JP4256813B2 - Gas seal for high-speed rotating equipment - Google Patents

Gas seal for high-speed rotating equipment Download PDF

Info

Publication number
JP4256813B2
JP4256813B2 JP2004136914A JP2004136914A JP4256813B2 JP 4256813 B2 JP4256813 B2 JP 4256813B2 JP 2004136914 A JP2004136914 A JP 2004136914A JP 2004136914 A JP2004136914 A JP 2004136914A JP 4256813 B2 JP4256813 B2 JP 4256813B2
Authority
JP
Japan
Prior art keywords
bearing
seal
ring
sealing ring
side sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004136914A
Other languages
Japanese (ja)
Other versions
JP2005315392A (en
Inventor
正信 二宮
満 下里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP2004136914A priority Critical patent/JP4256813B2/en
Publication of JP2005315392A publication Critical patent/JP2005315392A/en
Application granted granted Critical
Publication of JP4256813B2 publication Critical patent/JP4256813B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Mechanical Sealing (AREA)
  • Rolling Contact Bearings (AREA)

Description

本発明は、シールケースに設けられた静止側密封環と回転軸に設けられた回転側密封環との対向端面たる密封端面が、その間に回転側密封環の密封端面に形成された動圧発生溝により動圧を発生させることにより、非接触状態で相対回転せしめられるように構成された非接触形メカニカルシールであって、特に、タービン,コンプレッサ,ブロワ等の高速回転機器に装備される高速回転機器用ガスシールに関するものである。   The present invention provides dynamic pressure generation in which a sealing end surface, which is an opposing end surface between a stationary side sealing ring provided in a seal case and a rotation side sealing ring provided on a rotating shaft, is formed on the sealing end surface of the rotation side sealing ring therebetween. Non-contact type mechanical seal configured to generate relative pressure in a non-contact state by generating dynamic pressure through a groove, especially high-speed rotation equipped in high-speed rotating equipment such as turbines, compressors, and blowers The present invention relates to a gas seal for equipment.

従来から、非接触形メカニカルシールであるガスシールとして、シールケースに設けられた静止側密封環と回転軸に設けられた回転側密封環との対向端面たる密封端面が、その間に動圧を発生させることにより、非接触状態で相対回転せしめられるように構成されたものが周知である(例えば、特許文献1参照)。かかるガスシールにあっては、上記動圧を、回転側密封環の密封端面に形成した適当形状の動圧発生溝(例えば、特許文献2又は特許文献3参照)によって発生させるが、かかる動圧発生溝を形成する回転側密封環は、一般に、高硬度で耐摩耗性に優れたセラミックス(SiC,WC等)や超硬合金等(以下「一般的回転側密封環構成材」という)で構成されている。しかし、セラミックス等の一般的回転側密封環構成材は高硬度脆性材であることから、ガスシールをタービン等の高速回転機器の軸封手段として使用した場合、回転側密封環が高速回転されることから、その遠心力による応力によって、回転側密封環に割れが生じたり、極端な場合には脆性破壊される虞れがある。そこで、高速回転機器に使用されるガスシール(非接触形メカニカルシール)にあっては、回転側密封環の外周部にチタン合金等の非脆性金属材で構成した補強リングを焼嵌等により嵌合固着させて、この補強リングによる緊縛力によって回転側密封環の破損を防止するように図っている(例えば、特許文献1参照)。
実開平6−84069号公報(図1) 特開平5−60247号公報(図2,図4) 特開平8−159295号公報(図2,図4,図5)
Conventionally, as a gas seal that is a non-contact type mechanical seal, the sealing end surface, which is the opposite end surface of the stationary seal ring provided on the seal case and the rotary seal ring provided on the rotating shaft, generates dynamic pressure between them. It is well known that it is configured to be relatively rotated in a non-contact state by performing (see, for example, Patent Document 1). In such a gas seal, the dynamic pressure is generated by a dynamic pressure generating groove (see, for example, Patent Document 2 or Patent Document 3) having an appropriate shape formed on the sealing end surface of the rotary seal ring. The rotation-side seal ring that forms the generating groove is generally composed of ceramics (SiC, WC, etc.), cemented carbide, etc. (hereinafter referred to as “general rotation-side seal ring components”) with high hardness and excellent wear resistance. Has been. However, since a general rotary side sealing ring component such as ceramic is a brittle material with high hardness, when the gas seal is used as a shaft sealing means of a high-speed rotating device such as a turbine, the rotary side sealing ring is rotated at a high speed. For this reason, there is a possibility that the rotation-side sealing ring may be cracked or, in an extreme case, brittle fracture may be caused by the stress caused by the centrifugal force. Therefore, for gas seals (non-contact type mechanical seals) used in high-speed rotating equipment, a reinforcing ring made of a non-brittle metal material such as titanium alloy is fitted by shrink fitting on the outer periphery of the rotary seal ring. It is designed to prevent the rotation-side sealing ring from being damaged by the binding force of the reinforcing ring (for example, see Patent Document 1).
Japanese Utility Model Publication No. 6-84069 (FIG. 1) Japanese Patent Laid-Open No. 5-60247 (FIGS. 2 and 4) JP-A-8-159295 (FIGS. 2, 4 and 5)

しかし、このように回転側密封環に補強リングを嵌合固着させたときにも、回転側密封環(回転軸)が10000min−1 以上の高速で、特に60000min−1 以上の超高速で回転する場合には、回転側密封環の割れや破壊を回避することができず、長期に亘って良好なシール機能を期待することができない。補強リングは、回転側密封環が破壊された場合に、その破片の飛散を回避できるにすぎないものであり、回転側密封環の割れや破壊そのものを防止しうるものではない。 However, even when such a reinforcing ring on the rotation side seal ring is fixedly fitted to the rotating side seal ring (rotational axis) at 10000 min -1 or faster, rotating in particular at 60000Min -1 or more ultrafast In this case, it is impossible to avoid cracking or breaking of the rotating side sealing ring, and it is not possible to expect a good sealing function over a long period of time. The reinforcing ring can only avoid the scattering of the fragments when the rotating side sealing ring is broken, and cannot prevent the rotating side sealing ring from being broken or broken.

本発明は、このような問題を解決して、ガスタービン等の高速回転機器に使用しても回転側密封環が回転による遠心力の影響を受けて割れ等を生じるようなことがなく、長期に亘って良好なシール機能を発揮しうる高速回転機器用ガスシールを提供することを目的とするものである。   The present invention solves such a problem, and even when used in a high-speed rotating device such as a gas turbine, the rotating side sealing ring is not affected by the centrifugal force caused by the rotation and does not crack and the like. It is an object of the present invention to provide a gas seal for high-speed rotating equipment that can exhibit a good sealing function over a long period of time.

本発明は、回転軸がこれに設けられたインペラの近接部位をベアリングにより軸受支持されている高速回転機器に使用されるガスシールであって、回転軸に、これを軸受支持するベアリングとインペラとの間に配して、固定された回転側密封環と、インペラとベアリングとの間の回転軸部分を囲繞するシールケースに、回転側密封環とインペラとの間に配して、軸線方向移動可能に保持された静止側密封環と、静止側密封環を回転側密封環へと押圧附勢するスプリングとを具備して、両密封環の対向端面たる密封端面が、その間に回転側密封環の密封端面に形成された動圧発生溝により動圧を発生させることにより、非接触状態で相対回転せしめられ、両密封端面の内径側のガス領域である被密封流体領域とその外径側のガス領域である非密封流体領域とを遮蔽シールするように構成された非接触形メカニカルシールにおいて、回転側密封環の本体を、軸線方向の厚みが外周方向へ漸次薄くなる略円錐台形状であって一側端面である密封端面を回転軸に直交する平滑環状面となすと共に他側端面を前記ベアリングの内輪に密接する基端環状面とその外周縁から当該密封端面に漸次接近しつつ外方に延びる中間環状面とその外周縁から回転軸に直交して外方向に延びる先端環状面とからなる環状傾斜面となした略円錐台形状に軽比重の非脆性金属材で構成すると共に、この本体の一側端面に耐摩耗性に優れた硬質材からなる被覆層を形成して、この被覆層を動圧発生溝を形成した密封端面に構成し、シールケースに、ベアリングと回転側密封環との対向端面間に形成される非密封流体領域のシールケース内空間である潤滑油室に霧状のベアリング潤滑油を循環供給するための給排油路を形成して、給油路から潤滑油室に供給された霧状のベアリング潤滑油が拡散しつつ内外輪間からベアリング内に侵入してベアリングの潤滑を行なうと共に、当該ベアリング潤滑油の一部が遠心力によって回転側密封環の背面の傾斜面たる中間環状面に沿って外周側へと流動しベアリング側へと方向転換される方向転換流となるように構成したことを特徴とする高速回転機器用ガスシールを提案するものである。 The present invention relates to a gas seal used in a high-speed rotating device in which a rotating shaft is supported by a bearing in the vicinity of an impeller provided on the rotating shaft . The rotating shaft includes a bearing and an impeller that support the bearing. Arranged between the rotating side sealing ring and the impeller in a seal case surrounding the fixed rotating side sealing ring and the rotating shaft part between the impeller and the bearing, and moving in the axial direction A stationary seal ring that can be held, and a spring that presses and urges the stationary seal ring against the rotary seal ring. By generating dynamic pressure with the dynamic pressure generating grooves formed on the sealed end surfaces of the sealed end surfaces, they are relatively rotated in a non-contact state, and the sealed fluid region that is the gas region on the inner diameter side of both sealed end surfaces and the outer diameter side Non-dense gas region The non-contact type mechanical seal configured to shield seals the fluid region, the body of the rotation-side seal ring is the one edge a generally frustoconical gradually becomes thinner thickness in the axial direction toward the outer periphery A sealed end face that is a smooth annular face perpendicular to the rotation axis and a second end face that is in close contact with the inner ring of the bearing, and an intermediate annular face that extends outwardly from the outer peripheral edge while gradually approaching the sealed end face; It is composed of a non-brittle metal material of light specific gravity in a substantially frustoconical shape that forms an annular inclined surface consisting of an annular annular surface extending outwardly from the outer periphery perpendicular to the rotation axis. A coating layer made of a hard material having excellent wear resistance is formed, and this coating layer is configured as a sealed end surface with a dynamic pressure generating groove formed between the opposing end surfaces of the bearing and the rotating side sealing ring. Formed non-sealing fluid A supply and discharge oil passage for circulating and supplying the mist-like bearing lubricant oil to the lubricant chamber that is the space inside the seal case in the area is formed, and the mist-like bearing lubricant oil supplied from the oil supply passage to the lubricant chamber is While diffusing, it penetrates into the bearing from between the inner and outer rings to lubricate the bearing, and a part of the bearing lubricating oil is moved to the outer peripheral side along the intermediate annular surface which is the inclined surface on the back surface of the rotating side sealing ring by centrifugal force. It proposes a gas seal for high-speed rotating equipment, which is configured to flow in the direction of flow and change direction to the bearing side .

かかる高速回転機器用ガスシールの好ましい実施の形態にあって、回転側密封環の本体は、一般的回転側密封環構成材に比して軽比重で且つ強度及び加工性に優れた非脆性金属材で構成され、一般には、チタン合金又はアルミニウム合金で構成しておくことが好ましい。特に、チタン合金であるTi−6Al−4Vで構成しておくのが最適である。また、密封端面を形成する被覆層は、一般的回転側密封環構成材と同等又はそれ以上の高硬度及び耐摩耗性を有する硬質材で構成され、一般に、SiC,WC等のセラミックス、超硬合金又はダイヤモンドライクカーボン(DLC)のコーティング層となしておくことが好ましい。   In a preferred embodiment of such a gas seal for a high-speed rotating device, the main body of the rotating side sealing ring is a non-brittle metal having a light specific gravity and excellent strength and workability as compared with a general rotating side sealing ring constituting material. In general, it is preferably composed of a titanium alloy or an aluminum alloy. In particular, it is optimal to use Ti-6Al-4V which is a titanium alloy. In addition, the coating layer forming the sealing end surface is made of a hard material having high hardness and wear resistance equal to or higher than that of a general rotating side sealing ring component, and is generally made of ceramics such as SiC and WC, carbide It is preferable to form a coating layer of an alloy or diamond-like carbon (DLC).

請求項1〜請求項3に記載した本発明の高速回転機器用ガスシールは、回転側密封環の形状,構成材を含む構造を工夫することによって、遠心力による回転側密封環の割れや破壊を回避することができるものであり、ガスタービン等の高速回転機器におけるガスシール機能を長期に亘って良好に行いうるものである。   The gas seal for a high-speed rotating device according to the first to third aspects of the present invention is such that the rotation-side sealing ring is cracked or broken by centrifugal force by devising the shape of the rotation-side sealing ring and the structure including the components. The gas seal function in a high-speed rotating device such as a gas turbine can be satisfactorily performed over a long period of time.

また、請求項4に記載した本発明によれば、回転軸をインペラの近傍で軸受するようにしたことによってガスシールの装着スペースが狭小化された高速回転機器においても好適に使用することができ、ガスシール機能を良好に発揮しうる高速回転機器用ガスシールを提供することができる。さらに、請求項5に記載した本発明によれば、回転軸を軸受するベアリングの潤滑を適正に行なうことができ且つベアリング潤滑油による密封端面の汚損を生じることのない高速回転機器用ガスシールを提供することができる。   Further, according to the present invention described in claim 4, it can be suitably used in a high-speed rotating device in which the space for mounting the gas seal is narrowed by bearing the rotating shaft in the vicinity of the impeller. It is possible to provide a gas seal for a high-speed rotating device that can satisfactorily perform the gas seal function. Furthermore, according to the present invention as set forth in claim 5, a gas seal for a high-speed rotating device that can properly lubricate a bearing that supports a rotating shaft and that does not cause contamination of a sealed end surface by bearing lubricating oil. Can be provided.

図1は本発明に係る高速回転機器用ガスシールの一例を示す縦断側面図である。図1に示された高速回転機器用ガスシール1は、回転軸2がこれに設けられたインペラ3の近接部位をベアリング4により軸受支持されている高速回転機器(ガスタービン等)に装備されるものであって、インペラ3とベアリング4との間の狭い空間に装填しうるべく小型化(特に、軸線方向の短尺化)された非接触形メカニカルシールである。   FIG. 1 is a longitudinal side view showing an example of a gas seal for a high-speed rotating device according to the present invention. The gas seal 1 for a high-speed rotating device shown in FIG. 1 is installed in a high-speed rotating device (gas turbine or the like) in which a rotating shaft 2 is supported by a bearing 4 at a portion close to an impeller 3 provided on the rotating shaft 2. This is a non-contact type mechanical seal that is miniaturized (in particular, shortened in the axial direction) so that it can be loaded into a narrow space between the impeller 3 and the bearing 4.

すなわち、この高速回転機器用ガスシール1は、図1に示す如く、インペラ3とベアリング4との間の回転軸部分2aとこれを囲繞するシールケース5との間に装着されたものであって、回転軸部分2aに固定された回転側密封環6と、シールケース5に軸線方向移動可能に保持された静止側密封環7と、静止側密封環7を回転側密封環6へと押圧附勢するスプリング8とを具備しており、両密封環6,7の対向端面である密封端面(以下、回転側密封環6の密封端面を「回転側密封端面6a」といい、静止側密封環7の密封端面を「静止側密封端面7a」という)を、この間に回転側密封端面6aに形成した動圧発生溝9(図2参照)により動圧を発生させることにより、非接触状態に保持した状態で、両密封端面6a,7aの内径側領域である被密封流体領域(インペラ3の背面側におけるガス領域)15とその外径側領域である非密封流体領域(後述する潤滑油室16aを含むガス領域ないし大気領域である)16とを遮蔽シール(軸封)するように構成されている。   That is, as shown in FIG. 1, the gas seal 1 for a high-speed rotating device is mounted between a rotary shaft portion 2a between the impeller 3 and the bearing 4 and a seal case 5 surrounding the rotary shaft portion 2a. The rotating side sealing ring 6 fixed to the rotating shaft portion 2a, the stationary side sealing ring 7 held in the seal case 5 so as to be movable in the axial direction, and the stationary side sealing ring 7 are pressed against the rotating side sealing ring 6. And a sealing end face (hereinafter referred to as the “rotating side sealing end face 6a”), which is the opposing end face of both sealing rings 6 and 7, and referred to as “rotating side sealing end face 6a”. 7 is referred to as “stationary side sealing end surface 7a”), and a dynamic pressure is generated by a dynamic pressure generating groove 9 (see FIG. 2) formed in the rotating side sealing end surface 6a during this period, thereby maintaining a non-contact state. The inner diameter side region of both sealed end faces 6a and 7a A sealed fluid region (a gas region on the back side of the impeller 3) 15 and a non-sealed fluid region (a gas region including a lubricating oil chamber 16a, which will be described later, or an atmospheric region) 16 are shield-sealed. (Shaft seal) is configured.

回転軸2は、図1に示す如く、図示しない駆動源によって高速回転されるもので、インペラ3の近傍部位を、回転軸2に外嵌固定された内輪4Aとシールケース5(正確には、後述するケース本体51)に内嵌固定された外輪4Bとを具備するベアリング4により回転自在に軸受支持されている。   As shown in FIG. 1, the rotating shaft 2 is rotated at a high speed by a drive source (not shown), and an inner ring 4 </ b> A and a seal case 5 (exactly speaking, a portion near the impeller 3 is fitted and fixed to the rotating shaft 2. The bearing 4 is rotatably supported by a bearing 4 having an outer ring 4B fitted and fixed to a case body 51) which will be described later.

回転側密封環6は、図1に示す如く、これとインペラ3との間にカラー(金属筒)10を介装することにより、ベアリング4の内輪4Aとカラー10との間に挟圧された状態で、回転軸2(前記回転軸部分2a)に嵌合固定されている。回転側密封環6は、図2に示す如く、本体61を軸線方向の厚みが外周方向へ漸次薄くなる略円錐台形状に軽比重で高強度且つ加工性に優れた非脆性金属材で構成すると共に、本体61の一側端面(インペラ3に対向する端面)に耐摩耗性に優れた高硬質材からなる被覆層62を形成して、この被覆層61を、動圧発生溝9を形成した密封端面6aに構成したものである。すなわち、回転側密封環6は、被覆層62で構成される一側端面(密封端面6a)を回転軸2に直交する平滑環状面となすと共に、他側端面をベアリング4の内輪4Aに密着する基端環状面61aとその外周縁から当該密封端面6aに漸次接近しつつ外方に延びる中間環状面61bとその外周縁から回転軸2に直交して外方向に延びる先端環状面61cとからなる環状傾斜面となした略円錐台形状に構成されている。本体61は、図2に示す如く、ベアリング4の内輪4Aと略同一内径を有する断面方形状の基端環状部61Aと、基端の軸線方向長さを基端環状部61Aの軸線方向長さよりやや小さくして外径方向へと漸次薄肉となる断面台形状の中間環状部61Bと、軸線方向長さが中間環状部61Bの先端の軸線方向長さに一致する断面方形状の先端環状部61Cとからなり、各環状部61A,61B,61Cの一側端面は同一平面上に位置して被覆層62による密封端面6aを構成しており、基端環状部61A、中間環状部61B及び先端環状部61Cの他側端面は夫々基端環状面61a、中間環状面61b及び先端環状面61cを構成している。本体61の内周部つまり基端環状部61Aの内周部には環状のOリング溝63が形成されていて、このOリング溝63に係合させたOリング11により、回転側密封環6と回転軸2との間がシール(二次シール)されている。ところで、本体61は、冒頭で述べた一般的回転側密封環構成材(セラミックス,超硬合金等)に比して軽比重であり且つ加工性に優れた高強度の非脆性金属材で構成される。具体的には、チタン合金又はアルミニウム合金で構成しておくことが好ましく、Ti−6Al−4Vで構成しておくのが最適である。また、被覆層62は、一般的回転側密封環構成材と同等又はそれ以上の高硬度性及び耐摩耗性を有する硬質材で構成されるが、一般的には、SiC,WC等のセラミックス,超硬合金,DLC等のコーティング層としておくことが好ましい。被覆層62の厚みは、動圧発生溝9の深さ(一般に5μm程度)及び密封端面6aを形成するための研磨代を考慮して、一般に、0.2〜0.4mmとしておくことが好ましい。動圧発生溝9の形状は任意であり、シール条件に応じて一般的な螺旋溝形状や特許文献2又は特許文献3に開示される如き形状を採用することができる。この動圧発生溝9は、その内径側端部が静止側密封端面7aの内周縁から食み出して被密封流体領域15に開口されており、回転軸2の回転に伴って、両密封端面6a,7a間に被密封流体(ガス)による動圧を発生させ、両密封端面6a,7a間を非接触状態に保持させるべく機能するものである。   As shown in FIG. 1, the rotation-side sealing ring 6 is sandwiched between the inner ring 4 </ b> A of the bearing 4 and the collar 10 by interposing a collar (metal cylinder) 10 between the rotation-side sealing ring 6 and the impeller 3. In the state, it is fitted and fixed to the rotating shaft 2 (the rotating shaft portion 2a). As shown in FIG. 2, the rotation-side sealing ring 6 comprises a main body 61 made of a non-brittle metal material having a light weight and high strength and excellent workability in a substantially truncated cone shape in which the axial thickness gradually decreases in the outer circumferential direction. At the same time, a coating layer 62 made of a highly hard material having excellent wear resistance is formed on one end surface (end surface facing the impeller 3) of the main body 61, and the dynamic pressure generating groove 9 is formed on the coating layer 61. The sealed end face 6a is configured. That is, the rotation-side sealing ring 6 has one end face (sealing end face 6 a) formed of the coating layer 62 as a smooth annular face orthogonal to the rotation shaft 2, and the other end face is in close contact with the inner ring 4 </ b> A of the bearing 4. A proximal annular surface 61a, an intermediate annular surface 61b extending outwardly from the outer peripheral edge thereof while gradually approaching the sealed end surface 6a, and a distal annular surface 61c extending outwardly from the outer peripheral edge perpendicular to the rotation axis 2 It is comprised by the substantially truncated cone shape used as the cyclic | annular inclined surface. As shown in FIG. 2, the main body 61 includes a proximal end annular portion 61A having a substantially the same inner diameter as the inner ring 4A of the bearing 4 and an axial length of the proximal end from an axial length of the proximal end annular portion 61A. An intermediate annular portion 61B having a trapezoidal cross section that is slightly smaller and gradually becomes thinner in the outer diameter direction, and an annular end portion 61C having a rectangular cross section whose axial length matches the axial length of the distal end of the intermediate annular portion 61B One end face of each annular part 61A, 61B, 61C is located on the same plane and constitutes a sealed end face 6a by the covering layer 62, and includes a proximal annular part 61A, an intermediate annular part 61B, and a distal annular part. The other end surfaces of the portion 61C constitute a base end annular surface 61a, an intermediate annular surface 61b, and a distal end annular surface 61c, respectively. An annular O-ring groove 63 is formed in the inner peripheral portion of the main body 61, that is, the inner peripheral portion of the base end annular portion 61A. The O-ring 11 engaged with the O-ring groove 63 allows the rotation-side sealing ring 6 to be rotated. And the rotary shaft 2 are sealed (secondary seal). By the way, the main body 61 is composed of a high-strength non-brittle metal material having a light specific gravity and excellent workability as compared with the general rotating side sealing ring constituent materials (ceramics, cemented carbide, etc.) described at the beginning. The Specifically, it is preferably made of a titanium alloy or an aluminum alloy, and most preferably made of Ti-6Al-4V. The covering layer 62 is made of a hard material having high hardness and wear resistance equal to or higher than that of a general rotating side sealing ring component, but generally, ceramics such as SiC and WC, It is preferable to form a coating layer of cemented carbide or DLC. The thickness of the covering layer 62 is generally preferably 0.2 to 0.4 mm in consideration of the depth of the dynamic pressure generating groove 9 (generally about 5 μm) and the polishing allowance for forming the sealed end face 6a. . The shape of the dynamic pressure generating groove 9 is arbitrary, and a general spiral groove shape or a shape disclosed in Patent Document 2 or Patent Document 3 can be adopted depending on the sealing conditions. The dynamic pressure generating groove 9 has an inner diameter side end portion that protrudes from the inner peripheral edge of the stationary-side sealed end surface 7 a and opens to the sealed fluid region 15. It functions to generate a dynamic pressure by a sealed fluid (gas) between 6a and 7a, and keep both sealed end faces 6a and 7a in a non-contact state.

静止側密封環7は、図1に示す如く、インペラ3と回転側密封環6との間に配して、シールケース5の一部を構成するスプリングリテーナ52に、Oリング12及びドライブピン13を介して軸線方向に移動可能に且つ相対回転不能に内嵌保持されている。スプリングリテーナ52は、後述するケース本体51に内嵌固定されており、本体部52Aとそのベアリング側端部からベアリング方向に突出するガイド部52Bとからなる円筒体である。ガイド部52Bの内径は、本体部52Aの内径より大きく設定されている。静止側密封環7は、スプリングリテーナ52の本体部52Aの内周部にOリング12を介して軸線方向に移動可能に内嵌保持された保持部7Aとそのベアリング側端部に一体形成された密封端面形成部7Bとからなる円環状体である。静止側密封環7は、回転側密封端面6aの構成材(被覆層62)より軟質のカーボン等で構成されている。密封端面形成部7Bのベアリング側端面は、軸線に直交する平滑環状面である静止側密封端面7aに構成されている。静止側密封端面7aの外径は回転軸側密封環6の外径より小さく設定されており、静止側密封端面7aの内径はカラー10の外径より大きく設定されている。密封端面形成部7Bの外周部には、スプリングリテーナ52のガイド部52Bに取り付けられたドライブピン13が係合する係合凹部7bが形成されていて、両者7b,13の係合により、静止側密封環7の軸線方向移動を許容しつつシールケース5に対する相対回転を阻止している。   As shown in FIG. 1, the stationary-side sealing ring 7 is arranged between the impeller 3 and the rotation-side sealing ring 6, and a spring retainer 52 constituting a part of the seal case 5, an O-ring 12 and a drive pin 13. The inner fitting is held so as to be movable in the axial direction and not to be relatively rotatable. The spring retainer 52 is a cylindrical body that is fitted and fixed to a case main body 51 to be described later, and includes a main body portion 52A and a guide portion 52B that protrudes in the bearing direction from the bearing side end portion. The inner diameter of the guide part 52B is set larger than the inner diameter of the main body part 52A. The stationary-side sealing ring 7 is integrally formed on the inner peripheral portion of the main body portion 52A of the spring retainer 52 and the holding portion 7A that is fitted and held so as to be movable in the axial direction via the O-ring 12 and the bearing-side end portion. It is an annular body composed of the sealed end face forming portion 7B. The stationary side sealing ring 7 is made of softer carbon or the like than the constituent material (the coating layer 62) of the rotation side sealing end face 6a. The bearing side end surface of the sealing end surface forming portion 7B is configured as a stationary side sealing end surface 7a that is a smooth annular surface orthogonal to the axis. The outer diameter of the stationary side sealing end surface 7 a is set smaller than the outer diameter of the rotary shaft side sealing ring 6, and the inner diameter of the stationary side sealing end surface 7 a is set larger than the outer diameter of the collar 10. An engagement recess 7b that engages with a drive pin 13 attached to the guide portion 52B of the spring retainer 52 is formed on the outer peripheral portion of the sealed end surface forming portion 7B. Relative rotation with respect to the seal case 5 is prevented while allowing the seal ring 7 to move in the axial direction.

スプリング8は、図1に示す如く、静止側密封環7の密封環形成部7Bとスプリングリテーナ52の本体部52Aとの間に介装されていて、静止側密封環7を回転側密封環6へと押圧附勢している。なお、スプリング8は周方向に適当間隔を隔てて複数設けられており、各スプリング8は、その基端側部分をスプリングリテーナ52の本体部52Aに形成した凹部に保持されている。   As shown in FIG. 1, the spring 8 is interposed between the sealing ring forming portion 7 </ b> B of the stationary side sealing ring 7 and the main body 52 </ b> A of the spring retainer 52, and the stationary side sealing ring 7 is connected to the rotating side sealing ring 6. It is pushing and energizing. A plurality of springs 8 are provided at appropriate intervals in the circumferential direction, and each spring 8 is held in a recess formed in the main body 52A of the spring retainer 52 at the base end side portion.

シールケース5は、図1に示す如く、インペラ3が配置されるインペラ室(タービン室等)を形成する回転機器ケーシング14に連設(一体形成)されたケース本体51と、その内周部に取り付けられたスプリングリテーナ52とを具備する。ケース本体51は、図1に示す如く、リテーナ取付面51aと第1及び第2油室形成面51c,51cとベアリング保持面51dとからなる内周面を有するものである。リテーナ取付面51aは回転軸2と同心をなす円柱面であり、スプリングリテーナ52を嵌合固定している。第1油室形成面51bはリテーナ取付面51aに面一状に連なる円柱面である。第2油室形成面51cは第1油室形成面51bのベアリング側端部に連なる円環状面であり、ベアリング4のインペラ側端面(より正確には、外輪4Bのインペラ側端面4b)と面一をなしている。ベアリング保持面51dは第2油室形成面51cの内周部に連なる円柱面であって、ベアリング4(より正確にはベアリング4の外輪4B)を内嵌固定している。スプリングリテーナ52は、静止側密封環7及びスプリング8を保持する本体部52Aとドライブピン13が設けられるガイド部52Bとからなる円筒体であり、ガイド部52Bの先端面(ベアリング側端面)は、軸線方向において、回転側密封端面6aをベアリング側に越える位置であって回転側密封環6の先端環状面61cをベアリング側に越えない位置に位置された第3油室形成面52aとされている。第3油室形成面52aは、軸線に直交する環状面である。   As shown in FIG. 1, the seal case 5 includes a case main body 51 that is continuous (integrally formed) with a rotating device casing 14 that forms an impeller chamber (such as a turbine chamber) in which the impeller 3 is disposed, and an inner peripheral portion thereof. And an attached spring retainer 52. As shown in FIG. 1, the case main body 51 has an inner peripheral surface including a retainer mounting surface 51 a, first and second oil chamber forming surfaces 51 c and 51 c, and a bearing holding surface 51 d. The retainer mounting surface 51a is a cylindrical surface that is concentric with the rotary shaft 2, and the spring retainer 52 is fitted and fixed thereto. The first oil chamber forming surface 51b is a cylindrical surface that is continuous with the retainer mounting surface 51a. The second oil chamber forming surface 51c is an annular surface continuous with the bearing side end of the first oil chamber forming surface 51b, and the surface of the impeller side end surface of the bearing 4 (more precisely, the impeller side end surface 4b of the outer ring 4B). I am doing one. The bearing holding surface 51d is a cylindrical surface continuous with the inner peripheral portion of the second oil chamber forming surface 51c, and fixes the bearing 4 (more precisely, the outer ring 4B of the bearing 4). The spring retainer 52 is a cylindrical body composed of a main body 52A for holding the stationary seal ring 7 and the spring 8 and a guide portion 52B on which the drive pin 13 is provided, and the tip surface (bearing side end surface) of the guide portion 52B is In the axial direction, the third oil chamber forming surface 52a is located at a position that extends beyond the rotation-side sealing end surface 6a toward the bearing side and that does not extend beyond the tip annular surface 61c of the rotation-side sealing ring 6 toward the bearing side. . The third oil chamber forming surface 52a is an annular surface orthogonal to the axis.

而して、ケース本体51には、図1及び図2に示す如く、ベアリング4と回転側密封環6との対向端面間に形成されるシールケース内空間16aに霧状のベアリング潤滑油17を循環供給するための給排油路18,19が形成されている。このシールケース内空間は、ベアリング4に潤滑油を供給するための潤滑油室16aとして機能する。   Thus, as shown in FIGS. 1 and 2, the case body 51 is provided with the mist-like bearing lubricant 17 in the seal case inner space 16 a formed between the opposed end surfaces of the bearing 4 and the rotary seal ring 6. Supply / discharge oil passages 18 and 19 for circulating supply are formed. The space in the seal case functions as a lubricating oil chamber 16 a for supplying lubricating oil to the bearing 4.

すなわち、シールケース内空間たる潤滑油室16aは、図1及び図2に示す如く、ベアリング4と回転側密封環6との対向端面(内輪4Aと基端環状部61Aとの衝合面を除く)とシールケース5の内周面である第1油室形成面51b、第2油室形成面51c及び第3油室形成面52aとで囲繞された環状空間である。給油路18は潤滑油室16aの外周下部に、また排油路19は潤滑油室16aの外周上部に、夫々開口されている。給油路18と排油路19とは、図示していないが、ベアリング潤滑油17を霧状にして給油路18から噴出させる給油装置及び排油路19から排出されたベアリング潤滑油17を冷却して給油装置に回収する回収装置を有する循環路を構成しており、潤滑油室16aに霧状のベアリング潤滑油17を循環供給させるようになっている。なお、このベアリング潤滑油17の循環供給は、当該高速回転機器の運転中において継続的に(場合によっては、間欠的に)行なわれる。   That is, as shown in FIGS. 1 and 2, the lubricating oil chamber 16a, which is the inner space of the seal case, has a facing end surface between the bearing 4 and the rotating side sealing ring 6 (excluding the abutting surface between the inner ring 4A and the base end annular portion 61A). ) And the first oil chamber forming surface 51b, the second oil chamber forming surface 51c, and the third oil chamber forming surface 52a which are the inner peripheral surfaces of the seal case 5. The oil supply passage 18 is opened at the lower outer periphery of the lubricating oil chamber 16a, and the oil discharge passage 19 is opened at the upper outer periphery of the lubricating oil chamber 16a. Although not shown, the oil supply passage 18 and the oil discharge passage 19 cool the bearing lubricant 17 discharged from the oil supply device and the oil supply passage 19 that makes the bearing lubricant 17 sprayed from the oil supply passage 18. Thus, a circulation path having a recovery device for recovery is configured in the oil supply device, and the mist bearing lubricant 17 is circulated and supplied to the lubricant chamber 16a. The circulating supply of the bearing lubricant 17 is continuously (or intermittently depending on the case) during operation of the high-speed rotating device.

以上のように構成された高速回転機器用ガスシール1にあっては、回転側密封環6が、その極く一部(被覆層62)を除いて、一般的回転側密封環構成材に比して軽比重の非脆性金属材(例えば、Ti−6Al−4V)で構成されているから、一般的回転側密封環構成材で構成した場合に比して、遠心力による応力に対する耐力が頗る大きい。しかも、回転側密封環6つまり本体61が、軸線方向厚さを外周方向に漸次薄くなる略円錐台形状とされていることから、つまり内周側部分に比して周速が大きくなる外周側部分がより軽量となるような形状とされていることから、上記応力の分布が本体61(回転側密封環6)の径方向(遠心力の作用方向)において均一又は略均一となり、本体61全体(回転側密封環6全体)における上記応力による影響が大幅に軽減されることになる。これらのことから、回転側密封環6(回転軸2)が高速で回転される場合にも、回転側密封環6が遠心力による応力によって割れを生じたり破壊されたりする虞れがない。   In the gas seal 1 for high-speed rotating equipment configured as described above, the rotation-side seal ring 6 is compared with a general rotation-side seal ring component except for a very small part (the coating layer 62). Therefore, since it is composed of a non-brittle metal material having a light specific gravity (for example, Ti-6Al-4V), it has a higher resistance to stress due to centrifugal force than when it is composed of a general rotating side sealing ring component. large. Moreover, the rotation-side sealing ring 6, that is, the main body 61 has a substantially truncated cone shape in which the axial thickness gradually decreases in the outer peripheral direction, that is, the outer peripheral side where the peripheral speed is larger than the inner peripheral side portion. Since the portion is shaped to be lighter, the stress distribution is uniform or substantially uniform in the radial direction of the main body 61 (rotation side sealing ring 6) (direction of action of centrifugal force). The effect of the stress on the entire rotation-side sealing ring 6 is greatly reduced. For these reasons, even when the rotation-side sealing ring 6 (rotating shaft 2) is rotated at a high speed, there is no possibility that the rotation-side sealing ring 6 is cracked or broken due to the stress caused by the centrifugal force.

一方、回転側密封端面6aは、一般的回転側密封環構成材と同等以上の耐摩耗性及び高硬度性を有する材料のコーティング層(被覆層)62で構成されていることから、本体61を一般的回転側密封環構成材に比して耐摩耗性,高硬度性に劣るチタン合金等で構成したことによる問題(回転側密封端面6aの摩耗等)は生じない。   On the other hand, the rotation-side sealing end face 6a is composed of a coating layer (coating layer) 62 made of a material having wear resistance and high hardness equal to or higher than that of a general rotation-side sealing ring constituent material. Problems (such as wear of the rotation-side sealing end face 6a) due to the titanium alloy having inferior wear resistance and high hardness compared to a general rotation-side sealing ring component do not occur.

したがって、回転軸2が高速で回転される高速回転機器にあっても、長期に亘って良好なガスシール機能を発揮することができる。なお、上記したガスシール1(本体61をTi−6Al−4Vで構成したもの)を使用して実験したところ、回転軸2を10000min−1で高速回転させた場合は勿論、60000min−1及び120000min−1で超高速回転させた場合にも、回転側密封環6の割れ,破壊は全く生じず、良好なガスシール機能を発揮することが確認された。 Therefore, even in a high-speed rotating device in which the rotating shaft 2 is rotated at a high speed, a good gas sealing function can be exhibited over a long period of time. Incidentally, when an experiment using a gas seal 1 mentioned above (that constitutes a main body 61 with Ti-6Al-4V), of course if it is rotated at a high speed rotary shaft 2 in 10000min -1, 60000min -1 and 120000min It was confirmed that even when rotated at an ultra high speed of -1 , the rotation-side sealing ring 6 was not cracked or broken at all, and exhibited a good gas sealing function.

また、高速回転機器にあっては、低速回転機器に比してベアリング4の潤滑が極めて重要となるが、上記したガスシール1にあっては、霧状のベアリング潤滑油17が潤滑油室16aに循環供給されることから、ベアリング4の潤滑を適正且つ充分に行なうことができる。   In the high-speed rotating device, the lubrication of the bearing 4 is extremely important as compared with the low-speed rotating device. In the gas seal 1 described above, the mist-like bearing lubricating oil 17 is contained in the lubricating oil chamber 16a. Therefore, the bearing 4 can be lubricated properly and sufficiently.

すなわち、給油路18から潤滑油室16aに供給された霧状のベアリング潤滑油17は拡散しつつ内外輪4A,4B間からベアリング4内に侵入して、ベアリング4の潤滑を行なう。このとき、ベアリング潤滑油17の一部17aは、遠心力によって回転側密封環6の背面の傾斜面(中間環状面)61bに沿って密封端面6a方向に流動されることになるが、回転側密封環6の背面の外周部分は傾斜面61bから軸線に直交する方向に延びる先端環状面61cとされていることから、図2に示す如く、傾斜面61bに沿って外周側へと流動するベアリング潤滑油部分17aは先端環状面61cによって密封端面6aと平行する方向へ誘導されることになり、さらに先端環状面61cの外周側に位置する第3油室形成面52aから第1及び第2油室形成面51b,51cに沿ってベアリング側へと方向転換されることになる。したがって、回転側密封環6を略円錐台形状(背面に傾斜面61bを有する形状)としておくことによっては、ベアリング潤滑油17の一部17aが回転側密封環6とシールケース5(スプリングリテーナ52のガイド部52B)との隙間から潤滑油室16a外へと流出して、密封端面6a,7aを油汚損させる(シール機能に悪影響を及ぼす)ようなことがない。さらに、上記した方向転換流17aによってベアリング潤滑油17の攪拌作用が行なわれ、これによってベアリング潤滑油17によるベアリング4の潤滑が更に良好に行なわれることになる。   That is, the mist-like bearing lubricant 17 supplied from the oil supply passage 18 to the lubricant chamber 16a penetrates into the bearing 4 from between the inner and outer rings 4A and 4B while diffusing, and lubricates the bearing 4. At this time, a part 17a of the bearing lubricant 17 flows in the direction of the sealing end surface 6a along the inclined surface (intermediate annular surface) 61b on the back surface of the rotating side sealing ring 6 by centrifugal force. Since the outer peripheral portion of the back surface of the sealing ring 6 is a tip annular surface 61c extending from the inclined surface 61b in a direction orthogonal to the axis, as shown in FIG. 2, the bearing flows toward the outer peripheral side along the inclined surface 61b. The lubricating oil portion 17a is guided by the tip annular surface 61c in a direction parallel to the sealed end surface 6a, and further, the first and second oils from the third oil chamber forming surface 52a located on the outer peripheral side of the tip annular surface 61c. The direction is changed to the bearing side along the chamber forming surfaces 51b and 51c. Therefore, by making the rotation-side seal ring 6 substantially in the shape of a truncated cone (a shape having an inclined surface 61b on the back surface), a part 17a of the bearing lubricating oil 17 is allowed to move between the rotation-side seal ring 6 and the seal case 5 (spring retainer 52). , And the sealing end surfaces 6a and 7a are not soiled (has an adverse effect on the sealing function). Further, the agitating action of the bearing lubricating oil 17 is performed by the above-described direction change flow 17a, whereby the bearing 4 is lubricated more favorably by the bearing lubricating oil 17.

なお、本発明の構成は上記した実施の形態に限定されず、本発明の基本原理を逸脱しない範囲で適宜に改良,変更することができる。   The configuration of the present invention is not limited to the above-described embodiment, and can be appropriately improved and changed without departing from the basic principle of the present invention.

例えば、上記した例では、本体61の外周端部を断面方形状の先端環状部61Cに構成したが、その理由は、先端環状面61cを中間環状面61bに連なる傾斜面とすると、本体61の外周端部の厚み(軸線方向の厚み)が必要以上に薄くなって、回転側密封環6の剛性が低下すること、及びベアリング潤滑油17の一部17aが先端環状面61cから密封端面6a方向に流動して、密封端面6a,7aが油汚損されること、等を回避するためである。しかし、回転軸2の回転速度が低い場合や回転側密封環6の背面側に潤滑油室16aを設けておく必要がない場合等にあっては、上記した形状上の制限はなく、回転側密封環6ないし本体61を、遠心力による応力の径方向分布が可及的に均一となるような略円錐台径円筒形状としておくことを条件として、任意形状とすることができる。例えば、中間環状面61b(又は中間環状面61b及び先端環状面61c)を円弧状の傾斜面又は階段状の傾斜面としておくことも可能である。このような形状とすることは、一般的回転側密封環構成材では加工上なし得ないが、一般的回転側密封環構成材に比して加工性に富むチタン合金等の非脆性金属材を使用することによって可能となるものである。   For example, in the above-described example, the outer peripheral end portion of the main body 61 is configured as the front end annular portion 61C having a square cross section. The reason is that if the front end annular surface 61c is an inclined surface connected to the intermediate annular surface 61b, The thickness of the outer peripheral end (thickness in the axial direction) becomes thinner than necessary, the rigidity of the rotary seal ring 6 decreases, and a part 17a of the bearing lubricating oil 17 moves from the tip annular surface 61c to the sealed end surface 6a. This is to prevent the sealed end faces 6a and 7a from being soiled with oil. However, when the rotational speed of the rotary shaft 2 is low or when it is not necessary to provide the lubricating oil chamber 16a on the back side of the rotary seal ring 6, there is no limitation on the shape described above, and the rotary side The sealing ring 6 or the main body 61 can be made into an arbitrary shape on condition that the radial distribution of the stress due to the centrifugal force is made as uniform as possible. For example, the intermediate annular surface 61b (or the intermediate annular surface 61b and the tip annular surface 61c) may be an arcuate inclined surface or a stepped inclined surface. Such a shape cannot be achieved with a general rotating side sealing ring component, but a non-brittle metal material such as a titanium alloy, which is rich in workability compared to a general rotating side sealing ring component. It is possible by using it.

また、円環状面である第3油室形成面62aの軸線方向位置は、ベアリング潤滑油17の一部17aがスプリングリテーナ52のガイド部52Bと密封環6との隙間から密封端面6a方向に侵入するのを防止するために、先端環状面61cをベアリング側に越えない範囲において先端環状面61に可及的に近づけておくことが好ましいが、方向転換流17aをより効果的に発生させるためには、第3油室形成面62aを外周方向で且つベアリング方向に傾斜する傾斜面としておくことが更に好ましい。   The axial position of the third oil chamber forming surface 62a, which is an annular surface, is such that a part 17a of the bearing lubricant 17 enters the sealed end surface 6a from the gap between the guide portion 52B of the spring retainer 52 and the sealing ring 6. In order to prevent this, it is preferable to keep the tip annular surface 61c as close as possible to the tip annular surface 61 within a range not exceeding the bearing side, but in order to generate the direction change flow 17a more effectively. More preferably, the third oil chamber forming surface 62a is an inclined surface inclined in the outer peripheral direction and in the bearing direction.

また、上記した例では、回転軸2と回転側密封環6との間のシール(二次シール)を、本体61の内周部に形成したOリング溝63に保持させたOリング11によって行なうようにしたが、このようなOリング溝63の形成は、一般的回転側密封環構成材に比して靭性,加工性に優れたチタン合金等の非脆性金属材を使用したことによって可能となる。しかし、このようなOリング溝63を形成せず、ベアリング4の内輪4Aの端面4aをシール面に構成して、これと基端環状面61aとの衝合作用によって両者2,6間を二次シールするようにすることも可能である。この場合、シール面として機能する基端環状面61a及び/又は内輪端面4aには、必要に応じて、適当な硬化処理(例えば、超硬合金等によるコーティング)を施しておくことができる。   In the above example, the seal (secondary seal) between the rotary shaft 2 and the rotary seal ring 6 is performed by the O-ring 11 held in the O-ring groove 63 formed in the inner peripheral portion of the main body 61. However, it is possible to form such an O-ring groove 63 by using a non-brittle metal material such as a titanium alloy having excellent toughness and workability as compared with a general rotating side sealing ring component. Become. However, such an O-ring groove 63 is not formed, but the end surface 4a of the inner ring 4A of the bearing 4 is formed as a seal surface, and the two and 6 are separated from each other by an abutting action between the end surface 4a and the base end annular surface 61a. It is also possible to perform the next sealing. In this case, the base end annular surface 61a functioning as a seal surface and / or the inner ring end surface 4a can be subjected to an appropriate hardening process (for example, coating with a cemented carbide or the like) as necessary.

本発明に係る高速回転機器用ガスシールの一例を示す縦断側面図である。It is a vertical side view which shows an example of the gas seal for high-speed rotation apparatuses which concerns on this invention. 図1の要部の拡大図である。It is an enlarged view of the principal part of FIG.

符号の説明Explanation of symbols

1…ガスシール、2…回転軸、3…インペラ、4…ベアリング、4A…内輪、4B…外輪、5…シールケース、6…回転側密封環、6a…回転側密封端面、7…静止側密封環、7a…静止側密封端面、8…スプリング、9…動圧発生溝、15…被密封流体領域、16…非密封流体領域、16a…潤滑油室(シールケース内空間)、17…ベアリング潤滑油、17a…ベアリング潤滑油の一部(方向転換流)、18…給油路、19…排油路、51…ケース本体、52…スプリングリテーナ、61…本体、61a…基端環状面、61b…中間環状面、61c…先端環状面、62…被覆層(コーティング層)。
DESCRIPTION OF SYMBOLS 1 ... Gas seal, 2 ... Rotary shaft, 3 ... Impeller, 4 ... Bearing, 4A ... Inner ring, 4B ... Outer ring, 5 ... Seal case, 6 ... Rotation side sealing ring, 6a ... Rotation side sealing end surface, 7 ... Stationary side sealing Ring, 7a ... stationary side sealing end face, 8 ... spring, 9 ... dynamic pressure generating groove, 15 ... sealed fluid region, 16 ... non-sealed fluid region, 16a ... lubricating oil chamber (space inside seal case), 17 ... bearing lubrication Oil: 17a: A part of bearing lubricating oil (direction change flow), 18: Oil supply passage, 19 ... Oil discharge passage, 51 ... Case main body, 52 ... Spring retainer, 61 ... Main body, 61a ... Base end annular surface, 61b ... Intermediate annular surface, 61c ... tip annular surface, 62 ... coating layer (coating layer).

Claims (3)

回転軸(2)がこれに設けられたインペラ(3)の近接部位をベアリング(4)により軸受支持されている高速回転機器に使用されるガスシールであって、回転軸(2)に、これを軸受支持するベアリング(4)とインペラ(3)との間に配して、固定された回転側密封環(6)と、インペラ(3)とベアリング(4)との間の回転軸部分を囲繞するシールケース(5)に、回転側密封環(6)とインペラ(3)との間に配して、軸線方向移動可能に保持された静止側密封環(7)と、静止側密封環(7)を回転側密封環(6)へと押圧附勢するスプリング(8)とを具備して、両密封環(6,7)の対向端面たる密封端面(6a,7a)が、その間に回転側密封環(6)の密封端面(6a)に形成された動圧発生溝(9)により動圧を発生させることにより、非接触状態で相対回転せしめられ、両密封端面(6a,7a)の内径側のガス領域である被密封流体領域(15)とその外径側のガス領域である非密封流体領域(16)とを遮蔽シールするように構成された非接触形メカニカルシールにおいて
回転側密封環(6)の本体(61)を、軸線方向の厚みが外周方向へ漸次薄くなる略円錐台形状であって一側端面である密封端面(6a)を回転軸(2)に直交する平滑環状面となすと共に他側端面を前記ベアリング(4)の内輪(4A)に密接する基端環状面(61a)とその外周縁から当該密封端面(6a)に漸次接近しつつ外方に延びる中間環状面(61b)とその外周縁から回転軸(2)に直交して外方向に延びる先端環状面(61c)とからなる環状傾斜面となした略円錐台形状に軽比重の非脆性金属材で構成すると共に、この本体(61)の一側端面に耐摩耗性に優れた硬質材からなる被覆層(62)を形成して、この被覆層(62)を動圧発生溝(9)を形成した密封端面(6a)に構成し、
シールケース(5)に、ベアリング(4)と回転側密封環(6)との対向端面間に形成される非密封流体領域(16)のシールケース内空間である潤滑油室(16a)に霧状のベアリング潤滑油(17)を循環供給するための給排油路(18,19)を形成して、給油路(18)から潤滑油室(16a)に供給された霧状のベアリング潤滑油(17)が拡散しつつ内外輪(4A,4B)間からベアリング(4)内に侵入してベアリング(4)の潤滑を行なうと共に、当該ベアリング潤滑油(17)の一部(17a)が遠心力によって回転側密封環(6)の背面の傾斜面たる中間環状面(61b)に沿って外周側へと流動しベアリング(4)側へと方向転換される方向転換流となるように構成したことを特徴とする高速回転機器用ガスシール。
A rotary shaft (2) is a gas seal used in a high-speed rotating device in which a proximity portion of an impeller (3) provided on the rotary shaft (2) is supported by a bearing (4), and the rotary shaft (2) Is arranged between the bearing (4) and the impeller (3) for supporting the bearing, and the fixed rotating side sealing ring (6) and the rotating shaft portion between the impeller (3) and the bearing (4) are provided. A stationary seal ring (7) disposed between the rotary seal ring (6) and the impeller (3) and held axially movable in a surrounding seal case (5) ; and a stationary seal ring A spring (8) that presses and urges (7) to the rotation-side sealing ring (6) , and the sealing end faces ( 6a, 7a) as opposed end faces of both sealing rings (6 , 7) Dynamic pressure is generated by the dynamic pressure generating groove (9) formed in the sealing end face (6a) of the rotating side sealing ring (6). By doing so, the sealed fluid region (15) which is a gas region on the inner diameter side of both sealed end faces (6a, 7a) and the non-sealed fluid region which is a gas region on the outer diameter side thereof are rotated in a non-contact state. (16) and in a non-contact type mechanical seal configured to shield seal,
The main body (61) of the rotation-side sealing ring (6) has a substantially truncated cone shape in which the axial thickness gradually decreases in the outer circumferential direction, and the sealing end surface (6a) which is one side end surface is orthogonal to the rotation axis (2). The outer end surface of the bearing (4) is brought into close contact with the inner ring (4A) and the outer peripheral edge of the bearing (4) while gradually approaching the sealed end surface (6a). Non-brittleness with light specific gravity in a substantially frustoconical shape which is an annular inclined surface comprising an intermediate annular surface (61b) extending from the outer peripheral edge and a tip annular surface (61c) extending outwardly from the outer peripheral edge perpendicular to the rotation axis (2) while a metallic material, to form the body covering layer made of high hard material abrasion resistance on one edge (61) (62), the covering layer (62) of the dynamic pressure generating grooves (9 ) Formed on the sealed end face (6a) ,
Fog is generated on the seal case (5) in the lubricating oil chamber (16a), which is an inner space of the seal case in the non-sealed fluid region (16) formed between the opposed end surfaces of the bearing (4) and the rotary seal ring (6). Mist bearing lubricating oil supplied to the lubricating oil chamber (16a) from the oil supplying passage (18) by forming a supply / discharge oil passage (18, 19) for circulating supply of the bearing lubricating oil (17) (17) diffuses into the bearing (4) from between the inner and outer rings (4A, 4B) to lubricate the bearing (4), and a part (17a) of the bearing lubricating oil (17) is centrifuged. It is configured to flow to the outer peripheral side along the intermediate annular surface (61b), which is the inclined surface of the back surface of the rotating side sealing ring (6), and to turn to the bearing (4) side by force . A gas seal for high-speed rotating equipment.
回転側密封環(6)の本体(61)がチタン合金又はアルミニウム合金で構成されており、密封端面(6a)を形成する被覆層(62)がセラミックス、超硬合金又はダイヤモンドライクカーボンで構成されていることを特徴とする、請求項1に記載する高速回転機器用ガスシール。 The main body (61) of the rotary seal ring (6) is made of titanium alloy or aluminum alloy, and the coating layer (62) forming the sealed end face (6a ) is made of ceramics, cemented carbide or diamond-like carbon. The gas seal for a high-speed rotating device according to claim 1, wherein the gas seal is used. 前記チタン合金がTi−6Al−4Vであることを特徴とする、請求項2に記載する高速回転機器用ガスシール。 The gas seal for high-speed rotating equipment according to claim 2, wherein the titanium alloy is Ti-6Al-4V.
JP2004136914A 2004-04-30 2004-04-30 Gas seal for high-speed rotating equipment Expired - Fee Related JP4256813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004136914A JP4256813B2 (en) 2004-04-30 2004-04-30 Gas seal for high-speed rotating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004136914A JP4256813B2 (en) 2004-04-30 2004-04-30 Gas seal for high-speed rotating equipment

Publications (2)

Publication Number Publication Date
JP2005315392A JP2005315392A (en) 2005-11-10
JP4256813B2 true JP4256813B2 (en) 2009-04-22

Family

ID=35443025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004136914A Expired - Fee Related JP4256813B2 (en) 2004-04-30 2004-04-30 Gas seal for high-speed rotating equipment

Country Status (1)

Country Link
JP (1) JP4256813B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101455377B1 (en) * 2014-06-26 2014-10-27 이동훈 Turbine apparatus for wind power generation using compressed air

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2989116B1 (en) * 2012-04-05 2014-04-25 Snecma COAXIAL INTER-SHAFT SEALING DEVICE OF A TURBOMACHINE
CN102808799B (en) * 2012-08-30 2014-10-22 江苏金通灵流体机械科技股份有限公司 Bearing seat sealing device for centrifugal fan
JP6471006B2 (en) 2015-03-09 2019-02-13 日本ピラー工業株式会社 Free ring type mechanical seal
JP2020041470A (en) 2018-09-10 2020-03-19 トヨタ自動車株式会社 compressor
CN117823449B (en) * 2023-12-28 2024-06-07 广东肇庆德通有限公司 Draught fan sealing structure containing tar working condition and treatment system thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101455377B1 (en) * 2014-06-26 2014-10-27 이동훈 Turbine apparatus for wind power generation using compressed air

Also Published As

Publication number Publication date
JP2005315392A (en) 2005-11-10

Similar Documents

Publication Publication Date Title
US10408086B1 (en) Turbine assembly including at least one superhard bearing
US10107333B2 (en) Plain bearing assembly of a rotational element on a bearing pin
EP2916048B1 (en) Seal assembly
US10329952B2 (en) Bearing assembly, in particular for a turbomachine, and turbomachine having such a bearing assembly
EP1075614B1 (en) Improved bearing isolator
JP2007170378A (en) Variable stator vane assembly
KR20160056840A (en) Modular turbocharger clearance seal
EP3291421B1 (en) Landing bearing assembly and rotary machine equipped with such an assembly and a magnetic bearing
JP4256813B2 (en) Gas seal for high-speed rotating equipment
US20190323555A1 (en) Bearing Centering Spring and Damper
JP2008240796A (en) Angular contact ball bearing with seal, and spindle device
TWI691656B (en) Spindle device for ball bearing and machine tool
JP4028868B2 (en) Rotational feedthrough
JP7050632B2 (en) Rolling bearings and spindle devices with these rolling bearings
CN104930054A (en) Roller bearing
JP2011133000A (en) Cylindrical roller bearing device
JP2011226469A (en) Turbocharger
TWI760065B (en) Angular Contact Ball Bearing and Spindle Device for Machine Tool
JP2005521005A (en) Spindle sealing device
US10736713B2 (en) Dental handpiece having a rolling bearing
US10415638B1 (en) Bearing centering spring and damper
JP2002227938A (en) Roller chain
JP2007032674A (en) Rolling bearing
KR20190131587A (en) Journal bearing with improved efficiency
JP2001087986A (en) Cooling device for tool holder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081024

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4256813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees