JP4264179B2 - Low carbon steel continuous cast slab with small austenite grains during heating - Google Patents

Low carbon steel continuous cast slab with small austenite grains during heating Download PDF

Info

Publication number
JP4264179B2
JP4264179B2 JP2000068211A JP2000068211A JP4264179B2 JP 4264179 B2 JP4264179 B2 JP 4264179B2 JP 2000068211 A JP2000068211 A JP 2000068211A JP 2000068211 A JP2000068211 A JP 2000068211A JP 4264179 B2 JP4264179 B2 JP 4264179B2
Authority
JP
Japan
Prior art keywords
amount
effective
steel
tin
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000068211A
Other languages
Japanese (ja)
Other versions
JP2001254139A (en
Inventor
明彦 児島
好男 寺田
明人 清瀬
龍治 植森
淳彦 吉江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000068211A priority Critical patent/JP4264179B2/en
Publication of JP2001254139A publication Critical patent/JP2001254139A/en
Application granted granted Critical
Publication of JP4264179B2 publication Critical patent/JP4264179B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は鉄骨、橋梁、船舶、ラインパイプ、建設機械、海洋構造物、タンク、などの各種溶接構造物に用いられる厚鋼板やH形鋼等の素材である連続鋳造鋳片に係るものである。
【0002】
【従来の技術】
従来、鉄骨、橋梁、船舶、ラインパイプ、建設機械、海洋構造物、タンク、などの各種溶接構造物に用いられる厚鋼板やH形鋼等の素材としてTi添加鋼鋳片が知られている。
【0003】
例えば特公昭56−21809号公報や特公昭56−50782号公報で提案されているTi添加鋼鋳片は、加熱時のオーステナイト(γ)粒成長がTiNによるピン止めによって抑制されるため、熱間圧延を開始する前の初期γ粒が小さくなり、熱間圧延によって製造された厚鋼板の母材金属組織が効果的に微細化されて強度、靭性が向上する。しかしながら、上記の二つの発明に示されておいるように、TiNのγ粒成長抑制効果は1150℃あたりから弱まりはじめ、さらに高温まで加熱するとγ粒は急速に粗大化してしまう。例えば1200℃の加熱γ粒はASTM粒度番号で3以下の粗粒が出現してくる。このようなことから、上記の二つの発明ではTi添加鋼鋳片の加熱温度の上限を1150℃に制限している。
【0004】
厚鋼板やH形鋼の材質を向上させる目的から微量のNbを添加することは広く行われている。このとき、加熱時に溶体化したNbが有効に作用する。Nb添加鋼の鋳片加熱温度を高めることは、Nb炭窒化物の溶体化促進を通じてNbの効果(圧延時のγ再結晶抑制、変態時の焼入性向上、変態後の析出強化、など)を高める。例えばK.J.IrvineらはNb炭窒化物の平衡溶解度積として(5)式を提示している(J. Iron Steel Inst., 205(1967), 161.)。
log10[Nb][C+12N/14]=−6770/T+2.26・ ・ ・(5)
【0005】
ここで、T:絶対温度(K)、Nb、C、N:重量%、である。(5)式に基づくと、例えば0.1%C−0.005%N−0.05%Nb鋼のNb炭窒化物を完全に溶体化させるには1217℃に加熱しなければならないことになる。しかしながら、上述した二つの例からもわかるように、Ti添加鋼の鋳片加熱温度の上限はγ粒成長抑制の観点から1150℃付近に規制されており、Nbの溶体化が不十分でNbが有効に利用できていないのが実状である。C量、N量、Nb量が高いほど(5)式に基づいてNb炭窒化物は溶体化しにくいため、鋳片加熱温度の高温化が強く望まれる。
【0006】
製品板厚が大きくて熱間圧延による加工量が少ない場合や、より高い製品材質を要求される場合は、たとえ同じ鋼成分でも鋳片加熱温度を積極的に低めてγ粒をより細粒に保つ努力がなされている。このように、鋼成分、熱間加工量、要求材質レベルなどに応じて鋳片加熱時のγ粒径を適当に細粒化するためには、鋼種ごとに異なる鋳片加熱条件(加熱炉温度、鋳片材炉時間)を設定する必要がある。大量生産現場においては、製造する鋼種が変わるたびに長い時間と多大なエネルギーを浪費して鋳片加熱条件を設定変更したり、あるいは、鋳片加熱条件が類似する鋼種が集まるまで製造を待機するなど、製造コストや製造納期の観点から大きな問題となっている。
【0007】
【発明が解決しようとする課題】
本発明の課題は、種々の溶接構造物に使用される厚鋼板やH形鋼等の素材となる低炭素鋼連続鋳造鋳片について、加熱時のγ粒成長抑制力を格段に高めることで、1150〜1300℃に30〜90分保持したときのγ粒を平均直径で100μm以下に保つことである。本発明によって鋳片加熱温度の高温化が可能になると、以下の三つの利点を享受できる。
【0008】
(1)より高温での圧延が可能となり、圧延機の負荷が軽減するとともに圧延形状が向上する。
【0009】
(2)Nbをより有効に利用することが可能となり
・厚鋼板やH形鋼の製品材質が向上する。
・制御圧延における累積圧下量の低減や圧延温度の高温化など、制御圧延の負荷が軽減され、圧延コストが低減できる。
【0010】
(3)種々の鋳片加熱条件を高温加熱側へ集約化することが可能となり、加熱コストの低減と製造納期の短縮がはかれる。
【0011】
【課題を解決するための手段】
本発明は、Ti添加鋼へMgを含有させることで鋳片加熱時のγ粒成長抑制力が著しく向上することを知見し、この知見に基づいて上記課題を解決したもので、その発明の要旨は、質量%で、
C:0.02〜0.2%、
Si:0.6%以下、
Mn:0.3〜2%、
P:0.02%以下、
S:0.01%以下、
Al:0.001〜0.05%、
Mg:0.0003〜0.005%、
Ti:0.01〜0.03%、
N:0.007〜0.015%、
O:0.001〜0.005%
を含有し、さらに必要に応じて
Cu:0.1〜1.5%、
Ni:0.1〜5%
Cr:0.05〜1%、
Nb:0.005〜0.15%、
V:0.005〜0.1%、
B:0.0003〜0.003%、
Ca:0.0005〜0.004%、
REM:0.0005〜0.03%、
Zr:0.0005〜0.03%
の一種以上を含有し、残部が鉄および不可避的不純物によって構成され、かつ質量%を用いて下記の(6)式で計算される有効O量によって(2)式または(3)式から求められる有効Ti量とN量との比率(有効Ti量/N量)が1.5〜3である、加熱時のオーステナイト粒が小さいことを特徴とする連続鋳造鋳片。
有効O量=O―0.40Ca−0.66Mg−0.17REM
−0.18Zr−0.89Al ・ ・ ・(6)
有効O量≧0の場合、有効Ti量=Ti−2×有効O量 ・ ・ ・(2)
有効O量<0の場合、有効Ti量=Ti量 ・ ・ ・(3)
【0012】
【発明の実施の形態】
発明者らは、Ti添加鋼へMgを含有させることで鋳片加熱時のγ粒成長抑制力が著しく向上することを発見した。第1図は連続鋳造鋳片を5〜10℃/分の昇温速度で加熱して最高加熱温度で60分保持したときの平均γ粒径を示す。高温に加熱されてピン止め力が低下してくると、ピン止めが外れた部分のγ粒が異常粒成長をきたし、混粒となって平均粒径は100μmを超えるようになる。Ti添加鋼に比べてTi−Mg添加鋼はより高い温度までγ粒成長が抑制されていることがわかる。Ti−Mg添加によってγ粒成長抑制力が向上する理由は、Mgの効果によって鋳片中にTiNが微細に数多く析出するためである。これらのTiNの一部は0.01〜0.1μmのMg含有酸化物を析出核として微細に複合析出しており、残りのTiNは地鉄中に微細に単独析出している。Mgは非常に強力な脱酸元素であり、酸素との親和力はTiやAlなどより格段に強い。添加されたMgは上述の超微細酸化物を形成すると同時に、ミクロンサイズの粗大な酸化物を形成する。粗大酸化物がMgを含有するとTiNがこれらの粗大酸化物上に析出しにくくなり、その反動としてTiNは地鉄へ追いやられて従来よりも微細に析出する傾向を強める。粗に分散する粗大酸化物上にTiNが析出してしまうと、これらのTiNはγ粒成長抑制にほとんど無効である。Mg添加によって粗大酸化物上にTiNを析出させないことで、ピン止め粒子としてTiNを有効に活用できる。要約すると、Mg添加によるTiN微細分散化の機構は以下の二つである。
【0013】
▲1▼超微細なMg含有酸化物を核として複合析出TiNが微細に分散する。
【0014】
▲2▼粗大なMg含有酸化物にはじかれて地鉄中に単独析出TiNが微細に分散する。
【0015】
図1に示すTi−Mg添加鋼の中でもγ粒成長抑制力にばらつきが認められる。そこで、γ粒成長をピン止めするTiN粒子を構成するTi量とN量に着目し、鋭意検討した結果、第2図に示すようにTi−Mg添加鋼の平均γ粒径が100μmを超える温度(つまり、ピン止め力が弱まって異常粒成長が発生する温度)は、有効Ti量とN量の比に大きく依存することが明らかになった。ここで、有効Ti量は下記の(6)式で表される有効O量を介して(2)式あるいは(3)式で計算される。
【0016】
有効O量=O―0.40Ca−0.66Mg−0.17REM−0.18Zr−0.89Al ・ ・ ・(6)
有効O量≧0の場合、有効Ti量=Ti−2×有効O量 ・ ・ ・(2)
有効O量<0の場合、有効Ti量=Ti量 ・ ・ ・(3)
【0017】
鋼中の酸素はTiよりも強力な脱酸元素であるCa、Mg、REM、Zr、Alによって先んじて脱酸される。このときに残った酸素量を(6)式で「有効O量」と表す。有効O量が正の場合は続いてTiによる脱酸反応が生じる。(2)式は添加したTi量からTi23として脱酸に消費されたTi量を差し引いた残りのTi量を表しており、Nと結合してTiNを生成し得る。このTi量を「有効Ti量」と表す。一方、(6)式の有効O量が負の場合はTiは脱酸で消費されないから、(3)式のように添加したTi量がそのまま有効Ti量となる。第2図から有効Ti量/N量が1.5〜3の範囲で1300℃まで100μm以下の平均γ粒径を保つことができる。従って、この範囲においてMg添加効果がより有効に作用することが明らかになった。
【0018】
つぎに、化学成分の限定理由について詳細に説明する。
【0019】
Cは製品である厚鋼板やH形鋼の母材および溶接熱影響部(HAZ)の強度を確保するために0.02%以上必要である。Cが多すぎると製品の母材およびHAZの靭性や製品の溶接性を損なうので0.2%が上限である。
【0020】
Siは脱酸のために鋼に含有されるが、多すぎると製品の溶接性およびHAZ靭性が劣化するため上限を0.6%とする。本発明鋼ではAl、Ti、Mgによって脱酸が可能であるから、製品のHAZ靭性を考慮するとSiを0.3%以下にすることが望ましい。
【0021】
Mnは製品の母材およびHAZの強度と靭性の確保に不可欠であるから0.3%以上必要である。しかし、Mnが多すぎると焼入性が増加して製品の溶接性やHAZ靭性が劣化するため、Mnの上限を2%とする。
【0022】
PとSは本発明において不純物元素であり、製品の母材およびHAZの機械的性質を確保するために、それぞれ0.02%以下、0.01%以下に低減する必要がある。
【0023】
Alは脱酸を担う。AlはTiNの析出核となる0.01〜0.1μmの超微細なMg系酸化物を構成するから0.001%以上必要である。一方、Alが0.05%を超えると、アルミナ系の粗大な酸化物やそのクラスターが生成し、製品の母材とHAZの機械的性質が損なわれるため、これが上限である。
【0024】
Mgは本発明の最も重要な元素であり、根幹的な役割を担う。MgはAlおよびOと結合して0.01〜0.1μmの従来にない超微細な酸化物を形成し、TiNの析出核として機能することでTiNを微細に分散させる。このような複合形態のTiN粒子はエネルギー的に安定なので高温に加熱してもオストワルド成長しにくく、鋳片加熱時のγ粒成長を強力にピン止めすることができる。また、Mgはミクロンサイズの粗大な酸化物を形成し、粗大酸化物上にTiNが析出するのを防ぐ。その結果、TiNは地鉄へ追いやられて従来よりも微細に析出する傾向を強め、鋳片加熱時のγ粒成長を有効にピン止めする。このように、Mgは小さな酸化物と大きな酸化物を形成し、直接的あるいは間接的にTiNの微細分散化を促し、1150〜1300℃の鋳片加熱時のTiN粒子によるγ粒成長抑制力を格段に高める。このような効果を発揮するためには0.0003%以上のMgが必要であり、これが下限である。Mgを0.005%を超えて増やしてもTiNの微細分散効果は飽和するので、これ以上のMgは金属学的に何ら効果をもたらさない。Mgは蒸気圧が高くて酸化力が強い非常に活性な元素であることから、必要以上に鋼中に含有させることは製造コストの上昇を招き好ましくない。従って、Mgの上限を0.005%とする。これらのMg系酸化物と微細析出したTiNは、鋳造冷却時の変態組織(δ→γ→α)を微細化する副次的な効果もあり、鋳片加熱時のα→γ変態サイトの増加を通じて加熱γ微細化に寄与する場合もある。
【0025】
TiとNは本発明に不可欠な元素であり、γ粒成長をピン止めするTiN粒子を構成する。1150〜1300℃の鋳片加熱時に平均γ粒径を100μm未満に抑えるためには、TiとNの下限をそれぞれ0.01%、0.007%として最低限のTiN粒子個数を確保する必要がある。さらに、有効Ti量/N量を1.5〜3の範囲に制御することでMg添加効果をより有効かつ安定に引き出さねばならない。これは、TiとNのバランスをTiNの化学量論比(Ti/N=3.4)よりもN過剰に制御することで、Mg添加によるTiNの微細分散効果が促進されるからである。この範囲を外れるとMg添加効果が不安定となってピン止め力が低下する恐れがある。TiとNがそれぞれ0.03%、0.015%を超えると製品の母材およびHAZの靭性が劣化したり、鋳片の表面品質が劣化するため、これらが上限となる。
【0026】
OはMgやその他の脱酸元素と結合して0.01〜0.1μmの超微細酸化物や数μmの粗大酸化物を形成し、直接的あるいは間接的にTiNの微細分散に寄与するため、0.001%以上必要であるから、これが下限である。しかし、Oが0.005%を超えると、鋼の清浄度が低下して製品の母材およびHAZの機械的性質が劣化するため、これが上限である。
【0027】
続いて、選択元素であるCu、NiCr、Nb、V、B、Ca、REM、Zrの添加理由について説明する。
【0028】
Cu、Niは製品の溶接性とHAZ靭性に悪影響を及ぼすことなく製品母材の強度、靭性を向上させることに有効である。その効果を発揮する下限はともに0.1%である。Cuは1.5%を超えると熱間圧延時にCu割れが生じて製造が困難になり好ましくないため、これが上限である。Niは高価な元素であるので5%以上を超えると合金コストの観点から経済性を損ない好ましくないため、これが上限である。
【0029】
Crは製品の母材およびHAZの強度を向上させることに有効である。その効果を発揮する下限は0.05%である。しかし1%を超えると製品の溶接性とHAZ靭性が劣化するため、これが上限である。
【0030】
Nb、Vは加熱による溶体化を通じて製品母材の機械的性質を向上させることに有効である。その効果を発揮する下限はともに0.005%である。Nbは従来の一般的な鋳片加熱温度(≦約1150℃)では溶体化が不十分である場合が多く、必ずしも有効活用されていなかった。本発明によって1150〜1300℃の鋳片加熱が可能となれば、Nbの溶体化が促進されてNbの金属学的効果を極限まで享受できるようになり、製品材質の向上や制御圧延負荷の軽減などの大きなメリットが生まれる。しかし、Nb、Vがそれぞれ0.15%、0.1%を超えると製品の溶接性とHAZ靭性が劣化するため、これらが上限である。Nb、Vともに窒化物形成元素であり、その添加量によってはTiとの複合窒化物を形成してピン止めに寄与する場合もある。
【0031】
Bは焼き入れ性を高めて製品の母材やHAZの機械的性質を向上させることに有効である。その効果を発揮する下限が0.0003%である。しかし、0.003%を超えると製品のHAZ靭性や溶接性が劣化するため、これが上限である。
【0032】
Ca、REM、Zrは、Mnに優先して高温で硫化物を形成し、熱間圧延時に硫化物が延伸化されることを軽減し、製品の母材やHAZの機械的性質の向上に有効である。その効果を発揮する下限は全て0.0005%である。また、これらの元素は脱酸元素であり、請求項3の(4)式からもわかるように脱酸に寄与する。Ca、REM、Zrがそれぞれ0.004%、0.03%、0.03%を超えると本発明の鍵であるMg系酸化物の生成が妨害されるため、これらが上限である。ZrはTiとの複合窒化物を形成してピン止めに寄与する場合もある。
【0033】
本発明は冷却速度が大きくてTiNの微細析出に有利な連続鋳造法を基本とするが、鋳造法に特別な工夫を必要としたり、鋳片サイズや鋳片部位に特に制限をうけるものではない。また、鋳片の加熱速度については、製鉄業の厚板工場あるいはH形工場にて現在稼働している加熱炉の能力(数℃/min)において本発明は有効である。将来的に通電加熱や誘導加熱などを適用して加熱速度を高めれば本発明の効果は増大する。さらに、本発明は鋳片を鋳造後にAr3点以下に一旦冷やすことなく連続的に加熱する場合(ホットチャージ圧延)でも有効である。鋳片を熱間圧延した後に1150〜1300℃に再加熱するような熱処理を施す場合にも本発明の効果は引き継がれる。
【0034】
【実施例】
表1に連続鋳造鋳片の化学成分を、表2に有効Ti量/N量、鋳片厚み、加熱条件、加熱γ粒径を示す。加熱実験は熱サイクルシミュレーターを用いて実施した。
【0035】
【表1】

Figure 0004264179
【0036】
【表2】
Figure 0004264179
【0037】
本発明鋼である鋼1〜は適正な化学成分を有するために1150〜1300℃に30〜60分加熱したときの平均γ粒径が100μm以下であり、γ粒成長が強力に抑制されている。
【0038】
一方、比較鋼である鋼7〜13は化学成分が適正でないために1250℃および1300℃でのピン止め力が低下し、平均γ粒径は100μmを超えてしまっている。鋼7はAlが少なすぎるために超微細なMg系酸化物が十分な個数生成せず、これを核に析出するTiNが不足してピン止め力が低下した。鋼8はMgが少なすぎるために超微細なMg系酸化物が十分な個数生成せず、これを核に析出するTiNが不足した。同時に、粗大な酸化物に含まれるMg量が少なすぎるために、TiNがこれらの粗大酸化物上に析出してしまい、地鉄に析出するTiNが不足した。これらの理由で鋼8はピン止め力が低下した。鋼9はTiが少なすぎるために、鋼10はNが少なすぎるために、ともに十分な個数のTiNが生成できず、ピン止め力が低下した。鋼11と鋼12は有効Ti量/N量が適正範囲から外れているためにMg添加効果が不安定となり、ピン止め力が低下した。鋼13はOが少なすぎるためにMg系酸化物が十分な個数生成せず、ピン止め力が低下した。
【0039】
【発明の効果】
本発明によって鋳片加熱温度の高温化が可能となり、以下の三つの利点を享受できる。
【0040】
(1)より高温での圧延が可能となり、圧延機の負荷が軽減するとともに圧延形状が向上する。
【0041】
(2)Nbをより有効に利用することが可能となり
・厚鋼板やH形鋼の製品材質が向上する。
・制御圧延における累積圧下量の低減や圧延温度の高温化など、制御圧延の負荷が軽減され、圧延コストが低減できる。
【0042】
(3)種々の鋳片加熱条件を高温加熱側へ集約化することが可能となり、加熱コストの低減と製造納期の短縮がはかれる。
【図面の簡単な説明】
【図1】Ti添加鋼とTi−Mg添加鋼の鋳片加熱時のγ粒径を示す図である。
【図2】Ti−Mg添加鋼のピン止め力に及ぼす有効Ti量/N量の影響を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a continuous cast slab which is a material such as a thick steel plate or H-shaped steel used for various welded structures such as steel frames, bridges, ships, line pipes, construction machines, offshore structures, tanks, and the like. .
[0002]
[Prior art]
Conventionally, Ti-added steel slabs are known as materials such as thick steel plates and H-shaped steels used in various welded structures such as steel frames, bridges, ships, line pipes, construction machines, offshore structures, tanks, and the like.
[0003]
For example, the Ti-added steel slabs proposed in Japanese Patent Publication No. 56-21809 and Japanese Patent Publication No. 56-50782 are hot because the austenite (γ) grain growth during heating is suppressed by pinning with TiN. The initial γ grains before starting rolling are reduced, the base metal structure of the thick steel plate produced by hot rolling is effectively refined, and the strength and toughness are improved. However, as shown in the above two inventions, the effect of TiN to suppress the growth of γ grains starts to weaken from around 1150 ° C., and when heated to a higher temperature, the γ grains become coarser rapidly. For example, in the heated γ grains at 1200 ° C., coarse grains having an ASTM grain size number of 3 or less appear. For these reasons, in the above two inventions, the upper limit of the heating temperature of the Ti-added steel slab is limited to 1150 ° C.
[0004]
Addition of a small amount of Nb is widely performed for the purpose of improving the material of a thick steel plate or H-shaped steel. At this time, Nb solution-treated during heating acts effectively. Increasing the slab heating temperature of Nb-added steel is the effect of Nb through the promotion of solution of Nb carbonitride (suppression of γ recrystallization during rolling, improvement of hardenability during transformation, precipitation strengthening after transformation, etc.) To increase. For example, K.K. J. et al. Irvine et al. Have proposed equation (5) as the equilibrium solubility product of Nb carbonitride (J. Iron Steel Inst., 205 (1967), 161.).
log 10 [Nb] [C + 12N / 14] = − 6770 / T + 2.26 (5)
[0005]
Here, T: absolute temperature (K), Nb, C, N: wt%. According to the formula (5), for example, Nb carbonitride of 0.1% C-0.005% N-0.05% Nb steel must be heated to 1217 ° C. in order to completely solution. Become. However, as can be seen from the above two examples, the upper limit of the slab heating temperature of the Ti-added steel is restricted to around 1150 ° C. from the viewpoint of suppressing γ grain growth, and Nb is not sufficiently solutionized and Nb is not sufficient. The actual situation is that it cannot be used effectively. As the C content, N content, and Nb content increase, the Nb carbonitride is less likely to form a solution based on the formula (5).
[0006]
When the product thickness is large and the amount of processing by hot rolling is small, or when a higher product material is required, even with the same steel composition, the slab heating temperature is actively lowered to make the γ grains finer Efforts to keep are made. Thus, in order to appropriately refine the γ grain size during slab heating according to the steel composition, hot work amount, required material level, etc., the slab heating conditions (heating furnace temperature) that differ for each steel type are required. Slab material furnace time) must be set. At mass production sites, each time the steel grade to be manufactured changes, it takes a long time and a great deal of energy to change the slab heating conditions, or wait for production until steel grades with similar slab heating conditions gather. It is a big problem from the viewpoint of manufacturing cost and manufacturing delivery date.
[0007]
[Problems to be solved by the invention]
The subject of the present invention is to dramatically increase the γ grain growth inhibiting power during heating for low carbon steel continuous cast slabs that are materials such as thick steel plates and H-shaped steels used in various welded structures, It is to keep the γ grains at 1150 to 1300 ° C. for 30 to 90 minutes at an average diameter of 100 μm or less. When the slab heating temperature can be increased by the present invention, the following three advantages can be obtained.
[0008]
(1) Rolling at a higher temperature becomes possible, reducing the load on the rolling mill and improving the rolling shape.
[0009]
(2) Nb can be used more effectively. Product materials of thick steel plates and H-shaped steels are improved.
-The load of controlled rolling, such as the reduction of the cumulative reduction amount in the controlled rolling and the increase of the rolling temperature, is reduced, and the rolling cost can be reduced.
[0010]
(3) It is possible to consolidate various slab heating conditions to the high-temperature heating side, thereby reducing heating costs and shortening the production delivery time.
[0011]
[Means for Solving the Problems]
The present invention has been found that by adding Mg to Ti-added steel, the γ grain growth inhibiting power during slab heating is remarkably improved, and based on this knowledge, the above problems have been solved. Is mass%,
C: 0.02 to 0.2%,
Si: 0.6% or less,
Mn: 0.3-2%,
P: 0.02% or less,
S: 0.01% or less,
Al: 0.001 to 0.05%,
Mg: 0.0003 to 0.005%,
Ti: 0.01 to 0.03%,
N: 0.007 to 0.015%,
O: 0.001 to 0.005%
In addition, if necessary, Cu: 0.1 to 1.5%,
Ni: 0.1~5%,
Cr: 0.05 to 1%,
Nb: 0.005 to 0.15%,
V: 0.005 to 0.1%
B: 0.0003 to 0.003%,
Ca: 0.0005 to 0.004%,
REM: 0.0005 to 0.03%,
Zr: 0.0005 to 0.03%
And the balance is composed of iron and inevitable impurities, and is calculated from the formula (2) or (3) according to the effective O amount calculated by the following formula (6) using mass%. A continuous cast slab characterized in that the ratio of effective Ti amount to N amount (effective Ti amount / N amount) is 1.5 to 3, and austenite grains during heating are small.
Effective O amount = O−0.40Ca−0.66Mg−0.17REM
-0.18Zr-0.89Al (6)
When effective O amount ≧ 0, effective Ti amount = Ti−2 × effective O amount (2)
When effective O amount <0, effective Ti amount = Ti amount (3)
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The inventors have found that the addition of Mg to Ti-added steel significantly improves the γ grain growth inhibitory power during slab heating. FIG. 1 shows the average γ grain size when a continuous cast slab is heated at a heating rate of 5 to 10 ° C./min and held at the maximum heating temperature for 60 minutes. When the pinning force decreases due to heating to a high temperature, the γ grains in the part where the pinning is released cause abnormal grain growth, resulting in mixed grains and an average grain size exceeding 100 μm. It can be seen that Ti-Mg added steel has suppressed γ grain growth to a higher temperature than Ti-added steel. The reason why the γ grain growth suppressing power is improved by the addition of Ti—Mg is that a large amount of TiN is finely precipitated in the slab by the effect of Mg. Some of these TiNs are finely and complexly precipitated using Mg-containing oxides of 0.01 to 0.1 μm as precipitation nuclei, and the remaining TiN is finely and independently precipitated in the ground iron. Mg is a very strong deoxidizing element, and its affinity with oxygen is much stronger than Ti and Al. The added Mg forms the above-mentioned ultrafine oxide and simultaneously forms a coarse oxide having a micron size. When the coarse oxide contains Mg, TiN becomes difficult to precipitate on these coarse oxides, and as a reaction, TiN is driven to the ground iron and intensifies the tendency to precipitate finer than before. If TiN precipitates on the coarsely dispersed coarse oxide, these TiNs are almost ineffective for suppressing γ grain growth. By not depositing TiN on the coarse oxide by adding Mg, TiN can be effectively used as pinning particles. In summary, there are the following two mechanisms of TiN fine dispersion by adding Mg.
[0013]
(1) Composite precipitated TiN is finely dispersed with an ultrafine Mg-containing oxide as a nucleus.
[0014]
{Circle around (2)} Single precipitated TiN is finely dispersed in the base iron by repelling coarse Mg-containing oxides.
[0015]
Even in the Ti—Mg added steel shown in FIG. Therefore, as a result of diligent investigation focusing on the Ti amount and N amount constituting the TiN particles that pin the γ grain growth, as shown in FIG. 2, the temperature at which the average γ particle diameter of the Ti-Mg added steel exceeds 100 μm. (That is, the temperature at which abnormal grain growth occurs due to weak pinning force) was found to depend greatly on the ratio of the effective Ti content to the N content. Here, the effective Ti amount is calculated by the equation (2) or (3) through the effective O amount represented by the following equation (6).
[0016]
Effective O amount = O−0.40Ca−0.66Mg−0.17REM−0.18Zr−0.89Al (6)
When effective O amount ≧ 0, effective Ti amount = Ti−2 × effective O amount (2)
When effective O amount <0, effective Ti amount = Ti amount (3)
[0017]
Oxygen in steel is first deoxidized by Ca, Mg, REM, Zr, and Al, which are deoxidizing elements stronger than Ti. The amount of oxygen remaining at this time is expressed as “effective O amount” in the equation (6). When the effective amount of O is positive, a deoxidation reaction with Ti occurs subsequently. Equation (2) represents the remaining amount of Ti obtained by subtracting the amount of Ti consumed for deoxidation as Ti 2 O 3 from the amount of added Ti, and can combine with N to produce TiN. This Ti amount is expressed as “effective Ti amount”. On the other hand, when the effective O amount in the equation (6) is negative, Ti is not consumed by deoxidation, so the added Ti amount as in the equation (3) becomes the effective Ti amount as it is. From FIG. 2, it is possible to maintain an average γ particle size of 100 μm or less up to 1300 ° C. in the range of effective Ti amount / N amount from 1.5 to 3. Therefore, it became clear that the Mg addition effect works more effectively in this range.
[0018]
Next, the reasons for limiting chemical components will be described in detail.
[0019]
C is required to be 0.02% or more in order to ensure the strength of the base material and the weld heat affected zone (HAZ) of the thick steel plate and H-shaped steel as products. If C is too much, the base material of the product and the toughness of the HAZ and the weldability of the product are impaired, so 0.2% is the upper limit.
[0020]
Si is contained in steel for deoxidation, but if it is too much, the weldability and HAZ toughness of the product deteriorate, so the upper limit is made 0.6%. Since the steel according to the present invention can be deoxidized with Al, Ti, and Mg, it is desirable that Si is 0.3% or less in consideration of the HAZ toughness of the product.
[0021]
Since Mn is indispensable for securing the strength and toughness of the base material of the product and the HAZ, 0.3% or more is necessary. However, if there is too much Mn, the hardenability increases and the weldability and HAZ toughness of the product deteriorate, so the upper limit of Mn is made 2%.
[0022]
P and S are impurity elements in the present invention, and need to be reduced to 0.02% or less and 0.01% or less, respectively, in order to secure the mechanical properties of the base material of the product and the HAZ.
[0023]
Al is responsible for deoxidation. Since Al constitutes an ultrafine Mg-based oxide having a thickness of 0.01 to 0.1 μm and serves as a precipitation nucleus of TiN, 0.001% or more is necessary. On the other hand, if Al exceeds 0.05%, an alumina-based coarse oxide or cluster thereof is generated, and the mechanical properties of the base material of the product and the HAZ are impaired, so this is the upper limit.
[0024]
Mg is the most important element of the present invention and plays a fundamental role. Mg combines with Al and O to form an unprecedented ultrafine oxide of 0.01 to 0.1 μm, and functions as a TiN precipitation nucleus to finely disperse TiN. Such composite form of TiN particles is stable in energy, so that Ostwald growth is difficult even when heated to a high temperature, and γ grain growth during slab heating can be strongly pinned. Further, Mg forms a micron-sized coarse oxide and prevents TiN from precipitating on the coarse oxide. As a result, TiN is driven to the ground iron and strengthens the tendency to precipitate more finely than before, effectively pinning γ grain growth during slab heating. Thus, Mg forms small oxides and large oxides, and promotes the fine dispersion of TiN directly or indirectly, and suppresses the growth of γ grains by TiN particles when heating the slab at 1150 to 1300 ° C. Increase dramatically. In order to exhibit such an effect, 0.0003% or more of Mg is necessary, which is the lower limit. Even if Mg is increased beyond 0.005%, the fine dispersion effect of TiN is saturated, so that no more Mg has no effect in metallurgy. Since Mg is a very active element having a high vapor pressure and strong oxidizing power, inclusion in the steel more than necessary causes an increase in manufacturing costs and is not preferable. Therefore, the upper limit of Mg is set to 0.005%. These Mg-based oxides and finely precipitated TiN also have a secondary effect of refining the transformation structure (δ → γ → α) during casting cooling, and increase in α → γ transformation sites during slab heating. In some cases, it may contribute to heating γ refinement.
[0025]
Ti and N are indispensable elements for the present invention, and constitute TiN particles that pin the γ grain growth. In order to suppress the average γ grain size to less than 100 μm when heating the slab at 1150 to 1300 ° C., it is necessary to secure the minimum number of TiN particles by setting the lower limits of Ti and N to 0.01% and 0.007 %, respectively. is there. Furthermore, by controlling the effective Ti amount / N amount in the range of 1.5 to 3, the effect of adding Mg must be more effectively and stably extracted. This is because the fine dispersion effect of TiN due to the addition of Mg is promoted by controlling the balance between Ti and N to be more N than the stoichiometric ratio of TiN (Ti / N = 3.4). Outside this range, the Mg addition effect becomes unstable and the pinning force may be reduced. If Ti and N exceed 0.03% and 0.015%, respectively, the base material of the product and the toughness of the HAZ deteriorate, and the surface quality of the slab deteriorates.
[0026]
O combines with Mg and other deoxidizing elements to form an ultrafine oxide of 0.01 to 0.1 μm and a coarse oxide of several μm, and contributes directly or indirectly to fine dispersion of TiN. 0.001% or more is necessary, so this is the lower limit. However, if O exceeds 0.005%, the cleanliness of the steel is lowered and the base material of the product and the mechanical properties of the HAZ deteriorate, so this is the upper limit.
[0027]
Subsequently, the reason for adding Cu, Ni 2 , Cr, Nb, V, B, Ca, REM, and Zr as selective elements will be described.
[0028]
Cu and Ni are effective in improving the strength and toughness of the product base material without adversely affecting the weldability and HAZ toughness of the product. The lower limit for exerting the effect is 0.1%. If Cu exceeds 1.5%, Cu cracking occurs during hot rolling, making it difficult to manufacture, and this is the upper limit. Since Ni is an expensive element, if it exceeds 5%, it is not preferable because it is not preferable because the economical efficiency is impaired from the viewpoint of alloy cost, and this is the upper limit.
[0029]
Cr is effective in improving the strength of the base material of the product and the HAZ. The lower limit for exerting the effect is 0.05%. However , if it exceeds 1%, the weldability and HAZ toughness of the product deteriorate, so this is the upper limit.
[0030]
Nb and V are effective in improving the mechanical properties of the product base material through solutionization by heating. Both lower limits to exert the effect are 0.005%. Nb is not always effectively used because Nb often has insufficient solution at the conventional general slab heating temperature (≦ about 1150 ° C.). If slab heating at 1150 to 1300 ° C. is possible according to the present invention, the solution of Nb is promoted and the metallographic effect of Nb can be enjoyed to the utmost, improving the product material and reducing the control rolling load. A big merit such as is born. However, if Nb and V exceed 0.15% and 0.1%, respectively, the weldability and HAZ toughness of the product deteriorate, so these are the upper limits. Nb and V are both nitride-forming elements, and depending on the amount of Nb and V, a composite nitride with Ti may be formed to contribute to pinning.
[0031]
B is effective in improving the hardenability and improving the mechanical properties of the base material of the product and the HAZ. The lower limit for exerting the effect is 0.0003%. However, if it exceeds 0.003%, the HAZ toughness and weldability of the product deteriorate, so this is the upper limit.
[0032]
Ca, REM, and Zr form sulfides at a high temperature in preference to Mn, reduce the stretching of sulfides during hot rolling, and are effective in improving the mechanical properties of product base materials and HAZ It is. The lower limit for exhibiting the effect is 0.0005%. Further, these elements are deoxidizing elements and contribute to deoxidation as can be seen from the formula (4) of claim 3. If Ca, REM, and Zr exceed 0.004%, 0.03%, and 0.03%, respectively, the production of the Mg-based oxide that is the key of the present invention is hindered, so these are the upper limits. Zr may contribute to pinning by forming a composite nitride with Ti.
[0033]
Although the present invention is based on a continuous casting method that has a high cooling rate and is advantageous for fine precipitation of TiN, it does not require any special contrivance in the casting method, nor does it impose any particular restriction on the slab size or slab site. . As for the heating rate of the slab, the present invention is effective in the capacity (several degrees C / min) of the heating furnace currently operating in the steel plate factory or H-shaped factory. The effect of the present invention will increase if the heating rate is increased by applying electric heating or induction heating in the future. Further, the present invention is effective even when the slab is continuously heated after casting without being once cooled to the Ar 3 point or less (hot charge rolling). The effect of the present invention is inherited even when heat treatment is performed such that the slab is hot-rolled and then reheated to 1150 to 1300 ° C.
[0034]
【Example】
Table 1 shows chemical components of the continuous cast slab, and Table 2 shows effective Ti amount / N amount, slab thickness, heating conditions, and heated γ particle size. The heating experiment was conducted using a thermal cycle simulator.
[0035]
[Table 1]
Figure 0004264179
[0036]
[Table 2]
Figure 0004264179
[0037]
Since steels 1 to 5 which are the steels of the present invention have appropriate chemical components, the average γ grain size when heated to 1150 to 1300 ° C. for 30 to 60 minutes is 100 μm or less, and γ grain growth is strongly suppressed. Yes.
[0038]
On the other hand, steels 7 to 13, which are comparative steels, are not suitable in chemical composition, so the pinning force at 1250 ° C. and 1300 ° C. is reduced, and the average γ grain size exceeds 100 μm. Since Steel 7 has too little Al, a sufficient number of ultrafine Mg-based oxides were not generated, and TiN precipitated in the core was insufficient, resulting in a decrease in pinning force. Since Steel 8 has too little Mg, a sufficient number of ultrafine Mg-based oxides were not generated, and TiN precipitated in the nucleus was insufficient. At the same time, since the amount of Mg contained in the coarse oxide was too small, TiN was deposited on these coarse oxides, and TiN deposited on the base iron was insufficient. For these reasons, steel 8 has a reduced pinning force. Since Steel 9 has too little Ti and Steel 10 has too little N, both cannot produce a sufficient number of TiN, and the pinning force is reduced. In Steel 11 and Steel 12, since the effective Ti amount / N amount is out of the appropriate range, the effect of adding Mg becomes unstable, and the pinning force is reduced. Steel 13 had too little O, so a sufficient number of Mg-based oxides were not generated, and the pinning force was reduced.
[0039]
【The invention's effect】
The slab heating temperature can be increased by the present invention, and the following three advantages can be enjoyed.
[0040]
(1) Rolling at a higher temperature becomes possible, reducing the load on the rolling mill and improving the rolling shape.
[0041]
(2) Nb can be used more effectively. Product materials of thick steel plates and H-shaped steels are improved.
-The load of controlled rolling, such as the reduction of the cumulative reduction amount in the controlled rolling and the increase of the rolling temperature, is reduced, and the rolling cost can be reduced.
[0042]
(3) It is possible to consolidate various slab heating conditions to the high-temperature heating side, thereby reducing heating costs and shortening the production delivery time.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a diagram showing the γ grain size during slab heating of Ti-added steel and Ti—Mg added steel.
FIG. 2 is a diagram showing the effect of effective Ti amount / N amount on the pinning force of Ti—Mg added steel.

Claims (3)

質量%で、
C:0.02〜0.2%、
Si:0.6%以下、
Mn:0.3〜2%、
P:0.02%以下、
S:0.01%以下、
Al:0.001〜0.05%、
Mg:0.0003〜0.005%、
Ti:0.01〜0.03%、
N:0.007〜0.015%、
O:0.001〜0.005%
を含有し、残部が鉄および不可避的不純物によって構成され、かつ質量%を用いて下記の(1)式で計算される有効O量によって(2)式または(3)式から求められる有効Ti量とN量との比率(有効Ti量/N量)が1.5〜3である、加熱時のオーステナイト粒が小さいことを特徴とする連続鋳造鋳片。
有効O量=O−0.66Mg−0.89Al ・ ・ ・(1)
有効O量≧0の場合、有効Ti量=Ti−2×有効O量 ・ ・ ・(2)
有効O量<0の場合、有効Ti量=Ti量 ・ ・ ・(3)
% By mass
C: 0.02 to 0.2%,
Si: 0.6% or less,
Mn: 0.3-2%,
P: 0.02% or less,
S: 0.01% or less,
Al: 0.001 to 0.05%,
Mg: 0.0003 to 0.005%,
Ti: 0.01 to 0.03%,
N: 0.007 to 0.015%,
O: 0.001 to 0.005%
And the balance is composed of iron and inevitable impurities, and the effective Ti amount calculated from the formula (2) or (3) by the effective O amount calculated by the following formula (1) using mass% A continuous cast slab characterized in that the ratio of N to N (effective Ti amount / N amount) is 1.5 to 3 and the austenite grains during heating are small.
Effective O amount = O−0.66Mg−0.89Al (1)
When effective O amount ≧ 0, effective Ti amount = Ti−2 × effective O amount (2)
When effective O amount <0, effective Ti amount = Ti amount (3)
質量%でさらに、
Cu:0.1〜1.5%、
Ni:0.1〜5%
Cr:0.05〜1%、
Nb:0.005〜0.15%、
V:0.005〜0.1%、
B:0.0003〜0.003%
の一種以上を含有することを特徴とする請求項1記載の連続鋳造鋳片。
In addition by mass%
Cu: 0.1 to 1.5%,
Ni: 0.1~5%,
Cr: 0.05 to 1%,
Nb: 0.005 to 0.15%,
V: 0.005 to 0.1%
B: 0.0003 to 0.003%
The continuous cast slab according to claim 1, comprising at least one of the following.
質量%でさらに、
Ca:0.0005〜0.004%、
REM:0.0005〜0.03%、
Zr:0.0005〜0.03%
の一種以上を含有することを特徴とする請求項1または2記載の連続鋳造鋳片。このとき、有効O量は(4)式で計算する。
有効O量=O−0.40Ca−0.66Mg−0.17REM
−0.18Zr−0.89Al ・ ・ ・(4)
In addition by mass%
Ca: 0.0005 to 0.004%,
REM: 0.0005 to 0.03%,
Zr: 0.0005 to 0.03%
The continuous cast slab according to claim 1, comprising at least one of the following. At this time, the effective O amount is calculated by equation (4).
Effective O amount = O−0.40Ca−0.66Mg−0.17REM
-0.18Zr-0.89Al (4)
JP2000068211A 2000-03-13 2000-03-13 Low carbon steel continuous cast slab with small austenite grains during heating Expired - Fee Related JP4264179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000068211A JP4264179B2 (en) 2000-03-13 2000-03-13 Low carbon steel continuous cast slab with small austenite grains during heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000068211A JP4264179B2 (en) 2000-03-13 2000-03-13 Low carbon steel continuous cast slab with small austenite grains during heating

Publications (2)

Publication Number Publication Date
JP2001254139A JP2001254139A (en) 2001-09-18
JP4264179B2 true JP4264179B2 (en) 2009-05-13

Family

ID=18587295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000068211A Expired - Fee Related JP4264179B2 (en) 2000-03-13 2000-03-13 Low carbon steel continuous cast slab with small austenite grains during heating

Country Status (1)

Country Link
JP (1) JP4264179B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103987866B (en) 2011-12-15 2016-11-09 新日铁住金株式会社 High intensity pole thick h shape steel
EP2975149B1 (en) * 2013-03-14 2019-05-01 Nippon Steel & Sumitomo Metal Corporation H-shaped steel and process for manufacturing same
TWI615486B (en) * 2016-11-15 2018-02-21 財團法人工業技術研究院 A low carbon steel alloy composition, powders and the method forming the objects containing the same.

Also Published As

Publication number Publication date
JP2001254139A (en) 2001-09-18

Similar Documents

Publication Publication Date Title
JP3378433B2 (en) Manufacturing method of steel sheet with excellent toughness of weld heat affected zone
JP2006241551A (en) Thick steel plate having excellent weldability and low temperature toughness
JP3842836B2 (en) Method for producing high-tensile steel with excellent low-temperature toughness
JP4362219B2 (en) Steel excellent in high temperature strength and method for producing the same
JP2002256379A (en) Steel for high heat input welding
JP3699639B2 (en) Steel material excellent in toughness of heat affected zone and its manufacturing method
JP4264179B2 (en) Low carbon steel continuous cast slab with small austenite grains during heating
JP3476999B2 (en) Steel sheet with excellent toughness of weld heat affected zone
JP4133175B2 (en) Non-water cooled thin low yield ratio high strength steel with excellent toughness and method for producing the same
JP3064865B2 (en) Manufacturing method of high strength and high toughness steel with excellent HIC resistance
JPH0765097B2 (en) Method for producing H-section steel excellent in fire resistance and weld toughness
JPH02125812A (en) Manufacture of cu added steel having superior toughness of weld heat-affected zone
JP3464567B2 (en) Welded structural steel with excellent toughness in the heat affected zone
JP2703162B2 (en) Thick steel plate for welded structure excellent in toughness of electron beam weld and manufacturing method thereof
JP3728130B2 (en) Steel sheet with excellent toughness of weld heat affected zone
JP3481417B2 (en) Thick steel plate with excellent toughness of weld heat affected zone
JP3212344B2 (en) Manufacturing method of structural steel plate for welding with excellent toughness at low temperature
JPH04157117A (en) Production of rolled shape steel having excellent toughness of base metal and weld zone
JP3699624B2 (en) Steel material excellent in toughness of heat affected zone and its manufacturing method
JP4762450B2 (en) Method for producing high strength welded structural steel with excellent base metal toughness and weld zone HAZ toughness
JP3699630B2 (en) Steel material excellent in toughness of heat affected zone and its manufacturing method
JP3477054B2 (en) Steel sheet with excellent toughness of weld heat affected zone
JP2003342670A (en) Non-heat treated high tensile steel having excellent toughness
JP2000234139A (en) High tensile strength steel for welding excellent in toughness of welding heat affected zone and its production
JP4271311B2 (en) Ferritic heat resistant steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4264179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees