JP4265379B2 - Dye-sensitized solar cell - Google Patents

Dye-sensitized solar cell Download PDF

Info

Publication number
JP4265379B2
JP4265379B2 JP2003383307A JP2003383307A JP4265379B2 JP 4265379 B2 JP4265379 B2 JP 4265379B2 JP 2003383307 A JP2003383307 A JP 2003383307A JP 2003383307 A JP2003383307 A JP 2003383307A JP 4265379 B2 JP4265379 B2 JP 4265379B2
Authority
JP
Japan
Prior art keywords
dye
solar cell
sensitized solar
group
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003383307A
Other languages
Japanese (ja)
Other versions
JP2005149821A (en
Inventor
秀昭 片山
さやか 篠本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2003383307A priority Critical patent/JP4265379B2/en
Publication of JP2005149821A publication Critical patent/JP2005149821A/en
Application granted granted Critical
Publication of JP4265379B2 publication Critical patent/JP4265379B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Description

本発明は、色素増感型太陽電池に関し、さらに詳しくは、特定構造の高分子をホストポリマーとするゲル状電解質を用いた色素増感太陽電池に関する。   The present invention relates to a dye-sensitized solar cell, and more particularly to a dye-sensitized solar cell using a gel electrolyte having a polymer having a specific structure as a host polymer.

大規模な地球環境汚染が問題となってきており、クリーンエネルギーとしての太陽光の利用が近年盛んに研究されている。太陽光から電気エネルギーを取り出す素子としての太陽電池には、単結晶シリコンを用いたもの、多結晶シリコンを用いたもの、アモルファスシリコンを用いたものなどがよく知られている。しかしながら、これらシリコン系の太陽電池は、作製プロセスに高温を要するため、製造コストが高いといった問題点があった。   Large-scale global environmental pollution has become a problem, and the use of sunlight as clean energy has been actively studied in recent years. As solar cells as elements for extracting electric energy from sunlight, those using single crystal silicon, those using polycrystalline silicon, those using amorphous silicon, and the like are well known. However, these silicon-based solar cells have a problem of high manufacturing cost because a high temperature is required for the manufacturing process.

これに対して、Graeztelらはルテニウム系色素を増感剤に用いた多孔質酸化チタン半導体電極を用いた色素増感型太陽電池を開発し、下記の非特許文献1に報告している。
ネイチャー,353(24)、737〜740(1991)
On the other hand, Graeztel et al. Developed a dye-sensitized solar cell using a porous titanium oxide semiconductor electrode using a ruthenium-based dye as a sensitizer, and reported it in Non-Patent Document 1 below.
Nature, 353 (24), 737-740 (1991)

この色素増感型太陽電池は、従来のシリコン系太陽電池などに比べて、製造コストが安く、高変換効率であることため、新しい太陽電池として期待されている。しかしながら、この色素増感型太陽電池では、電解質として有機溶媒にヨウ素とヨウ素化合物などからなる酸化還元対を溶解したものを用いるため、長期間使用した場合の安定性、セル破損時の濾液、高温使用時の内圧上昇によるセルの破損などが懸念されている。そこで、電解質を固定化する試みがなされ、そのような試みとして、高分子化合物をホストとするゲル化、CuIなどの固体電解質を用いる方法などが提案されている。なかでも、ゲル化はさまざまな方法が試みられており、ポリフッ化ビニリデン(PVDF)やポリアクリロニトリル(PAN)を用いた物理ゲルを形成する方法(特許文献1〜2)、ポリエチレンオキシド(PEO)鎖を主体とした化学架橋ゲルを形成する方法(特許文献3〜4)などが提案されている。
特開2003−16833号公報 特開2002−289270号公報 特開平8−236165号公報 特開2001−28276号公報
This dye-sensitized solar cell is expected to be a new solar cell because of its low manufacturing cost and high conversion efficiency compared to conventional silicon solar cells and the like. However, since this dye-sensitized solar cell uses an electrolyte in which an oxidation-reduction pair consisting of iodine and an iodine compound is dissolved in an organic solvent, the stability when used for a long time, the filtrate at the time of cell breakage, high temperature There is concern about cell damage due to an increase in internal pressure during use. Therefore, attempts have been made to immobilize electrolytes, and as such attempts, gelation using a polymer compound as a host, a method using a solid electrolyte such as CuI, and the like have been proposed. In particular, various methods have been attempted for gelation, such as a method of forming a physical gel using polyvinylidene fluoride (PVDF) or polyacrylonitrile (PAN) (Patent Documents 1 and 2), and a polyethylene oxide (PEO) chain. A method (Patent Documents 3 to 4) for forming a chemically cross-linked gel mainly composed of benzene has been proposed.
JP 2003-16833 A JP 2002-289270 A JP-A-8-236165 JP 2001-28276 A

しかしながら、特許文献1〜2に記載のように、PVDFやPANを用いて物理ゲルを形成する方法では、ホストポリマーであるPVDFやPANは電解質中のイオンを擬似架橋点としてゲル化しているため、温度上昇に伴いゲルが溶解して、高温時の安全性を充分に解決することができないという問題があった。また、特許文献3〜4に記載されている方法では、酸化還元対として最も一般的に用いられるヨウ素とヨウ素化合物からなる酸化還元対の存在下では、これらがラジカル重合の重合阻害剤となるためゲル化を行うことができず、そのため、特許文献3〜4では、まず酸化還元対を含まない状態でゲル化を行い、その後に酸化還元対を含んだ電解液を含浸するといった方法や、ゲル状電解質にヨウ素の蒸気をあててヨウ素を含浸させるといった方法がとられている。しかしながら、このような方法では、ヨウ素の含有量を正確に把握することができず、ヨウ素の含有量一定のゲルを繰り返し作製することが困難であるといった問題があった。   However, as described in Patent Documents 1 and 2, in the method of forming a physical gel using PVDF or PAN, the host polymer PVDF or PAN is gelled with ions in the electrolyte as pseudo-crosslinking points. As the temperature rises, the gel dissolves, and there is a problem that safety at a high temperature cannot be sufficiently solved. Further, in the methods described in Patent Documents 3 to 4, in the presence of an oxidation-reduction pair consisting of iodine and an iodine compound, which is most commonly used as an oxidation-reduction pair, these become polymerization inhibitors for radical polymerization. For this reason, in Patent Documents 3 to 4, the gelation is performed in a state in which the redox couple is not included, and then the electrolytic solution containing the redox couple is impregnated. A method has been adopted in which iodine vapor is applied to the electrolyte and impregnated with iodine. However, such a method has a problem in that it is difficult to accurately grasp the iodine content and it is difficult to repeatedly produce a gel having a constant iodine content.

本発明は、上記のような従来技術の問題点を解決し、ヨウ素とヨウ素化合物などの酸化還元対の存在下でもゲル化が可能で、かつ高温においてもゲルの溶解を抑制することができる耐熱性が優れたゲル状電解質を構成し、そのゲル状電解質を用いて高温での安定性に優れた色素増感型太陽電池を提供することを目的とする。   The present invention solves the above-mentioned problems of the prior art, enables gelation even in the presence of a redox pair such as iodine and an iodine compound, and has a heat resistance that can suppress dissolution of the gel even at high temperatures. It is an object of the present invention to provide a dye-sensitized solar cell that is excellent in stability at high temperatures by using a gel electrolyte having excellent properties.

本発明は、少なくとも酸化還元対を含み、一般式(1)で示される構造の高分子のオキセタン基または脂環式エポキシ基の化学反応により架橋した構造の高分子をホストポリマーとしてゲル状電解質を構成し、それを用いて色素増感型太陽電池を構成することによって、前記課題を解決したものである。   The present invention provides a gel electrolyte using, as a host polymer, a polymer having at least a redox pair and having a structure crosslinked by a chemical reaction of an oxetane group or an alicyclic epoxy group of the polymer having the structure represented by the general formula (1). The above-described problems are solved by configuring and using the dye-sensitized solar cell.

Figure 0004265379
Figure 0004265379

(R1 、R3 はそれぞれ水素または炭素数1〜3のアルキル基、R2 は炭素数1〜6のアルキル基、ヒドロキシアルキル基またはアルキレンオキシド基、R4 は末端にオキセタン基または脂環式エポキシ基を有する炭素数1〜6のアルキル基、n、mはそれぞれ100〜1000の整数) (R 1 and R 3 are each hydrogen or an alkyl group having 1 to 3 carbon atoms, R 2 is an alkyl group having 1 to 6 carbon atoms, a hydroxyalkyl group or an alkylene oxide group, and R 4 is an oxetane group or an alicyclic group at the end. An alkyl group having 1 to 6 carbon atoms having an epoxy group, and n and m are each an integer of 100 to 1000)

すなわち、本発明は、増感色素を担持した多孔質半導体層が透明導電基板上に設けられている電極と、導電性の対電極と、電解質とを構成要素とする色素増感型太陽電池であって、酸化還元対を少なくとも含み、一般式(1)で示される構造の高分子のオキセタン基または脂環式エポキシ基の化学反応により架橋した構造の高分子をホストポリマーとするゲル状電解質を用いたことを特徴とする色素増感型太陽電池に関する。   That is, the present invention relates to a dye-sensitized solar cell that includes an electrode in which a porous semiconductor layer carrying a sensitizing dye is provided on a transparent conductive substrate, a conductive counter electrode, and an electrolyte. A gel electrolyte comprising at least a redox couple and having a polymer having a structure crosslinked by a chemical reaction of an oxetane group or an alicyclic epoxy group of the polymer represented by the general formula (1) as a host polymer The present invention relates to a dye-sensitized solar cell characterized by being used.

本発明によれば、ヨウ素とヨウ素化合物などの酸化還元対の存在下でもゲル化が可能で、かつ高温においてもゲルの溶解を抑制することができる耐熱性が優れたゲル状電解質を構成することができ、そのゲル状電解質を用いて高温での安定性に優れた色素増感型太陽電池を提供することができる。   According to the present invention, a gel electrolyte that is capable of gelation even in the presence of an oxidation-reduction pair such as iodine and an iodine compound and that has excellent heat resistance that can suppress dissolution of the gel even at high temperatures is provided. And a dye-sensitized solar cell excellent in stability at high temperatures can be provided using the gel electrolyte.

本発明の色素増感型太陽電池用のゲル状電解質に用いる酸化還元対としては、電気化学的に酸化還元を起こす酸化還元対であればいずれでもよいが、ヨウ素とヨウ素化合物との組み合わせ、臭素と臭素化合物との組み合わせなどが好適に用いられる。なかでも、I2 とLiIなどのヨウ素塩との組み合わせ、Br2 とLiBrなどの臭素塩との組み合わせが好ましい。LiIの代わりに各種のイオン性液体を用いることもできる。すなわち、1−メチル−2−エチル−イミダゾリウムアイオダイド、1−メチル−2−プロピルイミダゾリウムアイオダイドなどのイミダゾリウム塩、テトラプロピルアンモニウムアイオダイドなどの4級アンモニウム塩、1−ブチル−4−メチルピリジニウムアイオダイドなどのピリジニウム塩などを用いることもできる。これらのイオン性液体を用いる場合には溶媒を用いずに使用することも可能である。 The redox couple used in the gel electrolyte for the dye-sensitized solar cell of the present invention may be any redox couple that electrochemically causes redox, but a combination of iodine and an iodine compound, bromine A combination of bromine and a bromine compound is preferably used. Of these, a combination of I 2 and an iodine salt such as LiI, or a combination of Br 2 and a bromine salt such as LiBr is preferable. Various ionic liquids can be used instead of LiI. That is, 1-methyl-2-ethyl-imidazolium iodide, imidazolium salt such as 1-methyl-2-propylimidazolium iodide, quaternary ammonium salt such as tetrapropylammonium iodide, 1-butyl-4- Pyridinium salts such as methylpyridinium iodide can also be used. When these ionic liquids are used, it is possible to use them without using a solvent.

通常の塩を用いる場合には溶媒を用いてイオン解離を促進することで良好な特性が得られる。用いる溶媒としては、電解質を溶解し、ホストポリマーと分離しないものであればよいが、太陽電池に用いることを考慮すると、溶媒が環状エステル、環状カーボネート、鎖状カーボネートおよびニトリル類よりなる群より選ばれる少なくとも1種であることが好ましい。環状エステルとしては、γ−ブチロラクトン、γ−バレロラクトン、σ−ブチロラクトンなどのラクトン類が好ましい。環状カーボネートとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどが好ましく、ニトリル類としては、アセトニトリル、プロピオニトリル、ブチロニトリル、メトキシプロピオニトリルなどが好ましい。これらの溶剤は単独でまたは2種以上の混合物として用いることができる。   In the case of using a normal salt, good characteristics can be obtained by promoting ion dissociation using a solvent. The solvent to be used may be any solvent that dissolves the electrolyte and does not separate from the host polymer. However, in consideration of use in a solar cell, the solvent is selected from the group consisting of cyclic esters, cyclic carbonates, chain carbonates, and nitriles. It is preferable that it is at least one kind. As the cyclic ester, lactones such as γ-butyrolactone, γ-valerolactone, and σ-butyrolactone are preferable. As the cyclic carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate and the like are preferable, and as the nitriles, acetonitrile, propionitrile, butyronitrile, methoxypropionitrile and the like are preferable. These solvents can be used alone or as a mixture of two or more.

また、ゲル状電解質のホストポリマーの全ゲル状電解質における量は2〜30質量%が好ましい。上記ホストポリマーの全ゲル状電解質中の量が2質量%より少ない場合はゲルを形成することが困難になり、30質量%を超えるとイオン伝導性が低下する傾向がある。   Moreover, the amount of the host polymer of the gel electrolyte in the total gel electrolyte is preferably 2 to 30% by mass. If the amount of the host polymer in the total gel electrolyte is less than 2% by mass, it becomes difficult to form a gel, and if it exceeds 30% by mass, the ionic conductivity tends to decrease.

本発明におけるゲル状電解質を構成するには、各構成要素を均一に混合した後、一般式(1)で示される高分子化合物のオキセタン基または脂環式エポキシ基の化学反応により架橋を行う必要がある。その化学反応の方法としては、オキセタン基や脂環式エポキシ基の重合反応に一般的に採用されている方法を採用することができる。すなわち、カチオン重合性の開始剤を用いた熱や光による反応である。そのための開始剤としては、熱重合を行う場合には、BF3 、トリクレジルボレート、トリメトキシボロキシン、LiBF4 といったボロン系化合物、LiBF4 、LiPF6 などのリチウム塩などを用いることができる。なかでも、BF3 、トリクレジルボレート、トリメトキシボロキシン、LiBF4 などのボロン系化合物が反応性が良好であることから好ましい。光重合の開始剤としては、トリフェニルスルフォニウムヘキサフルオロリン酸塩などのトリフェニルスルフォニウム系開始剤、ジ−t−ブチル−フェニルヨウドニウムヘキサフルオロフォスフェート、(4−n−オクチルフェニル)フェニルヨウドニウムヘキサフルオロアンチモネートなどのヨウドニウム系開始剤などを好適に用いることができる。 In order to constitute the gel electrolyte in the present invention, it is necessary to mix each component uniformly and then perform crosslinking by a chemical reaction of the oxetane group or alicyclic epoxy group of the polymer compound represented by the general formula (1) There is. As a method for the chemical reaction, a method generally employed for a polymerization reaction of an oxetane group or an alicyclic epoxy group can be employed. That is, it is a reaction by heat or light using a cationic polymerizable initiator. As the initiator therefor, When thermal polymerization is performed, BF 3, tri cresyl Jirubo rate, trimethoxy boroxine, boron-based compounds such as LiBF 4, or the like can be used lithium salts such as LiBF 4, LiPF 6 . Of these, boron compounds such as BF 3 , tricresyl borate, trimethoxyboroxine, and LiBF 4 are preferable because of their good reactivity. Photoinitiators include triphenylsulfonium initiators such as triphenylsulfonium hexafluorophosphate, di-t-butyl-phenyliodonium hexafluorophosphate, and (4-n-octylphenyl) phenyl. An iodonium-based initiator such as iodonium hexafluoroantimonate can be preferably used.

本発明のゲル状電解質の色素増感型太陽電池に用いるホストポリマーの原料になる化合物としては一般式(1)で示される構造の高分子化合物が用いられる。この高分子化合物は側鎖にオキセタン基または脂環式エポキシ基を含有するアクリル樹脂系モノマーと側鎖末端がアルキル基であるアクリル樹脂系モノマーとの共重合体である。なかでも、側鎖にオキセタン基を有する基としてのR4 は一般式(2)で示す構造が好ましく、側鎖に脂環式エポキシ基を有する基としてのR4 は一般式(3)で示す構造が好ましい。 A polymer compound having a structure represented by the general formula (1) is used as a raw material of the host polymer used in the dye-sensitized solar cell of the gel electrolyte of the present invention. This polymer compound is a copolymer of an acrylic resin monomer containing an oxetane group or an alicyclic epoxy group in the side chain and an acrylic resin monomer having a side chain terminal of an alkyl group. Among them, R 4 as a group having an oxetane group in the side chain is preferably a structure represented by the general formula (2), and R 4 as a group having an alicyclic epoxy group in the side chain is represented by the general formula (3). A structure is preferred.

Figure 0004265379
(R5 は炭素数1〜6のアルキル基)
Figure 0004265379
(R 5 is an alkyl group having 1 to 6 carbon atoms)

Figure 0004265379
Figure 0004265379

上記一般式(1)で示される構造の高分子化合物の重合度は100〜10000が好ましい。重合度が100未満ではゲルを形成するのに必要なポリマーの量が多くなり、重合度が10000を超えると溶液の粘度が高くなり取り扱いにくくなる傾向がある。また、側鎖にオキセタン基または脂環式エポキシ基を有するモノマーと他のモノマーとの比率としては1/1〜1/20が好ましい。上記比率が1/1より大きくなるとゲルの液保持性が悪くなり、また上記比率が1/20より小さいとゲルを形成するのに多量のポリマーを必要とする傾向が出るようになる。   The degree of polymerization of the polymer compound having the structure represented by the general formula (1) is preferably 100 to 10,000. When the degree of polymerization is less than 100, the amount of polymer necessary to form a gel increases, and when the degree of polymerization exceeds 10,000, the viscosity of the solution tends to increase and it becomes difficult to handle. Moreover, as a ratio of the monomer which has an oxetane group or an alicyclic epoxy group in a side chain, and another monomer, 1/1 to 1/20 is preferable. When the ratio is larger than 1/1, the liquid retention of the gel is deteriorated, and when the ratio is smaller than 1/20, a large amount of polymer tends to be required to form a gel.

本発明の色素増感型太陽電池に用いるゲル状電解質には、必要に応じて、ゲル化前の溶液の粘度を下げる、ゲル化に要する時間を短縮する、ゲル化後の電解質の強度を向上させる、などといった目的で、低分子のオキセタン化合物や脂環式エポキシ化合物を混合することもできる。そのような化合物としては、例えば、脂環式エポキシ化合物であれば、3,4−エポキシシクロヘキセニルメチル−3′,4′−エポキシシクロヘキセンカルボキシレート、ε−カプロラクトン変性3,4−エポキシシクロヘキシルメチル3,4−エポキシシクロヘキサンカルボキシレート、エポキシ化−3−シクロヘキセン−1,2−ジカルボン酸ビス(3−シクロヘキセニルメチル)修飾ε−カプロラクトンなどを用いることができる。   If necessary, the gel electrolyte used in the dye-sensitized solar cell of the present invention reduces the viscosity of the solution before gelation, shortens the time required for gelation, and improves the strength of the electrolyte after gelation. A low molecular weight oxetane compound or an alicyclic epoxy compound can also be mixed for the purpose of, for example. Examples of such compounds include 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexenecarboxylate, ε-caprolactone-modified 3,4-epoxycyclohexylmethyl 3 for alicyclic epoxy compounds. , 4-epoxycyclohexanecarboxylate, epoxidized-3-cyclohexene-1,2-dicarboxylate bis (3-cyclohexenylmethyl) modified ε-caprolactone, and the like can be used.

また、オキセタン化合物であれば、1,4−ビス{〔(3−エチル−3−オキセタニル)メトキシ〕メチル}ベンゼン、3−エチル−3−ヒドロキシメチルオキセタン、ジ〔1−エチル(3−オキセタニル)〕メチルエーテル、3−エチル−3−(2−エチルヘキシロキシメチル)オキセタンなどを用いることができる。これらの化合物はそれぞれ単独で用いることができるし、目的に応じて適当な比率で混合して用いることもできる。ゲル化時間の短縮、電解質の強度向上を目的とする場合は、2官能以上の化合物を多く用いることが好ましい。用いる量としては、電解質前駆体中の全官能基数が1kg当たり2モルを越えない範囲で用いることが好ましい。   In the case of an oxetane compound, 1,4-bis {[(3-ethyl-3-oxetanyl) methoxy] methyl} benzene, 3-ethyl-3-hydroxymethyloxetane, di [1-ethyl (3-oxetanyl) ] Methyl ether, 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane and the like can be used. Each of these compounds can be used alone, or can be used by mixing at an appropriate ratio according to the purpose. In order to shorten the gelation time and improve the strength of the electrolyte, it is preferable to use a large amount of a bifunctional or higher compound. The amount used is preferably such that the total number of functional groups in the electrolyte precursor does not exceed 2 moles per kg.

本発明の色素増感型太陽電池の構成としては、特に限定されることはなく、電解質を除き、従来公知の色素増感型太陽電池の構成をいずれも採用し得る。その一例を挙げると、例えば、ガラスやプラスチックフィルムの片面に透明導電膜をコートした一対の透明導電基板の一方に、増感色素を担持した金属酸化物の微粒子からなる多孔質の半導体層を設けた電極と、導電性の対電極と、それら一対の電極間に電解質を配置した構造である。   The configuration of the dye-sensitized solar cell of the present invention is not particularly limited, and any conventionally known configuration of the dye-sensitized solar cell can be adopted except for the electrolyte. For example, for example, a porous semiconductor layer made of fine metal oxide particles carrying a sensitizing dye is provided on one of a pair of transparent conductive substrates coated with a transparent conductive film on one side of a glass or plastic film. Electrode, a conductive counter electrode, and an electrolyte disposed between the pair of electrodes.

上記半導体層に用いる材料としては、例えば、Cd、Zn、In、Pb、Mo、W、Sb、Bi、Cu、Hg、Ti、Ag、Mn、Fe、V、Sn、Zr、Sr、Ga、Si、Crなどの酸化物が好適に用いられる。半導体層は、例えば電極を有する基板の表面に、半導体微粒子を含有するスラリー液を公知慣用の方法、例えばドクターブレードやバーコータなどの使う塗布方法、スプレー法、ディップコーティング法、スクリーン印刷法、スピンコート法などにより塗布し、その後、400〜600℃の範囲内の温度で加熱焼結することにより形成することができる。半導体層に担持させるために使用する増感色素としては、従来の色素増感型太陽電池で常用の色素であればいずれも使用できる。このような色素としては、例えば、無機色素としてはRuL2 (H2 O)2 タイプのルテニウム−シス−ジアクア−ビピリジル錯体、ルテニウム−トリス(RuL3 )、ルテニウム−ビス(RuL2 )、オスニウム−トリス(OsL3 )、オスニウム−ビス(OsL2 )タイプの遷移金属錯体、亜鉛−テトラ(4−カルボキシフェニル)ポルフィリン、鉄−ヘキサシアニド錯体、フタロシアニンなどが挙げられる。有機色素としては、9−フェニルキサンテン系色素、クマリン系色素、アクリジン系色素、トリフェニルメタン系色素、テトラフェニルメタン系色素、キノン系色素、アゾ系色素、インジゴ系色素、シアニン系色素、メロシアニン系色素、キサンテン系色素などが挙げられる。それらのなかでも、ルテニウム−ビス(RuL2 )誘導体は、可視光域で広い吸収スペクトルを有するので、特に好ましい。半導体層への増感色素の担持方法としては、例えば、増感色素を溶かした溶液に、半導体層を設けた電極を備えた基板を浸漬する方法が挙げられる。 Examples of the material used for the semiconductor layer include Cd, Zn, In, Pb, Mo, W, Sb, Bi, Cu, Hg, Ti, Ag, Mn, Fe, V, Sn, Zr, Sr, Ga, and Si. An oxide such as Cr is preferably used. The semiconductor layer is formed on the surface of a substrate having electrodes, for example, by using a slurry solution containing semiconductor fine particles in a known and conventional method, such as a coating method using a doctor blade or a bar coater, a spray method, a dip coating method, a screen printing method, a spin coating method. It can form by apply | coating by the method etc. and heat-sintering at the temperature within the range of 400-600 degreeC after that. As the sensitizing dye used for supporting the semiconductor layer, any dye that is commonly used in conventional dye-sensitized solar cells can be used. Examples of such dyes include RuL 2 (H 2 O) 2 type ruthenium-cis-diaqua-bipyridyl complex, ruthenium-tris (RuL 3 ), ruthenium-bis (RuL 2 ), osmium- Examples include tris (OsL 3 ), osnium-bis (OsL 2 ) type transition metal complexes, zinc-tetra (4-carboxyphenyl) porphyrin, iron-hexocyanide complex, phthalocyanine, and the like. As organic dyes, 9-phenylxanthene dyes, coumarin dyes, acridine dyes, triphenylmethane dyes, tetraphenylmethane dyes, quinone dyes, azo dyes, indigo dyes, cyanine dyes, merocyanine dyes Examples thereof include dyes and xanthene dyes. Among these, ruthenium-bis (RuL 2 ) derivatives are particularly preferable because they have a broad absorption spectrum in the visible light region. Examples of the method for supporting the sensitizing dye on the semiconductor layer include a method in which a substrate provided with an electrode provided with a semiconductor layer is immersed in a solution in which the sensitizing dye is dissolved.

この溶液の溶媒としては、水、アルコール、トルエン、ジメチルホルムアミドなどの増感色素を溶解可能なものであればいずれも使用できる。また、増感色素溶液に半導体層を設けた電極付き基板を一定時間浸漬している時に、加熱環流を付加したり、超音波を印加したりすることも有効である。上記半導体層を設けるための導電層は、ガラスまたはフィルムといった透明基板の一方の面に形成され、作製した電極は負極として作用する。   Any solvent can be used as the solvent for the solution as long as it can dissolve sensitizing dyes such as water, alcohol, toluene, and dimethylformamide. It is also effective to add heating reflux or apply ultrasonic waves when a substrate with an electrode provided with a semiconductor layer in a sensitizing dye solution is immersed for a certain period of time. The conductive layer for providing the semiconductor layer is formed on one surface of a transparent substrate such as glass or film, and the produced electrode functions as a negative electrode.

上記導電層を形成するための好ましい導電剤としては、金属、例えば、白金、金、銀、銅、アルミニウム、ロジウム、インジウムなど、または炭素、またはインジウム−錫複合酸化物、フッ素をドープした酸化錫などの導電性の金属酸化物が挙げられる。   Preferred conductive agents for forming the conductive layer include metals such as platinum, gold, silver, copper, aluminum, rhodium, indium, or carbon, or indium-tin composite oxide, fluorine-doped tin oxide. Examples thereof include conductive metal oxides.

もう一方の電極である対電極は太陽電池の正極として機能し、前記半導体層が設けられる側の電極と同様に形成することができる。本発明における太陽電池の対電極の材料としては、太陽電池の正極として効率よく作用させるために、電解質の還元体に電子を与える触媒作用を有する白金やグラファイトなどが好ましい。また、対電極と基板との間には対電極とは異なる材料からなる導電性を有する膜を設けてもよい。   The counter electrode which is the other electrode functions as the positive electrode of the solar cell and can be formed in the same manner as the electrode on the side where the semiconductor layer is provided. As a material for the counter electrode of the solar cell in the present invention, platinum or graphite having a catalytic action for giving electrons to the reductant of the electrolyte is preferable in order to efficiently act as a positive electrode of the solar cell. Further, a conductive film made of a material different from that of the counter electrode may be provided between the counter electrode and the substrate.

また、本発明では、半導体層から電解質への逆電子移動を防止するなどの目的でtert−ブチルピリジンや2−ピコリン、2,6−ルチジンなどの塩基性化合物を前述の電解質に添加してもよい。塩基性化合物を添加する場合の好ましい濃度範囲は、0.05〜2mol/lである。   In the present invention, a basic compound such as tert-butylpyridine, 2-picoline, or 2,6-lutidine may be added to the above electrolyte for the purpose of preventing reverse electron transfer from the semiconductor layer to the electrolyte. Good. A preferable concentration range when adding the basic compound is 0.05 to 2 mol / l.

以下、実施例を挙げて本発明をより具体的に説明する。ただし、本発明はそれらの実施例のみに限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, this invention is not limited only to those Examples.

実施例1
界面活性剤を含む水とアセチルアセトンとの混合液(容量混合比=20/1)中に日本アエロジル社製の酸化チタン粒子(グレードP25、平均粒径20nm)を濃度が約38質量%となるように分散させてスラリー液を調製した。次に、このスラリー液を厚さ1mmの旭硝子社製の導電性ガラス板(フッ素ドープされたSnO2 を表面にコーティングして導電性を付与したガラス板、表面抵抗10Ω/□)上に塗布して乾燥した。得られた乾燥物を500℃で30分間、空気中で焼成し、上記導電性ガラス板からなる基板上に厚さ10μmの多孔質酸化チタン膜を半導体層として形成した。続いて、この多孔質酸化チタン膜からなる半導体層が形成されている導電性ガラス板を〔Ru(4,4−ジカルボキシル−2,2−ビピリジン)2 (NCS)2 〕で表される増感色素を3×10-4mol/dm3 含むエタノール溶液に浸漬し、80℃で環流を行いながら半導体層に色素担持処理を行った。このようにして透明導電基板上に増感色素を担持した半導体層を有する電極を作製した。
Example 1
The concentration of titanium oxide particles (grade P25, average particle size 20 nm) manufactured by Nippon Aerosil Co., Ltd. in a mixed solution of water containing surfactant and acetylacetone (volume mixing ratio = 20/1) is about 38% by mass. To prepare a slurry liquid. Next, this slurry solution is applied on a 1 mm thick conductive glass plate manufactured by Asahi Glass Co., Ltd. (a glass plate coated with fluorine-doped SnO 2 on the surface to provide conductivity, surface resistance 10 Ω / □). And dried. The obtained dried product was baked in the air at 500 ° C. for 30 minutes, and a porous titanium oxide film having a thickness of 10 μm was formed as a semiconductor layer on the substrate made of the conductive glass plate. Subsequently, the conductive glass plate on which the semiconductor layer made of this porous titanium oxide film is formed is increased by [Ru (4,4-dicarboxyl-2,2-bipyridine) 2 (NCS) 2 ]. The semiconductor layer was dye-supported while being immersed in an ethanol solution containing the dye-sensitive dye at 3 × 10 −4 mol / dm 3 and refluxed at 80 ° C. Thus, an electrode having a semiconductor layer carrying a sensitizing dye on a transparent conductive substrate was produced.

また、前記と同様の導電性ガラス板に白金を20nmの厚さで蒸着して対電極を作製した。そして、この実施例1で用いるゲル状電解質の前駆体を以下に示すようにして調製した。すなわち、一般式(1)において、R1 、R2 がメチル基であり、R4 が一般式(2)で表されるオキセタン含有基(ただし、R5 はエチル基)であり、R3 がメチル基であり、n/mが0.1であり、平均重合度が1000であるポリマー(高分子)をγ−ブチロラクトンに濃度が10質量%の濃度で溶解してポリマー溶液を調製した。そして、上記ポリマー溶液にLiIとI2 をそれぞれ濃度が0.3mol/lと0.03mol/lになるように溶解し、重合開始剤としてトリクレジルボレートを1質量%添加して電解質前駆体とした。 Further, a counter electrode was produced by depositing platinum in a thickness of 20 nm on the same conductive glass plate as described above. And the precursor of the gel electrolyte used in this Example 1 was prepared as shown below. That is, in the general formula (1), R 1 and R 2 are methyl groups, R 4 is an oxetane-containing group represented by the general formula (2) (where R 5 is an ethyl group), and R 3 is A polymer (polymer) having a methyl group, n / m of 0.1, and an average degree of polymerization of 1000 was dissolved in γ-butyrolactone at a concentration of 10% by mass to prepare a polymer solution. Then, LiI and I 2 are dissolved in the polymer solution so as to have concentrations of 0.3 mol / l and 0.03 mol / l, respectively, and 1% by mass of tricresyl borate is added as a polymerization initiator to prepare an electrolyte precursor. It was.

この電解質前駆体を上記した増感色素を担持した多孔質酸化チタン膜からなる半導体層を有する導電性ガラス基板上に厚さが20μmになるようにドクターブレード法にて塗布し、この電解質前駆体の膜上に対電極を形成した導電性ガラス基板をその対電極側から密着させ、70℃で2時間加熱硬化して前記ポリマーのオキセタン基の化学反応によって架橋したポリマーをホストポリマーとするゲル化を行ってゲル状電解質にすることにより、色素増感型太陽電池セルを作製した。   This electrolyte precursor was applied by a doctor blade method to a thickness of 20 μm on a conductive glass substrate having a semiconductor layer made of a porous titanium oxide film carrying the above-mentioned sensitizing dye, and this electrolyte precursor A conductive glass substrate on which a counter electrode is formed on the above film is brought into close contact from the counter electrode side, and is cured by heating at 70 ° C. for 2 hours and crosslinked by a chemical reaction of the oxetane group of the polymer, thereby forming a gel. A dye-sensitized solar cell was produced by carrying out the above to obtain a gel electrolyte.

実施例2
実施例1で用いたポリマーに代えて、R4 が一般式(3)で表される脂環式エポキシ含有基であるポリマーを用いてゲル状電解質を調製した以外は、実施例1と同様にして色素増感型太陽電池を作製した。
Example 2
It replaced with the polymer used in Example 1, and it carried out similarly to Example 1 except having prepared the gel electrolyte using the polymer whose R < 4 > is an alicyclic epoxy content group represented by General formula (3). Thus, a dye-sensitized solar cell was produced.

実施例3
一般式(1)において、R1 、R2 がメチル基であり、R4 が一般式(2)で表されるオキセタン含有基(ただし、R5 はエチル基)であり、R3 がメチル基であり、n/mが0.1であり、平均重合度が1000であるポリマーをγ−ブチロラクトンに5質量%の濃度で溶解し、このポリマー溶液に1,2−ジメチル−3−プロピルイミダゾリウムアイオダイドとI2 とt−ブチルピリジンとをそれぞれ濃度が0.5mol/l、0.01mol/l、0.3mol/lになるように溶解し、トリクレジルボレートを1質量%加えて電解質前駆体とした。
Example 3
In the general formula (1), R 1 and R 2 are methyl groups, R 4 is an oxetane-containing group (wherein R 5 is an ethyl group) represented by the general formula (2), and R 3 is a methyl group A polymer having an n / m of 0.1 and an average degree of polymerization of 1000 was dissolved in γ-butyrolactone at a concentration of 5% by mass, and 1,2-dimethyl-3-propylimidazolium was dissolved in the polymer solution. Iodide, I 2, and t-butylpyridine are dissolved so as to have concentrations of 0.5 mol / l, 0.01 mol / l, and 0.3 mol / l, respectively, and 1% by mass of tricresyl borate is added to the electrolyte. A precursor was obtained.

そして、前記実施例1で作製した増感色素を担持した多孔質チタン酸膜からなる半導体層をする電極を設けた導電性ガラス基板と対電極を設けた導電性ガラス基板とを両電極間を距離が100μmになるように配置して、上記電解質前駆体を注液した後、封止を行い、70℃で2時間加熱硬化を行って電解質をゲル化して色素増感型太陽電池セルを作製した。   And the conductive glass substrate provided with the electrode which forms the semiconductor layer which consists of the porous titanic acid film | membrane which carried the sensitizing dye produced in the said Example 1 and the conductive glass substrate provided with the counter electrode are made between both electrodes. After arranging the electrolyte precursor to be placed at a distance of 100 μm, sealing is performed, and heat curing is performed at 70 ° C. for 2 hours to gel the electrolyte to produce a dye-sensitized solar cell. did.

実施例4
実施例3においてポリマー溶液に加えた1,2−ジメチル−3−プロピルイミダゾリウムアイオダイドに代えて、テトラプロピルアンモニウムヨウジドをポリマー溶液に加えた以外は、実施例3と同様にして色素増感型太陽電池を作製した。
Example 4
Dye sensitization was carried out in the same manner as in Example 3 except that tetrapropylammonium iodide was added to the polymer solution instead of 1,2-dimethyl-3-propylimidazolium iodide added to the polymer solution in Example 3. Type solar cells were produced.

実施例5
実施例3で用いたポリマーのn/mを0.05にしたポリマーを用いた以外は、実施例1と同様にして色素増感型太陽電池を作製した。
Example 5
A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the polymer having n / m of 0.05 used in Example 3 was used.

実施例6
実施例3におけるポリマー溶液に1,4−ビス{〔(3−エチル−3−オキセタニル)メトキシ〕メチル}ベンゼン〔東亜合成社製、OXT−121(商品名)〕を5質量%加えて混合したものを用いた以外は、実施例3と同様にして色素増感型太陽電池を作製した。
Example 6
To the polymer solution in Example 3, 1,4-bis {[(3-ethyl-3-oxetanyl) methoxy] methyl} benzene [manufactured by Toagosei Co., Ltd., OXT-121 (trade name)] was added and mixed. A dye-sensitized solar cell was produced in the same manner as in Example 3 except that one was used.

実施例7
実施例3におけるポリマー溶液に1,4−ビス{〔(3−エチル−3−オキセタニル)メトキシ〕メチル}ベンゼン〔東亜合成社製、OXT−121(商品名)〕を3質量%、3−エチル−3−ヒドロキシメチルオキセタン〔東亜合成社製、OXT−101(商品名)〕を2質量%加えて混合したものを用いた以外は、実施例3と同様にして色素増感型太陽電池を作製した。
Example 7
To the polymer solution in Example 3, 1,4-bis {[(3-ethyl-3-oxetanyl) methoxy] methyl} benzene [manufactured by Toagosei Co., Ltd., OXT-121 (trade name)], 3% by mass, 3-ethyl A dye-sensitized solar cell was produced in the same manner as in Example 3, except that 2% by mass of -3-hydroxymethyloxetane [manufactured by Toagosei Co., Ltd., OXT-101 (trade name)] was added and mixed. did.

実施例8
実施例2におけるポリマー溶液にγ−ブチロラクトンをポリマー濃度が5質量%になるように加え、さらに3,4−エポキシシクロヘキセニルメチル−3,4−エポキシシクロヘキセンカルボキシレート〔ダイセル化学社製、セロキサイド2021P(商品名)〕を5質量%加えて混合した。この溶液に1,2−ジメチル−3−プロピルイミダゾリウムアイオダイドとI2 とt−ブチルピリジンとをそれぞれ濃度が0.5mol/l、0.01mol/l、0.3mol/lとなるように溶解し、トリクレジルボレートを1質量%加えて電解質前駆体とした。
Example 8
Γ-Butyrolactone was added to the polymer solution in Example 2 so that the polymer concentration was 5% by mass, and 3,4-epoxycyclohexenylmethyl-3,4-epoxycyclohexenecarboxylate [Delcel Chemical Co., Celoxide 2021P ( Product name)] was added and mixed. In this solution, 1,2-dimethyl-3-propylimidazolium iodide, I 2, and t-butylpyridine are adjusted so that the concentrations are 0.5 mol / l, 0.01 mol / l, and 0.3 mol / l, respectively. After dissolution, 1% by mass of tricresyl borate was added to obtain an electrolyte precursor.

そして、前記実施例1で作製した増感色素を担持した多孔質酸化チタン膜からなる半導体層を有する電極を設けた導電性ガラス基板と対電極を設けた導電性ガラス基板とを両電極間の距離が100μmになるように配置し、その間に上記電解質前駆体を注入した後、封止を行い、70℃で2時間加熱硬化を行って電解質をゲル化して色素増感型太陽電池を作製した。   Then, a conductive glass substrate provided with an electrode having a semiconductor layer made of a porous titanium oxide film carrying a sensitizing dye prepared in Example 1 and a conductive glass substrate provided with a counter electrode are disposed between both electrodes. After disposing the electrolyte precursor between them at a distance of 100 μm, sealing was performed, sealing was performed, and heat curing was performed at 70 ° C. for 2 hours to gel the electrolyte, thereby producing a dye-sensitized solar cell. .

実施例9
実施例5のポリマー溶液における溶媒のγ−ブチロラクトンに代えて、メトキシプロピオニトリルを用いた以外は、実施例5と同様にして色素増感型太陽電池を作製した。
Example 9
A dye-sensitized solar cell was produced in the same manner as in Example 5 except that methoxypropionitrile was used instead of γ-butyrolactone as the solvent in the polymer solution of Example 5.

実施例10
実施例5のポリマー溶液における溶媒のγ−ブチロラクトンに代えて、アセトニトリルを用いた以外は、実施例5と同様にして色素増感型太陽電池を作製した。
Example 10
A dye-sensitized solar cell was produced in the same manner as in Example 5 except that acetonitrile was used instead of γ-butyrolactone as the solvent in the polymer solution of Example 5.

比較例1
実施例3におけるゲル状電解質に代えて、電解物質としてLiIとI2 とをγ−ブチロラクトンにそれぞれ濃度が0.3mol/lと0.03mol/lとなるように溶解した電解液を用いた以外は、実施例3と同様にして色素増感型太陽電池を作製した。
Comparative Example 1
Instead of the gel electrolyte in Example 3, an electrolytic solution in which LiI and I 2 were dissolved in γ-butyrolactone so as to have concentrations of 0.3 mol / l and 0.03 mol / l, respectively, was used as the electrolytic substance. Produced a dye-sensitized solar cell in the same manner as in Example 3.

比較例2
実施例1におけるポリマー溶液に代えて、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体〔アトフィナ社製、POWER FLEX LBG1(商品名)〕をγ−ブチロラクトンに10質量%溶解した溶液を用い、70℃での加熱硬化過程の代わりに室温で1夜放置することによってゲル化を行った以外は、実施例1と同様にして色素増感型太陽電池を作製した。
Comparative Example 2
Instead of the polymer solution in Example 1, a solution obtained by dissolving 10% by mass of polyvinylidene fluoride-hexafluoropropylene copolymer [manufactured by Atofina, POWER FLEX LBG1 (trade name)] in γ-butyrolactone was used at 70 ° C. A dye-sensitized solar cell was produced in the same manner as in Example 1 except that gelation was performed by leaving it to stand overnight at room temperature instead of the heat curing process.

上記のように作製した実施例1〜10および比較例1〜2の色素増感型太陽電池の光電変換効率および長期信頼性を下記の方法により調べた。光電変換効率に関しては、それぞれの太陽電池に45mW/cm2 のキセノンランプ光を照射して光電流−電圧特性を測定し、それらの光電変換効率を求めた。長期信頼性に関しては、JIS C 8917付属書9記載の耐熱性(高温保存)試験B−1の試験前後の光電変換効率から光電変換効率保持率を求め、これを指標として判断した。なお、JIS C 8917付属書9記載の耐熱性(高温保存)試験B−1の方法を下記に示す。 The photoelectric conversion efficiency and long-term reliability of the dye-sensitized solar cells of Examples 1 to 10 and Comparative Examples 1 and 2 produced as described above were examined by the following method. Regarding photoelectric conversion efficiency, each solar cell was irradiated with xenon lamp light of 45 mW / cm 2 to measure photocurrent-voltage characteristics, and the photoelectric conversion efficiency was obtained. Regarding long-term reliability, the photoelectric conversion efficiency retention rate was obtained from the photoelectric conversion efficiency before and after the test of the heat resistance (high temperature storage) test B-1 described in JIS C 8917 appendix 9, and this was determined as an index. The method of the heat resistance (high temperature storage) test B-1 described in JIS C 8917 appendix 9 is shown below.

耐熱性(高温保存)試験法
試験に先立ち、試料の光電変換効率を測定する。すなわち、恒温槽にて、試料を室温より85℃まで加温後、温度85±2℃で、1000±12時間保持する。試験槽内の出力端子は、開放状態に保つ。試験後、清浄な布などで表面を清掃した後、室温に24時間以上放置し、試料の光電変換効率を評価する。試験前後の光電変換効率の値より、下記の式で定義する光電変換効率保持率を求めた。
光電変換効率保持率(%)
=〔(耐熱性試験前の光電変換効率)−(耐熱性試験後の光電変換効率)〕 ×100/(耐熱性試験前の光電変換効率)
Heat resistance (high temperature storage) test method Prior to the test, the photoelectric conversion efficiency of the sample is measured. That is, the sample is heated from room temperature to 85 ° C. in a thermostatic chamber and then held at a temperature of 85 ± 2 ° C. for 1000 ± 12 hours. Keep the output terminals in the test chamber open. After the test, the surface is cleaned with a clean cloth or the like and then left at room temperature for 24 hours or more to evaluate the photoelectric conversion efficiency of the sample. From the value of photoelectric conversion efficiency before and after the test, the photoelectric conversion efficiency retention defined by the following formula was obtained.
Photoelectric conversion efficiency retention rate (%)
= [(Photoelectric conversion efficiency before heat resistance test) − (Photoelectric conversion efficiency after heat resistance test)] × 100 / (Photoelectric conversion efficiency before heat resistance test)

上記実施例1〜10および比較例1〜2の色素増感型太陽電池の光電変換効率および光電変換効率保持率を表1に示す。   Table 1 shows the photoelectric conversion efficiency and the photoelectric conversion efficiency retention rate of the dye-sensitized solar cells of Examples 1 to 10 and Comparative Examples 1 and 2.

Figure 0004265379
Figure 0004265379

表1に示す結果から明らかなように、実施例1〜10の色素増感型太陽電池は、比較例1〜2の色素増感型太陽電池に比べて、光電変換効率保持率が高く、高温での安定性に優れていた。   As is clear from the results shown in Table 1, the dye-sensitized solar cells of Examples 1 to 10 have a higher photoelectric conversion efficiency retention rate and higher temperatures than the dye-sensitized solar cells of Comparative Examples 1 and 2. It was excellent in stability.

Claims (5)

増感色素を担持した多孔質半導体層が透明導電基板上に設けられている電極と、導電性の対電極と、電解質を構成要素とする色素増感型太陽電池であって、上記電解質として、少なくとも酸化還元対を含み、一般式(1)で示される構造の高分子化合物のオキセタン基または脂環式エポキシ基の化学反応により架橋した構造の高分子をホストポリマーとするゲル状電解質を用いたことを特徴とする色素増感型太陽電池。
Figure 0004265379
(R1 、R3 はそれぞれ水素または炭素数1〜3のアルキル基、R2 は炭素数1〜6のアルキル基、ヒドロキシアルキル基またはアルキレンオキシド基、R4 は末端にオキセタン基または脂環式エポキシ基を有する炭素数1〜6のアルキル基、n、mはそれぞれ100〜1000の整数)
An electrode in which a porous semiconductor layer carrying a sensitizing dye is provided on a transparent conductive substrate, a conductive counter electrode, and a dye-sensitized solar cell having an electrolyte as a component, wherein the electrolyte includes: A gel electrolyte comprising a polymer having a structure containing at least a redox pair and crosslinked by a chemical reaction of an oxetane group or an alicyclic epoxy group of a polymer compound having a structure represented by the general formula (1) was used. A dye-sensitized solar cell characterized by the above.
Figure 0004265379
(R 1 and R 3 are each hydrogen or an alkyl group having 1 to 3 carbon atoms, R 2 is an alkyl group having 1 to 6 carbon atoms, a hydroxyalkyl group or an alkylene oxide group, and R 4 is an oxetane group or an alicyclic group at the end. An alkyl group having 1 to 6 carbon atoms having an epoxy group, and n and m are each an integer of 100 to 1000)
4 が一般式(2)または一般式(3)で示される構造である請求項1記載の色素増感型太陽電池。
Figure 0004265379
(R5 は炭素数1〜6のアルキル基)


Figure 0004265379
The dye-sensitized solar cell according to claim 1, wherein R 4 has a structure represented by the general formula (2) or the general formula (3).
Figure 0004265379
(R 5 is an alkyl group having 1 to 6 carbon atoms)


Figure 0004265379
環状エステル、環状カーボネート、鎖状カーボネートおよびニトリル類よりなる群から選ばれる少なくとも1種を溶媒として含む請求項1または2記載の色素増感型太陽電池。 The dye-sensitized solar cell according to claim 1 or 2, which contains as a solvent at least one selected from the group consisting of cyclic esters, cyclic carbonates, chain carbonates, and nitriles. 酸化還元対がヨウ素とヨウ素化合物または臭素と臭素化合物より構成される請求項1〜3のいずれかに記載の色素増感型太陽電池。 The dye-sensitized solar cell according to any one of claims 1 to 3, wherein the redox pair is composed of iodine and an iodine compound or bromine and a bromine compound. ホストポリマーの全ゲル状電解質中における量が2〜30質量%である請求項1〜4のいずれかに記載の色素増感型太陽電池。 The dye-sensitized solar cell according to any one of claims 1 to 4, wherein the amount of the host polymer in the entire gel electrolyte is 2 to 30% by mass.
JP2003383307A 2003-11-13 2003-11-13 Dye-sensitized solar cell Expired - Fee Related JP4265379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003383307A JP4265379B2 (en) 2003-11-13 2003-11-13 Dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003383307A JP4265379B2 (en) 2003-11-13 2003-11-13 Dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
JP2005149821A JP2005149821A (en) 2005-06-09
JP4265379B2 true JP4265379B2 (en) 2009-05-20

Family

ID=34692064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003383307A Expired - Fee Related JP4265379B2 (en) 2003-11-13 2003-11-13 Dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP4265379B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100970321B1 (en) 2006-06-09 2010-07-15 다이이치 고교 세이야쿠 가부시키가이샤 Photoelectric conversion element
KR101267906B1 (en) 2011-04-06 2013-05-28 한양대학교 산학협력단 Electrolyte for dye-sensitized solar cell, dye-sensitized solar cell comprising the electolyte and preparation method thereof

Also Published As

Publication number Publication date
JP2005149821A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
US20090032105A1 (en) Electrolyte Composition for Photoelectric Converter and Photoelectric Converter Using Same
US20080210296A1 (en) Dye-Sensitized Photovoltaic Device, Method for Making the Same, Electronic Device, Method for Making the Same, and Electronic Apparatus
JP2004214129A (en) Photoelectric conversion element, its manufacturing method, electronic device, and its manufacturing method
JP2004220920A (en) Photoelectric conversion element
JP5894372B2 (en) OPTOELECTRIC ELEMENT AND METHOD FOR PRODUCING OPTOELECTRIC ELEMENT
JP5096064B2 (en) Dye-sensitized solar cell module
Manfredi et al. Electrolytes for quasi solid‐state dye‐sensitized solar cells based on block copolymers
JP2001210390A (en) Dye-sensitization type solar battery which uses solid electrolyte and its preparation method
JP4676719B2 (en) Electrolyte for dye-sensitized solar cell and dye-sensitized solar cell using the same
JP2001266962A (en) Electrolyte composition, photoelectric transducer and photoelectrochemical cell
JP2003257506A (en) Electrolyte composition, photoelectric transducer and photoelectric cell
JP4356865B2 (en) Method for producing metal-metal oxide composite electrode, photoelectric conversion element and photovoltaic cell
JP2005310445A (en) Gel electrolyte and electrochemical element using it
JP4265379B2 (en) Dye-sensitized solar cell
JP2003086257A (en) Dye sensitizing photoelectric conversion element
JP2008041320A (en) Electrolyte composition for dye-sensitized solar cell
WO2013018967A1 (en) High-conductivity hole transport material and dye-sensitized solar cell using same
JP4314975B2 (en) Method for producing gel electrolyte
JP2003303628A (en) Polymer solid electrolyte and photoelectric conversion element
JP2004238213A (en) Method of manufacturing titanium oxide particle and photoelectric conversion device using the same
JP2003007358A (en) Dye sensitized photoelectric transducer
JP2000251532A (en) Electrolyte, photoelectric converting element and photoelectric chemical battery
JP2001338700A (en) Pigment sensitizing solar cell
JP2004127579A (en) Manufacturing method of metal-metal oxide composite electrode, photoelectric transducing element and photoelectric cell
CN109545561B (en) Photoinitiated irreversible gel electrolyte and preparation method and application thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051021

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees