JP4251798B2 - Cutting edge replaceable cutting tip and manufacturing method thereof - Google Patents

Cutting edge replaceable cutting tip and manufacturing method thereof Download PDF

Info

Publication number
JP4251798B2
JP4251798B2 JP2001275730A JP2001275730A JP4251798B2 JP 4251798 B2 JP4251798 B2 JP 4251798B2 JP 2001275730 A JP2001275730 A JP 2001275730A JP 2001275730 A JP2001275730 A JP 2001275730A JP 4251798 B2 JP4251798 B2 JP 4251798B2
Authority
JP
Japan
Prior art keywords
cutting
phase
cutting edge
binder phase
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001275730A
Other languages
Japanese (ja)
Other versions
JP2003082432A (en
Inventor
直也 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Hardmetal Corp
Original Assignee
Sumitomo Electric Hardmetal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Hardmetal Corp filed Critical Sumitomo Electric Hardmetal Corp
Priority to JP2001275730A priority Critical patent/JP4251798B2/en
Publication of JP2003082432A publication Critical patent/JP2003082432A/en
Application granted granted Critical
Publication of JP4251798B2 publication Critical patent/JP4251798B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Milling Processes (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は広範な使用用途を持つ刃先交換型切削チップと、その製造方法とに関するものである。
【0002】
【従来の技術】
一般に切削工具として用いられるサーメット合金や超硬合金は、耐熱亀裂性、耐酸化性、高温硬度、破壊靭性などの特性に優れていることが要求される。現状の切削用工具に用いられる超硬合金及びサーメットは、耐熱亀裂性や破壊靭性を改善するため、多くの研究者により様々な工夫がなされてきている。近年の市場ニーズとして、工具の管理コストを減らすため、単一の工具で広範な被削材、切削条件に対応できる切削工具の登場が望まれている。
【0003】
超硬合金やサーメットのように、硬質相と結合相とから構成され、粉体をプレスして焼結する方法で製造する硬質材料は、硬質相組成はもちろん、合金組織中の硬質相の粒径や結合相量により、その硬度や強度が変わり、それに伴って使用用途も変わる。例えば、断続切削には結合相が多く強度の高い合金を、高硬度の被削材を連続切削する場合には、結合相が少なく硬度の高い合金を用いるのが一般的である。
【0004】
切削工具の部位によって硬質材料の特性を変える試みは、過去にもなされており、例えば特開昭61-191380号公報は超硬合金にサーメットを溶射する技術、特開昭54-6803号公報、特開2000-144300号公報では組成の異なる超硬合金を焼結接合する技術、特開平9-41006号公報では複数のスラリーを用いて造形する技術が提案されている。
【0005】
【発明が解決しようとする課題】
しかし、いずれの技術も従来の製造方法に新たな工程を加えるもので、製造コストアップの要因となる。また、接合部分の強度不足が発生したり、製造できる形状も限定されていると言う問題があった。
【0006】
従って、本発明の主目的は、接合部分がなく、部分的に特性の異なる刃先交換形切削チップならびにその製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明は、焼結時に温度と雰囲気の少なくとも一方に勾配をつけることで上記の目的を達成する。
【0008】
すなわち、本発明者は、単一の工具で広範な被削材、切削条件に対応できる切削チップの研究を重ねた結果、工業的に広く用いられている超硬合金及びサーメットに対し、新たな工程を加えずに、その部位毎に結合相量を変えることで、部位毎の強度を変えることができる硬質材料とその製造方法を発明した。特に、この硬質材料は切削チップとして用い、刃先毎に強度の異なる切削チップとして利用することが効果的である。
【0009】
本発明切削チップは1種類の原料を用いて製造するため、接合部もなく、複雑な形状のものも製造可能である。硬質相と結合相を含む硬質材料で構成された刃先交換型切削チップは、一般的に原料粉末を粉砕混合し、それをプレス成形し、焼結して焼結体を製造する。場合によっては、その後、砥石等で目的形状・目的寸法精度まで加工する。本発明者は、この焼結工程に着目した。
【0010】
従来、焼結炉は炉内温度や雰囲気の均一化を目指して創意工夫してきた。本発明では、それとは逆に、予め所定の温度勾配および/または雰囲気の勾配を設けた状況で焼結することにより、焼結過程中にその勾配に沿って結合相が質量移動し、結果として部位毎に結合相量の異なる硬質材料を製造できることを見出した。
【0011】
この結合相の質量移動の原因は不明だが、温度が高い側が先に液相が出現し、それに低温側の結合相が選択的に溶解していく形で傾斜が形成されると推測している。この温度および/または雰囲気の勾配を水平方向に設定すれば、水平方向に結合相量の勾配を持った硬質材料を得ることができ、また、この温度および/または雰囲気の勾配を上下方向に設定すれば、上下方向に結合相量の勾配を持った硬質材料を得ることができる。こうして製造された焼結体を必要に応じて、砥石加工したり、ブラシ等の加工を行えば本発明刃先交換型切削チップとなる。ただし、成型時点で既に最終形状となっておれば、こうした加工を行う必要はない。
【0012】
本発明チップに適した硬質材料は、上記の理由より、硬質相と結合相と不可避不純物からなり、液相焼結される材料が望ましい。この際、材料全体に含まれる結合相量をA重量%とすると、最も結合相量が高い部位(刃先)と、最も結合相量が低い部位(刃先)との結合相量の重量%の差がA×0.02以上なければ、その効果が少ない。結合相量の差は0.03以上あればその効果が顕著となり、さらに0.05以上あれば大きく材料特性が変わってくる。この結合相量の差は、使用用途に応じて任意に製造できる。
【0013】
具体的な基材材料としては、次のいずれかが工業的に有意義である。
(1)超硬合金
硬質相:炭化タングステン
結合相:鉄系金属の1種以上で、含有量が3〜30重量%
残部:不可避不純物
【0014】
(2)超硬合金
硬質相:[1]炭化タングステン
[2]周期律表IVa、Va、VIa族遷移金属と炭素、窒素、酸素および硼素から選択される1種以上との化合物または固溶体相。含有量は0.1〜50重量%
結合相:鉄系金属の1種以上で、含有量が3〜30重量%
残部:不可避不純物
【0015】
(3)サーメット合金
硬質相:周期律表IVa、Va、VIa族遷移金属と炭素、窒素、酸素および硼素から選択される1種以上との化合物または固溶体相。含有量は80〜97重量%
結合相:鉄系金属の1種以上で、含有量が3〜20重量%
残部:不可避不純物
【0016】
上記超硬合金およびサーメットの組成範囲は、一般的に工業的に製造されている範囲であるが、この範囲を逸脱しても、部位により結合相量を変えることができると言う本発明の効果は現れる。また、周期律表IVa、Va、VIa族遷移金属と炭素、窒素、酸素および硼素から選択されるの1種以上との化合物または固溶体相は、B-1型結晶構造のものが好適である。
【0017】
ここで、超硬合金およびサーメットを基材とした場合、得られた本発明硬質材料は部位によって結合相量が異なるため、これにより飽和磁化量(4πσ)が異なり、これにより抗磁力(Hc)も変化する。種々研究を行った結果、超硬合金およびサーメットを基材とした本発明刃先交換型チップにおいては、この部位毎の抗磁力変化は、刃先交換型チップ全体のHcをBとすると、最も結合相量が高い刃先と最も結合相量が低い刃先との抗磁力の差が、B×0.05以下となった場合、結合相量増加に伴う刃先の強度改善と硬度低下のバランスがもっともよくなることも判った。
【0018】
もちろん、本発明は超硬合金およびサーメット以外の材料に対しても有効である。
【0019】
また、焼結後の硬質材料に化学蒸着法や物理蒸着法で被覆層を形成しても、本発明の効果は失われない。被覆層は、周期律表IVa、Va、VIa族金属の炭化物、窒化物、炭窒化物、硼窒化物、炭窒酸化物、酸化アルミニウム及び酸化ジルコニウムよりなる群から選ばれる1種以上からなる単層または多層が好適である。これら被覆層を形成する物質の結晶構造は何でも良く、非晶質でもかまわない。
【0020】
次に、具体的な温度および/または雰囲気勾配を与えながら焼結する焼結炉の構造模式図を図1、図2に示す。これらはあくまで例であり、温度および/または雰囲気勾配を与えることができる装置なら、いかなる装置を用いて焼結してもよい。
【0021】
図1は水平方向に温度勾配を与える焼結炉の模式図の一例である。この焼結炉10は、試料20を載せる支持台30を挟んで左右にヒーター11とヒーター12とが配置され、さらに両ヒーター11、12の上下を一対の断熱材40で挟んだ構造である。炉内は、真空ポンプにより所定の圧力に調整できるように構成されている。
【0022】
ここで、ヒーター11とヒーター12を独立して制御することにより、試料20は水平方向に温度勾配を持つことになる。この温度勾配は焼結初期から設定しても良いし、任意の温度より勾配を設定しても良いが、焼結体の収縮が始まってから終わるまで与えるのが望ましい。
【0023】
図2は水平方向に温度勾配および/または雰囲気勾配を与える焼結炉の模式図である。この焼結炉もヒーター11とヒーター12とで試料を左右から挟む配置になっている点で図1の焼結炉と同じである。ただし、断熱材40およびヒーター11を貫通して排気管51が、断熱材およびヒーター12を貫通してガス導入管52が配置されている点で異なっている。
【0024】
ここで、ヒーター11とヒーター12を独立して制御すると同時に、雰囲気ガスを炉内に導入すれば、温度勾配及び部位による焼結雰囲気を変えることができる。必要に応じて、湿度勾配は無くし、雰囲気勾配のみを与えることも可能である。この温度勾配および/または雰囲気勾配は焼結初期から設定しても良いし、任意の温度より勾配を設定しても良いが、焼結体の収縮が始まってから終わるまで与えるのが望ましい。
【0025】
図1、2は水平方向に温度勾配を与える焼結炉であるが、ヒーターを上下面に設置すれば垂直方向に温度勾配を与えることも可能である。
【0026】
このような焼結炉で焼結された刃先交換型チップは、ヒーターと平行な面内に存在する刃先は同一結合相量となる。つまり、ある特定の面に存在する全ての刃先の結合相量と、他の面に存在する全ての刃先の結合相量との差をA×0.02以上とすることができる。例えば、8個の切れ刃を持つ直方体形状の切削チップの場合、一面に存在する4個の刃先と、他面の4個の刃先との間で結合相量が異なることになる。ある特定の面と他の面は、チップにおける最も面積の広い面同士や最も広い面と2番目に広い面とすることが好適である。
【0027】
上述した方法により、温度勾配および/または雰囲気勾配を設けることで、任意の面と他の面との間で結合相量に傾斜をつけることができる。特に、ヒーターの温度制御だけでなくヒーター形状を工夫すれば、任意の面ではなく、任意の一部のみ結合相を高くすることも可能である。
【0028】
どれだけ結合相量に傾斜をつけるかは、与える温度勾配および/または雰囲気勾配の大きさで任意に制御することが可能である。温度勾配は、硬質材料の任意の面と、それに対面する面との間の温度差を3℃〜100℃とすることが好ましく、さらに望ましくは10℃〜40℃とする。雰囲気勾配は、硬質材料の任意の面上と、それに対面する面上との間に0.1〜20l/minの流量差を設けることが好ましく、さらに望ましくは0.5〜10l/minの流量差とする。
【0029】
なお、結合相量の同定は、電子顕微鏡による分析、湿式分析等、どんな方法でも良い。湿式分析する場合は、硬質材料および/または切削チップの任意の部位を切り出して分析する。電子顕微鏡の場合は、分析面を切断ラップして分析を実施する。「最も結合相量が高い部分」及び「最も結合相量が低い部分」とは、硬質材料をCIS-032によるCo分析が可能な最小サイズまで放電ワイヤーカットや研摩等で分割し、それら分割サンプルをCIS-032記載の方法でCo分析して求める。誤差・精度の問題より、分割サンプルの下限重量は、0.1g以上、さらに望ましくは0.2g以上で、上限重量は微小部分のCo量を知るため軽いほど望ましく、2g以下、さらに望ましくは1g以下である。この分割サンプルを粉砕し、その中から0.1〜0.2gの試料を秤量して、Co分析の試料とする。
【0030】
刃先交換型切削チップには、切削の際に切り屑を切断するためにチップブレーカと呼ばれる意匠が施されている場合が多い。この場合、刃先の結合相量が判明するような意匠や、当該結合相量に応じた使用が予測される意匠を予めプレス体に与えておくことが、刃先混同を防ぐ意味および/または工具材料のポテンシャルを出し切る点で工業的に意義がある。特に、前述の直方体形状の刃先交換型チップは、一般的に3つの金型(上パンチ・下パンチ・臼の)を組み合わせてプレス成形される。そのため、上下方向に結合相量の勾配を与える場合は、予めそれぞれの結合相量で最も工業的効率が優れる意匠のパンチを組み合わせてプレス成形すれば良い。即ち、上パンチと下パンチで、既存の意匠違いのパンチを用いて成型することで、(1)既存のパンチが使える、(2)結合相量から予測される用途に見合ったチップブレーカを備えた製品を製造できる、という工業面のメリットがある。
【0031】
本発明硬質材料および本発明刃先交換型切削チップは、従来方法のように強度の弱い接合部分が存在することもなく、かつ製造工程が増えることがないため、安価に提供できるという大きな工業上の利点も備えている。
【0032】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
(実施例1)
表1に示した原料粉末を、同じく表1に示した組成で湿式混合を10Hr行なった後、1ton/cm2の圧力にてプレス成形する。プレス成形体を、図1の構造の焼結炉にて焼結した後、ダイヤモンド砥石で研削加工することにより、JIS4122規定のSPGN190408形状の焼結体を得た。
【0033】
焼結のプログラム内容は、ヒーター11はスタートと同時に6.0℃/minの昇温速度で1400℃まで昇温し、ヒーター12は、ヒーター11のプログラムがスタートしてから5分後にスタートさせた。つまりヒーター11とヒーター12の温度差が30℃ある状況とした。ヒーター11が1400℃に到達してから60分後、ヒーター11および12を同時に切電した。
【0034】
【表1】

Figure 0004251798
【0035】
このようにして本発明切削チップ1を製造するとともに、比較のためにヒーター11とヒーター12を同一プログラムで焼結を行うことで温度勾配を与えずに焼結して製造した比較チップAも準備した。これらのチップについてCIS-031に従って抗磁力(HC)を測定した後、下記条件で断続切削試験及び連続切削試験を行い、刃先の逃げ面摩耗量及び刃先の欠損率を調べた。本発明チップ1においては、連続切削試験はヒーター12側に隣接して焼結された刃先で、断続切削試験はヒーター11に隣接して焼結された刃先で実施した。
【0036】
連続切削試験
被削材:SCM435(HB=246) 丸棒
切削速度:190m/min
送り:0.27mm/rev.
切り込み:2.0mm
切削時間:5分間
切削油:水溶性油
摩耗量:逃げ面摩耗量を測定した。
【0037】
断続切削試験
被削材:SCM435(HB=246) 角材
切削速度:154m/min
送り:0.45mm/rev.
切り込み:2.0mm
切削時間:1分間
切削油:なし
欠損率:10切れ刃にて試験を行い、欠損切れ刃数を求めた。
【0038】
さらに、図3の示すように、ヒーター11側とヒーター12側の各々から3mmの幅で試料を切断し、それら切断サンプルの抗磁力とCIS-032によるコバルト量分析を行った。チップにおけるヒーター11側を部位(ア)、ヒーター12側を部位(イ)とする。コバルト量分析の際に、分析に用いなかった過剰の粉砕試料および未分析部分の合金を破砕した試料を十分に混合して分析した値を、切断前の本発明チップおよび比較チップのコバルト量とした。念のため、全く同じ原料、方法で製造した本発明チップおよび比較チップを切断せずにHC測定およびコバルト量分析を実施して、前述の切削した本発明チップおよび比較チップと値が一致することも確認した。前記切削試験結果及び分析結果を表2に示す。
【0039】
【表2】
Figure 0004251798
【0040】
ここで、本発明チップ全体の結合相量Aは8.9wt%で、最も結合相量が高い部位(ア)の結合相量Hは9.4wt%、最も結合相量が低い部位(イ)の結合相量Lは8.7wt%であるから、結合相量の差は9.4-8.7=0.7となり、A×0.02=0.178以上である。逆に比較チップは9.0-8.9=0.1<0.178となる。
【0041】
また、本発明チップ全体のHCは16.0であり、部位(ア)のHCは16.1、部位(イ)のHCは15.9であるから、(16.1−15.9)/16.0=0.0125となり、0.05以下となっている。
【0042】
これより、本発明刃先交換型切削チップは、単一のチップで切削形態に応じた刃先を選ぶことで、従来の均質な切削チップ(今回の比較用チップ)ではなしえなかった連続切削から断続切削までの幅広い状況に対応することができる。
【0043】
(実施例2)
表3に示した原料粉末を、同じく表3に示した組成で湿式混合を7Hr行なった後、1ton/cm2の圧力にてプレス成形する。このプレス成形体を、図4の構造の焼結炉にて焼結を行った。この焼結炉は、試料を載せる支持台を挟んで上下にヒーター11とヒーター12とが配置され、さらに両ヒーターの上下を一対の断熱材で挟んだ構造である。炉内は、真空ポンプにより所定の圧力に調整できるように構成されている。その後、焼結体をダイヤモンド砥石で研削加工して、公知の化学蒸着法でこれらの焼結体の表面に膜厚5μmのTiCN膜を被覆することにより、JIS4121規定のCNMG633形状の切削チップを得た。
【0044】
焼結のプログラム内容は、ヒーター11はスタートと同時に5.0℃/minの昇温速度で1450℃まで昇温し、ヒーター12は、ヒーター11のプログラムがスタートしてから8分後にスタートさせた。つまりヒーター11とヒーター12の温度差が40℃ある状況とした。ヒーター11が1450℃に到達してから60分後、ヒーター11および12を同時に切電した。なお、プレス成形の際、支持台と接触している面には鋼軽切削用のチップブレーカ(住友電気工業株式会社製SU型)、逆側には鋼軽切削用のチップブレーカ(住友電気工業株式会社製UX型)となるように成型した。
【0045】
【表3】
Figure 0004251798
【0046】
このようにして本発明切削チップ2を製造するとともに、比較のためにヒーター11とヒーター12を同一プログラムで焼結を行うことで温度勾配を与えずに焼結して製造した比較チップBも準備した。これらのチップについてCIS-031に従って抗磁力(HC)を測定した後、下記条件で断続切削試験及び連続切削試験を行い、刃先の逃げ面摩耗量及び刃先の欠損率を調べた。本発明チップ2においては、連続切削試験は下面、即ちSU型ブレーカを備えた刃先で、断続切削試験は上面、即ちUX型ブレーカを備えた刃先で実施した。
【0047】
連続切削試験
被削材:SCM435(HB=246) 丸棒
切削速度:240m/min
送り:0.20mm/rev.
切り込み:1.0mm
切削時間:15分間
切削油:水溶性油
摩耗量:逃げ面摩耗量を測定した。
【0048】
断続切削試験
被削材:SCM435(HB=246) 角材
切削速度:174m/min
送り:0.37mm/rev.
切り込み:2.0mm
切削時間:1分間
切削油:なし
欠損率:10切れ刃にて試験を行い、欠損切れ刃数を求めた。
【0049】
さらに、図5の示すように試料を上下2分割し、それら切断サンプルの抗磁力とCIS-032によるコバルト量分析を行った。コバルト量分析の際に、分析に用いなかった過剰の粉砕試料および未分析部分の合金を破砕した試料を十分に混合して分析した値を、切断前の本発明チップおよび比較チップのコバルト量とした。念のため、全く同じ原料、方法で製造した本発明チップおよび比較チップを切断せずにHC測定およびコバルト量分析を実施して、前述の切削した本発明チップおよび比較チップと値が一致することも確認した。上記の切削試験結果及び分析結果を表4に示す。
【0050】
【表4】
Figure 0004251798
【0051】
ここで、本発明チップ全体の結合相量Aは10.0wt%で、最も結合相量が高い部位(エ)の結合相量Hは10.5wt%、最も結合相量が低い部位(ウ)の結合相量Lは9.4wt%であるから、結合相量の差は10.5-9.4=1.1となり、A×0.02=0.2以上である。逆に比較チップは10.1-10.0=0.1<0.2となる。
【0052】
また、本発明チップ全体のHCは9.6であり、部位(エ)のHCは9.6、部位(ウ)のHCは9.8であるから、(9.6−9.8)/9.6≒−0.021となり、0.05以下となっている。
【0053】
これより、本発明刃先交換型切削チップは、単一のチップで切削形態に応じた刃先を選ぶことで、従来の均質な切削チップ(今回の比較用チップ)ではなしえなかった連続切削から断続切削までの幅広い状況に対応することができる。
【0054】
(実施例3)
表5に示した原料粉末を、同じく表5に示した組成で湿式混合を11Hr行った後、1ton/cm2の圧力にてプレス成形する。このプレス成形体を、図2の構造の焼結炉にて焼結を行って焼結体を得た。その後、焼結体をダイヤモンド砥石で研削加工し、JIS4121規定のSNGN432形状の切削チップを得た。
【0055】
焼結のプログラム内容は、ヒーター11およびBをスタートと同時に4.0℃/minの昇温温度で1460℃まで昇温し、1460℃に到達してから60分後、ヒーター11および12を同時に切電した。この際、ガス導入口からは毎分1リッターの流量でアルゴンガスを流し続けた。
【0056】
【表5】
Figure 0004251798
【0057】
このようにして本発明切削チップ3を製造するとともに、比較のために図1の装置で炉内に雰囲気ガスを導入せず、即ち雰囲気勾配を与えずに焼結して製造した比較チップCも準備した。
【0058】
これらのチップについてCIS-031に従って抗磁力(HC)を測定した後、下記条件で断続切削試験及び連続切削試験を行い、刃先の逃げ面摩耗量及び刃先の欠損率を調べた。本発明チップ3においては、連続切削試験は雰囲気ガス導入口、即ちヒーター12側に隣接して焼結された刃先で、断続切削試験は排気口、即ちヒーター11に隣接して焼結された刃先で実施した。
【0059】
連続切削試験
被削材:SCM435(HB=246) 丸棒
切削速度:200m/min
送り:0.30mm/rev.
切り込み:1.0mm
切削時間:15分間
切削油:水溶性油
摩耗量:逃げ面摩耗量を測定した。
【0060】
断続切削試験
被削材:SCM435(HB=246) 角材
切削速度:154m/min
送り:0.37mm/rev.
切り込み:2.0mm
切削時間:1分間
切削油:なし
欠損率:10切れ刃にて試験を行い、欠損切れ刃数を求めた。
【0061】
さらに、図3に示すようにヒーター11側とヒーター12側の各々から3mmの幅で試料を切断し、それら切断サンプルの抗磁力とCIS-032によるコバルト量分析および蛍光X線分析によるニッケル量分析を行った。チップにおけるヒーター11側を部位(ア)、ヒーター12側を部位(イ)とする。
【0062】
コバルト量分析の際に、分析に用いなかった過剰の粉砕試料および未分析部分の合金を破砕した試料を十分に混合して分析した値を、切断前の本発明チップおよび比較チップのコバルト量およびニッケル量とした。念のため、全く同じ原料、方法で製造した本発明チップおよび比較チップを切断せずにHC測定およびコバルト量およびニッケル量分析を実施して、前述の切削した本発明チップおよび比較チップと値が一致することも確認した。この切削試験結果及び分析結果を表6に示す。
【0063】
【表6】
Figure 0004251798
【0064】
ここで、本発明チップ全体の結合相量Aは14.9wt%で、最も結合相量が高い部位(ア)の結合相量Hは15.6wt%、最も結合相量が低い部位(イ)の結合相量Lは14.4wt%であるから、結合相量の差は15.6-14.4=1.2となり、A×0.02=0.298以上である。逆に比較チップは15.0-14.9=0.1<0.298となる。
【0065】
また、本発明チップ全体のHCは12.1であり、部位(ア)のHCは12.4、部位(イ)のHCは12.0であるから、(12.4-12.0)/12.1≒0.033となり、0.05以下となっている。
【0066】
【発明の効果】
以上説明したように、本発明硬質材料および本発明刃先交換型切削チップは、部位によって、あるいは刃先によって結合相量の異なる構成とすることができる。そのため、単一の材料で広範な用途に対応できる硬質材料を得ることができる。特に、用途と刃先の結合相量の組合わせを選ぶことで、従来では成し遂げることのできなかった強度と耐摩耗性を兼ね備えた切削チップを得ることができる。
【0067】
また、従来技術のように強度の弱い接合部分が存在することもなく、かつ製造工程が増えることがないため、安価に提供できるという大きな工業上の利点も備えている。
【図面の簡単な説明】
【図1】本発明方法に用いる焼結炉の概略を示し、(A)は平面図、(B)は正面図である。
【図2】本発明方法に用いる焼結炉の概略図を示し、(A)は平面図、(B)は正面図である。
【図3】試料の切断部位を示す説明図である。
【図4】本発明方法に用いる焼結炉の概略を示し、(A)は側面図、(B)は正面図である。
【図5】試料の切断部位を示す説明図である。
【符号の説明】
10 焼結炉
11 ヒーター
12 ヒーター
20 試料
30 支持台
40 断熱材
51 排気管
52 ガス導入管[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cutting edge-exchangeable cutting tip having a wide range of uses and a manufacturing method thereof .
[0002]
[Prior art]
In general, a cermet alloy or a cemented carbide used as a cutting tool is required to have excellent properties such as heat crack resistance, oxidation resistance, high temperature hardness, and fracture toughness. Cemented carbides and cermets used in current cutting tools have been devised by many researchers in order to improve their thermal crack resistance and fracture toughness. As market needs in recent years, in order to reduce the management cost of tools, the appearance of cutting tools that can cope with a wide range of work materials and cutting conditions with a single tool is desired.
[0003]
Hard materials such as cemented carbides and cermets, which are composed of a hard phase and a binder phase and are produced by pressing and sintering powders, are not only hard phase composition but also grains of hard phase in the alloy structure. The hardness and strength change depending on the diameter and the amount of the binder phase, and the use application changes accordingly. For example, for intermittent cutting, an alloy having a high binder phase and a high strength is generally used, and when a high-hardness work material is continuously cut, an alloy having a low binder phase and a high hardness is generally used.
[0004]
Attempts to change the characteristics of the hard material depending on the part of the cutting tool have been made in the past, for example, Japanese Patent Laid-Open No. 61-191380 discloses a technique for spraying cermet on a cemented carbide, Japanese Patent Laid-Open No. 54-6803, Japanese Patent Laid-Open No. 2000-144300 proposes a technique for sintering and joining cemented carbides having different compositions, and Japanese Patent Laid-Open No. 9-41006 proposes a technique for shaping using a plurality of slurries.
[0005]
[Problems to be solved by the invention]
However, each technique adds a new process to the conventional manufacturing method, which increases the manufacturing cost. Moreover, there existed a problem that the intensity | strength lack of a junction part generate | occur | produced or the shape which can be manufactured is also limited.
[0006]
Accordingly, a main object of the present invention is to provide a blade-tip-exchangeable cutting tip having no joining portion and partially having different characteristics, and a manufacturing method thereof .
[0007]
[Means for Solving the Problems]
The present invention achieves the above object by providing a gradient in at least one of temperature and atmosphere during sintering.
[0008]
In other words, as a result of repeated research on cutting tips capable of dealing with a wide range of work materials and cutting conditions with a single tool, the present inventor has made a new approach to cemented carbides and cermets that are widely used industrially. The present inventors invented a hard material and a method for manufacturing the same that can change the strength of each part by changing the amount of the binder phase for each part without adding a process. In particular, it is effective to use this hard material as a cutting tip and use it as a cutting tip having different strength for each cutting edge.
[0009]
Since the cutting tip of the present invention is manufactured using one kind of raw material, it can be manufactured in a complicated shape without a joint. A blade-tip-exchangeable cutting tip composed of a hard material including a hard phase and a binder phase is generally produced by pulverizing and mixing raw material powder, press-molding it, and sintering it to produce a sintered body. In some cases, the workpiece is then processed to the target shape and target dimensional accuracy with a grindstone or the like. The inventor paid attention to this sintering process.
[0010]
Conventionally, sintering furnaces have been devised with the aim of uniformizing the furnace temperature and atmosphere. In the present invention, on the contrary, sintering is performed in a state where a predetermined temperature gradient and / or atmospheric gradient is provided in advance, so that the mass of the binder phase moves along the gradient during the sintering process. It has been found that hard materials with different amounts of binder phase can be produced for each part.
[0011]
The cause of mass transfer of this binder phase is unknown, but it is speculated that the liquid phase appears first on the higher temperature side, and that the gradient is formed in such a way that the low temperature side binder phase selectively dissolves. . If the temperature and / or atmosphere gradient is set in the horizontal direction, a hard material having a binder phase gradient in the horizontal direction can be obtained, and the temperature and / or atmosphere gradient is set in the vertical direction. By doing so, a hard material having a binder phase gradient in the vertical direction can be obtained. If the sintered body manufactured in this way is processed with a grindstone or processed with a brush or the like as required, the cutting edge replacement type cutting tip of the present invention is obtained. However, if the final shape has already been obtained at the time of molding, it is not necessary to perform such processing.
[0012]
A hard material suitable for the chip of the present invention is preferably a material that is composed of a hard phase, a binder phase, and inevitable impurities, and is liquid phase sintered for the above reasons. At this time, assuming that the amount of the binder phase contained in the whole material is A% by weight, the difference in the weight percentage of the binder phase amount between the portion with the highest binder phase amount (blade edge) and the portion with the lowest binder phase amount (blade edge). If is not more than A × 0.02, the effect is small. If the difference in the amount of the binder phase is 0.03 or more, the effect becomes remarkable, and if it is 0.05 or more, the material properties change greatly. This difference in the amount of the binder phase can be arbitrarily produced depending on the intended use.
[0013]
As a specific base material, any of the following is industrially significant.
(1) Cemented Carbide Hard Phase: Tungsten Carbide Bonded Phase: One or more of iron-based metals with a content of 3-30% by weight
The rest: inevitable impurities [0014]
(2) Cemented carbide Hard phase: [1] Tungsten carbide
[2] A compound or solid solution phase of a group IVa, Va, VIa transition metal of the periodic table and one or more selected from carbon, nitrogen, oxygen and boron. Content is 0.1-50% by weight
Binder phase: One or more of iron-based metals with a content of 3-30% by weight
The rest: inevitable impurities [0015]
(3) Cermet alloy hard phase: Compound or solid solution phase of group IVa, Va, VIa transition metal of periodic table and one or more selected from carbon, nitrogen, oxygen and boron. Content is 80-97 wt%
Binder phase: One or more of iron-based metals with a content of 3-20% by weight
The remainder: inevitable impurities [0016]
The composition range of the cemented carbide and cermet is generally a range that is industrially produced, but the effect of the present invention is that the amount of the binder phase can be changed depending on the site even if the range deviates from this range. Appears. Further, the compound or solid solution phase of the periodic table IVa, Va, VIa group transition metal and one or more selected from carbon, nitrogen, oxygen and boron preferably has a B-1 type crystal structure.
[0017]
Here, when the cemented carbide and cermet are used as the base material, the amount of the binder phase of the obtained hard material of the present invention differs depending on the site, so that the saturation magnetization amount (4πσ) varies, thereby the coercive force (Hc). Also changes. As a result of various studies, the change in coercive force of each cutting edge of the present invention tip changeable tip based on cemented carbide and cermet is the most binding phase when Hc of the whole tip replacement tip is B. It is also found that when the difference in coercive force between the cutting edge with the highest amount and the cutting edge with the lowest amount of binder phase is less than B × 0.05, the balance between strength improvement and hardness reduction with the increase in the amount of binder phase is the best. It was.
[0018]
Of course, the present invention is also effective for materials other than cemented carbide and cermet.
[0019]
Even if the coating layer is formed on the sintered hard material by chemical vapor deposition or physical vapor deposition, the effect of the present invention is not lost. The coating layer is a single layer composed of one or more selected from the group consisting of carbides, nitrides, carbonitrides, boronitrides, carbonitride oxides, aluminum oxides, and zirconium oxides of Group IVa, Va, and VIa metals. Layers or multilayers are preferred. The crystal structure of the material forming these coating layers may be anything, and it may be amorphous.
[0020]
Next, FIG. 1 and FIG. 2 are structural schematic views of a sintering furnace that performs sintering while giving a specific temperature and / or atmospheric gradient. These are merely examples, and any apparatus can be used as long as it can provide a temperature and / or an atmospheric gradient.
[0021]
FIG. 1 is an example of a schematic view of a sintering furnace that gives a temperature gradient in the horizontal direction. The sintering furnace 10 has a structure in which a heater 11 and a heater 12 are arranged on the left and right with a support 30 on which the sample 20 is placed, and the heaters 11 and 12 are sandwiched between a pair of heat insulating materials 40. The inside of the furnace is configured to be adjusted to a predetermined pressure by a vacuum pump.
[0022]
Here, by controlling the heater 11 and the heater 12 independently, the sample 20 has a temperature gradient in the horizontal direction. This temperature gradient may be set from the initial stage of sintering, or may be set from an arbitrary temperature, but it is desirable to give it from the start to the end of shrinkage of the sintered body.
[0023]
FIG. 2 is a schematic view of a sintering furnace that gives a temperature gradient and / or an atmospheric gradient in the horizontal direction. This sintering furnace is the same as the sintering furnace of FIG. 1 in that the sample is sandwiched between the heater 11 and the heater 12 from the left and right. However, the difference is that an exhaust pipe 51 is disposed through the heat insulating material 40 and the heater 11, and a gas introduction pipe 52 is disposed through the heat insulating material and the heater 12.
[0024]
Here, when the heater 11 and the heater 12 are controlled independently, and the atmosphere gas is introduced into the furnace, the temperature gradient and the sintering atmosphere depending on the site can be changed. If necessary, it is possible to eliminate the humidity gradient and provide only an atmospheric gradient. The temperature gradient and / or the atmosphere gradient may be set from the initial stage of sintering, or may be set from an arbitrary temperature, but it is desirable that the temperature gradient and / or the atmospheric gradient be provided from the start to the end of shrinkage of the sintered body.
[0025]
1 and 2 are sintering furnaces that apply a temperature gradient in the horizontal direction, but it is also possible to apply a temperature gradient in the vertical direction by installing heaters on the top and bottom surfaces.
[0026]
In the blade-tip-exchangeable chip sintered in such a sintering furnace, the blade tips existing in a plane parallel to the heater have the same bonding phase amount. That is, the difference between the binding phase amount of all cutting edges existing on a specific surface and the binding phase amount of all cutting edges existing on another surface can be set to A × 0.02 or more. For example, in the case of a rectangular parallelepiped cutting tip having eight cutting edges, the amount of binding phase differs between the four cutting edges existing on one surface and the four cutting edges on the other surface. It is preferable that the specific surface and the other surface be the surfaces having the largest area in the chip, or the second and the widest surface.
[0027]
By providing the temperature gradient and / or the atmospheric gradient by the method described above, the amount of the binder phase can be inclined between an arbitrary surface and another surface. In particular, if not only the temperature control of the heater but also the shape of the heater is devised, it is possible to increase the binder phase not only in an arbitrary plane but only in an arbitrary part.
[0028]
How much the amount of the binder phase is inclined can be arbitrarily controlled by the magnitude of the applied temperature gradient and / or atmospheric gradient. As for the temperature gradient, the temperature difference between an arbitrary surface of the hard material and the surface facing it is preferably 3 ° C to 100 ° C, and more preferably 10 ° C to 40 ° C. The atmospheric gradient is preferably provided with a flow rate difference of 0.1 to 20 l / min between an arbitrary surface of the hard material and a surface facing the hard material, and more preferably a flow rate difference of 0.5 to 10 l / min.
[0029]
In addition, what kind of methods, such as an analysis by an electron microscope and a wet analysis, may be sufficient as identification of a binder phase amount. When wet analysis is performed, an arbitrary portion of the hard material and / or the cutting tip is cut out and analyzed. In the case of an electron microscope, analysis is performed by cutting and lapping the analysis surface. The “part with the highest amount of binder phase” and “part with the lowest amount of binder phase” means that the hard material is divided by discharge wire cutting or polishing to the smallest size that can be analyzed by CIS-032, and those samples are divided. Is obtained by Co analysis by the method described in CIS-032. Due to errors and accuracy problems, the lower limit weight of the divided sample is 0.1 g or more, more preferably 0.2 g or more, and the upper limit weight is preferably as light as possible in order to know the amount of Co in a minute part, 2 g or less, more preferably 1 g or less. is there. This divided sample is pulverized, and 0.1 to 0.2 g of the sample is weighed to prepare a sample for Co analysis.
[0030]
In many cases, a design called a chip breaker is applied to the cutting edge-exchangeable cutting tip in order to cut chips during cutting. In this case, giving the design to the press body in advance that the design that makes it possible to determine the amount of the binding phase of the cutting edge and the design that is predicted to be used according to the amount of the binding phase means that the cutting edge is not mixed and / or the tool material. It is industrially significant in that it can bring out its potential. In particular, the above-mentioned cuboid shaped blade-tip-exchangeable tip is generally press-molded by combining three dies (upper punch, lower punch, and mortar). Therefore, when the gradient of the binder phase amount is given in the vertical direction, it may be press-molded in advance by combining punches having a design that has the most excellent industrial efficiency for each binder phase amount. In other words, the upper punch and the lower punch are molded using existing punches with different designs, so that (1) the existing punch can be used, and (2) the chip breaker is suitable for the application predicted from the amount of binding phase. There is an industrial merit that the product can be manufactured.
[0031]
Since the hard material of the present invention and the cutting edge-replaceable cutting tip of the present invention do not have a weakly bonded portion unlike the conventional method, and the manufacturing process does not increase, it is a large industrial that can be provided at low cost. There are also advantages.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
(Example 1)
The raw material powder shown in Table 1 is wet-mixed with the composition shown in Table 1 for 10 hours, and then press-molded at a pressure of 1 ton / cm 2 . The press-molded body was sintered in a sintering furnace having the structure shown in FIG. 1 and then ground with a diamond grindstone to obtain a SPGN190408-shaped sintered body defined in JIS 4122.
[0033]
As for the content of the sintering program, the heater 11 was heated to 1400 ° C. at a heating rate of 6.0 ° C./min simultaneously with the start, and the heater 12 was started 5 minutes after the heater 11 program started. That is, the temperature difference between the heater 11 and the heater 12 was 30 ° C. 60 minutes after the heater 11 reached 1400 ° C., the heaters 11 and 12 were simultaneously turned off.
[0034]
[Table 1]
Figure 0004251798
[0035]
In this way, the cutting tip 1 of the present invention is manufactured, and for comparison, a comparison tip A manufactured by sintering without causing a temperature gradient by sintering the heater 11 and the heater 12 with the same program is also prepared. did. After measuring the coercive force (HC) of these chips in accordance with CIS-031, an intermittent cutting test and a continuous cutting test were performed under the following conditions to examine the flank wear amount of the blade edge and the chipping rate of the blade edge. In the chip 1 of the present invention, the continuous cutting test was performed with the blade edge sintered adjacent to the heater 12 side, and the intermittent cutting test was performed with the blade edge sintered adjacent to the heater 11.
[0036]
Continuous cutting test material: SCM435 (HB = 246) Round bar cutting speed: 190m / min
Feed: 0.27mm / rev.
Cutting depth: 2.0mm
Cutting time: 5 minutes Cutting oil: Water-soluble oil wear amount: Flank wear amount was measured.
[0037]
Intermittent cutting test material: SCM435 (HB = 246) Square material cutting speed: 154m / min
Feed: 0.45mm / rev.
Cutting depth: 2.0mm
Cutting time: 1 minute Cutting oil: None Chip rate: A test was performed with 10 cutting edges, and the number of cutting edges was determined.
[0038]
Further, as shown in FIG. 3, samples were cut at a width of 3 mm from each of the heater 11 side and the heater 12 side, and the coercive force of these cut samples and cobalt content analysis by CIS-032 were performed. Let the heater 11 side of the chip be the part (A) and the heater 12 side be the part (A). When analyzing the amount of cobalt, the excessively ground sample that was not used for the analysis and the sample obtained by crushing the unanalyzed portion of the alloy were mixed thoroughly and analyzed to obtain the cobalt amount of the inventive chip and the comparative chip before cutting. did. As a precaution, HC measurement and cobalt content analysis are performed without cutting the inventive chip and comparative chip manufactured by the same raw material and method, and the values match the above-described cutting inventive chip and comparative chip. Also confirmed. The cutting test results and analysis results are shown in Table 2.
[0039]
[Table 2]
Figure 0004251798
[0040]
Here, the binding phase amount A of the entire chip of the present invention is 8.9 wt%, the binding phase amount H of the portion (A) with the highest binding phase amount is 9.4 wt%, and the binding portion of the portion (A) with the lowest binding phase amount is (a). Since the phase amount L is 8.7 wt%, the difference in the amount of bonded phase is 9.4-8.7 = 0.7, and A × 0.02 = 0.178 or more. On the other hand, the comparison chip becomes 9.0-8.9 = 0.1 <0.178.
[0041]
Moreover, since the HC of the whole chip of the present invention is 16.0, the HC of the part (a) is 16.1, and the HC of the part (b) is 15.9, (16.1-15.9) /16.0=0.0125, which is 0.05 or less. Yes.
[0042]
From this, the cutting edge replaceable cutting tip according to the present invention is intermittent from continuous cutting that cannot be achieved with the conventional homogeneous cutting tip (the comparative tip of this time) by selecting the cutting edge according to the cutting form with a single tip. Can handle a wide range of situations up to cutting.
[0043]
(Example 2)
The raw material powder shown in Table 3 is wet-mixed with the composition shown in Table 3 for 7 hours, and then press-molded at a pressure of 1 ton / cm 2 . This press-molded body was sintered in a sintering furnace having the structure shown in FIG. This sintering furnace has a structure in which a heater 11 and a heater 12 are arranged above and below a support table on which a sample is placed, and the upper and lower sides of both heaters are sandwiched between a pair of heat insulating materials. The inside of the furnace is configured to be adjusted to a predetermined pressure by a vacuum pump. After that, the sintered body is ground with a diamond grindstone, and the surface of these sintered bodies is coated with a 5 μm-thick TiCN film by a known chemical vapor deposition method to obtain a CNMG633-shaped cutting tip defined in JIS4121. It was.
[0044]
As for the content of the sintering program, the heater 11 was heated to 1450 ° C. at a heating rate of 5.0 ° C./min simultaneously with the start, and the heater 12 was started 8 minutes after the heater 11 program started. That is, the temperature difference between the heater 11 and the heater 12 was 40 ° C. 60 minutes after the heater 11 reached 1450 ° C., the heaters 11 and 12 were simultaneously turned off. During press forming, the chip breaker for light cutting of steel (SU type manufactured by Sumitomo Electric Industries) is on the surface in contact with the support base, and the chip breaker for light cutting of steel (Sumitomo Electric Industries) is on the opposite side. UX type).
[0045]
[Table 3]
Figure 0004251798
[0046]
In this way, the cutting tip 2 of the present invention is manufactured, and for comparison, a comparison tip B manufactured by sintering without causing a temperature gradient by sintering the heater 11 and the heater 12 with the same program is also prepared. did. After measuring the coercive force (HC) of these chips in accordance with CIS-031, an intermittent cutting test and a continuous cutting test were performed under the following conditions to examine the flank wear amount of the blade edge and the chipping rate of the blade edge. In the chip 2 of the present invention, the continuous cutting test was performed on the lower surface, that is, the cutting edge provided with the SU type breaker, and the intermittent cutting test was performed on the upper surface, that is, the cutting edge provided with the UX type breaker.
[0047]
Continuous cutting test material: SCM435 (HB = 246) Round bar cutting speed: 240m / min
Feed: 0.20mm / rev.
Cutting depth: 1.0mm
Cutting time: 15 minutes Cutting oil: Water-soluble oil wear amount: Flank wear amount was measured.
[0048]
Intermittent cutting test material: SCM435 (HB = 246) Square material cutting speed: 174m / min
Feed: 0.37mm / rev.
Cutting depth: 2.0mm
Cutting time: 1 minute Cutting oil: None Chip rate: A test was performed with 10 cutting edges, and the number of cutting edges was determined.
[0049]
Further, as shown in FIG. 5, the sample was divided into two parts, and the coercive force of these cut samples and the cobalt content analysis by CIS-032 were performed. When analyzing the amount of cobalt, the excessively ground sample that was not used for the analysis and the sample obtained by crushing the unanalyzed portion of the alloy were mixed thoroughly and analyzed to obtain the cobalt amount of the inventive chip and the comparative chip before cutting. did. As a precaution, HC measurement and cobalt content analysis are performed without cutting the inventive chip and comparative chip manufactured by the same raw material and method, and the values match the above-described cutting inventive chip and comparative chip. Also confirmed. The above cutting test results and analysis results are shown in Table 4.
[0050]
[Table 4]
Figure 0004251798
[0051]
Here, the binding phase amount A of the whole chip of the present invention is 10.0 wt%, the binding phase amount H of the portion with the highest binding phase (D) is 10.5 wt%, and the binding amount of the portion with the lowest binding phase amount (U) is Since the phase amount L is 9.4 wt%, the difference in the amount of bonded phase is 10.5-9.4 = 1.1, and A × 0.02 = 0.2 or more. In contrast, the comparison chip is 10.1-10.0 = 0.1 <0.2.
[0052]
In addition, since the HC of the entire chip of the present invention is 9.6, the HC of the part (d) is 9.6, and the HC of the part (c) is 9.8, (9.6−9.8) /9.6≈−0.021, which is 0.05 or less. ing.
[0053]
From this, the cutting edge replaceable cutting tip according to the present invention is intermittent from continuous cutting that cannot be achieved with the conventional homogeneous cutting tip (the comparative tip of this time) by selecting the cutting edge according to the cutting form with a single tip. Can handle a wide range of situations up to cutting.
[0054]
(Example 3)
The raw material powder shown in Table 5 was wet-mixed with the composition shown in Table 5 for 11 hours, and then press-molded at a pressure of 1 ton / cm 2 . This press-molded body was sintered in a sintering furnace having the structure shown in FIG. 2 to obtain a sintered body. Thereafter, the sintered body was ground with a diamond grindstone to obtain a SNGN432-shaped cutting tip defined in JIS4121.
[0055]
The sintering program consists of heating heaters 11 and B at the same time as starting at a heating temperature of 4.0 ° C / min up to 1460 ° C. After reaching 1460 ° C, the heaters 11 and 12 are turned off simultaneously. did. At this time, argon gas was continuously supplied from the gas inlet at a flow rate of 1 liter per minute.
[0056]
[Table 5]
Figure 0004251798
[0057]
In this way, the cutting tip 3 of the present invention was manufactured, and for comparison, the comparative tip C manufactured by sintering without introducing atmospheric gas into the furnace with the apparatus of FIG. Got ready.
[0058]
After measuring the coercive force (HC) of these chips in accordance with CIS-031, an intermittent cutting test and a continuous cutting test were performed under the following conditions to examine the flank wear amount of the blade edge and the chipping rate of the blade edge. In the chip 3 of the present invention, the continuous cutting test is a cutting edge sintered adjacent to the atmosphere gas inlet, that is, the heater 12 side, and the intermittent cutting test is a cutting edge sintered adjacent to the exhaust port, ie, the heater 11. It carried out in.
[0059]
Continuous cutting test material: SCM435 (HB = 246) Round bar cutting speed: 200m / min
Feed: 0.30mm / rev.
Cutting depth: 1.0mm
Cutting time: 15 minutes Cutting oil: Water-soluble oil wear amount: Flank wear amount was measured.
[0060]
Intermittent cutting test material: SCM435 (HB = 246) Square material cutting speed: 154m / min
Feed: 0.37mm / rev.
Cutting depth: 2.0mm
Cutting time: 1 minute Cutting oil: None Chip rate: A test was performed with 10 cutting edges, and the number of cutting edges was determined.
[0061]
Furthermore, as shown in Fig. 3, samples were cut at a width of 3 mm from each of the heater 11 side and the heater 12 side, the coercive force of these cut samples, cobalt content analysis by CIS-032, and nickel content analysis by fluorescent X-ray analysis Went. Let the heater 11 side of the chip be the part (A) and the heater 12 side be the part (A).
[0062]
When analyzing the amount of cobalt, an excessively ground sample that was not used for the analysis and a sample obtained by crushing an unanalyzed portion of the alloy were mixed thoroughly and analyzed, and the values of cobalt and The amount of nickel was used. As a precaution, HC measurement and cobalt content and nickel content analysis were carried out without cutting the inventive tip and comparative tip manufactured with exactly the same raw materials and method, and the values of the above-described inventive tip and comparative tip that were cut were It was also confirmed that they matched. Table 6 shows the cutting test results and analysis results.
[0063]
[Table 6]
Figure 0004251798
[0064]
Here, the binding phase amount A of the whole chip of the present invention is 14.9 wt%, the binding phase amount H of the portion with the highest binding phase amount (a) is 15.6 wt%, and the binding amount of the portion with the lowest binding phase amount (A) is Since the phase amount L is 14.4 wt%, the difference in the amount of bonded phase is 15.6-14.4 = 1.2, and A × 0.02 = 0.298 or more. Conversely, the comparison chip is 15.0-14.9 = 0.1 <0.298.
[0065]
In addition, since the HC of the entire chip of the present invention is 12.1, the HC of the part (a) is 12.4 and the HC of the part (b) is 12.0, (12.4-12.0) /12.1≈0.033, which is 0.05 or less. Yes.
[0066]
【The invention's effect】
As described above, the hard material of the present invention and the cutting edge-exchangeable cutting tip of the present invention can be configured to have different amounts of binder phase depending on the part or the cutting edge. Therefore, the hard material which can respond to a wide range of uses with a single material can be obtained. In particular, by selecting a combination of the use and the amount of the binder phase of the cutting edge, it is possible to obtain a cutting tip having strength and wear resistance that could not be achieved conventionally.
[0067]
In addition, since there is no weak joint as in the prior art and the manufacturing process does not increase, there is also a great industrial advantage that it can be provided at low cost.
[Brief description of the drawings]
FIG. 1 shows an outline of a sintering furnace used in the method of the present invention, wherein (A) is a plan view and (B) is a front view.
2A and 2B are schematic views of a sintering furnace used in the method of the present invention, where FIG. 2A is a plan view and FIG. 2B is a front view.
FIG. 3 is an explanatory diagram showing a cutting site of a sample.
4A and 4B schematically show a sintering furnace used in the method of the present invention, in which FIG. 4A is a side view and FIG. 4B is a front view.
FIG. 5 is an explanatory diagram showing a cutting site of a sample.
[Explanation of symbols]
10 Sintering furnace
11 Heater
12 Heater
20 samples
30 Support base
40 Insulation
51 Exhaust pipe
52 Gas inlet pipe

Claims (9)

硬質相と結合相と不可避不純物とから構成され、接合部分がなく一体となっている複数の刃先を備える刃先交換型切削チップにおいて、
刃先によって結合相量が異なり、硬質材料全体に含まれる結合相量の合計をA重量%とすると、最も結合相量が高い刃先と、最も結合相量が低い刃先との結合相量の重量%の差がA×0.02以上であることを特徴とする刃先交換型切削チップ。
In the cutting edge-replaceable cutting tip comprising a plurality of cutting edges that are composed of a hard phase, a binder phase, and inevitable impurities, and have no joint part,
The amount of the binder phase varies depending on the cutting edge. If the total amount of binder phase contained in the hard material is A wt%, the weight% of the binder phase between the blade edge with the highest binder phase amount and the blade edge with the lowest binder phase amount. Cutting edge exchangeable cutting tip, characterized in that the difference between the two is A × 0.02 or more.
前記硬質相は炭化タングステンで、
結合相は3〜30重量%の鉄系金属の1種以上からなることを特徴とする請求項1に記載の刃先交換型切削チップ。
The hard phase is tungsten carbide,
2. The cutting edge replacement type cutting tip according to claim 1, wherein the binder phase is made of at least one of 3 to 30% by weight of an iron-based metal.
前記硬質相は次の2つの材料からなり、
[1]炭化タングステン
[2]周期律表IVa、Va、VIa族遷移金属と炭素、窒素、酸素および硼素から選択される1種以上との化合物または固溶体相を0.1〜50重量%
結合相は3〜30重量%の鉄系金属の1種以上からなることを特徴とする請求項1に記載の刃先交換型切削チップ。
The hard phase consists of the following two materials:
[1] Tungsten carbide [2] 0.1-50% by weight of compound or solid solution phase of group IVa, Va, VIa transition metal and one or more selected from carbon, nitrogen, oxygen and boron
2. The cutting edge replacement type cutting tip according to claim 1, wherein the binder phase is made of at least one of 3 to 30% by weight of an iron-based metal.
前記硬質相は、周期律表IVa、Va、VIa族遷移金属と炭素、窒素、酸素および硼素から選択される1種以上との化合物または固溶体相が80〜97重量%からなり、
結合相は3〜20重量%の鉄系金属の1種以上からなることを特徴とする請求項1に記載の刃先交換型切削チップ。
The hard phase is composed of a compound or solid solution phase of 80 to 97% by weight of a transition metal group IVa, Va, VIa transition metal and one or more selected from carbon, nitrogen, oxygen and boron,
2. The cutting edge-exchangeable cutting tip according to claim 1, wherein the binder phase is made of at least one of 3 to 20% by weight of an iron-based metal.
切削チップ全体に含まれる結合相量の合計をA重量%とすると、ある特定の面に存在する全ての刃先の結合相量と、他の面に存在する全ての刃先の結合相量との重量%の差が、A×0.02以上異なることを特徴とする請求項2〜4のいずれかに記載の刃先交換型切削チップ。  Assuming that the total amount of binder phase contained in the entire cutting tip is A weight%, the weight of the binder phase amount of all cutting edges existing on a specific surface and the amount of binder phase of all blade edges existing on another surface. 5. The cutting edge-exchangeable cutting tip according to claim 2, wherein the% difference differs by A × 0.02 or more. ある特定の面と他の面がチップの最も面積が広い面同士またはある特定の面と他の面がチップの最も面積が広い面と2番目に面積が広い面であることを特徴とする請求項5記載の刃先交換型切削チップ。  The specific surface and the other surface are the surfaces having the largest area of the chip, or the specific surface and the other surface are the surface having the largest area of the chip and the surface having the second largest area. Item 5. The cutting edge-exchangeable cutting tip according to Item 5. 切削チップ全体の抗磁力HCをBとすると、最も結合相量が高い刃先と最も結合相量が低い刃先との抗磁力(HC)の差が、B×0.05以下であることを特徴とする請求項2〜6のいずれかに記載の刃先交換型切削チップ。  When the coercive force HC of the entire cutting tip is B, the difference in coercive force (HC) between the cutting edge with the highest binding phase amount and the cutting edge with the lowest binding phase amount is B × 0.05 or less. Item 7. The cutting edge replacement type cutting tip according to any one of Items 2 to 6. 硬質相と結合相と不可避不純物とからなる1種類の配合原料を成形体にする工程と、
成形体のうち、刃先となる部位と、この部位以外の刃先となる部位との間に、3℃以上の温度差を設けて焼結する工程とを具えることを特徴とする刃先交換型切削チップの製造方法。
A step of forming one compounding raw material composed of a hard phase, a binder phase and inevitable impurities into a molded body,
Cutting edge exchange-type cutting characterized by comprising a step of sintering at a temperature difference of 3 ° C. or more between a portion to be a blade edge and a portion to be a blade edge other than this portion in a formed body Chip manufacturing method.
硬質相と結合相と不可避不純物とからなる1種類の配合原料を成形体にする工程と、
成形体のうち、刃先となる部位と、この部位以外の刃先となる部位との間に、0 . 1l/min以上の流量差を設けた雰囲気ガスを導入しつつ焼結する工程とを具えることを特徴とする刃先交換型切削チップの製造方法。
A step of forming one compounding raw material composed of a hard phase, a binder phase and inevitable impurities into a molded body,
And a step of sintering while introducing an atmospheric gas having a flow rate difference of 0.1 l / min or more between a portion to be a cutting edge and a portion to be a cutting edge other than this portion of the formed body . A method of manufacturing a cutting edge-exchangeable cutting tip, characterized in that:
JP2001275730A 2001-09-11 2001-09-11 Cutting edge replaceable cutting tip and manufacturing method thereof Expired - Fee Related JP4251798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001275730A JP4251798B2 (en) 2001-09-11 2001-09-11 Cutting edge replaceable cutting tip and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001275730A JP4251798B2 (en) 2001-09-11 2001-09-11 Cutting edge replaceable cutting tip and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003082432A JP2003082432A (en) 2003-03-19
JP4251798B2 true JP4251798B2 (en) 2009-04-08

Family

ID=19100543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001275730A Expired - Fee Related JP4251798B2 (en) 2001-09-11 2001-09-11 Cutting edge replaceable cutting tip and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4251798B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5651053B2 (en) * 2011-03-16 2015-01-07 住友電工ハードメタル株式会社 Cutting edge exchangeable cutting tip, cutting method using the same, and manufacturing method of cutting edge exchangeable cutting tip

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670553B2 (en) * 1986-08-15 1994-09-07 石川島播磨重工業株式会社 Hot air supply type continuous furnace
JP3046336B2 (en) * 1990-09-17 2000-05-29 東芝タンガロイ株式会社 Sintered alloy with graded composition and method for producing the same
JP3161806B2 (en) * 1992-03-31 2001-04-25 日本冶金工業株式会社 Sintered body showing continuous composition change, its manufacturing method and its applied products
JP2657602B2 (en) * 1992-11-06 1997-09-24 東京タングステン株式会社 Cemented carbide and its manufacturing method
JP2611934B2 (en) * 1994-04-28 1997-05-21 住友石炭鉱業株式会社 Cemented carbide-based wear-resistant material and method for producing the same
JPH0929508A (en) * 1995-07-12 1997-02-04 Toshiba Tungaloy Co Ltd High tenacity surface-coated hard metal
JPH11117037A (en) * 1997-10-13 1999-04-27 Sumitomo Electric Ind Ltd Method and device for evaluating and classifying material of cemented carbide
JPH11181540A (en) * 1997-12-19 1999-07-06 Sumitomo Electric Ind Ltd Hyperfine-grained cemented carbide

Also Published As

Publication number Publication date
JP2003082432A (en) 2003-03-19

Similar Documents

Publication Publication Date Title
EP2207906A1 (en) A diamond metal composite
CN1268192A (en) A cutting insert of a cermet having a Co-Ni-Fe-binder
JP2000054007A (en) Diamond-sintered body and its production
CN103974922A (en) Sintered ceramic body
JP2008069420A (en) Cemented carbide and coated cemented carbide, and manufacturing methods therefor
JP2523452B2 (en) High strength cubic boron nitride sintered body
JP2007084382A (en) Cubic boron nitride sintered compact, coated cubic boron nitride sintered compact, and cutting tool for quench-hardened steel comprising the same
JP4888659B2 (en) Replaceable cutting edge
JP4251798B2 (en) Cutting edge replaceable cutting tip and manufacturing method thereof
Tokita Development of square-shaped large-size WC/Co/Ni system FGM fabricated by spark plasma sintering (SPS) method and its industrial applications
JP2004358580A (en) Cutting tool and its manufacturing method
JPH0724606A (en) Surface compound cubic boron nitride group extra-high pressure sintered material made cutting tool with excellent chipping resistance
JP2000326112A (en) Multicrystalline diamond tool
JP3700658B2 (en) Cutting tool made of surface-coated cubic boron nitride based sintered material that exhibits excellent chipping resistance with a hard coating layer in intermittent heavy cutting
US6620756B2 (en) Ceramic matrix composite cutting tool material
JP4304438B2 (en) Cutting tool made of surface-coated cubic boron nitride based sintered material that exhibits excellent chipping resistance due to hard coating layer in heavy cutting
JP3297535B2 (en) Cubic boron nitride sintered body
JP2003136474A (en) Cutter using wc composite material
JP2001187431A (en) Laminated structural material
JP2005212048A (en) Ceramics and cutting tool using the same
JP3525359B2 (en) Surface coated cemented carbide cutting tool
JPH07157837A (en) Ultrafine-grain hard alloy and parts
JP3092887B2 (en) Surface-finished sintered alloy and method for producing the same
Gaurav COMPOSITE CUTTING TOOL FOR CONVENTIONAL MACHINING-A REVIEW
CN1566388A (en) TiC hard alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040819

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080916

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090120

R150 Certificate of patent or registration of utility model

Ref document number: 4251798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees