JP4256580B2 - Anticorrosion bearing and manufacturing method thereof - Google Patents

Anticorrosion bearing and manufacturing method thereof Download PDF

Info

Publication number
JP4256580B2
JP4256580B2 JP2000308267A JP2000308267A JP4256580B2 JP 4256580 B2 JP4256580 B2 JP 4256580B2 JP 2000308267 A JP2000308267 A JP 2000308267A JP 2000308267 A JP2000308267 A JP 2000308267A JP 4256580 B2 JP4256580 B2 JP 4256580B2
Authority
JP
Japan
Prior art keywords
bearing
rubber
counter electrode
rubber bearing
rotor shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000308267A
Other languages
Japanese (ja)
Other versions
JP2002115719A (en
Inventor
昭彦 矢野
武朗 牧野
制治 白井
文隆 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikasa KK
Mitsubishi Heavy Industries Ltd
Original Assignee
Mikasa KK
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikasa KK, Mitsubishi Heavy Industries Ltd filed Critical Mikasa KK
Priority to JP2000308267A priority Critical patent/JP4256580B2/en
Publication of JP2002115719A publication Critical patent/JP2002115719A/en
Application granted granted Critical
Publication of JP4256580B2 publication Critical patent/JP4256580B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、船舶のプロペラ軸受等に用いられ、円筒状のシェルメタルの内周にゴム系材料からなる円筒状のゴム軸受を接着し、該ゴム軸受の内周とロータ軸の外周との間に海水等の導電水が通流可能にされた隙間が形成されてなる電気防食軸受及びその製造方法に関する。
【0002】
【従来の技術】
船舶のプロペラやプロペラ軸系の構成部材は海水中に浸されることから、海水に対する防食のため電気的防食手段が施されている。かかる電気的防食手段のうち、外部電源方式が最も多く用いられている。
かかる外部電源方式による船舶の電気的防食装置として、特開平6−99886号、特開平8−133184号等の発明が提供されている。
【0003】
かかる発明においては、直流電源装置から船体に設置した対極に陽電位を、前記プロペラ、舵等の被防食部材に相対的に陰電位を付与して、前記対極から海水を通して前記被防食部材に防食電流を供給することにより、前記被防食部材の海水からの腐蝕を防止している。また、前記対極に加えて基準電極(照合電極)を設け該基準電極を用いて海水中での前記被防食部材の電位を検出して、前記直流電源装置から出力される防食電流を自動的に制御している。
【0004】
また、図16はかかる電気防食水中ゴム軸受の1例を示し、図において、52はプロペラ軸、70は該プロペラ軸を支持するプロペラ軸受である。該プロペラ軸受70において、1は金属材からなる円筒状のシェルメタルで前記ブラケット051に固定されている。020は前記シェルメタルの内周に固定された円筒状のゴム軸受材で、該ゴム軸受材020の内周のパッド面2aには円周方向に沿って等間隔に(不等間隔でもよい)、海水が通流可能な水路溝6が軸方向に凹設されて、前記プロペラ軸52の外周面とゴム軸受材020のパッド面2aとの間に形成される軸受すきま02に連通せしめられている。
31は陽電位を付与するための板状の対極で、前記水路溝6の全部あるいは、複数箇所に好ましくは円周方向等間隔に設けられる。
【0005】
かかる水中ゴム軸受を製造するにあたっては、従来においては、前記シェルメタル1の内面をサンドブラストあるいは化学処理によって粗化し、該内面にゴム加硫用接着剤を塗布してゴム軸受材020を接着させている。
また、前記水中ゴム軸受の製造過程における、加硫前のゴム軸受材020用ゴム生地(生ゴム)の貼り付け方法としては、予めシート化された生ゴムシートを手貼りライニングによって貼り付ける方法、あるいは、予め押出し機を利用して、ブロックまたは円筒状のゴム生地(生ゴム)を作製してこれをシェルメタル1の内面に貼り付ける方法等がある。このようにして成形したゴム軸受を加硫プレスあるいは加硫缶にて加硫する。
【0006】
【発明が解決しようとする課題】
前記特開平6−99886号、特開平8−133184号等の従来技術においては、船舶の被防食部材のうち、プロペラ及びこれに連結されているプロペラ軸の電気的防食、特に従来防食が困難であったプロペラの翼根部近傍の電気的防食を可能とし、しかも、電気的防食のための防食電流を低減して直流電源装置の容量低減をなしている。
然るに、海水中に浸されているゴム軸受方式のプロペラ軸受においては、プロペラ軸の外周とゴム軸受の内周との間の隙間が海水の水路となっているため、該水路を流れる高速水流によりプロペラ軸の腐蝕が大きくなる傾向にある。特に銅合金からなるプロペラ軸の場合はかかる腐蝕が発生し易い。
しかしながら、前記従来技術にあっては、前記のような、海中に浸されたゴム軸受方式のプロペラ軸受支持部近傍におけるプロペラ軸の防食はなされておらず、このため該プロペラ軸がプロペラ軸受支持部近傍において腐蝕摩耗を発生し易いという問題点を有している。
【0007】
また、前記のような、従来の水中ゴム軸受の製造方法にあっては、粗化されているシェルメタルの内面に、予めシート化された生ゴムシート、押出し機により作製されたブロックまたは円筒状のゴム生地等の、十分に可塑化されていないゴム生地(生ゴム)を貼り付けるため、生ゴムが表面粗度の粗い前記シェルメタルの内面に均一に入り込み難い。
このため、かかる従来技術にあっては、前記シェルメタルの内面と生ゴムとの接着面に空気溜りが形成されて接着不良による不良品の発生をみたり、該軸受の使用中に前記接着面に剥離現象が発生して軸受寿命が低下するという問題点を有している。
【0008】
本発明はかかる従来技術の課題に鑑み、銅合金からなる船舶用プロペラ軸等の、海水中に浸されたゴム軸受方式の水中軸受に支持されるロータ軸の電気的防食を確実になし、前記ロータ軸の海水による腐蝕摩耗の発生を防止した電気防食軸受を提供することを目的とする。
【0009】
また、本発明の第2の目的は、円筒状のシェルメタルの内周面にゴム系材料からなるゴム軸受材を加硫接着して構成された水中ゴム軸受において、前記ゴム軸受材を前記シェルメタルの内周面に均一かつ強固に接着せしめ得る製造方法を提供することにより、製品の品質が向上するとともに、耐久性、信頼性の高い水中ゴム軸受を得ることにある。
【0010】
【課題を解決するための手段】
本発明はかかる課題を解決するため、請求項1記載の発明として、 円筒状のシェルメタルの内周にゴム系材料からなる円筒状のゴム軸受を接着し、該ゴム軸受にてロータ軸を支持するとともに、該ゴム軸受の内周と前記ロータ軸の外周との間に海水等の導電水が通流可能にされた隙間が形成されてなる電気防食軸受において、前記隙間に対向する前記ゴム軸受の水路面に、外部電源に接続された対極を前記ロータ軸の外周面に対向させて設置し、該対極から前記隙間内の導電水を通して前記ロータ軸に通電可能に構成されてなり前記対極を、前記ゴム軸受の加硫成形用の中子に接着して加硫後該中子を除去した状態で該対極の一部が前記水路面から前記隙間内に露出するように前記ゴム軸受に加硫接着したことを特徴とする電気防食軸受電気防食軸受を提案する。
【0011】
請求項2記載の発明は、円筒状のシェルメタルの内周にゴム系材料からなる円筒状のゴム軸受を接着し、該ゴム軸受にてロータ軸を支持するとともに、該ゴム軸受の内周と前記ロータ軸の外周との間に海水等の導電水が通流可能にされた隙間が形成されてなる電気防食軸受において、前記隙間に対向する前記ゴム軸受の水路面に、外部電源に接続された対極を前記ロータ軸の外周面に対向させて設置し、該対極から前記隙間内の導電水を通して前記ロータ軸に通電可能に構成されてなり
前記ゴム軸受の内周面から一定間隔を存して螺旋状の対極を配設し、該ゴム軸受の長手方向に形成した水路溝内で前記対極を露出させたことを特徴とする電気防食軸受を提案する。
【0012】
請求項1若しくは2において、好ましくは請求項3のように、前記水路面を、前記ゴム軸受の内周面に円周方向に沿い複数箇所に凹設された水路溝に構成する。
請求項ないし6記載の発明は、前記対極の配置構成に係り、請求項の発明は、請求項1若しくは2において、前記対極が導電性ゴムで形成されており、該対極の端部を前記水路溝内に露出させて固定したことを特徴とする。
請求項の発明は、請求項1若しくは2において、前記対極を、前記水路面に接着材により接着したことを特徴とする。
請求項の発明は、請求項1若しくは2において、前記対極を、その一部を前記水路面から前記隙間内に露出させて前記ゴム軸受に加硫接着したことを特徴とする。
【0013】
請求項1〜記載の発明によれば、ゴム軸受の内周側の水路面に陽電位が付与される対極を取り付け、該対極から前記水路面が臨む軸受隙間を通流している海水等の導電水を通してロータ軸に防食電流を供給するという、きわめて簡単な手段で以って従来電気的防食が困難であった水中軸受近傍のロータ軸の電気化学腐蝕を確実に抑制することが可能となる。
これにより、海水等の導電水中に浸されたゴム軸受方式の水中軸受に支持されるロータ軸の電気的防食を確実になし得て、きわめて簡単な手段で以って前記ロータ軸の、海水等の導電水による電気化学腐蝕摩耗の発生を防止することができる。
【0014】
また、特に請求項4記載の発明によれば、対極を導電性ゴム製としたので、ゴム軸受と対極との密着性が良好で、耐食性にも優れている。
また請求項記載の発明によれば、対極を水路溝の溝面を含む水路面に接着するのみで該対極の取り付けができるので、ゴム軸受にスリット等の加工をすることが不要となり、対極の取り付け作業が簡単化される。
また請求項1及び6記載の発明によれば、対極をゴム軸受の加硫成形と同時に該ゴム軸受の水路面に固定できるので、対極の取り付け作業がさらに簡単化される。
さらに請求項2記載の発明によれば、前記対極を螺旋状に配置した1本の対極とし、この対極の一部が各水路溝の複数箇所で露出するように形成したので、該対極から外部に回線を取り出すためのポイントの数が少なくなり、配線が簡単化される。
また、請求項記載の発明は、外型内に支持された円筒状のシェルメタルの内周にゴム系材料からなるゴム軸受材を加硫接着する電気防食軸受の製造方法において、
前記外型の中心部に中子を配設し、該中子の外周面と前記シェルメタルの内周面との間に形成される円筒状空間に可塑化したゴム生地を加圧手段により押し込み加圧し接着させた後、加硫手段により加硫固着することにより前記ゴム軸受材を成形し、前記中子の外周面に電気防食用の対極を取り付け、前記ゴム生地を該中子の外周面と前記シェルメタルの内周面との間に形成される円筒状空間に圧入し、加硫固着して前記ゴム軸受材とともに前記対極を該ゴム軸受材の内周面に固定し、次いで前記対極を前記中子から分離することを特徴とする。
【0015】
請求項7記載の発明によれば、加圧手段によりゴム生地を注入ノズル内において十分に練り上げて可塑化し、この可塑化したゴム生地を該加圧手段によって高圧で型内に圧入するので、ゴム生地はサンドブラスト、化学処理等によって粗化されているシェルメタルの内面に隙間やむらを生じることなく接着される。
これにより、ゴム生地をシェルメタルの内面に均一かつ強固に接着することができ、十分な接着アンカー効果が得られ、水中ゴム軸受の製品品質が向上する。
また、対極を中子の表面に接着してゴム軸受材を加硫し、中子を除去すれば、前記対極の片面あるいは一部の面は確実に海水流路に露出されることとなるので、対極のゴム軸受材への固着が、格別な工数を加えることなくゴム軸受材の加硫と同時に確実にでき、対極の取り付け作業が簡単化される。
【0016】
参考例1として提示している技術は、外型内に支持された円筒状のシェルメタルの内周にゴム系材料からなるゴム軸受材を加硫接着する電気防食軸受の製造方法において、台金と、4フッ化エチレン、ポリアミド、高密度ポリエチレン等の摺動性の良好な合成樹脂からなるパッド材との間にゴム材を挿み込んで加硫接着してセグメント状のゴム軸受材を成形し、前記シェルメタルの内周面に軸方向に延びる複数の溝を円周方向に沿って刻設し、該溝内に前記ゴム軸受材を嵌着することを特徴とする。
【0017】
参考例2として提示している技術は、外型内に支持された円筒状のシェルメタルの内周にゴム系材料からなるゴム軸受材を加硫接着する電気防食軸受の製造方法において、台金と、4フッ化エチレン、ポリアミド、高密度ポリエチレン等の摺動性の良好な合成樹脂からなるパッド材との間にゴム材を挿み込んで加硫接着してセグメント状のゴム軸受材を成形し、前記シェルメタルの内周面に、前記ゴム軸受材を円周方向に沿って樽状に並べ、前記台金の底面を該内周面に接着することを特徴とする。
【0018】
参考例1ないし2記載の技術によれば、電気防食軸受の製造装置における加圧手段により注入ノズル内においてゴム生地を十分に練り上げ可塑化して、型内に支持された前記台金とパッド材との間に高圧で圧入した後、型とともに加硫缶に入れて、蒸気によって加硫を行い接着させるので、ゴム生地は粗化されているシェルメタルの内面に隙間やむらを生じることなく接着され、ゴム生地をシェルメタルの内面に均一かつ強固に接着することができる。
【0019】
【発明の実施の形態】
以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。
【0020】
図1は本発明の第1実施例に係る船舶のプロペラ軸支持用電気防食軸受のロータ軸軸心線に直角な断面図である。図2は前記第1実施例における図1のW部拡大図、図3は第2実施例を示す図2対応図、図4は第3実施例を示す図2対応図、図5は第4実施例を示す図2対応図、図6は第5実施例における対極の設置手段を示す軸受のロータ軸線に直角な断面図、図7は第5実施例における中子の断面図である。図8は第6実施例の対極を示す斜視図、図9は第6実施例の軸受の一部断面斜視図である。 図10は本発明適用される電気防食軸受及び水中ゴム軸受の製造装置の縦断面図、図11は水中ゴム軸受の第1実施例の正面図(回転軸心に直角方向の図)である。図12は水中ゴム軸受の第2実施例を示し、(A)は図11対応図、(B)はゴム軸受材の拡大図である。図13は水中ゴム軸受の第3実施例を示し、(A)は図11対応図、(B)はゴム軸受材の拡大図である。図14は電気防食軸受としての水中ゴム軸受を示し、(A)は軸受のロータ軸線に直角な正面図、(B)はその第1例、(C)はその第2例を夫々示す(A)のY部拡大図である。図15は本発明が適用される船舶のプロペラ軸及びプロペラ軸受近傍の側面図である。
【0021】
本発明が適用される船舶のプロペラ軸及びプロペラ軸受近傍を示す図15において、51は船体、53はプロペラ、52は該プロペラ53の駆動軸であるプロペラ軸(ロータ軸)、70は該プロペラ軸52を支持するプロペラ軸受、051は該プロペラ軸受70を船体51に支持するためブラケットである。前記プロペラ軸52の前記プロペラ軸受70に支持される部分の外周には銅合金からなるブッシュ3が圧入されている。
また、前記プロペラ軸受70は後述するような電気防食軸受からなり、1はシェルメタル、2は該シェルメタルの内周に固着された円筒状のゴム軸受で、前記プロペラ軸52のブッシュ3外周を支持している。
【0022】
58は前記プロペラ軸52の防食電気回路で、外部電源57から回線を介して一方は前記プロペラ軸受70のゴム軸受2に設けられた対極(詳細は後述)に、他方はブッシュ3、プロペラ軸52、及び軸アース61に接続されている。
【0023】
本発明に係る電気防食軸受は、前記プロペラ軸52の防食電気回路58におけるゴム軸受式電気防食軸受からなるプロペラ軸受70の、対極の取り付け構造に関するものである。
本発明に係る電気防食軸受の第1実施例を示す図1ないし図2において、52はプロペラ軸、70は該プロペラ軸を支持するプロペラ軸受である。該プロペラ軸受70において、1は金属材からなる円筒状のシェルメタルで前記ブラケット051に固定されている。2は前記シェルメタルの内周に固定された円筒状のゴム軸受で、該ゴム軸受2の内周のパッド面2aには円周方向に沿って等間隔に(不等間隔でもよい)、海水が通流可能な水路溝6が軸方向に凹設されて、前記プロペラ軸52の外周面とゴム軸受2のパッド面2aとの間に形成される軸受すきま02に連通せしめられている。
【0024】
31は板状の対極で、白金、チタン+白金コーティング材により形成されており、この第1実施例においては、次のようにして取り付けられている。2bは前記ゴム軸受2における水路溝6の溝面06の底部側に刻設されたスリットで、該スリット2b内に前記対極31がその先端部を前記水路溝6内の海水流路に露出して圧入されている。該対極31の前記溝面06からの突出量aは1mm程度が好適である。該対極31は、前記水路溝6の全部あるいは、複数箇所に好ましくは円周方向等間隔に設けられる。
また、図1において、4は基準電極で、塩化銀電極等からなり、被防食部材である前記プロペラ軸52及びブッシュ3の海水中での電位を検出して、前記外部電源57(直流電源)から出力される防食電流を自動的に制御するものであり、前記水路溝6の中の1箇所以上に取り付けられている。
【0025】
かかる構成からなる船舶用電気防食軸受装置において、直流電源からなる前記外部電源57から前記ゴム軸受2における水路溝6内に設置された前記対極31に陽電位を付与するとともに、被防食部材である前記プロペラ軸52及びブッシュ3側に相対的に陰電位を付与する。
これにより、前記ゴム軸受2の内周側に取り付けられた対極31から前記水路溝6内を通流している海水を通して前記ブッシュ3及びプロペラ軸52側に防食電流が供給されて、図10に示すような防食電気回路が形成され、被防食部材である前記ブッシュ3及びプロペラ軸52の海水による電気化学腐蝕が抑制される。
また、前記基準電極により前記プロペラ軸52及びブッシュ3の海水中での電位を検出して前記外部電源57の制御手段に送り、該外部電源57から出力される防食電流を自動的に制御する。
【0026】
かかる実施例によれば、ゴム軸受2の内周側に陽電位が付与される対極31を取り付け、該対極31から水路溝6内を通流している海水を通して前記ブッシュ3及びプロペラ軸52側に防食電流を供給するという、きわめて簡単な手段で以って従来電気的防食が困難であったプロペラ軸52近傍のプロペラ軸52系の電気化学腐蝕を確実に抑制することが可能となる。
【0027】
図3に示される第2実施例においては、板状の対極32をその一面が前記水路溝6内の海水流路に露出されるようにし、反対側の面を前記水路溝6の溝面06に接着材あるいはボルト(図示省略)によって固着している。02bは接着部を示す。
かかる実施例においては、対極32を水路溝6の溝面06に接着するのみで該対極32の取り付けができるので、前記第1実施例のようにゴム軸受2にスリット2bを加工することが不要となり、対極32の取り付け作業が簡単化される。
その他の構成は前記第1実施例と同様であり、これと同一の部材は同一の符号で示す。
【0028】
図4に示される第3実施例においては、板状の対極33は導電性ゴムで形成されており、前記ゴム軸受2の加硫成形時に、その一面が前記水路溝6内の海水流路に露出されるようにして前記ゴム軸受2に加硫接着している。
かかる実施例においては、導電性ゴム製の対極33をゴム軸受2の加硫成形と同時に該ゴム軸受2の水路溝6に固定できるので、前記第1、2実施例よりも対極33の取り付け作業がさらに簡単化される。
また、ゴム軸受2と対極33との密着性が良好で、耐食性にも優れている。
その他の構成は前記第1実施例と同様であり、これと同一の部材は同一の符号で示す。
【0029】
図5に示される第4実施例においては、板状、リング状、あるいは線状の対極34を、前記ゴム軸受2の加硫成形時にゴム材内に包んでゴム軸受2を成形した後、前記ゴム材を削り取って前記対極34の一部を該水路溝6内の海水流路に露出させている。
かかる実施例においては、対極34をゴム軸受2の加硫成形と同時に該ゴム軸受2のゴム材内に包み込むので、前記第3実施例よりも対極34のゴム軸受2への固着が簡単化にできる。
その他の構成は前記第1実施例と同様であり、これと同一の部材は同一の符号で示す。
【0030】
図6ないし図7に示される第5実施例においては、図7に示されるように、前記ゴム軸受2の加硫成形時に、前記対極35を、該ゴム軸受2の加硫成形用中子7の、前記水路溝6形成部の表面に接着しておく。該ゴム軸受2を加硫後、前記中子7を除去すると図6に示されるように対極35は中子7から離れてゴム軸受2側に固着され、その片面あるいは一部の面が、該水路溝6内の海水流路に露出される。尚、その際に対極35の一つを中子7の水路溝6形成部の表面に接着し、ゴム軸受2の加硫後中子7を除去するようにすることもできる。
かかる実施例においては、対極35を中子7の、前記水路溝6形成部の表面に接着して該ゴム軸受2を加硫することにより、中子7を除去すれば前記対極35の片面あるいは一部の面は確実に該水路溝6内の海水流路に露出されることとなるので、対極35のゴム軸受2への固着が格別な工数を加えることなく確実にできる。
その他の構成は前記第1実施例と同様であり、これと同一の部材は同一の符号で示す。
【0031】
図8ないし図9に示される第6実施例においては、まず、図8に示されるように、前記ゴム軸受2の加硫成形と同時に同ゴム軸受の内面から一定の間隔を存して対極36を螺旋状にゴム材内に包み込む。次いで、図9に示される前記ゴム軸受2に複数の水路溝6を、前記ゴム軸受2の長手方向に、かつ前記対極36の表面が該水路溝6内の海水流路に露出するように削り出して形成する。
【0032】
かかる実施例においては、前記対極36を螺旋状に連続して1本形成し、水路溝6内において対極36の表面を露出させたので、該対極36から外部に回線を取り出すためのポイントの数が少なくなり、配線が簡単化される。
【0033】
図11に示される電気防食軸受と一つの軸受の参考例1は、図16に示されるような電気防食軸受として用いられる水中ゴム軸受であり、円筒状のシェルメタル1の内周面に円筒状のゴム軸受材2を加硫接着して構成されている。21は円筒状に形成されたゴム材で、その外周面が前記シェルメタル1の内周面に接着されている。22はパッド材で、4フッ化エチレン、ポリアミド、高密度ポリエチレン等の摺動性の良好な合成樹脂からなり、前記ゴム材21の内周面に円周方向等間隔に接着されている。
【0034】
図10は、図11に示される水中ゴム軸受の参考例1及び本発明に係る電気防食軸受の第1実施例に係る水中ゴム軸受の製造装置であり、同図において、16は枠体、14は注入フランジ、15はエア抜きフランジ、12は前記注入フランジ14とエア抜きフランジ15との間に配置され両フランジ14及び15にボルトにて固定された外型である。
1は金属材あるいは合成樹脂からなるシェルメタル、020は後述する方法により成形されたゴム軸受材であり、前記外型12の内周に前記シェルメタル1が支持されるようになっている。13は前記ゴム軸受材020の内側に配置された中子で、根部を前記エア抜きフランジ15に支持されている。
17は前記ゴム軸受材020用のゴム生地03を前記外型12の内部に押し出すためのスクリューで、注入ノズル18内に往復動可能に嵌合されている。18aは前記スクリュー17へのゴム生地03の導入口、18bはゴム生地03注入用の注入孔である。
【0035】
かかる構成からなる水中ゴム軸受の製造装置を用いて、図11に示されるような水中ゴム軸受を製造する際には,内面を予め粗化しゴム用加硫接着剤を塗布した前記シェルメタル1を外型12の内側にセットするとともに、前記中子13を前記エア抜きフランジ15にて支持して中心部に配置し、次いで、前記外型12を前記注入フランジ14及びエア抜きフランジ15の間にボルトにより固定する。
また、予め前記導入口18aから注入ノズル18内にゴム生地(生ゴム)03を導入して前記スクリュー17によって練って可塑化し、スクリュー17先端部に溜める。そして、50ないし150kgf/cm2の高圧でかつ空気に触れることなく、速やかにスクリュー17を回転させてゴム生地03を押しながら注入孔18bから型内(シェルメタル1と中子13の間)に圧入し、エア抜き孔15aからゴム生地03が溢れ出ることを確認したら充填を終了する。
次いで、前記ゴム生地03が圧入された型を加硫缶に入れて、蒸気によって加硫を行い前記ゴム生地03をシェルメタル1の内面に接着させる。前記加硫缶による加硫は、熱を型全体に伝達させる効果がある。
【0036】
かかる実施例によれば、加圧手段である前記スクリュー17により前記注入ノズル18内においてゴム生地03を十分に練り上げて可塑化し、この可塑化したゴム生地03を該スクリュー17によって高圧で型内に圧入するので、ゴム生地03はサンドブラスト、化学処理等によって粗化されているシェルメタル1の内面に隙間やむらを生じることなく接着される。
これにより、ゴム生地03をシェルメタル1の内面に均一かつ強固に接着することができ、十分な接着アンカー効果が得られ、水中ゴム軸受の製品品質が向上する。
【0037】
図12に示される水中ゴム軸受の参考例2において、30はゴム軸受材であり、同図(B)に示されるように、金属あるいは合成樹脂からなる台金31の上面と、4フッ化エチレン、ポリアミド、高密度ポリエチレン等の摺動性の良好な合成樹脂からなるパッド材33の下面との間にゴム材320を加硫接着してなる。
該ゴム軸受材30は、前記第1実施例の図10に示されるような水中ゴム軸受の製造装置におけるスクリュー17により注入ノズル18内においてゴム生地03を十分に練り上げて可塑化して、型内に支持された前記台金31とパッド材33との間に高圧で圧入した後、型とともに加硫缶に入れて、蒸気によって加硫を行い接着させる。
【0038】
前記のようにして成形されたセグメント状のゴム軸受材30は、前記シェルメタル1の内周面に円周方向に沿って複数個等間隔に(必ずしも等間隔でなくてもよい)刻設された軸方向に延びる嵌合溝1a内に、台金310の嵌合面35を当接させて嵌め込み接着剤等を用いて固定する。前記台金310の嵌合面35及びこれと当接する前記シェルメタル1の嵌合溝1aとは台形に形成されているので、ゴム軸受材30は嵌合溝1aから抜け出すことなく確実にシェルメタル1に固定される。
以上のようにして、セグメント状のゴム軸受材30をシェルメタル1の内周面に円周方向に並べて固定することにより、各ゴム軸受材30の間に水路溝6が形成される。
【0039】
図13に示される水中ゴム軸受の参考例3においては、前記参考例2と同様に、金属あるいは合成樹脂からなる台金41の上面と、4フッ化エチレン、ポリアミド、高密度ポリエチレン等の摺動性の良好な合成樹脂からなるパッド材43の下面との間にゴム材42を加硫接着してゴム軸受材40を構成する(同図(B))。
【0040】
そして、複数個の前記セグメント状のゴム軸受材40は、前記シェルメタル1の内面1cに円周方向に沿って樽状に並べられ、前記台金41の底面即ち接着面46を前記シェルメタル1の内面1cに接着することにより固定される。各ゴム軸受材40の間には水路溝6が形成される。
【0041】
図14に示される本発明の実施例は、電気防食軸受としての水中ゴム軸受の製造方法を示す。この実施例においては、前記ゴム軸受材020の加硫成形時に、図16に示される対極31を治具8の表面に仮接着して中子13に固定し、該ゴム軸受材020を加硫後、前記中子13及び治具8を除去する。かかる中子13及び治具8の除去時に対極31は中子13から離れてゴム軸受材2側に固着される。
そして、機械加工によりゴム軸受材020を削り水路溝6を形成し、前記対極31の片面あるいは一部の面を、該水路溝6内の海水流路に露出させる。
かかる実施例においては、対極31を中子13の、前記水路溝6形成部の表面に治具8を介して接着して該ゴム軸受材020を加硫することにより、中子13及び治具8を除去し水路溝6を削り出せば、前記対極31の片面あるいは一部の面は確実に該水路溝6内の海水流路に露出されることとなるので、対極3のゴム軸受材020への固着が、格別な工数を加えることなくゴム軸受材020の加硫と同時に確実にできる。
また、図14(C)に示すように、中子13を除去したあと水路溝6を削り出すかわりに、中子13製作時に予め中子13外周の一部に水路溝形成部6aを凸設しておき、この水路溝形成部6aの頂部に対極31を取付けた状態でゴム軸受材020を加硫する。
その後中子13を水路溝形成部6aとともに除去すれば、対極3は水路溝6の凹み部にしっかりと固着される。
この方法によれば、対極31のゴム軸受材020への固着と水路溝6の形成とが軸受材020の加硫と同時にでき、しかも対極31は確実に水路溝6内の海水流路に露出させることができる。さらに、対極31の代わりにその1つを基準電極4に置き換えて中子13の水路溝形成部に接着してゴム軸受材020を加硫することにより、対極31および基準電極4の双方を同時にゴム軸受材020へ固着することができる。
【0042】
【発明の効果】
以上記載のごとく本発明によれば、ゴム軸受の内周側の水路面に対極(陽極)を取り付け、該対極から軸受隙間を通流している海水等の導電水を通してロータ軸に防食電流を供給するという、きわめて簡単な手段で以って従来電気的防食が困難であった水中軸受近傍のロータ軸の電気化学腐蝕を確実に抑制することが可能となる。
これにより、海水等の導電水中に浸されたゴム軸受方式の水中軸受に支持されるロータ軸の電気的防食を確実になし得て、きわめて簡単な手段で以って前記ロータ軸の、海水等の導電水による電気化学腐蝕摩耗の発生を防止することができる。
【0043】
また、請求項記載の発明によれば、加圧手段によりゴム生地を注入ノズル内において十分に練り上げて可塑化し、この可塑化したゴム生地を該加圧手段によって高圧で型内に圧入するので、ゴム生地はシェルメタルの内面に隙間やむらを生じることなく接着される。
これにより、ゴム生地をシェルメタルの内面に均一かつ強固に接着することができ、十分な接着アンカー効果が得られ、水中ゴム軸受の製品品質が向上するとともに、耐久性、信頼性の高い電気防食軸受を得ることができる。
【0044】
特に請求項記載の発明によれば、対極および基準電極のゴム軸受材への固着が、格別な工数を加えることなくゴム軸受材の加硫と同時に確実にでき、対極の取り付け作業が極めて簡単化される。
【図面の簡単な説明】
【図1】 本発明に係る電気防食軸受の第1実施例に係る船舶のプロペラ軸支持用電気防食軸受のロータ軸の軸心線に直角な断面図である。
【図2】 第1実施例における図1のW部拡大図である。
【図3】 第2実施例を示す図2対応図である。
【図4】 第3実施例を示す図2対応図である。
【図5】 第4実施例を示す図2対応図である。
【図6】 第5実施例における対極の設置手段を示す軸受のロータ軸軸心線に直角な断面図である。
【図7】 前記第5実施例における中子の断面図である。
【図8】 第6実施例の対極の配置を示す斜視図である。
【図9】 第6実施例の軸受の一部断面斜視図である。
【図10】 本発明が適用される電気防食軸受及び水中ゴム軸受の製造装置の縦断面図である。
【図11】 参考例1の水中ゴム軸受の正面図(回転軸心に直角方向の図)である。
【図12】 参考例2の水中ゴム軸受を示し、(A)は図2対応図、(B)はゴム軸受材の拡大図である。
【図13】 参考例3の水中ゴム軸受を示し、(A)は図2対応図、(B)はゴム軸受材の拡大図である。
【図14】 電気防食軸受としての水中ゴム軸受を示し、(A)は軸受のロータ軸線に直角な正面図、(B)は(A)のY部拡大図である。(C)は(B)とは別の実施例を示す(A)のY部拡大図である。
【図15】 本発明が適用される船舶のプロペラ軸及びプロペラ軸受近傍の側面図である。
【図16】 電気防食軸受のロータ軸軸心線に直角な断面図である。
【符号の説明】
1 シェルメタル
1a 嵌合溝
2 ゴム軸受
2a パッド面
2b スリット
02b 接着部
02 軸受すきま
020、30、40 ゴム軸受材
3 ブッシュ
03 ゴム生地
4 基準電極
6 水路溝
6a 水路溝形成部
06 溝面
7 中子
12 外形
13 中子
14 注入フランジ
15 エア抜きフランジ
15a エア抜き孔
17 スクリュー
18 注入ノズル
18a 導入口
18b 注入孔
21、320、42 ゴム材
22、33、43 パッド材
31、32、34、35、 対極
031 嵌合面
310、41 台金
33 導電性ゴム製対極
36 螺旋状対極
46 接着面
51 船体
051 ブラケット
52 プロペラ軸(ロータ軸)
53 プロペラ
57 外部電源
58 防食電気回路
61 軸アース
70 プロペラ軸受
[0001]
BACKGROUND OF THE INVENTION
The present invention is used for ship propeller bearings, etc., and a cylindrical rubber bearing made of a rubber-based material is bonded to the inner periphery of a cylindrical shell metal, and between the inner periphery of the rubber bearing and the outer periphery of the rotor shaft. In particular, the present invention relates to an anticorrosion bearing in which a gap in which conductive water such as seawater can flow is formed, and a method for manufacturing the same.
[0002]
[Prior art]
Since the propeller of a ship and the components of the propeller shaft system are immersed in seawater, an electrical protection means is applied to prevent corrosion against seawater. Of such electrical corrosion protection means, the external power supply system is most frequently used.
Japanese Patent Laid-Open No. 6-99886, Japanese Patent Laid-Open No. 8-133184, and the like have been provided as electrical corrosion protection devices for ships using such an external power supply system.
[0003]
In this invention, a positive potential is applied to the counter electrode installed on the hull from the DC power supply device, and a negative potential is relatively applied to the anticorrosive member such as the propeller and rudder, and the anticorrosion member is corroded through the seawater from the counter electrode. By supplying an electric current, corrosion of the member to be protected from seawater is prevented. In addition to the counter electrode, a reference electrode (reference electrode) is provided, and the reference electrode is used to detect the potential of the anticorrosive member in seawater, thereby automatically generating the anticorrosion current output from the DC power supply device. I have control.
[0004]
FIG. 16 shows an example of such an anticorrosion submerged rubber bearing. In the figure, 52 is a propeller shaft, and 70 is a propeller bearing that supports the propeller shaft. In the propeller bearing 70, reference numeral 1 denotes a cylindrical shell metal made of a metal material and is fixed to the bracket 051. 020 is a cylindrical rubber bearing material fixed to the inner periphery of the shell metal, and the pad surface 2a on the inner periphery of the rubber bearing material 020 is equally spaced along the circumferential direction (may be unevenly spaced). A water channel groove 6 through which seawater can flow is recessed in the axial direction, and is communicated with a bearing clearance 02 formed between the outer peripheral surface of the propeller shaft 52 and the pad surface 2a of the rubber bearing material 020. Yes.
31 is a plate-like counter electrode for applying a positive potential, and is provided in the whole or a plurality of locations of the water channel groove 6, preferably at equal intervals in the circumferential direction.
[0005]
In manufacturing such an underwater rubber bearing, conventionally, the inner surface of the shell metal 1 is roughened by sandblasting or chemical treatment, and a rubber vulcanizing adhesive is applied to the inner surface to bond the rubber bearing material 020. Yes.
In addition, in the manufacturing process of the underwater rubber bearing, as a method of attaching the rubber fabric for the rubber bearing material 020 before vulcanization (raw rubber), a method of attaching a raw rubber sheet formed in advance into a sheet by hand-attached lining, or There is a method in which an extruder is used in advance to produce a block or cylindrical rubber fabric (raw rubber) and paste this onto the inner surface of the shell metal 1. The rubber bearing thus molded is vulcanized with a vulcanizing press or a vulcanizing can.
[0006]
[Problems to be solved by the invention]
In the prior arts such as JP-A-6-99886 and JP-A-8-133184, it is difficult to electrically prevent the corrosion of the propeller and the propeller shaft connected to the propeller among the corrosion-protected members of the ship. It is possible to prevent electrical corrosion in the vicinity of the blade root portion of the propeller, and to reduce the capacity of the DC power supply device by reducing the corrosion protection current for electrical protection.
However, in a rubber bearing type propeller bearing that is immersed in seawater, the gap between the outer periphery of the propeller shaft and the inner periphery of the rubber bearing is a seawater channel. Propeller shaft corrosion tends to increase. In particular, in the case of a propeller shaft made of a copper alloy, such corrosion is likely to occur.
However, in the prior art, the propeller shaft is not protected near the propeller bearing support portion of the rubber bearing type immersed in the sea as described above. Therefore, the propeller shaft is not propeller bearing support portion. There is a problem that corrosive wear tends to occur in the vicinity.
[0007]
In addition, in the conventional method for manufacturing an underwater rubber bearing as described above, a raw rubber sheet pre-sheeted on a roughened inner surface of a shell metal, a block or a cylindrical shape made by an extruder Since a rubber fabric (raw rubber) that is not sufficiently plasticized, such as a rubber fabric, is attached, the raw rubber does not easily enter the inner surface of the shell metal having a rough surface roughness.
For this reason, in such prior art, an air pocket is formed on the adhesive surface between the inner surface of the shell metal and the raw rubber, and a defective product due to poor adhesion is observed. There is a problem that the peeling phenomenon occurs and the life of the bearing is reduced.
[0008]
In view of the problems of the prior art, the present invention reliably prevents electrical corrosion of a rotor shaft supported by a rubber bearing submerged bearing immersed in seawater, such as a marine propeller shaft made of a copper alloy, An object of the present invention is to provide an anti-corrosion bearing which prevents the occurrence of corrosive wear caused by seawater on the rotor shaft.
[0009]
A second object of the present invention is an underwater rubber bearing formed by vulcanizing and bonding a rubber bearing material made of a rubber-based material to an inner peripheral surface of a cylindrical shell metal. An object of the present invention is to provide an underwater rubber bearing having improved product quality and high durability and reliability by providing a manufacturing method capable of uniformly and firmly adhering to an inner peripheral surface of a metal.
[0010]
[Means for Solving the Problems]
In order to solve such a problem, the present invention provides the invention according to claim 1, wherein a cylindrical rubber bearing made of a rubber-based material is bonded to the inner periphery of the cylindrical shell metal, and the rotor shaft is supported by the rubber bearing. In addition, in the anticorrosion bearing in which a gap is formed between the inner circumference of the rubber bearing and the outer circumference of the rotor shaft so that conductive water such as seawater can flow therethrough, the rubber bearing facing the gap A counter electrode connected to an external power source is disposed on the water channel surface of the rotor shaft so as to face the outer peripheral surface of the rotor shaft, and the rotor shaft is configured to be able to be energized through the conductive water in the gap from the counter electrode. The rubber bearing is bonded to the rubber bearing core for vulcanization molding, and after vulcanization, the core is removed so that a part of the counter electrode is exposed to the gap from the water channel surface. Electro-corrosion-proof bearing electric Propose anti-corrosion bearings.
[0011]
According to the second aspect of the present invention, a cylindrical rubber bearing made of a rubber-based material is bonded to the inner periphery of a cylindrical shell metal, and the rotor shaft is supported by the rubber bearing. In the anticorrosion bearing in which a gap is formed between the outer circumference of the rotor shaft and the conductive water such as seawater is allowed to flow, connected to an external power source on a waterway surface of the rubber bearing facing the gap. The counter electrode is installed to face the outer peripheral surface of the rotor shaft, and the rotor shaft can be energized through the conductive water in the gap from the counter electrode.
An anti-corrosion bearing characterized in that a spiral counter electrode is disposed at a predetermined interval from the inner peripheral surface of the rubber bearing, and the counter electrode is exposed in a water channel groove formed in the longitudinal direction of the rubber bearing. Propose.
[0012]
In claim 1 or 2 , preferably, as in claim 3, the water channel surface is configured as a water channel groove recessed in a plurality of locations along the circumferential direction on the inner peripheral surface of the rubber bearing.
The invention according to claims 4 to 6 relates to an arrangement configuration of the counter electrode, and the invention according to claim 4 is the invention according to claim 1 or 2 , wherein the counter electrode is made of conductive rubber, and the end of the counter electrode is arranged. It is exposed and fixed in the water channel groove.
The invention of claim 5 is characterized in that, in claim 1 or 2 , the counter electrode is adhered to the water channel surface with an adhesive.
A sixth aspect of the present invention is characterized in that, in the first or second aspect , the counter electrode is vulcanized and bonded to the rubber bearing while a part of the counter electrode is exposed from the channel surface into the gap.
[0013]
According to the first to sixth aspects of the present invention, a counter electrode to which a positive potential is applied is attached to the water channel surface on the inner peripheral side of the rubber bearing, and seawater or the like flowing through a bearing gap facing the water channel surface from the counter electrode. It is possible to reliably suppress the electrochemical corrosion of the rotor shaft in the vicinity of the underwater bearing, which has conventionally been difficult to prevent by a very simple means of supplying a corrosion-proof current to the rotor shaft through the conductive water. .
As a result, it is possible to ensure electrical protection of the rotor shaft supported by the rubber bearing type underwater bearing immersed in conductive water such as seawater. It is possible to prevent the occurrence of electrochemical corrosion wear due to the conductive water.
[0014]
Further, according to the particular claim 4 Symbol placing the invention, since the conductive rubber and the counter electrode, good adhesion to the rubber bearing and the counter electrode, it is excellent in corrosion resistance.
According to the invention described in claim 5 , since the counter electrode can be attached only by adhering the counter electrode to the water channel surface including the groove surface of the water channel groove, it is not necessary to process the rubber bearing with a slit or the like. The installation work is simplified.
According to the invention of mounting according to claim 1 and 6 reporting, since the counter electrode can be fixed to the water road surface at the same time the rubber bearing and vulcanization molding of the rubber bearing, the mounting operation of the counter electrode is further simplified.
Furthermore, according to claim 2 Symbol placing of the invention, a single counter electrode disposed to the counter electrode in a spiral, the portion of the counter electrode was formed so as to be exposed at a plurality of positions of each waterway grooves, from the pair pole The number of points for taking out the line to the outside is reduced, and wiring is simplified.
The invention according to claim 7 is a method for producing an anticorrosion bearing in which a rubber bearing material made of a rubber-based material is vulcanized and bonded to the inner periphery of a cylindrical shell metal supported in an outer mold.
A core disposed in the center of the outer mold, the pressurizing means rubber dough plasticized in a cylindrical space formed between the inner peripheral surface of the shell metal and the outer circumferential surface of the tang After pressing and bonding, the rubber bearing material is formed by vulcanization and fixing by a vulcanizing means, a counter electrode for anticorrosion is attached to the outer peripheral surface of the core, and the rubber dough is attached to the outer periphery of the core Press-fitted into a cylindrical space formed between the surface and the inner peripheral surface of the shell metal, fixed by vulcanization and fixed to the inner peripheral surface of the rubber bearing material together with the rubber bearing material, The counter electrode is separated from the core.
[0015]
According to claim 7 Symbol mounting of the invention, the rubber material plasticized elaborated sufficiently in the injection nozzle by pressurizing means, since the press-fitting the plasticized rubber material into the mold at high pressure by pressurizing means, The rubber fabric is bonded to the inner surface of the shell metal roughened by sandblasting, chemical treatment or the like without causing gaps or unevenness.
As a result, the rubber fabric can be uniformly and firmly bonded to the inner surface of the shell metal, a sufficient adhesion anchor effect can be obtained, and the product quality of the underwater rubber bearing can be improved.
Further, if the counter electrode is bonded to the surface of the core, the rubber bearing material is vulcanized, and the core is removed, one side or a part of the counter electrode is surely exposed to the seawater channel. The fixing of the counter electrode to the rubber bearing material can be ensured at the same time as the vulcanization of the rubber bearing material without adding a special man-hour, and the work of mounting the counter electrode is simplified.
[0016]
The technique presented as Reference Example 1 is a method for manufacturing an anticorrosion bearing in which a rubber bearing material made of a rubber material is vulcanized and bonded to the inner periphery of a cylindrical shell metal supported in an outer mold. A rubber material is inserted between the pad material made of synthetic resin with good slidability such as tetrafluoroethylene, polyamide, high density polyethylene, etc., and vulcanized and bonded to form a segmented rubber bearing material A plurality of axially extending grooves are formed along the circumferential direction on the inner peripheral surface of the shell metal, and the rubber bearing material is fitted into the grooves.
[0017]
The technique presented as Reference Example 2 is a method of manufacturing an anticorrosion bearing in which a rubber bearing material made of a rubber-based material is vulcanized and bonded to the inner periphery of a cylindrical shell metal supported in an outer mold. A rubber material is inserted between the pad material made of synthetic resin with good slidability such as tetrafluoroethylene, polyamide, high density polyethylene, etc., and vulcanized and bonded to form a segmented rubber bearing material The rubber bearing materials are arranged in a barrel shape along the circumferential direction on the inner peripheral surface of the shell metal, and the bottom surface of the base metal is bonded to the inner peripheral surface.
[0018]
According to the techniques described in Reference Examples 1 and 2, the base metal and the pad material supported in the mold are sufficiently kneaded and plasticized in the injection nozzle by the pressurizing means in the production apparatus for the anticorrosion bearing. After press-fitting at a high pressure, it is placed in a vulcanizing can together with the mold and vulcanized with steam to bond it, so that the rubber fabric is bonded to the roughened inner surface of the shell metal without causing gaps or unevenness. The rubber fabric can be uniformly and firmly bonded to the inner surface of the shell metal.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this example are not intended to limit the scope of the present invention only to specific examples unless otherwise specified. Only.
[0020]
FIG. 1 is a cross-sectional view perpendicular to a rotor shaft axis of an anticorrosion bearing for propeller shaft support of a ship according to a first embodiment of the present invention. 2 is an enlarged view of a portion W in FIG. 1 in the first embodiment, FIG. 3 is a view corresponding to FIG. 2 showing the second embodiment, FIG. 4 is a view corresponding to FIG. 2 showing the third embodiment, and FIG. FIG. 6 is a cross-sectional view perpendicular to the rotor axis of the bearing showing the counter electrode installation means in the fifth embodiment, and FIG. 7 is a cross-sectional view of the core in the fifth embodiment. FIG. 8 is a perspective view showing the counter electrode of the sixth embodiment, and FIG. 9 is a partial sectional perspective view of the bearing of the sixth embodiment. FIG. 10 is a longitudinal sectional view of an apparatus for manufacturing an anticorrosion bearing and an underwater rubber bearing to which the present invention is applied , and FIG. 11 is a front view of the first embodiment of the underwater rubber bearing (a view perpendicular to the rotational axis). FIG. 12 shows a second embodiment of the underwater rubber bearing, (A) is a view corresponding to FIG. 11, and (B) is an enlarged view of the rubber bearing material. FIG. 13 shows a third embodiment of the underwater rubber bearing, (A) is a view corresponding to FIG. 11, and (B) is an enlarged view of the rubber bearing material. FIG. 14 shows an underwater rubber bearing as an anticorrosion bearing, (A) is a front view perpendicular to the rotor axis of the bearing, (B) shows a first example thereof, and (C) shows a second example thereof (A). FIG. FIG. 15 is a side view of the vicinity of a propeller shaft and a propeller bearing of a ship to which the present invention is applied.
[0021]
In FIG. 15 showing the vicinity of a propeller shaft and a propeller bearing of a ship to which the present invention is applied, 51 is a hull, 53 is a propeller, 52 is a propeller shaft (rotor shaft) that is a drive shaft of the propeller 53, and 70 is the propeller shaft. A propeller bearing for supporting 52, and a bracket 051 for supporting the propeller bearing 70 to the hull 51. A bush 3 made of a copper alloy is press-fitted into the outer periphery of the portion of the propeller shaft 52 supported by the propeller bearing 70.
The propeller bearing 70 is an anticorrosion bearing as will be described later. 1 is a shell metal, 2 is a cylindrical rubber bearing fixed to the inner periphery of the shell metal, and the outer periphery of the bush 3 of the propeller shaft 52 is provided. I support it.
[0022]
Reference numeral 58 denotes an anticorrosion electric circuit for the propeller shaft 52. One is connected to the counter electrode (details will be described later) provided on the rubber bearing 2 of the propeller bearing 70 via the line from the external power source 57, and the other is the bush 3 and the propeller shaft 52. , And the shaft ground 61.
[0023]
The anticorrosion bearing according to the present invention relates to a counter electrode mounting structure of a propeller bearing 70 formed of a rubber bearing type anticorrosion bearing in the anticorrosion electric circuit 58 of the propeller shaft 52.
1 and 2 showing the first embodiment of the anticorrosion bearing according to the present invention, 52 is a propeller shaft, and 70 is a propeller bearing for supporting the propeller shaft. In the propeller bearing 70, reference numeral 1 denotes a cylindrical shell metal made of a metal material and is fixed to the bracket 051. Reference numeral 2 denotes a cylindrical rubber bearing fixed to the inner periphery of the shell metal. The pad surface 2a on the inner periphery of the rubber bearing 2 is equidistant along the circumferential direction (may be non-uniformly spaced). A water channel groove 6 capable of flowing through is recessed in the axial direction and communicated with a bearing clearance 02 formed between the outer peripheral surface of the propeller shaft 52 and the pad surface 2 a of the rubber bearing 2.
[0024]
Reference numeral 31 denotes a plate-like counter electrode, which is formed of platinum, titanium + platinum coating material, and is attached as follows in this first embodiment. 2b is a slit carved on the bottom side of the groove surface 06 of the water channel groove 6 in the rubber bearing 2, and the counter electrode 31 is exposed in the sea water channel in the water channel groove 6 in the slit 2b. It is press-fitted. The amount of protrusion a of the counter electrode 31 from the groove surface 06 is preferably about 1 mm. The counter electrode 31 is preferably provided at all or a plurality of locations of the water channel groove 6 at equal intervals in the circumferential direction.
Further, in FIG. 1, reference numeral 4 is a reference electrode, which is composed of a silver chloride electrode or the like, detects the potential of the propeller shaft 52 and the bush 3 which are members to be protected in seawater, and the external power source 57 (DC power source). The anti-corrosion current output from is automatically controlled, and is attached to one or more locations in the water channel groove 6.
[0025]
In the marine cathodic protection bearing device having such a configuration, a positive potential is applied to the counter electrode 31 installed in the water channel groove 6 of the rubber bearing 2 from the external power source 57 formed of a direct current power source, and is a member to be protected. A relatively negative potential is applied to the propeller shaft 52 and the bush 3 side.
As a result, the anticorrosion current is supplied to the bush 3 and the propeller shaft 52 through the seawater flowing in the water channel groove 6 from the counter electrode 31 attached to the inner peripheral side of the rubber bearing 2, and is shown in FIG. Such an anticorrosion electric circuit is formed, and the electrochemical corrosion by the seawater of the bush 3 and the propeller shaft 52 which are anticorrosive members is suppressed.
Further, the reference electrode detects the potential of the propeller shaft 52 and the bush 3 in seawater and sends it to the control means of the external power supply 57 to automatically control the anticorrosion current output from the external power supply 57.
[0026]
According to this embodiment, the counter electrode 31 to which a positive potential is applied is attached to the inner peripheral side of the rubber bearing 2, and the bush 3 and the propeller shaft 52 side are passed through the seawater flowing from the counter electrode 31 into the water channel groove 6. It is possible to reliably suppress the electrochemical corrosion of the propeller shaft 52 system in the vicinity of the propeller shaft 52, which has conventionally been difficult to electrically prevent with a very simple means of supplying a corrosion-proof current.
[0027]
In the second embodiment shown in FIG. 3, one surface of the plate-like counter electrode 32 is exposed to the seawater channel in the water channel groove 6, and the opposite surface is the groove surface 06 of the water channel groove 6. Are fixed by an adhesive or bolts (not shown). 02b shows an adhesion part.
In this embodiment, since the counter electrode 32 can be attached only by bonding the counter electrode 32 to the groove surface 06 of the water channel groove 6, it is not necessary to process the slit 2b in the rubber bearing 2 as in the first embodiment. Thus, the work of attaching the counter electrode 32 is simplified.
Other configurations are the same as those of the first embodiment, and the same members are denoted by the same reference numerals.
[0028]
In the third embodiment shown in FIG. 4, the plate-like counter electrode 33 is formed of conductive rubber, and one surface of the counter electrode 33 serves as a seawater flow path in the water channel groove 6 when the rubber bearing 2 is vulcanized. The rubber bearing 2 is vulcanized and bonded so as to be exposed.
In this embodiment, since the counter electrode 33 made of conductive rubber can be fixed to the water channel groove 6 of the rubber bearing 2 simultaneously with the vulcanization molding of the rubber bearing 2, the mounting work of the counter electrode 33 is more than that of the first and second embodiments. Is further simplified.
Further, the adhesion between the rubber bearing 2 and the counter electrode 33 is good, and the corrosion resistance is also excellent.
Other configurations are the same as those of the first embodiment, and the same members are denoted by the same reference numerals.
[0029]
In the fourth embodiment shown in FIG. 5, after the rubber bearing 2 is molded by wrapping a plate, ring or linear counter electrode 34 in a rubber material during the vulcanization molding of the rubber bearing 2, The rubber material is scraped to expose a part of the counter electrode 34 to the seawater channel in the water channel groove 6.
In this embodiment, since the counter electrode 34 is encased in the rubber material of the rubber bearing 2 simultaneously with the vulcanization molding of the rubber bearing 2, the fixing of the counter electrode 34 to the rubber bearing 2 is easier than in the third embodiment. it can.
Other configurations are the same as those of the first embodiment, and the same members are denoted by the same reference numerals.
[0030]
In the fifth embodiment shown in FIGS. 6 to 7, as shown in FIG. 7, when the rubber bearing 2 is vulcanized, the counter electrode 35 is inserted into the vulcanizing core 7 of the rubber bearing 2. It adheres to the surface of the water channel groove 6 forming part. When the core 7 is removed after the rubber bearing 2 is vulcanized, the counter electrode 35 is separated from the core 7 and fixed to the rubber bearing 2 side, as shown in FIG. It is exposed to the seawater channel in the water channel groove 6. At this time, one of the counter electrodes 35 may be adhered to the surface of the water channel groove 6 forming portion of the core 7 to remove the core 7 after vulcanization of the rubber bearing 2.
In this embodiment, if the core 7 is removed by bonding the counter electrode 35 to the surface of the core 7 where the water channel groove 6 is formed and vulcanizing the rubber bearing 2, one side of the counter electrode 35 or Since a part of the surface is surely exposed to the seawater flow path in the water channel groove 6, the counter electrode 35 can be securely fixed to the rubber bearing 2 without adding a special man-hour.
Other configurations are the same as those of the first embodiment, and the same members are denoted by the same reference numerals.
[0031]
In the sixth embodiment shown in FIGS. 8 to 9, first, as shown in FIG. 8, the counter electrode 36 is spaced apart from the inner surface of the rubber bearing 2 at the same time as the rubber bearing 2 is vulcanized. Is wrapped in a rubber material spirally. Next, a plurality of water channel grooves 6 are cut in the rubber bearing 2 shown in FIG. 9 so that the surface of the counter electrode 36 is exposed to the sea water flow channel in the water channel groove 6 in the longitudinal direction of the rubber bearing 2. Take out and form.
[0032]
In this embodiment, one counter electrode 36 is formed continuously in a spiral shape, and the surface of the counter electrode 36 is exposed in the water channel groove 6, so that the number of points for taking out a line from the counter electrode 36 to the outside is provided. And wiring is simplified.
[0033]
A reference example 1 of the anticorrosion bearing and one bearing shown in FIG. 11 is an underwater rubber bearing used as an anticorrosion bearing as shown in FIG. 16, and is cylindrical on the inner peripheral surface of the cylindrical shell metal 1. The rubber bearing material 2 is vulcanized and bonded. A rubber material 21 is formed in a cylindrical shape, and an outer peripheral surface thereof is bonded to an inner peripheral surface of the shell metal 1. Reference numeral 22 denotes a pad material made of a synthetic resin having good slidability such as tetrafluoroethylene, polyamide, and high density polyethylene, and is bonded to the inner peripheral surface of the rubber material 21 at equal intervals in the circumferential direction.
[0034]
FIG. 10 shows an underwater rubber bearing manufacturing apparatus according to Reference Example 1 of the underwater rubber bearing shown in FIG. 11 and the first embodiment of the anticorrosion bearing according to the present invention . In FIG. Is an injection flange, 15 is an air release flange, and 12 is an outer mold disposed between the injection flange 14 and the air release flange 15 and fixed to both flanges 14 and 15 with bolts.
Reference numeral 1 denotes a shell metal made of a metal material or synthetic resin. Reference numeral 020 denotes a rubber bearing material formed by a method described later. The shell metal 1 is supported on the inner periphery of the outer mold 12. Reference numeral 13 denotes a core disposed inside the rubber bearing member 020, and a root portion is supported by the air vent flange 15.
Reference numeral 17 denotes a screw for extruding the rubber fabric 03 for the rubber bearing material 020 into the outer mold 12 and is fitted in the injection nozzle 18 so as to be reciprocally movable. 18a is an inlet for introducing the rubber fabric 03 into the screw 17, and 18b is an injection hole for injecting the rubber fabric 03.
[0035]
When manufacturing an underwater rubber bearing as shown in FIG. 11 using an apparatus for manufacturing an underwater rubber bearing having such a structure, the shell metal 1 having a roughened inner surface and coated with a rubber vulcanizing adhesive is used. The inner mold 12 is set inside, and the core 13 is supported by the air vent flange 15 and arranged at the center, and then the outer mold 12 is placed between the injection flange 14 and the air vent flange 15. Secure with bolts.
Further, a rubber material (raw rubber) 03 is introduced into the injection nozzle 18 from the introduction port 18a in advance, and is kneaded and plasticized by the screw 17, and collected at the tip of the screw 17. Then, it press-fits into the mold (between the shell metal 1 and the core 13) from the injection hole 18b while pressing the rubber fabric 03 by quickly rotating the screw 17 without touching the air at a high pressure of 50 to 150 kgf / cm 2. When it is confirmed that the rubber fabric 03 overflows from the air vent hole 15a, the filling is finished.
Next, the mold into which the rubber fabric 03 is press-fitted is placed in a vulcanizing can and vulcanized by steam to adhere the rubber fabric 03 to the inner surface of the shell metal 1. Vulcanization using the vulcanizer can transfer heat to the entire mold.
[0036]
According to this embodiment, the rubber dough 03 is sufficiently kneaded and plasticized in the injection nozzle 18 by the screw 17 which is a pressurizing means, and the plasticized rubber dough 03 is put into the mold at a high pressure by the screw 17. Since the press-fitting is performed, the rubber fabric 03 is bonded to the inner surface of the shell metal 1 roughened by sandblasting, chemical treatment, or the like without causing gaps or unevenness.
Thereby, the rubber cloth 03 can be adhered uniformly and firmly to the inner surface of the shell metal 1, a sufficient adhesion anchor effect is obtained, and the product quality of the underwater rubber bearing is improved.
[0037]
In Reference Example 2 of the underwater rubber bearing shown in FIG. 12, reference numeral 30 denotes a rubber bearing material. As shown in FIG. 12B, an upper surface of a base metal 31 made of metal or synthetic resin, and tetrafluoroethylene. The rubber material 320 is vulcanized and bonded to the lower surface of the pad material 33 made of a synthetic resin with good slidability such as polyamide and high density polyethylene.
The rubber bearing material 30 is sufficiently kneaded and plasticized in the injection nozzle 18 by the screw 17 in the underwater rubber bearing manufacturing apparatus as shown in FIG. After press-fitting between the supported base 31 and the pad material 33 at a high pressure, it is placed in a vulcanizing can together with a mold and vulcanized by steam and bonded.
[0038]
A plurality of segment-shaped rubber bearing members 30 formed as described above are engraved on the inner peripheral surface of the shell metal 1 at equal intervals (not necessarily equal intervals) along the circumferential direction. The fitting surface 35 of the base metal 310 is brought into contact with the fitting groove 1a extending in the axial direction and fixed using an adhesive or the like. Since the fitting surface 35 of the base metal 310 and the fitting groove 1a of the shell metal 1 in contact with the fitting surface 35 are formed in a trapezoidal shape, the rubber bearing material 30 can be reliably removed without slipping out of the fitting groove 1a. 1 is fixed.
As described above, by arranging the segment-shaped rubber bearing material 30 on the inner peripheral surface of the shell metal 1 in a circumferential direction and fixing it, the water channel grooves 6 are formed between the rubber bearing materials 30.
[0039]
In the reference example 3 of the underwater rubber bearing shown in FIG. 13, like the reference example 2 , the upper surface of the base metal 41 made of metal or synthetic resin and the sliding of tetrafluoroethylene, polyamide, high density polyethylene, etc. A rubber material 42 is vulcanized and bonded to the lower surface of a pad material 43 made of a synthetic resin with good properties to form a rubber bearing material 40 (FIG. 5B).
[0040]
A plurality of the segment-shaped rubber bearing members 40 are arranged in a barrel shape along the circumferential direction on the inner surface 1c of the shell metal 1, and the bottom surface of the base metal 41, that is, the bonding surface 46 is formed on the shell metal 1. It is fixed by adhering to the inner surface 1c. A water channel groove 6 is formed between the rubber bearing members 40.
[0041]
Example 7 of the present invention shown in FIG. 14 shows a method for manufacturing an underwater rubber bearing as an anticorrosion bearing. In this embodiment, at the time of vulcanization molding of the rubber bearing material 020, the counter electrode 31 shown in FIG. 16 is temporarily bonded to the surface of the jig 8 and fixed to the core 13, and the rubber bearing material 020 is vulcanized. Thereafter, the core 13 and the jig 8 are removed. When the core 13 and the jig 8 are removed, the counter electrode 31 is separated from the core 13 and fixed to the rubber bearing material 2 side.
Then, the rubber bearing material 020 is cut by machining to form the water channel groove 6, and one surface or a part of the surface of the counter electrode 31 is exposed to the seawater flow channel in the water channel groove 6.
In this embodiment, the counter electrode 31 is bonded to the surface of the core 13 on the surface of the water channel groove 6 via the jig 8 to vulcanize the rubber bearing material 020, whereby the core 13 and the jig are bonded. If 8 is removed and the water channel groove 6 is cut out, one surface or a part of the surface of the counter electrode 31 is surely exposed to the seawater flow path in the water channel groove 6. Adhesion to the rubber can be ensured simultaneously with the vulcanization of the rubber bearing material 020 without adding a special man-hour.
Further, as shown in FIG. 14C, instead of cutting out the water channel groove 6 after removing the core 13, a water channel groove forming portion 6a is provided in advance on a part of the outer periphery of the core 13 when the core 13 is manufactured. The rubber bearing material 020 is vulcanized with the counter electrode 31 attached to the top of the water channel groove forming portion 6a.
Thereafter, if the core 13 is removed together with the water channel groove forming portion 6 a, the counter electrode 3 is firmly fixed to the recessed portion of the water channel groove 6.
According to this method, the fixing of the counter electrode 31 to the rubber bearing material 020 and the formation of the water channel groove 6 can be performed simultaneously with the vulcanization of the bearing material 020, and the counter electrode 31 is reliably exposed to the seawater channel in the water channel groove 6. Can be made. Further, by replacing one of the counter electrodes 31 with the reference electrode 4 and adhering it to the water channel groove forming portion of the core 13 to vulcanize the rubber bearing material 020, both the counter electrode 31 and the reference electrode 4 can be simultaneously formed. The rubber bearing material 020 can be fixed.
[0042]
【The invention's effect】
As described above, according to the present invention, a counter electrode (anode) is attached to the water passage surface on the inner peripheral side of the rubber bearing, and the anticorrosion current is supplied to the rotor shaft through conductive water such as seawater flowing through the bearing gap from the counter electrode. Thus, it is possible to reliably suppress the electrochemical corrosion of the rotor shaft in the vicinity of the underwater bearing, which has conventionally been difficult to prevent by a very simple means.
As a result, it is possible to ensure electrical protection of the rotor shaft supported by the rubber bearing type underwater bearing immersed in conductive water such as seawater. It is possible to prevent the occurrence of electrochemical corrosion wear due to the conductive water.
[0043]
According to the invention of claim 7 , the rubber cloth is sufficiently kneaded in the injection nozzle by the pressurizing means to be plasticized, and the plasticized rubber cloth is press-fitted into the mold at a high pressure by the pressurizing means. The rubber fabric is bonded to the inner surface of the shell metal without causing gaps or unevenness.
As a result, the rubber fabric can be uniformly and firmly bonded to the inner surface of the shell metal, and a sufficient anchoring effect can be obtained. The product quality of the underwater rubber bearing is improved, and the corrosion protection is highly durable and reliable. A bearing can be obtained.
[0044]
In particular, according to the invention described in claim 7 , the fixing of the counter electrode and the reference electrode to the rubber bearing material can be ensured at the same time as the vulcanization of the rubber bearing material without adding a special man-hour, and the mounting work of the counter electrode is extremely simple. It becomes.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view perpendicular to the axial line of a rotor shaft of an anticorrosion bearing for propeller shaft support of a ship according to a first embodiment of the anticorrosion bearing according to the present invention.
FIG. 2 is an enlarged view of a W portion in FIG. 1 in the first embodiment.
FIG. 3 is a diagram corresponding to FIG. 2 showing a second embodiment.
FIG. 4 is a view corresponding to FIG. 2 showing a third embodiment.
FIG. 5 is a diagram corresponding to FIG. 2 showing a fourth embodiment.
FIG. 6 is a cross-sectional view perpendicular to the rotor shaft axis of a bearing showing a counter electrode installation means in the fifth embodiment.
FIG. 7 is a sectional view of a core in the fifth embodiment.
FIG. 8 is a perspective view showing the arrangement of counter electrodes according to the sixth embodiment.
FIG. 9 is a partial sectional perspective view of a bearing of a sixth embodiment.
FIG. 10 is a longitudinal sectional view of an apparatus for manufacturing an anticorrosion bearing and an underwater rubber bearing to which the present invention is applied .
FIG. 11 It is a front view (figure perpendicular to a rotation axis) of the underwater rubber bearing of reference example 1 .
12 shows an underwater rubber bearing of Reference Example 2. FIG. 12 (A) is a view corresponding to FIG. 2, and FIG. 12 (B) is an enlarged view of the rubber bearing material.
13 shows an underwater rubber bearing of Reference Example 3 , wherein (A) is a view corresponding to FIG. 2, and (B) is an enlarged view of the rubber bearing material.
FIG. 14 shows an underwater rubber bearing as an anticorrosion bearing, in which (A) is a front view perpendicular to the rotor axis of the bearing, and (B) is an enlarged view of a Y part in (A). (C) is the Y section enlarged view of (A) which shows an embodiment different from (B).
FIG. 15 is a side view of the vicinity of a propeller shaft and a propeller bearing of a ship to which the present invention is applied.
FIG. 16 is a cross-sectional view perpendicular to the rotor shaft center line of the anticorrosion bearing.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Shell metal 1a Fitting groove 2 Rubber bearing 2a Pad surface 2b Slit 02b Adhesion part 02 Bearing clearance 020, 30, 40 Rubber bearing material 3 Bush 03 Rubber cloth 4 Reference electrode 6 Water channel groove 6a Water channel groove forming part 06 Middle of groove surface 7 Core 12 External shape 13 Core 14 Injection flange 15 Air vent flange 15a Air vent hole 17 Screw 18 Injection nozzle 18a Inlet 18b Injection holes 21, 320, 42 Rubber materials 22, 33, 43 Pad materials 31, 32, 34, 35 Counter electrode 031 Fitting surface 310, 41 Base metal 33 Conductive rubber counter electrode 36 Spiral counter electrode 46 Adhesive surface 51 Hull 051 Bracket 52 Propeller shaft (rotor shaft)
53 Propeller 57 External power supply 58 Anticorrosion electric circuit 61 Shaft ground 70 Propeller bearing

Claims (7)

円筒状のシェルメタルの内周にゴム系材料からなる円筒状のゴム軸受を接着し、該ゴム軸受にてロータ軸を支持するとともに、該ゴム軸受の内周と前記ロータ軸の外周との間に海水等の導電水が通流可能にされた隙間が形成されてなる電気防食軸受において、前記隙間に対向する前記ゴム軸受の水路面に、外部電源に接続された対極を前記ロータ軸の外周面に対向させて設置し、該対極から前記隙間内の導電水を通して前記ロータ軸に通電可能に構成されてなり
前記対極を、前記ゴム軸受の加硫成形用の中子に接着して加硫後該中子を除去した状態で該対極の一部が前記水路面から前記隙間内に露出するように前記ゴム軸受に加硫接着したことを特徴とする電気防食軸受。
A cylindrical rubber bearing made of a rubber material is bonded to the inner periphery of the cylindrical shell metal, and the rotor shaft is supported by the rubber bearing, and between the inner periphery of the rubber bearing and the outer periphery of the rotor shaft. In the anti-corrosion bearing in which a gap in which conductive water such as seawater is allowed to flow is formed in the outer surface of the rotor shaft placed to face the surface, it is conductively configured to the rotor shaft through guide Densui in the gap from the pair pole
The rubber is so that a part of the counter electrode is exposed in the gap from the water channel surface in a state where the counter electrode is bonded to the core for vulcanization molding of the rubber bearing and the core is removed after vulcanization. An anticorrosion bearing characterized by being vulcanized and bonded to the bearing.
円筒状のシェルメタルの内周にゴム系材料からなる円筒状のゴム軸受を接着し、該ゴム軸受にてロータ軸を支持するとともに、該ゴム軸受の内周と前記ロータ軸の外周との間に海水等の導電水が通流可能にされた隙間が形成されてなる電気防食軸受において、前記隙間に対向する前記ゴム軸受の水路面に、外部電源に接続された対極を前記ロータ軸の外周面に対向させて設置し、該対極から前記隙間内の導電水を通して前記ロータ軸に通電可能に構成されてなり
前記ゴム軸受の内周面から一定間隔を存して螺旋状の対極を配設し、該ゴム軸受の長手方向に形成した水路溝内で前記対極を露出させたことを特徴とする電気防食軸受。
A cylindrical rubber bearing made of a rubber material is bonded to the inner periphery of the cylindrical shell metal, and the rotor shaft is supported by the rubber bearing, and between the inner periphery of the rubber bearing and the outer periphery of the rotor shaft. In the anti-corrosion bearing in which a gap in which conductive water such as seawater is allowed to flow is formed in the outer surface of the rotor shaft The rotor shaft is installed so as to face the surface, and the rotor shaft can be energized through the conductive water in the gap from the counter electrode
An anti-corrosion bearing characterized in that a spiral counter electrode is disposed at a predetermined interval from the inner peripheral surface of the rubber bearing, and the counter electrode is exposed in a water channel groove formed in the longitudinal direction of the rubber bearing. .
前記水路面が、前記ゴム軸受の内周面に円周方向に沿い複数箇所に凹設された水路溝であることを特徴とする請求項1若しくは2記載の電気防食軸受。The water road surface, according to claim 1 or 2 Symbol placement of cathodic protection bearing, characterized in that the inner peripheral surface of the rubber bearing is recessed been waterway grooves in a plurality of locations along the circumferential direction. 前記対極が導電性ゴムで形成されており、該対極の端部を前記水路溝内に露出させて固定したことを特徴とする請求項1若しくは2記記載の電気防食軸受。The anticorrosion bearing according to claim 1 or 2, wherein the counter electrode is made of conductive rubber, and an end portion of the counter electrode is exposed and fixed in the water channel groove. 前記対極を、前記水路面に接着材により接着したことを特徴とする請求項1若しくは2記記載の電気防食軸受。The anticorrosion bearing according to claim 1 or 2 , wherein the counter electrode is adhered to the water channel surface with an adhesive. 前記対極を、その一部を前記水路面から前記隙間内に露出させて前記ゴム軸受に加硫接着したことを特徴とする請求項1若しくは2記記載の電気防食軸受。The anticorrosion bearing according to claim 1 or 2 , wherein a part of the counter electrode is exposed in the gap from the water channel surface and vulcanized and bonded to the rubber bearing. 外型内に支持された円筒状のシェルメタルの内周にゴム系材料からなるゴム軸受材を加硫接着する電気防食軸受の製造方法において、
前記外型の中心部に中子を配設し、該中子の外周面と前記シェルメタルの内周面との間に形成される円筒状空間に可塑化したゴム生地を加圧手段により押し込み加圧し接着させた後、加硫手段により加硫固着することにより前記ゴム軸受材を成形し、前記中子の外周面に電気防食用の対極を取り付け、前記ゴム生地を該中子の外周面と前記シェルメタルの内周面との間に形成される円筒状空間に圧入し、加硫固着して前記ゴム軸受材とともに前記対極を該ゴム軸受材の内周面に固定し、次いで前記対極を前記中子から分離することを特徴とする電気防食軸受の製造方法。
In the manufacturing method of an anticorrosion bearing in which a rubber bearing material made of a rubber material is vulcanized and bonded to the inner periphery of a cylindrical shell metal supported in an outer mold,
A core disposed in the center of the outer mold, the pressurizing means rubber dough plasticized in a cylindrical space formed between the inner peripheral surface of the shell metal and the outer circumferential surface of the tang After pressing and bonding, the rubber bearing material is formed by vulcanization and fixing by a vulcanizing means, a counter electrode for anticorrosion is attached to the outer peripheral surface of the core, and the rubber dough is attached to the outer periphery of the core Press-fitted into a cylindrical space formed between the surface and the inner peripheral surface of the shell metal, fixed by vulcanization and fixed to the inner peripheral surface of the rubber bearing material together with the rubber bearing material, A method for producing an anti-corrosion bearing, wherein the counter electrode is separated from the core.
JP2000308267A 2000-10-06 2000-10-06 Anticorrosion bearing and manufacturing method thereof Expired - Fee Related JP4256580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000308267A JP4256580B2 (en) 2000-10-06 2000-10-06 Anticorrosion bearing and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000308267A JP4256580B2 (en) 2000-10-06 2000-10-06 Anticorrosion bearing and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008312823A Division JP4848415B2 (en) 2008-12-09 2008-12-09 Manufacturing method of anticorrosion bearing

Publications (2)

Publication Number Publication Date
JP2002115719A JP2002115719A (en) 2002-04-19
JP4256580B2 true JP4256580B2 (en) 2009-04-22

Family

ID=18788609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000308267A Expired - Fee Related JP4256580B2 (en) 2000-10-06 2000-10-06 Anticorrosion bearing and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4256580B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109764063A (en) * 2019-03-13 2019-05-17 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) A kind of water lubriucated bearing of the ship longitudinal different rigidity of big damping

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220257A (en) * 2005-02-14 2006-08-24 Kubota Corp Sliding bearing and pump device
DE112020003968T5 (en) * 2020-06-25 2022-05-12 Mikasa Corporation Bearing for a ship's drive shaft

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109764063A (en) * 2019-03-13 2019-05-17 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) A kind of water lubriucated bearing of the ship longitudinal different rigidity of big damping

Also Published As

Publication number Publication date
JP2002115719A (en) 2002-04-19

Similar Documents

Publication Publication Date Title
JP4848415B2 (en) Manufacturing method of anticorrosion bearing
JP4256580B2 (en) Anticorrosion bearing and manufacturing method thereof
US5393396A (en) Apparatus for electrodepositing metal
JP2006281333A (en) Electro-chemical machining electrode tool and manufacturing method thereof
US5369326A (en) Cylindrical carbon segment commutator
US5819400A (en) Method of manufacturing an electrode assembly for electrochemically etching rifling in gun barrels
GB2488650A (en) System and method for metal deburring
CN110195245A (en) Point plating appts and point plating production line
EP0282980B1 (en) Apparatus for continuous electrolytic treatment of metal strip and sealing structure for electrolytic cell therefore
CN1456427A (en) Centrifugal shaping die and manufacturing method thereof, centrifugar shapes and blades manufactured thereby
JP4848529B2 (en) Water electrolysis cell or fuel cell separator using solid polymer electrolyte membrane
CN111283281B (en) Device and method for carrying out mask electrolytic machining on end face of narrow ring groove of shaft
US20100104738A1 (en) Plating pretreatment apparatus and method for multi-cylinder block
JP2010053389A (en) Plating treatment apparatus
JP4160783B2 (en) Anticorrosion bearing
CN210724449U (en) Thrust block, motor and underwater booster
JP2018129197A (en) Waterproof connector
JPH06235089A (en) Anodic oxidation treatment device for base for lithographic printing plate
RU2190045C2 (en) Apparatus for microarc applying of oxide coating on pressure race and bearing race of gear pump
JPH05279893A (en) Plating device for extremely thin metallic foil
CN219893037U (en) Split copper rotor for asynchronous motor
JP4061583B2 (en) Intermediate jig for plating equipment
CN113123963B (en) Plunger connecting rod assembly, plunger connecting rod assembly forming method and forming die
KR200260921Y1 (en) Conductor Roll
CN218262784U (en) Roller assembly and foil-producing apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20001026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20001025

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20001025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4256580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees