JP2001210390A - Dye-sensitization type solar battery which uses solid electrolyte and its preparation method - Google Patents

Dye-sensitization type solar battery which uses solid electrolyte and its preparation method

Info

Publication number
JP2001210390A
JP2001210390A JP2000016672A JP2000016672A JP2001210390A JP 2001210390 A JP2001210390 A JP 2001210390A JP 2000016672 A JP2000016672 A JP 2000016672A JP 2000016672 A JP2000016672 A JP 2000016672A JP 2001210390 A JP2001210390 A JP 2001210390A
Authority
JP
Japan
Prior art keywords
dye
solar cell
sensitized solar
monomer unit
polymer compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000016672A
Other languages
Japanese (ja)
Other versions
JP3982968B2 (en
Inventor
Ryosuke Yamanaka
良亮 山中
Reigen Kan
礼元 韓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2000016672A priority Critical patent/JP3982968B2/en
Priority to US09/768,809 priority patent/US6479745B2/en
Publication of JP2001210390A publication Critical patent/JP2001210390A/en
Application granted granted Critical
Publication of JP3982968B2 publication Critical patent/JP3982968B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Abstract

PROBLEM TO BE SOLVED: To manufacture and provide a dye-sensitization type solar battery which uses a solid electrolyte having a superior performance. SOLUTION: This is the dye-sensitization type solar battery and its manufacturing method in which polymer electrolyte of the configuration that a redox electrolyte is impregnated in a high molecular compound which is 3- dimensionally crosslinked is employed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高分子電解質を用
いた色素増感型太陽電池およびその作製方法に関する。
The present invention relates to a dye-sensitized solar cell using a polymer electrolyte and a method for producing the same.

【0002】[0002]

【従来の技術】光電変換材料とは、光が照射されると、
その材料内の原子に束縛されていた電子が光エネルギー
により自由に動けるようになり、これにより自由電子と
自由電子の抜け孔(正孔)が発生し、これら自由電子と
正孔とが効率よく分離するために、連続的に電気エネル
ギーが取り出すことができる材料、すなわち、光エネル
ギーを電気エネルギーに変換することができる材料であ
る。このような光電変換材料は、例えば太陽電池などに
利用されている。
2. Description of the Related Art A photoelectric conversion material, when irradiated with light,
The electrons bound to the atoms in the material can move freely due to the light energy, thereby generating free electrons and free electron holes (holes). It is a material from which electric energy can be continuously extracted for separation, that is, a material that can convert light energy into electric energy. Such a photoelectric conversion material is used for, for example, a solar cell.

【0003】色素増感型太陽電池は、有機系太陽電池の
中で高変換効率を示すため、広く注目されている。色素
増感型太陽電池は、半導体電極と対極の間に挟持された
電解液層から構成されており、半導体電極に光が照射さ
れると、この電極側で電子が励起し、この電子が電気回
路を通って対極に移動し、対極に移動した電子が電解質
中をイオンとして移動して半導体電極にもどり、これが
繰り返されて電気エネルギーを取り出すことができるも
のである。
[0003] Dye-sensitized solar cells have attracted widespread attention because they exhibit high conversion efficiency among organic solar cells. A dye-sensitized solar cell is composed of an electrolyte layer sandwiched between a semiconductor electrode and a counter electrode. When light is applied to the semiconductor electrode, electrons are excited on the electrode side, and the electrons are converted to electric power. The electrons move to the counter electrode through the circuit, and the electrons moved to the counter electrode move as ions in the electrolyte to return to the semiconductor electrode, and this can be repeated to extract electric energy.

【0004】この色素増感型太陽電池で用いられている
光電変換材料である半導体電極は、半導体表面に可視光
領域に吸収を持つ分光増感色素を吸着させたものが用い
られている。例えば、特許第2664194号では、遷
移金属錯体からなる分光増感色素を半導体表面に吸着さ
せた金属酸化物半導体を用いた太陽電池が記載されてい
る。
As a semiconductor electrode, which is a photoelectric conversion material used in the dye-sensitized solar cell, a semiconductor electrode having a spectral sensitizing dye having absorption in a visible light region adsorbed on a semiconductor surface is used. For example, Japanese Patent No. 2664194 describes a solar cell using a metal oxide semiconductor in which a spectral sensitizing dye composed of a transition metal complex is adsorbed on a semiconductor surface.

【0005】また、特公平8−15097号公報には、
金属イオンでドープした酸化チタン半導体の表面に遷移
金属錯体などの分光増感色素層を有する太陽電池が記載
されている。さらに、特開平7−249790号公報に
は、半導体表面に分光増感剤のエタノール溶液を加熱還
流することにより得られた光電変換材料用半導体を用い
た太陽電池が記載されている。
Further, Japanese Patent Publication No. 8-15097 discloses that
A solar cell having a layer of a spectral sensitizing dye such as a transition metal complex on the surface of a titanium oxide semiconductor doped with metal ions is described. Further, JP-A-7-249790 describes a solar cell using a semiconductor for a photoelectric conversion material obtained by heating and refluxing an ethanol solution of a spectral sensitizer on a semiconductor surface.

【0006】各要素技術について上記の方法を用いて下
記に示す手順により、酸化還元性電解液を使用した色素
増感型太陽電池を作製する。作製行程を図5を使用して
説明を行う。
A dye-sensitized solar cell using an oxidation-reduction electrolytic solution is manufactured by the following procedure using the above-mentioned method for each elemental technology. The manufacturing process will be described with reference to FIG.

【0007】透明支持体51の表面に形成された透明導
電体52に酸化チタン等の半導体電極53を形成させ、
その半導体電極53に色素を吸着させる。対極55に白
金56等の触媒をコーティングし、半導体電極53と白
金56を対面するように透明支持体51と対極55を重
ね合わせ、その間に酸化還元性電解液54を注入し、透
明支持体51と対極55の側面をエポキシ樹脂57等で
封止する。
A semiconductor electrode 53 such as titanium oxide is formed on a transparent conductor 52 formed on the surface of a transparent support 51,
The dye is adsorbed on the semiconductor electrode 53. The counter electrode 55 is coated with a catalyst such as platinum 56, and the transparent support 51 and the counter electrode 55 are overlapped with each other so that the semiconductor electrode 53 and the platinum 56 face each other. And the side surface of the counter electrode 55 is sealed with an epoxy resin 57 or the like.

【0008】また、酸化還元性電解液54の液漏れを防
止するため、特開平8−236165号公報、特開平9
−27352号公報には、電解液層を固体化した太陽電
池が記載されている。電解液層の固体化方法としては、
一般式(II);
Further, in order to prevent leakage of the redox electrolytic solution 54, Japanese Patent Application Laid-Open Nos.
Japanese Patent No. 27352 describes a solar cell in which an electrolyte layer is solidified. As a method for solidifying the electrolyte layer,
General formula (II);

【0009】[0009]

【化4】 Embedded image

【0010】で表されるモノマー単位の中で、R1がメ
チル基、R3が水素原子、n=0、m=5で構成される
モノマー単位を、エチレングリコールに溶解して得られ
たモノマー溶液に酸化還元種であるヨウ素化合物(ヨウ
化リチウム等)を溶解させ、多孔質半導体電極に含浸さ
せた後、紫外線もしくは熱により重合させて高分子化合
物を作製する。その後、別の酸化還元種であるヨウ素を
昇華させることによりドープを行うものである。ヨウ素
をドープする理由は、ヨウ素が重合禁止剤として働くた
め、重合前に添加するとモノマーが重合しないためであ
る。
Among the monomer units represented by the formula (1), a monomer obtained by dissolving a monomer unit composed of R 1 as a methyl group, R 3 as a hydrogen atom, n = 0 and m = 5 in ethylene glycol An iodine compound (lithium iodide or the like) that is a redox species is dissolved in the solution, impregnated into the porous semiconductor electrode, and polymerized by ultraviolet light or heat to produce a polymer compound. Thereafter, doping is performed by sublimating iodine as another redox species. The reason for doping iodine is that since iodine acts as a polymerization inhibitor, if added before polymerization, the monomer will not polymerize.

【0011】[0011]

【発明が解決しようとする課題】しかし、上記のモノマ
ー単位のみで重合を行うと、一般式(II)のモノマー
単位にはビニル基が一つしかないため、3次元架橋構造
を有する高分子化合物を作製することは困難であり、均
一に作製するにはグリセリン等の架橋剤を別途添加して
反応させる必要がある。さらに、一般式(II)のモノ
マー単位のみで重合を行った重合体は線状あるいは分岐
高分子となり、3次元的に架橋した高分子化合物ではな
いため、電解質および電解液の保持能力が小さくなり、
機械的強度も悪い。また、ヨウ化リチウム等のヨウ素化
合物を混入したモノマー溶液を重合して作製した高分子
化合物に昇華によりヨウ素をドープする場合、ドープ量
の定量性を判断するのが困難であり、再現性の観点から
も困難である。
However, when polymerization is carried out using only the above-mentioned monomer units, since the monomer units of the general formula (II) have only one vinyl group, a polymer compound having a three-dimensional crosslinked structure is obtained. It is difficult to prepare the compound, and it is necessary to separately add a cross-linking agent such as glycerin for the reaction in order to prepare the compound uniformly. Furthermore, a polymer obtained by polymerization using only the monomer unit of the general formula (II) becomes a linear or branched polymer and is not a three-dimensionally crosslinked polymer compound, so that the ability to hold the electrolyte and the electrolyte is reduced. ,
Poor mechanical strength. In addition, when doping iodine by sublimation into a polymer compound prepared by polymerizing a monomer solution mixed with an iodine compound such as lithium iodide, it is difficult to determine the quantitativeness of the doping amount, and from the viewpoint of reproducibility. Is also difficult.

【0012】本発明は、上記課題に鑑みなされたもので
あり、3次元的に架橋された高分子を使用することによ
り、優れた液保持力と機械的強度を有する高分子電解質
を有する色素増感型太陽電池を提供するものであり、そ
の3次元的に架橋された高分子化合物を作製した後に、
酸化還元種である双方の電解質を溶媒に溶解させたもの
を含浸させることにより、精度良く高分子電解質を作製
することができる色素増感型太陽電池の作製方法を提供
するものである。
The present invention has been made in view of the above problems, and provides a dye sensitizer having a polymer electrolyte having excellent liquid holding power and mechanical strength by using a three-dimensionally crosslinked polymer. The present invention provides a type-sensitive solar cell, and after producing a three-dimensionally crosslinked polymer compound,
An object of the present invention is to provide a method for producing a dye-sensitized solar cell in which a polymer electrolyte can be produced with high accuracy by impregnating both electrolytes, which are redox species, in a solvent.

【0013】[0013]

【課題を解決するための手段】本発明は上記問題点を解
決するために、第1の発明として、透明基板の表面に形
成された透明導電膜と導電性基板との間に色素が吸着さ
れた多孔性半導体層と酸化還元性電解質とを有する色素
増感型太陽電池において、酸化還元性電解質が3次元的
に架橋した高分子化合物に保持されていることを特徴と
する色素増感型太陽電池提案した。
According to the present invention, as a first invention, a dye is adsorbed between a transparent conductive film formed on the surface of a transparent substrate and the conductive substrate. Dye-sensitized solar cell having a porous semiconductor layer and an oxidation-reduction electrolyte, wherein the oxidation-reduction electrolyte is held by a three-dimensionally crosslinked polymer compound. Battery proposed.

【0014】第2の発明は、上記高分子化合物が少なく
とも一般式(I);
According to a second aspect of the present invention, the polymer compound has at least the general formula (I):

【0015】[0015]

【化5】 Embedded image

【0016】で表されるモノマー単位を重合して得られ
たものであることを特徴とする色素増感型太陽電池であ
る。
A dye-sensitized solar cell characterized by being obtained by polymerizing a monomer unit represented by the formula:

【0017】第3の発明は、上記一般式(I)で示され
るモノマー単位の残基が少なくともポリエチレンオキサ
イド基とポリプロピレンオキサイト基とが構成要素とな
ることを特徴とする色素増感型太陽電池である。
According to a third aspect of the present invention, there is provided a dye-sensitized solar cell, wherein at least a residue of the monomer unit represented by the general formula (I) is a constituent element of a polyethylene oxide group and a polypropylene oxide group. It is.

【0018】第4の発明は、上記高分子化合物が一般式
(I)とメタクリレート系モノマー単位又はアクリレー
ト系モノマー単位を共重合して得られたものであること
を特徴とする色素増感型太陽電池である。
According to a fourth aspect of the present invention, there is provided a dye-sensitized solar cell, wherein the polymer compound is obtained by copolymerizing the general formula (I) with a methacrylate monomer unit or an acrylate monomer unit. Battery.

【0019】第5の発明は、上記多孔性半導体層が酸化
チタンであることを特徴とする色素増感型太陽電池であ
る。
A fifth invention is a dye-sensitized solar cell, wherein the porous semiconductor layer is made of titanium oxide.

【0020】第6の発明は、酸化還元種がヨウ素とヨウ
素化合物とからなることを特徴とする色素増感型太陽電
池である。
A sixth invention is a dye-sensitized solar cell, wherein the redox species comprises iodine and an iodine compound.

【0021】第7の発明は、モノマー単位を多孔性半導
体層に含浸させ、少なくとも一般式(I)が構成要素の
一つであるモノマー単位を重合させて多孔性半導体層内
に高分子化合物を形成した後、高分子化合物に酸化還元
性電解液を浸透注入し、高分子電解質を作製することを
特徴とする色素増感型太陽電池の作製方法である。
According to a seventh aspect of the present invention, a polymer compound is impregnated in a porous semiconductor layer by impregnating a monomer unit into a porous semiconductor layer and polymerizing at least a monomer unit of which the general formula (I) is one of constituent elements. A method for producing a dye-sensitized solar cell, comprising forming a polymer electrolyte by infiltrating and injecting an oxidation-reduction electrolytic solution into a polymer compound after formation.

【0022】第8の発明は、モノマー単位を多孔性半導
体層に含浸させ、少なくとも一般式(I)が構成要素の
一つであるモノマー単位を重合させて多孔性半導体層内
に高分子化合物を形成した後、加熱下で高分子化合物に
酸化還元性電解液を浸透注入し、高分子電解質を作製す
ることを特徴とする色素増感型太陽電池の作製方法であ
る。
According to an eighth aspect of the invention, a porous semiconductor layer is impregnated with a monomer unit, and at least a monomer unit of which general formula (I) is one of the constituent elements is polymerized to form a polymer compound in the porous semiconductor layer. A method for producing a dye-sensitized solar cell, comprising forming a polymer electrolyte by infiltrating a polymer compound with an oxidation-reduction electrolyte solution under heating and then forming the polymer electrolyte.

【0023】第9の発明は、真空状態下の多孔質半導体
層にモノマー溶液を注入することにより、多孔質半導体
層にモノマー溶液を含浸させることを特徴とする色素増
感型太陽電池の作製方法である。
A ninth invention is a method of manufacturing a dye-sensitized solar cell, characterized by impregnating a porous semiconductor layer with a monomer solution by injecting the monomer solution into a porous semiconductor layer under vacuum. It is.

【0024】第10の発明は、上記モノマー溶液の溶媒
として、少なくともエチレンカーボネート又はプロピレ
ンカーボネートが構成要素となることを特徴とする色素
増感型太陽電池の作製方法である。
A tenth invention is a method for producing a dye-sensitized solar cell, characterized in that at least ethylene carbonate or propylene carbonate is a constituent element as a solvent for the monomer solution.

【0025】[0025]

【発明の実施の形態】本発明の色素増感型太陽電池およ
びその作製方法において、多孔性半導体上に、光増感剤
として機能する色素(以下、単に「色素」と記す)を吸
着させる。ここで用いられる半導体としては、一般に光
電変換材料用に使用されるものであれば特に限定される
ものではなく、例えば、酸化チタン、酸化亜鉛、酸化タ
ングステン、チタン酸バリウム、チタン酸ストロンチウ
ム、硫化カドミウムなどの公知の半導体の1種または2
種以上を用いることができる。なかでも、安定性、安全
性の点から酸化チタンが好ましい。なお、本発明で使用
される酸化チタンは、アナタース型酸化チタン、ルチル
型酸化チタン、無定形酸化チタン、メタチタン酸、オル
ソチタン酸などの種々の酸化チタン、あるいは水酸化チ
タン、含酸化チタン等が挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION In the dye-sensitized solar cell of the present invention and the method for producing the same, a dye (hereinafter simply referred to as “dye”) that functions as a photosensitizer is adsorbed on a porous semiconductor. The semiconductor used here is not particularly limited as long as it is generally used for a photoelectric conversion material, for example, titanium oxide, zinc oxide, tungsten oxide, barium titanate, strontium titanate, cadmium sulfide. One or two known semiconductors such as
More than one species can be used. Among them, titanium oxide is preferred from the viewpoint of stability and safety. The titanium oxide used in the present invention includes various titanium oxides such as anatase-type titanium oxide, rutile-type titanium oxide, amorphous titanium oxide, metatitanic acid, and orthotitanic acid, or titanium hydroxide and titanium-containing titanium oxide. No.

【0026】上述の多孔性半導体は、粒子状、膜状等種
々の形態の半導体を用いることができるが、基板上に形
成された膜状の多孔性半導体が好ましい。膜状の多孔性
半導体を基板上に形成する場合の基板としては、例え
ば、ガラス基板、プラスチック基板等を使用することが
でき、なかでも透明の基板が好ましい。膜状の多孔性半
導体を基板上に形成する方法としては、公知の種々の方
法を使用することができる。具体的には、基板上に半導
体粒子を含有する懸濁液を塗布し、乾燥/焼成する方
法、基板上に所望の原料ガスを用いたCVD法又はMO
CVD法等により半導体膜を成膜する方法、あるいは原
料固体を用いたPVD法、蒸着法、スパッタリング法又
はゾル−ゲル法等により半導体膜を形成する方法等が挙
げられる。なお、この際の半導体の膜厚は、特に限定さ
れるものではないが、0.1〜50μm程度が好まし
い。さらに、変換効率を向上させるためには、後述する
色素を膜状の多孔性半導体により多く吸着させることが
必要である。このために、膜状の多孔性半導体は比表面
積が大きなものが好ましく、10m2/g〜200m2
g程度が好ましい。
As the porous semiconductor described above, various types of semiconductors such as particles and films can be used, but a film-shaped porous semiconductor formed on a substrate is preferable. When a film-shaped porous semiconductor is formed on a substrate, for example, a glass substrate, a plastic substrate, or the like can be used, and a transparent substrate is particularly preferable. As a method for forming the film-shaped porous semiconductor on the substrate, various known methods can be used. Specifically, a method of applying a suspension containing semiconductor particles on a substrate and drying / baking the substrate, a CVD method using a desired source gas on the substrate, or an MO method
A method of forming a semiconductor film by a CVD method or the like, a method of forming a semiconductor film by a PVD method using a raw material solid, an evaporation method, a sputtering method, a sol-gel method, or the like can be given. The thickness of the semiconductor at this time is not particularly limited, but is preferably about 0.1 to 50 μm. Further, in order to improve the conversion efficiency, it is necessary to adsorb a dye described later in a film-like porous semiconductor more. For this reason, the film-shaped porous semiconductor preferably has a large specific surface area, and is preferably 10 m 2 / g to 200 m 2 / g.
g is preferable.

【0027】上述の半導体粒子としては、市販されてい
るもののうち適当な平均粒径、例えば1nm〜2000
nm程度の平均粒径を有する単一又は化合物半導体の粒
子等が挙げられる。また、この半導体粒子を懸濁するた
めに使用される溶媒は、エチレングリコールモノメチル
エーテル等のグライム系溶媒、イソプロピルアルコール
等のアルコール系溶媒、イソプロピルアルコール/トル
エン等のアルコール系混合溶媒、水等が挙げられる。
As the above-mentioned semiconductor particles, an appropriate average particle size, for example, from 1 nm to 2000
Single or compound semiconductor particles having an average particle size of about nm are exemplified. Examples of the solvent used for suspending the semiconductor particles include glyme solvents such as ethylene glycol monomethyl ether, alcohol solvents such as isopropyl alcohol, alcohol mixed solvents such as isopropyl alcohol / toluene, and water. Can be

【0028】上述の多孔性半導体の乾燥/焼成は、使用
する基板や半導体粒子の種類により、温度、時間、雰囲
気等を適宜調整することができる。例えば、大気下また
は不活性ガス雰囲気下、50〜800℃程度の範囲内
で、10秒〜12時間程度行うことができる。この乾燥
/焼成は、単一の温度で1回又は温度を変化させて2回
以上行うことができる。
In the drying / firing of the porous semiconductor described above, the temperature, time, atmosphere and the like can be appropriately adjusted depending on the type of the substrate and semiconductor particles used. For example, it can be performed in the atmosphere or in an inert gas atmosphere at a temperature of about 50 to 800 ° C. for about 10 seconds to 12 hours. This drying / firing can be performed once at a single temperature or two or more times at different temperatures.

【0029】電極として使用することができる透明導電
膜は、特に限定されるものではないが、例えばITO、
SnO2等の透明導電膜が好ましい。これら電極の作製
方法及び膜厚等は、適宜選択することができる。
The transparent conductive film that can be used as an electrode is not particularly limited.
A transparent conductive film such as SnO 2 is preferable. A manufacturing method, a film thickness, and the like of these electrodes can be appropriately selected.

【0030】多孔性半導体上に色素を吸着させる方法と
しては、例えば基板上に形成された多孔性半導体膜を、
色素を溶解した1種又は2種以上の非プロトン性溶液、
疎水性溶液又は非プロトン性かつ疎水性溶液に浸漬する
方法が挙げられる。
As a method of adsorbing a dye on a porous semiconductor, for example, a porous semiconductor film formed on a substrate is
One or more aprotic solutions in which the dye is dissolved,
A method of dipping in a hydrophobic solution or an aprotic and hydrophobic solution may be used.

【0031】ここで使用することができる色素は、種々
の可視光領域及び赤外光領域に吸収を持つものであっ
て、半導体層に強固に吸着させるために、色素分子中に
カルボキシル基、アルコキシ基、ヒドロキシル基、ヒド
ロキシアルキル基、スルホン酸基、エステル基、メルカ
プト基、ホスホニル基等のインターロック基を有するも
のが好ましい。インターロック基は、励起状態の色素と
半導体の導電帯との間の電子移動を容易にする電気的結
合を提供するものである。例えば、ルテニウムビピリジ
ン系色素、アゾ系色素、キノン系色素、キノンイミン系
色素、キナクリドン系色素、スクアリリウム系色素、シ
アニン系色素、メロシアニン系色素、トリフェニルメタ
ン系色素、キサンテン系色素、ポリフィリン系色素、フ
タロシアニン系色素、ベリレン系色素、インジゴ系色
素、ナフタロシアニン系色素等が挙げられる。
The dye which can be used here has an absorption in various visible light regions and infrared light regions, and a carboxyl group, an alkoxy group or an alkoxy group is contained in the dye molecule in order to strongly adsorb the semiconductor layer. Those having an interlock group such as a group, a hydroxyl group, a hydroxyalkyl group, a sulfonic acid group, an ester group, a mercapto group and a phosphonyl group are preferred. The interlock group provides an electrical bond that facilitates electron transfer between the dye in the excited state and the conduction band of the semiconductor. For example, ruthenium bipyridine dye, azo dye, quinone dye, quinone imine dye, quinacridone dye, squarylium dye, cyanine dye, merocyanine dye, triphenylmethane dye, xanthene dye, porphyrin dye, phthalocyanine Dyes, berylen dyes, indigo dyes, naphthalocyanine dyes, and the like.

【0032】色素を溶解するために用いる溶媒は、エタ
ノール等のアルコール類、アセトン等のケトン類、ジエ
チルエーテル等のエーテル類、アセトニトリル等の窒素
化合物類、クロロホルム等のハロゲン化脂肪族炭化水
素、ヘキサン等の脂肪族炭化水素、ベンゼン等の芳香族
炭化水素、酢酸エチル等のエステル類等が挙げられる。
Solvents used for dissolving the dye include alcohols such as ethanol, ketones such as acetone, ethers such as diethyl ether, nitrogen compounds such as acetonitrile, halogenated aliphatic hydrocarbons such as chloroform, and hexane. And the like, aliphatic hydrocarbons such as benzene, aromatic hydrocarbons such as benzene, and esters such as ethyl acetate.

【0033】溶液中の色素濃度は、使用する色素及び溶
媒の種類は適宜調整することができるが、例えば5×1
-5モル/リットル以上の濃度であればよい。
The concentration of the dye in the solution can be appropriately adjusted depending on the type of the dye and the solvent used.
0 -5 may be a concentration of more than moles / liter.

【0034】色素を溶解した溶液を半導体に浸漬する
際、溶液及び雰囲気の温度及び圧力は特に限定されるも
のではなく、例えば室温程度、かつ大気圧下が挙げら
れ、浸漬時間は、使用する色素、溶媒の種類、溶液の濃
度等により適宜調整することができる。なお、効果的に
行うには加熱下にて浸漬を行えばよい。これにより、多
孔性半導体上に色素を吸着させることができる。
When the solution in which the dye is dissolved is immersed in the semiconductor, the temperature and pressure of the solution and the atmosphere are not particularly limited. For example, room temperature and atmospheric pressure may be mentioned. , The type of the solvent, the concentration of the solution, and the like. Note that immersion may be performed under heating to effectively perform the immersion. Thereby, the dye can be adsorbed on the porous semiconductor.

【0035】高分子電解質は、酸化還元性電解液と高分
子化合物にて構成されているが、高分子化合物に注入す
る酸化還元性電解液は、一般に電池や太陽電池等におい
て使用することができる電解液であれば特に限定されな
いが、ヨウ素とヨウ化リチウム等のヨウ素化合物が好ま
しい。また、高分子化合物は、3次元的に架橋した高分
子化合物であればよく、このような高分子化合物を作製
するには、一般式(I)で示されるモノマー単位を使用
する。ここで、一般式(I)で示されるモノマー単位と
しては、1,4−ブタンジオールジアクリレート、2−
プロペノイックアシッド[2−[1,1−ジメチル−2
−[(1−オキソ−2−プロペニル)オキシ]エチル]
−5−エチル−1,3−ジオキサン−5−イル]メチル
エステル、ジメタクリル酸エチレングリコール、ジメタ
クリル酸トリエチレングリコール、ジメタクリル酸テト
ラエチレングリコール、ジメタクリル酸1,3−ブチレ
ングリコール、トリメタクリル酸トリメチロールプロパ
ン等が挙げられる。さらに、一般式(I)のAで表され
る残基がポリエチレンオキサイト基とポリプロピレンオ
キサイト基とブタンテトライル基により構成されるモノ
マー単位がより好ましい。
The polymer electrolyte is composed of an oxidation-reduction electrolyte solution and a polymer compound, and the oxidation-reduction electrolyte solution injected into the polymer compound can be generally used in batteries and solar cells. The electrolyte is not particularly limited as long as it is an electrolyte, but iodine and an iodine compound such as lithium iodide are preferred. Further, the polymer compound may be a polymer compound which is three-dimensionally crosslinked, and in order to prepare such a polymer compound, a monomer unit represented by the general formula (I) is used. Here, as the monomer unit represented by the general formula (I), 1,4-butanediol diacrylate, 2-
Propenoic acid [2- [1,1-dimethyl-2]
-[(1-oxo-2-propenyl) oxy] ethyl]
-5-ethyl-1,3-dioxan-5-yl] methyl ester, ethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate, trimethacryl Trimethylolpropane acid and the like. Further, a monomer unit in which the residue represented by A in the general formula (I) is composed of a polyethylene oxide group, a polypropylene oxide group, and a butanetetrayl group is more preferable.

【0036】また、一般式(I)とを共重合させること
により3次元的に架橋した高分子化合物が得られるが、
(メタ)アクリレート系モノマー単位としては、アクリ
ル酸イソボルニル、アクリル酸ジメチルアミノエチルエ
ステル、アクリル酸イソブチル、アクリル酸セチル、ア
クリル酸4−ヒドロキシブル、アクリル酸t−ブチル、
アクリル酸2−メトキシエチル、アクリル酸3−メトキ
シブチル、アクリル酸ラウリル、メタクリル酸メチル、
メタクリル酸エチル、メタクリル酸n−ブチル、メタク
リル酸イソブチル、メタクリル酸2−エチルヘキシル、
メタクリル酸ラウリル、メタクリル酸ベンジル、メタク
リル酸トリデシル、メタクリル酸ステアリル、メタクリ
ル酸シクロヘキシル、メタクリル酸2−ヒドロキエチ
ル、メタクリル酸グリシジル等が挙げられる。これらの
(メタ)アクリレート系モノマー単位の添加量は、一般
式(I)の種類および架橋性の用途により一概には言え
ないが、一般式(I)のモノマー単位に対して50〜9
8mol%程度の濃度が適当である。
A three-dimensionally crosslinked high molecular compound can be obtained by copolymerization with the general formula (I).
(Meth) acrylate-based monomer units include isobornyl acrylate, dimethylaminoethyl acrylate, isobutyl acrylate, cetyl acrylate, 4-hydroxybull acrylate, t-butyl acrylate,
2-methoxyethyl acrylate, 3-methoxybutyl acrylate, lauryl acrylate, methyl methacrylate,
Ethyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, 2-ethylhexyl methacrylate,
Examples thereof include lauryl methacrylate, benzyl methacrylate, tridecyl methacrylate, stearyl methacrylate, cyclohexyl methacrylate, 2-hydroxyethyl methacrylate, and glycidyl methacrylate. The addition amount of these (meth) acrylate monomer units cannot be unconditionally determined depending on the type of the general formula (I) and the use of the crosslinking property.
A concentration of about 8 mol% is appropriate.

【0037】色素増感型太陽電池では、多孔性半導体中
に十分に高分子電解質が注入されていなければ変換効率
が悪くなるため、液状であるモノマー溶液を多孔性半導
体中に含浸させ、その後に重合させる。重合方法につい
ては、光重合や熱重合などが考えられる。ただし、色素
増感型太陽電池において、多孔性半導体に酸化チタンを
使用する場合が多い。酸化チタンは紫外線領域にて光触
媒反応を起こす物質であるため、光重合を行う際に紫外
線光が照射されると光触媒反応が起こり、多孔性半導体
に吸着させた色素が分解する等の問題が考えられるた
め、熱重合により重合を行うことが好ましい。熱重合
は、重合開始剤を使用して加熱することにより行うが、
開始剤濃度および加熱温度は使用するモノマー単位によ
り適宜調整および選択することができる。ただし、一般
的にラジカル重合では、重合速度は開始剤濃度の0.5
乗に比例するため、開始剤濃度が少ないと重合時間が非
常に長くなる場合がある。
In a dye-sensitized solar cell, if the polymer electrolyte is not sufficiently injected into the porous semiconductor, the conversion efficiency becomes poor. Therefore, a liquid monomer solution is impregnated into the porous semiconductor, and thereafter, Polymerize. As the polymerization method, photopolymerization, thermal polymerization, or the like can be considered. However, in a dye-sensitized solar cell, titanium oxide is often used for a porous semiconductor. Titanium oxide is a substance that causes a photocatalytic reaction in the ultraviolet region, so if ultraviolet light is irradiated during photopolymerization, a photocatalytic reaction occurs and the dye adsorbed on the porous semiconductor may decompose. Therefore, the polymerization is preferably performed by thermal polymerization. Thermal polymerization is performed by heating using a polymerization initiator,
The initiator concentration and the heating temperature can be appropriately adjusted and selected depending on the monomer unit used. However, in general, in radical polymerization, the polymerization rate is 0.5% of the initiator concentration.
Since it is proportional to the power, if the concentration of the initiator is small, the polymerization time may be extremely long.

【0038】上述した高分子化合物中に酸化還元性電解
液を注入する場合、高分子化合物を酸化還元性電解液中
に浸すことにより、酸化還元性電解液を浸透させる。こ
のように浸透させた高分子電解質のイオン伝導率の評価
を行った(室温25℃で浸透)。その結果を図2に示
す。この評価には、従来技術で使用されている高分子モ
ノマー(一般式(II))のみを使用して作製した高分
子化合物を使用した。使用した高分子モノマーの構成
は、一般式(II)において、R1はメチル基、R3は水
素原子、n=0、m=5である。
When an oxidation-reduction electrolytic solution is injected into the above-mentioned polymer compound, the polymer compound is immersed in the oxidation-reduction electrolyte solution to allow the oxidation-reduction electrolyte solution to permeate. The ionic conductivity of the thus permeated polymer electrolyte was evaluated (permeated at room temperature of 25 ° C.). The result is shown in FIG. For this evaluation, a polymer compound prepared using only the polymer monomer (general formula (II)) used in the conventional technique was used. The structure of the polymer monomer used in the general formula (II) is such that R 1 is a methyl group, R 3 is a hydrogen atom, n = 0 and m = 5.

【0039】図2より、浸透時間は少なくとも2時間は
必要である。さらに、浸透温度を高くすれば、酸化還元
性電解液は活性化され浸透速度が速くなり、高分子電解
質の作製時間が短縮できる。なお、浸透温度について
は、ラジカル反応が起こらない程度で、具体的には35
〜65℃程度が好ましい。
From FIG. 2, it is necessary that the permeation time is at least 2 hours. Furthermore, if the permeation temperature is increased, the oxidation-reduction electrolyte solution is activated and the permeation rate is increased, so that the preparation time of the polymer electrolyte can be shortened. The permeation temperature is such that a radical reaction does not occur.
~ 65 ° C is preferred.

【0040】図3に浸透温度を50℃に設定した場合、
一般式(II)(R1はメチル基、R3は水素原子、n=
0、m=5)で表される高分子モノマーのみを使用した
高分子化合物でのイオン伝導率変化を示した。このよう
に浸透温度を高くすることにより、浸透速度が速くなる
ことが分かる。
When the permeation temperature is set to 50 ° C. in FIG.
Formula (II) (R 1 is a methyl group, R 3 is a hydrogen atom, n =
0, m = 5) shows a change in ionic conductivity of a polymer compound using only the polymer monomer represented by the formula (0, m = 5). It can be seen that increasing the permeation temperature in this way increases the permeation rate.

【0041】上述のような各工程で作製された色素増感
型太陽電池は、例えば、図4のように透明導電膜42で
コートされたガラス基板等の支持体41上に半導体電極
43を形成させた後、その半導体電極43に色素を吸着
させる。その後、モノマー溶液を含浸させて熱重合させ
た後、その高分子化合物44に酸化還元性電解液を浸透
させる。対極45に白金46等の触媒をコーティング
し、半導体電極43と白金46を対面するように透明支
持体41と対極45を重ね合わせ、透明支持体41と対
極45の側面をエポキシ樹脂47等で封止する。
In the dye-sensitized solar cell manufactured in each step as described above, for example, a semiconductor electrode 43 is formed on a support 41 such as a glass substrate coated with a transparent conductive film 42 as shown in FIG. After that, the dye is adsorbed on the semiconductor electrode 43. Then, after the monomer solution is impregnated and thermally polymerized, an oxidation-reduction electrolyte solution is made to permeate the polymer compound 44. The counter electrode 45 is coated with a catalyst such as platinum 46, the transparent support 41 and the counter electrode 45 are overlapped so that the semiconductor electrode 43 and the platinum 46 face each other, and the side surfaces of the transparent support 41 and the counter electrode 45 are sealed with an epoxy resin 47 or the like. Stop.

【0042】このように構成された高分子電解質を使用
した色素増感型太陽電池に太陽光を照射すると、光電変
換材料用半導体に吸着した色素において可視領域の光を
吸収して電子が励起する。この電子は半導体さらに対電
極に移動し、高分子電解質中の酸化還元系を還元する。
一方、半導体に電子を移動させた色素は酸化体の状態に
なっているが、この酸化体は酸化還元性電解質によって
還元され元の状態に戻る。このようにして電子が流れ、
本発明の高分子電解質を使用した色素増感型太陽電池を
構成することができる。
When the dye-sensitized solar cell using the polymer electrolyte thus constructed is irradiated with sunlight, the dye adsorbed on the semiconductor for the photoelectric conversion material absorbs light in the visible region to excite electrons. . These electrons move to the semiconductor and further to the counter electrode, and reduce the oxidation-reduction system in the polymer electrolyte.
On the other hand, the dye that has transferred electrons to the semiconductor is in an oxidized state, which is reduced by the redox electrolyte and returns to the original state. The electrons flow in this way,
A dye-sensitized solar cell using the polymer electrolyte of the present invention can be constituted.

【0043】以下に本発明による実施例を説明するが、
本発明はこれに限定されるものではない。 (実施例1)高分子電解質を用いた色素増感型太陽電池
の作製方法について図1を用いて説明する。図1におい
て、1は透明基板、2は透明電導膜、3は酸化チタン
膜、4はセパレーター、5はPETフィルム、6は押さ
え板、7は高分子モノマー、8は高分子化合物、9は酸
化還元性電解液、10は容器、11は封止剤、12は白
金膜、13は導電性基板を示しており、(a)〜(e)
は作製手順を追った色素増感型太陽電池の断面図であ
る。
An embodiment according to the present invention will be described below.
The present invention is not limited to this. Example 1 A method for manufacturing a dye-sensitized solar cell using a polymer electrolyte will be described with reference to FIGS. In FIG. 1, 1 is a transparent substrate, 2 is a transparent conductive film, 3 is a titanium oxide film, 4 is a separator, 5 is a PET film, 6 is a holding plate, 7 is a polymer monomer, 8 is a polymer compound, and 9 is an oxidized film. (A) to (e) are a reducing electrolyte, 10 is a container, 11 is a sealant, 12 is a platinum film, and 13 is a conductive substrate.
FIG. 2 is a cross-sectional view of a dye-sensitized solar cell following a manufacturing procedure.

【0044】酸化チタン膜3を作製する塗液は、市販の
酸化チタン粒子(テイカ株式会社社製、商品名AMT−
600、アナターゼ型結晶、平均粒径30nm、比表面
積50m2/g)4.0gとジエチレングリコールモノ
メチルエーテル20mlとをガラスビーズを使用し、ペ
イントシェイカーで6時間分散させ、酸化チタン懸濁液
を調製した。この酸化チタン懸濁液をドクターブレード
を用いて、10μm程度の膜厚、10mm×10mm程
度の面積で、SnO2を透明導電膜2としてガラス基板
1上に作製された基板上に、透明導電膜2側に塗布し、
100℃で30分間予備乾燥した後、460℃で40分
間酸素下で焼成し、その結果、膜厚が8μm程度の酸化
チタン膜3を作製した。
The coating liquid for preparing the titanium oxide film 3 is commercially available titanium oxide particles (trade name: AMT-
600, anatase type crystal, average particle size 30 nm, specific surface area 50 m 2 / g) 4.0 g and diethylene glycol monomethyl ether 20 ml were dispersed for 6 hours using a glass shaker with a paint shaker to prepare a titanium oxide suspension. . This titanium oxide suspension was coated on a glass substrate 1 with SnO 2 as a transparent conductive film 2 having a thickness of about 10 μm and an area of about 10 mm × 10 mm using a doctor blade. Apply on two sides,
After preliminary drying at 100 ° C. for 30 minutes, it was baked at 460 ° C. for 40 minutes under oxygen, and as a result, a titanium oxide film 3 having a thickness of about 8 μm was produced.

【0045】次にSolaronix社製ルテニウム色
素(Solaronix社製、商品名Rutheniu
m535)を無水エタノールに濃度4×10-4モル/リ
ットルで溶解させ吸着用色素溶液を作製した。この吸着
用色素溶液を上述で得られた酸化チタン膜3と透明導電
膜2を具備した透明基板1を図示していない容器にそれ
ぞれ入れ、約4時間浸透させることにより色素を吸着さ
せた。その後、無水エタノールで数回洗浄し約60℃で
約20分間乾燥させた。(図1(a)〜(b)) 次に、一般式(I)で表されるモノマー単位のうち、R
1をメチル基、Aを8個のポリエチレンオキサイド基と
2個のポリプロピレンオキサイド基と中心核としてブタ
ンテトライル基により構成されるモノマー単位を使用す
る。このモノマー単位をプロピレンカーボネート(以
下、PCと記載する)に20wt%の濃度で溶解させ、
また、熱重合開始剤としてアゾビスイソブチロニトリル
(AIBN)をモノマー単位に対して1wt%の濃度で
溶解させモノマー溶液を作製する。このモノマー溶液を
上述の酸化チタン膜3に含浸させる手順について以下に
示す。真空容器内にビーカー等の容器を設置し、その
中に透明導電膜2を具備した透明基板1上の酸化チタン
膜3を入れ、ロータリーポンプで約10分間真空引きす
る。真空容器内を真空状態に保ちながらモノマー溶液
をビーカー内に注入し、約15分間含浸させ酸化チタン
3中にモノマー溶液を十分に染み込ます。図1(c)
に示すようにポリエチレン製セパレーター4、PETフ
ィルム5と押さえ板6を設置し図示していない冶具にて
固定する。その後、約85℃で30分間加熱することに
より、熱重合させ高分子化合物8を作製する。
Next, a ruthenium dye manufactured by Solaronix (Ruthenium, trade name, manufactured by Solaronix)
m535) was dissolved in anhydrous ethanol at a concentration of 4 × 10 −4 mol / l to prepare a dye solution for adsorption. The titanium oxide film 3 and the transparent substrate 1 provided with the transparent conductive film 2 obtained above were placed in containers (not shown), respectively, and the dye solution was adsorbed for about 4 hours to adsorb the dye. Then, it was washed several times with absolute ethanol and dried at about 60 ° C. for about 20 minutes. (FIGS. 1A and 1B) Next, among the monomer units represented by the general formula (I), R
1 is a methyl group, A is a monomer unit composed of 8 polyethylene oxide groups, 2 polypropylene oxide groups, and a butanetetrayl group as a central nucleus. This monomer unit is dissolved in propylene carbonate (hereinafter, referred to as PC) at a concentration of 20 wt%,
In addition, azobisisobutyronitrile (AIBN) as a thermal polymerization initiator is dissolved at a concentration of 1 wt% with respect to the monomer unit to prepare a monomer solution. The procedure for impregnating the above-mentioned titanium oxide film 3 with this monomer solution will be described below. A container such as a beaker is set in a vacuum container, and the titanium oxide film 3 on the transparent substrate 1 provided with the transparent conductive film 2 is put in the container and evacuated by a rotary pump for about 10 minutes. The monomer solution is poured into the beaker while maintaining the vacuum state in the vacuum vessel, and is impregnated for about 15 minutes so that the monomer solution is sufficiently soaked in the titanium oxide 3. FIG. 1 (c)
As shown in (1), a polyethylene separator 4, a PET film 5, and a holding plate 6 are installed and fixed with a jig (not shown). Thereafter, the polymer is heated at about 85 ° C. for 30 minutes to be thermally polymerized to produce the polymer compound 8.

【0046】次に、高分子化合物8に含浸させる酸化還
元性電解液を作製する。酸化還元性電解液9は、PCを
溶媒として濃度0.5モル/リットルのヨウ化リチウム
と濃度0.05モル/リットルのヨウ素を溶解させて作
製した。この溶液中に上述の酸化チタン膜3に作製した
高分子化合物8を約2時間浸すことにより、高分子化合
物8中に酸化還元性電解液を染み込ませて高分子電解質
を作製した。
Next, an oxidation-reduction electrolyte solution for impregnating the polymer compound 8 is prepared. The oxidation-reduction electrolyte solution 9 was prepared by dissolving lithium iodide at a concentration of 0.5 mol / l and iodine at a concentration of 0.05 mol / l using PC as a solvent. The polymer compound 8 prepared on the titanium oxide film 3 was immersed in the solution for about 2 hours, so that the polymer compound 8 was impregnated with the oxidation-reduction electrolyte to prepare a polymer electrolyte.

【0047】その後、白金膜12を具備した導電性基板
13を設置し、エポキシ系の封止剤11にて周囲を封止
する。
Thereafter, a conductive substrate 13 provided with a platinum film 12 is provided, and the periphery is sealed with an epoxy-based sealant 11.

【0048】上述した方法で作製した高分子電解質のイ
オン伝導率を測定した結果、高分子化合物8に浸透させ
る酸化還元性電解液のイオン伝導率が7.2×10
-3[S/cm](25℃)であるのに対して、高分子電
解質のイオン伝導率は7.0×10-3[S/cm](2
5℃)であり、ほぼ同等なイオン伝導率を示した。この
ことより、上述の高分子電解質を使用して色素増感型太
陽電池を作製すると液体と同等な変換効率を有する色素
増感型太陽電池が作製できる。実際に色素増感型太陽電
池を作製すると、短絡電流が7.82[mA/c
2]、開放電圧が0.622[V]、フィルファクタ
ーが0.378、変換効率が6.2[%](測定条件A
M−1.5)の性能を有する色素増感型太陽電池が得ら
れ、液体電解質を使用した場合とほぼ同等な性能を有す
るものが得られる。 (実施例2)高分子電解質を用いた色素増感型太陽電池
の作製方法について、実施例1に準じて作製した。
As a result of measuring the ionic conductivity of the polymer electrolyte prepared by the above-described method, the ionic conductivity of the redox electrolyte solution impregnated into the polymer compound 8 was 7.2 × 10 5
−3 [S / cm] (25 ° C.), whereas the ionic conductivity of the polymer electrolyte is 7.0 × 10 −3 [S / cm] (2
5 ° C.), showing almost the same ionic conductivity. Accordingly, when a dye-sensitized solar cell is manufactured using the above-described polymer electrolyte, a dye-sensitized solar cell having a conversion efficiency equivalent to that of a liquid can be manufactured. When a dye-sensitized solar cell is actually manufactured, the short-circuit current becomes 7.82 [mA / c].
m 2 ], open-circuit voltage is 0.622 [V], fill factor is 0.378, conversion efficiency is 6.2 [%] (measurement condition A
A dye-sensitized solar cell having the performance of (M-1.5) is obtained, and a solar cell having substantially the same performance as that obtained when a liquid electrolyte is used is obtained. Example 2 A method for manufacturing a dye-sensitized solar cell using a polymer electrolyte was manufactured according to Example 1.

【0049】高分子化合物8に酸化還元性電解液を浸透
させる場合、50℃の浸透温度で1時間浸透させること
により、高分子電解質のイオン伝導率は7.1×10-3
[S/cm]となり、短絡電流が8.56[mA/cm
2]、開放電圧が0.61[V]、フィルファクターが
0.367、変換効率が7.0[%](測定条件:AM
−1.5)の性能を有し、液体電解質を使用した場合と
ほぼ同等な性能を有する色素増感型太陽電池が得られ、
実施例1より浸透時間を短く設定して色素増感型太陽電
池を作製することができる。
When the redox electrolytic solution is permeated into the polymer compound 8, the permeation is performed for 1 hour at a permeation temperature of 50 ° C., so that the ionic conductivity of the polymer electrolyte is 7.1 × 10 −3.
[S / cm] and the short-circuit current is 8.56 [mA / cm].
2 ], an open-circuit voltage of 0.61 [V], a fill factor of 0.367, and a conversion efficiency of 7.0 [%] (measurement conditions: AM
-1.5), a dye-sensitized solar cell having substantially the same performance as that obtained by using a liquid electrolyte can be obtained,
A dye-sensitized solar cell can be manufactured by setting the permeation time shorter than in Example 1.

【0050】以下の実施例3〜実施例6には、一般式
(I)で表されるモノマー単位を変えることにより高分
子化合物8を作製し、その他の行程については、実施例
2と同様に行い色素増感型太陽電池を作製した。その結
果を表1に示す。 (実施例3)一般式(I)で表されるモノマー単位に
1,4−ブタンジオールジアクリレートを使用した。 (実施例4)一般式(I)で表されるモノマー単位にジ
メタクリル酸エチレングリコールを使用した。 (実施例5)一般式(I)で表されるモノマー単位にジ
メタクリル酸トリエチレングリコールを使用した。 (実施例6)一般式(I)で表されるモノマー単位にト
リメタクリル酸トリメチロールプロパンを使用した。
In the following Examples 3 to 6, a polymer compound 8 was prepared by changing the monomer unit represented by the general formula (I), and the other steps were the same as in Example 2. Then, a dye-sensitized solar cell was manufactured. Table 1 shows the results. Example 3 1,4-butanediol diacrylate was used as a monomer unit represented by the general formula (I). Example 4 Ethylene glycol dimethacrylate was used as a monomer unit represented by the general formula (I). Example 5 Triethylene glycol dimethacrylate was used as a monomer unit represented by the general formula (I). (Example 6) Trimethylolpropane trimethacrylate was used as a monomer unit represented by the general formula (I).

【0051】[0051]

【表1】 [Table 1]

【0052】モノマー単位を変えることにより、色素増
感型太陽電池の変換効率に変化が見られ、ビニル基を3
つ有するトリメタクリル酸トリメチロールプロパンがよ
り高い変換効率が得られた。また、モノマー単位の側鎖
が長いほど変換効率が高い値を示すことが判明した。
By changing the monomer unit, a change in the conversion efficiency of the dye-sensitized solar cell was observed.
Higher conversion efficiency was obtained with trimethylolpropane trimethacrylate. It was also found that the longer the side chain of the monomer unit, the higher the conversion efficiency.

【0053】高分子化合物8は、一般式(I)で表され
るモノマー単位と(メタ)アクリレート系モノマー単位
を共重合させることにより作製することができる。以下
の実施例7〜実施例14には、上記の組み合わせにより
高分子化合物8を作製し、その他の行程については、実
施例2と同様に行い色素増感型太陽電池を作製した。そ
の結果を表2に示す。なお、一般式(I)のモノマー単
位と(メタ)アクリレート系モノマー単位の混合比につ
いては表2に記載している。 (実施例7)一般式(I)で表されるモノマー単位に
1,4−ブタンジオールジアクリレート、アクリレート
系モノマー単位にアクリル酸イソブチルを使用した。 (実施例8)一般式(I)で表されるモノマー単位に
1,4−ブタンジオールジアクリレート、アクリレート
系モノマー単位にアクリル酸3−メトキシブチルを使用
した。 (実施例9)一般式(I)で表されるモノマー単位に
1,4−ブタンジオールジアクリレート、アクリレート
系モノマー単位にアクリル酸セチルを使用した。 (実施例10)一般式(I)で表されるモノマー単位に
1,4−ブタンジオールジアクリレート、アクリレート
系モノマー単位にアクリル酸ラウリルを使用した。 (実施例11)一般式(I)で表されるモノマー単位に
ジメタクリル酸エチレングリコール、メタクリレート系
モノマー単位にメタクリル酸メチルを使用した。 (実施例12)一般式(I)で表されるモノマー単位に
ジメタクリル酸エチレングリコール、メタクリレート系
モノマー単位にメタクリル酸エチルを使用した。 (実施例13)一般式(I)で表されるモノマー単位に
ジメタクリル酸エチレングリコール、メタクリレート系
モノマー単位にメタクリル酸ラウリルを使用した。 (実施例14)一般式(I)で表されるモノマー単位に
ジメタクリル酸エチレングリコール、メタクリレート系
モノマー単位にメタクリル酸ステアリルを使用した。
The polymer compound 8 can be produced by copolymerizing the monomer unit represented by the general formula (I) and a (meth) acrylate monomer unit. In the following Examples 7 to 14, a polymer compound 8 was produced by the above combination, and the other steps were performed in the same manner as in Example 2 to produce a dye-sensitized solar cell. Table 2 shows the results. Table 2 shows the mixing ratio between the monomer unit of the general formula (I) and the (meth) acrylate-based monomer unit. Example 7 1,4-butanediol diacrylate was used for the monomer unit represented by the general formula (I), and isobutyl acrylate was used for the acrylate monomer unit. (Example 8) 1,4-butanediol diacrylate was used for the monomer unit represented by the general formula (I), and 3-methoxybutyl acrylate was used for the acrylate monomer unit. Example 9 1,4-butanediol diacrylate was used for the monomer unit represented by the general formula (I), and cetyl acrylate was used for the acrylate monomer unit. (Example 10) 1,4-butanediol diacrylate was used for the monomer unit represented by the general formula (I), and lauryl acrylate was used for the acrylate monomer unit. (Example 11) Ethylene glycol dimethacrylate was used for the monomer unit represented by the general formula (I), and methyl methacrylate was used for the methacrylate monomer unit. (Example 12) Ethylene glycol dimethacrylate was used for the monomer unit represented by the general formula (I), and ethyl methacrylate was used for the methacrylate monomer unit. (Example 13) Ethylene glycol dimethacrylate was used as a monomer unit represented by the general formula (I), and lauryl methacrylate was used as a methacrylate monomer unit. (Example 14) Ethylene glycol dimethacrylate was used for the monomer unit represented by the general formula (I), and stearyl methacrylate was used for the methacrylate monomer unit.

【0054】[0054]

【表2】 [Table 2]

【0055】一般式(I)と共重合させるモノマー単位
は、(メタ)アクリレート系のモノマー単位の側鎖が長
いほど高い変換効率が得られることが判明した。
It has been found that, as for the monomer unit to be copolymerized with the general formula (I), the longer the side chain of the (meth) acrylate monomer unit, the higher the conversion efficiency can be obtained.

【0056】[0056]

【発明の効果】本発明によれば、酸化還元性電解液と同
等レベルのイオン伝導率を有する高分子電解質が作製で
きるため、酸化還元性電解液を使用した色素増感型太陽
電池と同等の性能を有することができ、高性能な高分子
電解質を用いた色素増感型太陽電池を提供するものであ
る。
According to the present invention, a polymer electrolyte having the same level of ionic conductivity as an oxidation-reduction electrolyte can be produced, and the same effect as a dye-sensitized solar cell using an oxidation-reduction electrolyte can be obtained. An object of the present invention is to provide a dye-sensitized solar cell that has high performance and uses a high-performance polymer electrolyte.

【0057】また、種々の組み合わせのモノマー単位を
多孔性半導体層に含浸させ、モノマー単位を多孔性半導
体層内で重合させ高分子化合物を形成させた後、高分子
化合物内に酸化還元性電解液を注入することにより、所
定の組成濃度で酸化還元性電解液を高分子電解質内に浸
透させることができ、より安定な色素増感型太陽電池を
作製することができる。
Further, various combinations of the monomer units are impregnated in the porous semiconductor layer, and the monomer units are polymerized in the porous semiconductor layer to form a polymer compound. By injecting, a redox electrolyte solution can be permeated into the polymer electrolyte at a predetermined composition concentration, and a more stable dye-sensitized solar cell can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における高分子電解質を用いた色素増感
型太陽電池の作製手順を追った色素増感型太陽電池の断
面概要図である。
FIG. 1 is a schematic cross-sectional view of a dye-sensitized solar cell following a procedure for manufacturing a dye-sensitized solar cell using a polymer electrolyte according to the present invention.

【図2】室温で浸透させた高分子電解質のイオン伝導率
の変化について示した図である。
FIG. 2 is a diagram showing a change in ionic conductivity of a polymer electrolyte that has been permeated at room temperature.

【図3】室温と50℃で浸透させた高分子電解質のイオ
ン伝導率の変化について示した図である。
FIG. 3 is a diagram showing a change in ionic conductivity of a polymer electrolyte permeated at room temperature and 50 ° C.

【図4】高分子電解質を使用した色素増感型太陽電池の
層構成を示す要部の断面概略図である。
FIG. 4 is a schematic sectional view of a main part showing a layer configuration of a dye-sensitized solar cell using a polymer electrolyte.

【図5】色素増感型太陽電池の層構成を示す要部の断面
概略図である。
FIG. 5 is a schematic sectional view of a main part showing a layer configuration of a dye-sensitized solar cell.

【符号の説明】[Explanation of symbols]

1 透明基板 2 透明電導膜 3 酸化チタン膜 4 セパレーター 5 PETフィルム 6 押さえ板 7 高分子モノマー 8 高分子化合物 9 酸化還元性電解液 10 容器 11 封止剤 12 白金膜 13 導電性基板 41 透明支持体 42 透明導電体 43 半導体電極 44 高分子電解質 45 対極 46 白金 47 エポキシ樹脂 51 透明支持体 52 透明導電体 53 半導体電極 54 酸化還元性電解液 55 対極 56 白金 57 エポキシ樹脂 DESCRIPTION OF SYMBOLS 1 Transparent substrate 2 Transparent conductive film 3 Titanium oxide film 4 Separator 5 PET film 6 Press plate 7 Polymer monomer 8 Polymer compound 9 Redox electrolyte 10 Container 11 Sealant 12 Platinum film 13 Conductive substrate 41 Transparent support 42 Transparent conductor 43 Semiconductor electrode 44 Polymer electrolyte 45 Counter electrode 46 Platinum 47 Epoxy resin 51 Transparent support 52 Transparent conductor 53 Semiconductor electrode 54 Redox electrolyte 55 Counter electrode 56 Platinum 57 Epoxy resin

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 透明基板の表面に形成された透明導電膜
と導電性基板との間に色素が吸着された多孔性半導体層
と酸化還元性電解質を有する色素増感型太陽電池におい
て、酸化還元性電解質が3次元的に架橋した高分子化合
物に保持されていることを特徴とする色素増感型太陽電
池。
1. A dye-sensitized solar cell having a porous semiconductor layer in which a dye is adsorbed between a transparent conductive film formed on the surface of a transparent substrate and a conductive substrate, and a redox electrolyte. A dye-sensitized solar cell characterized in that the ionic electrolyte is held by a three-dimensionally crosslinked polymer compound.
【請求項2】 上記高分子化合物が少なくとも一般式
(I); 【化1】 で表されるモノマー単位を重合して得られたものである
ことを特徴とする請求項1に記載の色素増感型太陽電
池。
2. The polymer compound according to claim 1, wherein the polymer compound has at least a general formula (I): The dye-sensitized solar cell according to claim 1, which is obtained by polymerizing a monomer unit represented by the formula:
【請求項3】 上記一般式(I)で示されるモノマー単
位の残基が少なくともポリエチレンオキサイド基とポリ
プロピレンオキサイト基が構成要素となることを特徴と
する請求項2に記載の色素増感型太陽電池。
3. The dye-sensitized solar cell according to claim 2, wherein a residue of the monomer unit represented by the general formula (I) is at least a polyethylene oxide group and a polypropylene oxide group. battery.
【請求項4】 上記高分子化合物が一般式(I); 【化2】 とメタクリレート系モノマー単位又はアクリレート系モ
ノマー単位とを共重合して得られたものであることを特
徴とする請求項1に記載の色素増感型太陽電池。
4. The polymer compound of the general formula (I): The dye-sensitized solar cell according to claim 1, wherein the dye-sensitized solar cell is obtained by copolymerizing a methacrylate monomer unit or an acrylate monomer unit.
【請求項5】 上記多孔性半導体層が酸化チタンである
ことを特徴とする請求項1〜4のいずれか1つに記載の
色素増感型太陽電池。
5. The dye-sensitized solar cell according to claim 1, wherein said porous semiconductor layer is titanium oxide.
【請求項6】 酸化還元種がヨウ素とヨウ素化合物とか
らなることを特徴とする請求項1〜5のいずれか1つに
記載の色素増感型太陽電池。
6. The dye-sensitized solar cell according to claim 1, wherein the redox species comprises iodine and an iodine compound.
【請求項7】 モノマー単位を多孔性半導体層に含浸さ
せ、少なくとも一般式(I); 【化3】 が構成要素の一つであるモノマー単位を重合させて多孔
性半導体層内に高分子化合物を形成した後、高分子化合
物に酸化還元性電解液を浸透注入し、高分子電解質を作
製することを特徴とする色素増感型太陽電池の作製方
法。
7. The porous semiconductor layer is impregnated with a monomer unit by at least a compound represented by the general formula (I): After polymerizing a monomer unit, which is one of the constituent elements, to form a polymer compound in the porous semiconductor layer, it is necessary to inject an oxidation-reduction electrolyte solution into the polymer compound to produce a polymer electrolyte. Characteristic method for producing a dye-sensitized solar cell.
【請求項8】 上記高分子化合物に酸化還元性電解液を
浸透注入する作業を加熱下で行うことを特徴とする請求
項7記載の色素増感型太陽電池の作製方法。
8. The method for producing a dye-sensitized solar cell according to claim 7, wherein the operation of permeating and injecting a redox electrolytic solution into the polymer compound is performed under heating.
【請求項9】 真空状態下の多孔質半導体層にモノマー
溶液を注入することにより、多孔質半導体層にモノマー
溶液を含浸させることを特徴とする請求項7又は8に記
載の色素増感型太陽電池の作製方法。
9. The dye-sensitized solar cell according to claim 7, wherein the porous semiconductor layer is impregnated with the monomer solution by injecting the monomer solution into the porous semiconductor layer under a vacuum state. Method for manufacturing battery.
【請求項10】 上記モノマー溶液の溶媒として、少な
くともエチレンカーボネート又はプロピレンカーボネー
トが構成要素となることを特徴とする請求項9に記載の
色素増感型太陽電池の作製方法。
10. The method for producing a dye-sensitized solar cell according to claim 9, wherein at least ethylene carbonate or propylene carbonate is a component of the solvent of the monomer solution.
JP2000016672A 2000-01-26 2000-01-26 Dye-sensitized solar cell using polymer electrolyte and method for producing the same Expired - Fee Related JP3982968B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000016672A JP3982968B2 (en) 2000-01-26 2000-01-26 Dye-sensitized solar cell using polymer electrolyte and method for producing the same
US09/768,809 US6479745B2 (en) 2000-01-26 2001-01-25 Dye-sensitized solar cell and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000016672A JP3982968B2 (en) 2000-01-26 2000-01-26 Dye-sensitized solar cell using polymer electrolyte and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001210390A true JP2001210390A (en) 2001-08-03
JP3982968B2 JP3982968B2 (en) 2007-09-26

Family

ID=18543774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000016672A Expired - Fee Related JP3982968B2 (en) 2000-01-26 2000-01-26 Dye-sensitized solar cell using polymer electrolyte and method for producing the same

Country Status (1)

Country Link
JP (1) JP3982968B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100433370C (en) * 2004-08-04 2008-11-12 韩国电子通信研究院 Piling type modular for dye sensitized solar cell
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
WO2011152318A1 (en) 2010-06-02 2011-12-08 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, and dye-sensitized solar cell
JP2012053984A (en) * 2010-08-03 2012-03-15 Fujifilm Corp Photoelectric converter, photoelectrochemical cell, and manufacturing methods of photoelectric converter and photoelectrochemical cell
WO2013088898A1 (en) 2011-12-15 2013-06-20 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye solution, and compound
WO2013118709A1 (en) 2012-02-08 2013-08-15 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element, and dye-sensitized solar cell using photoelectric conversion element
WO2013137221A1 (en) 2012-03-16 2013-09-19 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye adsorption liquid composition for dye-sensitized solar cell, semiconductor electrode for dye-sensitized solar cell, and method for producing dye-sensitized solar cell
WO2014050527A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Photoelectric conversion element and dye-sensitized solar cell
WO2014050578A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, and dye solution made by dissolving metal complex dye
WO2014050528A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Photoelectric conversion element and dye-sensitized solar cell
WO2014050911A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye solution, and dye-adsorbed electrode
WO2014077356A1 (en) 2012-11-16 2014-05-22 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, dye-adsorbed electrode, and method for manufacturing dye-sensitized solar cell
JP2014514707A (en) * 2011-04-04 2014-06-19 ポステック アカデミー‐インダストリー ファウンデーション Metal oxide semiconductor electrode formed with porous thin film, dye-sensitized solar cell using the same, and method for producing the same
WO2014098045A1 (en) 2012-12-17 2014-06-26 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, dye-absorbed electrode, and method for manufacturing dye-sensitized solar cell
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell
WO2014157005A1 (en) 2013-03-25 2014-10-02 富士フイルム株式会社 Metal-complex dye, photoelectric conversion element, dye-sensitized solar cell, and dye solution containing metal-complex dye
WO2018061983A1 (en) 2016-09-29 2018-04-05 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, and oxide semiconductor electrode
WO2018150760A1 (en) 2017-02-17 2018-08-23 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye composition, and oxide semiconductor electrode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11126917A (en) * 1997-10-23 1999-05-11 Fuji Photo Film Co Ltd Optoelectric conversion element and light-reproducing type photo electrochemical battery
JP2001028276A (en) * 1999-04-14 2001-01-30 Nippon Kayaku Co Ltd Manufacture of polyelectrolyte and photoelectric transducer
JP2001085075A (en) * 1999-09-10 2001-03-30 Hitachi Maxell Ltd Photoelectric transducer and manufacture therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11126917A (en) * 1997-10-23 1999-05-11 Fuji Photo Film Co Ltd Optoelectric conversion element and light-reproducing type photo electrochemical battery
JP2001028276A (en) * 1999-04-14 2001-01-30 Nippon Kayaku Co Ltd Manufacture of polyelectrolyte and photoelectric transducer
JP2001085075A (en) * 1999-09-10 2001-03-30 Hitachi Maxell Ltd Photoelectric transducer and manufacture therefor

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100433370C (en) * 2004-08-04 2008-11-12 韩国电子通信研究院 Piling type modular for dye sensitized solar cell
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2845882A2 (en) 2008-10-29 2015-03-11 Fujifilm Corporation Dye, Photoelectric Conversion Element and Photoelectrochemical Cell
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
WO2011152318A1 (en) 2010-06-02 2011-12-08 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, and dye-sensitized solar cell
JP2012053984A (en) * 2010-08-03 2012-03-15 Fujifilm Corp Photoelectric converter, photoelectrochemical cell, and manufacturing methods of photoelectric converter and photoelectrochemical cell
JP2014514707A (en) * 2011-04-04 2014-06-19 ポステック アカデミー‐インダストリー ファウンデーション Metal oxide semiconductor electrode formed with porous thin film, dye-sensitized solar cell using the same, and method for producing the same
WO2013088898A1 (en) 2011-12-15 2013-06-20 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye solution, and compound
WO2013118709A1 (en) 2012-02-08 2013-08-15 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element, and dye-sensitized solar cell using photoelectric conversion element
WO2013137221A1 (en) 2012-03-16 2013-09-19 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye adsorption liquid composition for dye-sensitized solar cell, semiconductor electrode for dye-sensitized solar cell, and method for producing dye-sensitized solar cell
WO2014050578A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, and dye solution made by dissolving metal complex dye
WO2014050911A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye solution, and dye-adsorbed electrode
WO2014050528A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Photoelectric conversion element and dye-sensitized solar cell
WO2014050527A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Photoelectric conversion element and dye-sensitized solar cell
WO2014077356A1 (en) 2012-11-16 2014-05-22 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, dye-adsorbed electrode, and method for manufacturing dye-sensitized solar cell
WO2014098045A1 (en) 2012-12-17 2014-06-26 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, dye-absorbed electrode, and method for manufacturing dye-sensitized solar cell
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell
WO2014157005A1 (en) 2013-03-25 2014-10-02 富士フイルム株式会社 Metal-complex dye, photoelectric conversion element, dye-sensitized solar cell, and dye solution containing metal-complex dye
WO2018061983A1 (en) 2016-09-29 2018-04-05 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, and oxide semiconductor electrode
WO2018150760A1 (en) 2017-02-17 2018-08-23 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye composition, and oxide semiconductor electrode

Also Published As

Publication number Publication date
JP3982968B2 (en) 2007-09-26

Similar Documents

Publication Publication Date Title
JP3982968B2 (en) Dye-sensitized solar cell using polymer electrolyte and method for producing the same
Fang et al. Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell
US6479745B2 (en) Dye-sensitized solar cell and method of manufacturing the same
JP4674435B2 (en) Photoelectric conversion element
Wang et al. Exploitation of ionic liquid electrolyte for dye-sensitized solar cells by molecular modification of organic-dye sensitizers
JP4635473B2 (en) Method for manufacturing photoelectric conversion element and method for manufacturing semiconductor electrode
WO2005112184A1 (en) Photoelectric converter and transparent conductive substrate used therein
US20100255632A1 (en) Photoelectric conversion device, its manufacturing method, electronic apparatus, its manufacturing method, semiconductor layer, and its manufacturing method
JPH0927352A (en) Porous material-high polymer solid electrolyte complex, its manufacture, and photoelectric conversion element using it
JP2004214129A (en) Photoelectric conversion element, its manufacturing method, electronic device, and its manufacturing method
JP2006324247A (en) Polymer electrolyte solution, composition thereof, and dye-sensitized solar cell and method of manufacturing same
JP4312991B2 (en) Method for producing dye-sensitized solar cell
JP2006302530A (en) Dye-sensitized solar cell and its manufacturing method
JP2004335366A (en) Dye-sensitized solar cell
JP4561073B2 (en) Photoelectric conversion element and electronic device
JP2004319130A (en) Manufacturing method of photoelectric transfer device, photoelectric transfer element, manufacturing method of electronic device, electronic device and forming method of semiconductor particulate layer and laminate structure
JP4805442B2 (en) Dye-sensitized solar cell
Park et al. Fabrication of hole-patterned TiO2 photoelectrodes for solid-state dye-sensitized solar cells
JP2004319131A (en) Manufacturing method of photoelectric transfer element, photoelectric transfer element, manufacturing method of electronic device, electronic device and forming method of metal membrane and laminate structure
JP4344120B2 (en) Dye-sensitized solar cell
JP4050535B2 (en) Method for producing dye-sensitized solar cell
JP2002184477A (en) Optical semiconductor electrode, its method of manufacture, and photoelectric conversion element using the same
JP2010177197A (en) Method of manufacturing dye-sensitized photoelectric conversion element
JP2005268107A (en) Dye-sensitized solar cell and its manufacturing method
JP2005116301A (en) Photoelectric conversion element, its manufacturing method, electronic equipment, its manufacturing method, electrode, and its manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050928

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees