewater
Ramzanipour et al. An overview of municipal wastewater and sludge treatment process.‏

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees