JP4257429B2 - Method for producing metal nanowire by controlling atom diffusion and metal nanowire produced by this method - Google Patents

Method for producing metal nanowire by controlling atom diffusion and metal nanowire produced by this method Download PDF

Info

Publication number
JP4257429B2
JP4257429B2 JP2004264960A JP2004264960A JP4257429B2 JP 4257429 B2 JP4257429 B2 JP 4257429B2 JP 2004264960 A JP2004264960 A JP 2004264960A JP 2004264960 A JP2004264960 A JP 2004264960A JP 4257429 B2 JP4257429 B2 JP 4257429B2
Authority
JP
Japan
Prior art keywords
atoms
wiring
metal nanowire
metal
nanowires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004264960A
Other languages
Japanese (ja)
Other versions
JP2006075961A (en
Inventor
真澄 坂
昌孝 長谷川
亮介 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2004264960A priority Critical patent/JP4257429B2/en
Publication of JP2006075961A publication Critical patent/JP2006075961A/en
Application granted granted Critical
Publication of JP4257429B2 publication Critical patent/JP4257429B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は安定した状態の原子または分子に駆動力を与えることで拡散させ、これを拘束する役割を果たす構造物を用いることで拡散をコントロールし、拡散した原子または分子を集約、成長させることにより金属ナノワイヤの製造方法および本方法により製造される金属ナノワイヤに関する。   The present invention diffuses by applying a driving force to atoms or molecules in a stable state, controls diffusion by using a structure that plays a role in restraining this, and aggregates and grows the diffused atoms or molecules. The present invention relates to a method for producing metal nanowires and a metal nanowire produced by the method.

近年進んでいる回路の微細化により微細な材料を作製する技術にも更なる進化が求められている。マクロな材料を加工することで微細構造を作るフォトリソグラフィーに代表されるトップダウン方式の技術が進歩しているが、トップダウンでは露光光源の波長やエッチングの精度により加工に制限を受けることがある。これに対して,原子や分子を操作して微細な材料を構築するボトムアップ方式ではこのような制限は発生しないが、非常に効率が悪い。そこでボトムアップの中でも自然が持っている秩序状態を作り上げる力を利用した自己組織化による材料組立技術に注目が集まっている。   Further advancement is also demanded in the technology for producing fine materials by the miniaturization of circuits which has been progressing in recent years. Top-down technology, such as photolithography, that creates a fine structure by processing macroscopic materials is progressing, but in top-down processing may be limited by the wavelength of the exposure light source and the accuracy of etching. . In contrast, the bottom-up method in which fine materials are constructed by manipulating atoms and molecules does not cause such a limitation, but is very inefficient. Therefore, attention has been focused on material assembly technology by self-organization using the power to create an ordered state that nature has even in the bottom-up.

一方、トップダウンで構成された微細金属配線には電流密度の上昇とジュール発熱に起因するエレクトロマイグレーションと呼ばれる金属原子の拡散現象が発生することが知られている。エレクトロマイグレーションが発生すると微細配線を構成する金属原子は電子の流れと同一の方向に拡散していき、結果的に原子が損失すればボイドと呼ばれる空孔が、原子が蓄積すればヒロックと呼ばれる拡散した原子の塊が生成し、どちらも回路に損傷を与える有害な現象として知られている。   On the other hand, it is known that a metal metal diffusion phenomenon called electromigration due to an increase in current density and Joule heat generation occurs in a fine metal wiring configured in a top-down manner. When electromigration occurs, the metal atoms that make up the fine wiring diffuse in the same direction as the flow of electrons. As a result, if atoms are lost, vacancies called voids are created, and if atoms accumulate, diffusion called hillocks Both are known to be harmful phenomena that damage the circuit.

エレクトロマイグレーションの通電試験後、ヒロック上にウィスカーと呼ばれるひげ状結晶が偶発的に発生することが知られている。このウィスカーは自ら秩序状態を作り出す自己組織化と呼ばれる現象によるものだと考えられている。   It is known that whisker-like crystals called whiskers are accidentally generated on hillocks after an electromigration test. This whisker is thought to be due to a phenomenon called self-organization that creates an orderly state.

前述のように、従来のトップダウン法のように装置や材料による加工の影響を受けず、かつ製造効率が比較的良い自己組織化を利用したボトムアップ法による材料作製方法が求められている。   As described above, there is a need for a material manufacturing method by a bottom-up method that uses self-organization that is not affected by processing by an apparatus or material unlike the conventional top-down method and that has a relatively high manufacturing efficiency.

本方法では原子または分子に駆動力を与えて拡散させたものを集約し再配列させることで材料固有の自己組織化を利用し、金属ナノワイヤを製造する方法を確立すべく、鋭意研究した。その結果、金属配線にエレクトロマイグレーションを発生させることで原子を拡散させ、拡散した原子が広域に分布しないように配線に保護膜を被覆させ、意図的に生成させるための加工を施すことにより金属ナノワイヤを創製させられるとの技術的知見を得た。本発明者は、これらの技術的知見に基づき、高密度電子流において原子の拡散が起きる金属からナノワイヤを製造させる方法を実現したものである。   In this method, we conducted intensive research to establish a method for producing metal nanowires by utilizing the self-organization inherent to materials by concentrating and rearranging the diffused atoms by applying driving force to atoms or molecules. As a result, metal nanowires are produced by causing atoms to diffuse by generating electromigration in the metal wiring, covering the wiring with a protective film so that the diffused atoms are not distributed over a wide area, and performing processing for intentional generation. Obtained technical knowledge that Based on these technical findings, the present inventor has realized a method for producing nanowires from a metal in which atomic diffusion occurs in a high-density electron flow.

請求項1および請求項8の発明は、材料を構成する原子および分子に物理的な駆動力を与えることで拡散を発生させ、物理的な拘束を設けることにより一度拡散させた原子および分子を集約、成長させることを特徴とする金属ナノワイヤの製造方法である。   The inventions of claim 1 and claim 8 aggregate the atoms and molecules once diffused by applying physical driving force to the atoms and molecules constituting the material and providing physical constraints. A method for producing metal nanowires, characterized by being grown.

この請求項1および請求項8の発明は、拡散させた原子や分子を集約することでナノワイヤを製造する方法であるが、その主要な特徴は、集約させた原子が自己組織化によってワイヤ状に配列される現象を利用することで、原子を拡散させるための駆動力を負荷するだけでナノワイヤを生成させることが可能な点である。   The inventions of claim 1 and claim 8 are methods for producing nanowires by aggregating diffused atoms and molecules, the main feature of which is that the aggregated atoms are converted into wires by self-organization. By utilizing the phenomenon of arrangement, it is possible to generate nanowires only by applying a driving force for diffusing atoms.

請求項7および請求項9の発明は、駆動力を負荷することで拡散した原子を集約し成長させることに特徴のある金属ナノワイヤである。   The inventions of claim 7 and claim 9 are metal nanowires characterized by concentrating and growing diffused atoms by applying a driving force.

この請求項7および請求項9の発明は、意図的に原子を拡散させた後、この原子を集約することで生成させる金属ナノワイヤであるが、その主要な特徴は、拡散させる駆動力および拘束に用いる構造物や加工法を変えることで生成するナノワイヤをコントロールできる点にある。   The inventions of claim 7 and claim 9 are metal nanowires that are generated by intentionally diffusing atoms and then aggregating the atoms. The main feature thereof is the driving force and restraint to be diffused. The nanowires can be controlled by changing the structure and processing method used.

請求項3および請求項10の発明は、高密度の電子流によって原子および分子を拡散させ、物理的な拘束を設けることで一度拡散させた原子および分子を集約、成長させることを特徴とする金属ナノワイヤの製造方法である。   The invention according to claim 3 and claim 10 is characterized in that atoms and molecules are diffused by a high-density electron flow, and the atoms and molecules once diffused are aggregated and grown by providing physical constraints. It is a manufacturing method of nanowire.

この請求項3および請求項10の発明は、拡散させた原子や分子を集約することでナノワイヤを製造する方法であるが、その主要な特徴は、駆動力として高密度の電子流を用いることで、金属にエレクトロマイグレーションを発生させ、その結果ナノワイヤが生成するという点である。   The inventions of claim 3 and claim 10 are methods for producing nanowires by aggregating diffused atoms and molecules. The main feature of the method is that a high-density electron current is used as a driving force. In other words, electromigration occurs in the metal, resulting in the formation of nanowires.

請求項4および請求項11の発明は、高密度の電子流によって拡散させた原子や分子を拘束する役割を果たす目的で保護膜を被覆させることに特徴のある微細金属配線である。   The inventions of claim 4 and claim 11 are fine metal wirings characterized in that a protective film is coated for the purpose of restraining atoms and molecules diffused by a high-density electron flow.

この請求項4および請求項11の発明は、拡散した原子を蓄積させるため拘束することを目的に保護膜を被覆した微細金属配線であるが、その主要な特徴は、配線に保護膜を被覆することで拡散した原子の蓄積物を広範囲に分布させない点、被覆した保護膜に加工を施すことで生成のしやすさを変化させることができる点にある。   The invention of claim 4 and claim 11 is a fine metal wiring coated with a protective film for the purpose of constraining to accumulate the diffused atoms, and the main feature thereof is to cover the wiring with the protective film. This is because the diffused atomic accumulation is not distributed over a wide range, and the ease of generation can be changed by processing the coated protective film.

請求項6および請求項12の発明は、駆動力を負荷することでアルミニウム原子を拡散させ、これを集約することで生成することに特徴のあるアルミニウムナノワイヤである。   The inventions of claims 6 and 12 are aluminum nanowires characterized in that aluminum atoms are diffused by applying a driving force and are generated by aggregating them.

この請求項6および請求項12の発明は、アルミニウム原子を拡散、集約させることで生成するアルミニウムナノワイヤであるが、その主要な特徴は、生成するアルミニウムナノワイヤが単結晶となる点にある。   The inventions of claims 6 and 12 are aluminum nanowires produced by diffusing and concentrating aluminum atoms, the main feature being that the produced aluminum nanowires are single crystals.

請求項2および請求項13の発明は、エレクトロマイグレーションにより発生するヒロックを保護膜で拘束することにより、拡散した原子を集約することでナノワイヤの作製が可能となることに特徴のある微細アルミニウム配線である。   The invention of claim 2 and claim 13 is a fine aluminum wiring characterized in that nanowires can be produced by consolidating diffused atoms by constraining hillocks generated by electromigration with a protective film. is there.

この請求項2および請求項13の発明は、ナノワイヤ作製を目的とした微細金属配線であるが、その主要な特徴は、広域にヒロックが生成するのを抑制し集約させやすくすることでヒロックが最も蓄積しやすい部分を予測し、通電を行うことによりナノワイヤの生成が短時間で行える点にある。   The inventions of claim 2 and claim 13 are fine metal wirings for the purpose of producing nanowires. The main feature of the invention is that hillocks are most effective by suppressing the generation of hillocks in a wide area and making them easy to aggregate. The nanowire can be generated in a short time by predicting the portion that is likely to accumulate and conducting the current.

請求項5および請求項14の発明は、配線とは異なる別の金属に溝を形成し、その中に配線金属を埋め込むことで駆動力を与えて拡散させた配線原子を集約する機能を特化させることに特徴のあるナノワイヤ作製を目的とした微細金属配線である。   The inventions of claim 5 and claim 14 specialize the function of aggregating wiring atoms diffused by applying a driving force by embedding the wiring metal in another metal different from the wiring. It is a fine metal wiring for the purpose of producing nanowires that is characterized in that

この請求項5および請求項14の発明は、配線とは異なる金属に溝を形成し、その中に配線金属を埋め込むことで配線と同一元素のナノワイヤの作製を目的とした微細金属配線であるが、その主要な特徴は、拡散した原子を溝の陽極端に集約させることが可能であること、および配線が断線した場合においても異種の金属が電流をバイパスさせる役割を持っている点にある。   The invention of claim 5 and claim 14 is a fine metal wiring intended to produce nanowires of the same element as the wiring by forming a groove in a metal different from the wiring and embedding the wiring metal in the groove. The main feature is that the diffused atoms can be concentrated at the anode end of the groove, and even when the wiring is disconnected, a different metal has a role of bypassing the current.

請求項5および請求項14の発明は、タングステンに溝を形成し、その中に配線金属を埋め込むことで駆動力を与えて拡散させた配線原子を集約する機能を特化させることに特徴のあるナノワイヤ作製を目的とした微細金属配線である。   The inventions of claim 5 and claim 14 are characterized in that a trench is formed in tungsten and a wiring metal is embedded in the trench to specialize the function of concentrating the diffused wiring atoms by applying a driving force. It is a fine metal wiring intended for nanowire fabrication.

この請求項5および請求項14の発明は、タングステンに溝を形成し、その中に配線金属を埋め込むことで配線と同一元素のナノワイヤの作製を目的とした微細金属配線であるが、その主要な特徴は、周囲をタングステンで拘束することで配線原子の流出が発生しないため、溝の陽極端に拡散した原子が一方的に蓄積する点、および配線が断線を起こしてもタングステンが電流をバイパスさせることができるので、長時間の通電を行える点にある。   The invention of claim 5 and claim 14 is a fine metal wiring for the purpose of producing nanowires of the same element as the wiring by forming a trench in tungsten and embedding the wiring metal therein. The feature is that the outflow of wiring atoms does not occur by constraining the periphery with tungsten, so that the diffused atoms are unilaterally accumulated at the anode end of the groove, and tungsten bypasses the current even if the wiring breaks Therefore, it is possible to energize for a long time.

本発明の方法を用いれば、駆動力の負荷の与え方、および、拡散した原子や分子の拘束の仕方を変えることで様々な種類のナノワイヤを作製することが可能となる。   By using the method of the present invention, it is possible to produce various types of nanowires by changing how to apply driving force and how to constrain the diffused atoms and molecules.

以下、本発明による金属ナノワイヤの製造方法の実施例について説明する。駆動力として高密度電子流を利用するため微細金属配線を用いて説明するが、本発明はこれらの実施例に限定されるものではない。図1は幅0.5μm、厚さ0.7μm、長さ30μmのアルミニウム配線の電界放出型走査電子顕微鏡写真である。この配線には電流入出力用に幅100μm、長さ200μmのパッドがそれぞれ接続されている。この配線に正珪酸四エチルを原料とした二酸化珪素保護膜を化学気相合成法にて約1.5μm堆積させる。この保護膜に拡散した原子を通過させるための穴を集束イオンビーム装置で形成し、この穴以外からは原子が流出しないようにする。この状態で28.5MA/cmの電流密度で16s通電した結果、図2のようにアルミニウムナノワイヤが生成した。このナノワイヤの直径は約280nm、全長は4μmである。 Examples of the method for producing metal nanowires according to the present invention will be described below. Although a description will be given using fine metal wiring in order to use a high-density electron flow as a driving force, the present invention is not limited to these examples. FIG. 1 is a field emission scanning electron micrograph of an aluminum wiring having a width of 0.5 μm, a thickness of 0.7 μm, and a length of 30 μm. Pads having a width of 100 μm and a length of 200 μm are connected to the wiring for current input / output. A silicon dioxide protective film made of tetraethyl orthosilicate as a raw material is deposited on the wiring by about 1.5 μm by a chemical vapor synthesis method. A hole for allowing the diffused atoms to pass through the protective film is formed by a focused ion beam apparatus so that atoms do not flow out from other than the hole. In this state, as a result of energization for 16 s at a current density of 28.5 MA / cm 2 , aluminum nanowires were generated as shown in FIG. This nanowire has a diameter of about 280 nm and a total length of 4 μm.

実施例2を図3に示すが、ここではアルミニウム配線をタングステン部の溝に埋め込んだサンプルを用いる。このタングステン部には電流入出力用に幅100μm、長さ140μmのタングステンのパッドがそれぞれ接続されている。この構造で通電を行うと、拡散したアルミニウム原子が溝の陽極側端点付近に限定して集約する。更に、タングステンには電流をバイパスさせる効果もあるので、エレクトロマイグレーションのよるアルミニウム配線の断線が生じても通電を長時間行えるという長所がある。   Example 2 is shown in FIG. 3, but here, a sample in which aluminum wiring is buried in a trench of a tungsten portion is used. A tungsten pad having a width of 100 μm and a length of 140 μm is connected to the tungsten portion for current input / output. When energization is performed with this structure, the diffused aluminum atoms are concentrated only in the vicinity of the anode end point of the groove. Further, since tungsten has an effect of bypassing current, there is an advantage that even if the aluminum wiring is disconnected due to electromigration, it can be energized for a long time.

実施例1で用いたナノワイヤの製造のために使用したアルミニウム配線の電界放出型走査電子顕微鏡像である。It is a field emission type scanning electron microscope image of the aluminum wiring used for manufacture of the nanowire used in Example 1. 実施例1で作製したアルミニウムナノワイヤである。It is the aluminum nanowire produced in Example 1. FIG. 実施例2で用いるタングステン溝に配線金属を埋め込んだサンプルの説明図である。It is explanatory drawing of the sample which embedded the wiring metal in the tungsten groove | channel used in Example 2. FIG.

符号の説明Explanation of symbols

1、1’:電流入出力パッド
2:タングステン部
3:アルミニウム配線部












1, 1 ': Current input / output pad 2: Tungsten part 3: Aluminum wiring part












Claims (2)

電流の入力パッドと出力パッドとを備えた板状のタングステンの前記電流入出力パッド間に溝を形成し、前記溝の中にアルミニウム配線部を埋め込み、
前記電流入力パッドから電流出力パッドへ電流を流し、
前記アルミニウム配線部に生じたエレクトロマイグレーションによりアルミニウム原子を集約、成長させることを特徴とする、金属ナノワイヤの製造方法。
A groove is formed between the current input / output pads of plate-like tungsten having a current input pad and an output pad, and an aluminum wiring portion is embedded in the groove,
A current is passed from the current input pad to the current output pad;
A method for producing metal nanowires, wherein aluminum atoms are aggregated and grown by electromigration generated in the aluminum wiring portion.
請求項1に記載の金属ナノワイヤの製造方法により得られた金属ナノワイヤ。 A metal nanowire obtained by the method for producing a metal nanowire according to claim 1.
JP2004264960A 2004-09-13 2004-09-13 Method for producing metal nanowire by controlling atom diffusion and metal nanowire produced by this method Active JP4257429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004264960A JP4257429B2 (en) 2004-09-13 2004-09-13 Method for producing metal nanowire by controlling atom diffusion and metal nanowire produced by this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004264960A JP4257429B2 (en) 2004-09-13 2004-09-13 Method for producing metal nanowire by controlling atom diffusion and metal nanowire produced by this method

Publications (2)

Publication Number Publication Date
JP2006075961A JP2006075961A (en) 2006-03-23
JP4257429B2 true JP4257429B2 (en) 2009-04-22

Family

ID=36155842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004264960A Active JP4257429B2 (en) 2004-09-13 2004-09-13 Method for producing metal nanowire by controlling atom diffusion and metal nanowire produced by this method

Country Status (1)

Country Link
JP (1) JP4257429B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2251389B8 (en) 2005-08-12 2012-09-19 Cambrios Technologies Corporation Nanowire ink
JP5062721B2 (en) * 2006-06-27 2012-10-31 国立大学法人京都大学 Manufacturing method of nano-sized wire
JP2008038173A (en) * 2006-08-03 2008-02-21 Tohoku Univ Method for producing metal nanowire, and metal nanowire
KR101545219B1 (en) 2006-10-12 2015-08-18 캄브리오스 테크놀로지즈 코포레이션 Nanowire-based transparent conductors and applications thereof
US8018568B2 (en) 2006-10-12 2011-09-13 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US8018563B2 (en) 2007-04-20 2011-09-13 Cambrios Technologies Corporation Composite transparent conductors and methods of forming the same
CN102834472B (en) 2010-02-05 2015-04-22 凯博瑞奥斯技术公司 Photosensitive ink compositions and transparent conductors and method of using the same

Also Published As

Publication number Publication date
JP2006075961A (en) 2006-03-23

Similar Documents

Publication Publication Date Title
US6319738B1 (en) Two-dimensionally arrayed quantum device fabrication method
JP5013650B2 (en) Doped elongated semiconductors, growth of such semiconductors, devices containing such semiconductors, and the manufacture of such devices
Dong et al. Ultraviolet electroluminescence from ordered ZnO nanorod array/p-GaN light emitting diodes
US20090152527A1 (en) Method for producing catalyst-free single crystal silicon nanowires, nanowires produced by the method and nanodevice comprising the nanowires
JP4257429B2 (en) Method for producing metal nanowire by controlling atom diffusion and metal nanowire produced by this method
KR20100087727A (en) Nanowire growth on dissimilar material
JP2006248893A (en) Nano-wires and method of manufacturing the same
Lin et al. Photoluminescence origins of the porous silicon nanowire arrays
JP2006239857A (en) Silicon nano-wire, semiconductor element including silicon nano-wire, and method for manufacturing silicon nano-wire
JP4755643B2 (en) Mask forming method and three-dimensional fine processing method
Mikulics et al. Conditioning nano-LEDs in arrays by laser-micro-annealing: The key to their performance improvement
TW201221893A (en) Heat sinking element and method of treating a heat sinking element
WO2006097858A3 (en) Low-dielectric constant cryptocrystal layers and nanostructures
Presti et al. Photonic-crystal silicon-nanocluster light-emitting device
Sun et al. Top‐Down Fabrication of Semiconductor Nanowires with Alternating Structures along their Longitudinal and Transverse Axes
JP2006239790A (en) Metal nano-wire producing method and metal nano-wire
TW201244156A (en) Light emitting diode
Fu et al. Close-packed hemiellipsoid arrays: A photonic band gap structure patterned by nanosphere lithography
Kale et al. Removal of Ag remanence and improvement in structural attributes of silicon nanowires array via sintering
JP2007319988A (en) Method for manufacturing group iv semiconductor nanowire and structure control method
Wu et al. Bilayer–metal assisted chemical etching of silicon microwire arrays for photovoltaic applications
Wang et al. Fabrication and optical investigation of a high-density GaN nanowire array
JP4640975B2 (en) Thermal diffusion sheet and semiconductor device
Agarwal et al. Semiconductor III–V nanowires: synthesis, fabrication and characterization of nanodevices
JP2006128438A (en) Method of forming nano-gap electrode and nano-gap electrode obtained thereby, and element equipped with the electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070829

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080808

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081225

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150