JP4248446B2 - Lead-based alloy for lead-acid battery and lead-acid battery using the lead-based alloy as a positive electrode substrate - Google Patents

Lead-based alloy for lead-acid battery and lead-acid battery using the lead-based alloy as a positive electrode substrate Download PDF

Info

Publication number
JP4248446B2
JP4248446B2 JP2004148189A JP2004148189A JP4248446B2 JP 4248446 B2 JP4248446 B2 JP 4248446B2 JP 2004148189 A JP2004148189 A JP 2004148189A JP 2004148189 A JP2004148189 A JP 2004148189A JP 4248446 B2 JP4248446 B2 JP 4248446B2
Authority
JP
Japan
Prior art keywords
lead
mass
positive electrode
electrode substrate
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004148189A
Other languages
Japanese (ja)
Other versions
JP2005330516A (en
Inventor
正則 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2004148189A priority Critical patent/JP4248446B2/en
Publication of JP2005330516A publication Critical patent/JP2005330516A/en
Application granted granted Critical
Publication of JP4248446B2 publication Critical patent/JP4248446B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Description

本発明は、自動車用鉛蓄電池などに適した耐食性および強度に優れた鉛基合金、およびこれを正極格子基板(以下、正極基板と記す)に用いた長寿命の鉛蓄電池に関する。   The present invention relates to a lead-based alloy excellent in corrosion resistance and strength suitable for a lead-acid battery for automobiles and the like, and a long-life lead-acid battery using the same for a positive electrode grid substrate (hereinafter referred to as a positive electrode substrate).

自動車用鉛蓄電池は、高温のエンジンルーム内に常時過充電状態で置かれるという苛酷な条件で使用されており、そのため正極基板は、腐食し易く、この腐食によりグロスが起き易くなり、鉛蓄電池は寿命が短くなる。前記エンジンルーム内の温度は、装備の増加と余分な空間の排除が進む中で益々上昇する傾向にある。   Lead-acid batteries for automobiles are used under harsh conditions such that they are always placed in an overcharged state in a high-temperature engine room. Therefore, the positive electrode substrate is easily corroded, and this corrosion easily causes gloss. Life is shortened. The temperature in the engine room tends to increase more and more as equipment is increased and extra space is eliminated.

前記グロスは、電池使用時に正極基板に生成する腐食物が原因で起きる伸び変形であり、従って前記グロスを防止するには正極基板の耐食性および強度の向上が必要である。
なお、前記グロスが起きると、正極基板と活物質の接合強度が弱まって電池容量が低下して寿命が短くなり、さらには正極基板が負極基板に接触する重大な短絡事故を招く恐れがある。
The gloss is elongation deformation caused by corrosive substances generated on the positive electrode substrate when the battery is used. Therefore, in order to prevent the gloss, it is necessary to improve the corrosion resistance and strength of the positive electrode substrate.
When the gloss occurs, the bonding strength between the positive electrode substrate and the active material is weakened, the battery capacity is reduced and the life is shortened. Furthermore, there is a risk of causing a serious short-circuit accident in which the positive electrode substrate contacts the negative electrode substrate.

一方、正極基板にはメンテナンスフリーに適したPb−Ca系合金(Pb−0.06〜0.10mass%(質量%)Ca−1.0〜2.0mass%Sn−0.005〜0.04mass%Al合金など)が使用されているが、この合金は、耐食性および強度が不十分でグロスが起き易く寿命が短い。   On the other hand, the Pb—Ca alloy (Pb-0.06-0.10 mass% (mass%) Ca-1.0-2.0 mass% Sn-0.005-0.04 mass) suitable for maintenance-free is used for the positive electrode substrate. % Al alloy, etc.) are used, but this alloy has insufficient corrosion resistance and strength, is prone to gloss, and has a short life.

前記Pb−Ca系合金については、耐食性や引張強度の向上などを目的として幾つかの提案がなされている。
例えば、電池が寿命となるまで正極基板の強度を高度に維持できるCa、Sn、Al、Baを適量含む鉛基合金(特許文献1)、耐食性を損なわずに強度を高めたCa、Sn、Agを適量含む鉛基合金(特許文献2)、耐食性と強度を高めたCa、Sn、Sr、Baを適量含む鉛基合金(特許文献3)、高温下で使用しても長寿命が得られるCa、Sn、Agを適量含む鉛基合金(特許文献4)などである。
Several proposals have been made on the Pb—Ca alloy for the purpose of improving corrosion resistance and tensile strength.
For example, a lead-based alloy containing a proper amount of Ca, Sn, Al, and Ba that can maintain the strength of the positive electrode substrate at a high level until the battery reaches the end of life (Patent Document 1), and Ca, Sn, and A that have increased strength without impairing corrosion resistance. l, lead-based alloy (Patent Document 2) containing an appropriate amount of M g, Ca with enhanced corrosion resistance and strength, Sn, Sr, Pb base alloy (Patent Document 3) containing an appropriate amount of Ba, be used in high temperature long life A lead-based alloy (Patent Document 4) containing appropriate amounts of Ca, Sn, and Ag.

しかしながら、前記従来の鉛基合金では正極基板の耐グロス性が十分に改善されず、従って前記鉛基合金を正極基板に用いた鉛蓄電池では、自動車用鉛蓄電池のような苛酷な条件下で使用した場合、所望の長寿命が安定して得られないという問題がある。   However, the conventional lead-based alloy does not sufficiently improve the gloss resistance of the positive electrode substrate. Therefore, the lead-acid battery using the lead-based alloy as the positive electrode substrate is used under severe conditions such as a lead acid battery for automobiles. In this case, there is a problem that a desired long life cannot be stably obtained.

しかも、正極基板は、車体の軽量化、環境保全と省燃費を目的とする鉛蓄電池の高電圧化(12→36)、高温で大電流充放電を行うハイブリッド車(HEV)における鉛蓄電池の出力アップなどを背景に益々薄肉化される傾向にあり、そのため正極基板の耐食性および強度の向上は極めて重要な課題になってきている。 Moreover, the positive electrode substrate is a lead-acid battery in a hybrid vehicle (HEV) that performs high-current charge / discharge at a high temperature, increasing the voltage of the lead-acid battery (12 V → 36 V ) for the purpose of reducing the weight of the vehicle body, environmental protection and fuel efficiency. Therefore, the improvement in corrosion resistance and strength of the positive electrode substrate has become a very important issue.

このような状況の中で、耐グロス性に優れた鉛蓄電池用鉛基合金として、Ca、Sn、A、Baを適量含む鉛基合金、および前記鉛基合金にさらにAg、Bi、Tlの元素群のうちの少なくとも1元素を含む鉛基合金が提案された(特許文献5)。 Under such circumstances, as lead-based alloys for lead-acid batteries having excellent gloss resistance, lead-based alloys containing appropriate amounts of Ca, Sn, A l , and Ba, and further, Ag, Bi, and Tl are added to the lead-based alloys. A lead-based alloy containing at least one element in the element group has been proposed (Patent Document 5).

国際公開第97/30183号パンフレットInternational Publication No. 97/30183 Pamphlet 米国特許第4233070号明細書US Pat. No. 4,233,070 米国特許第4358518号明細書US Pat. No. 4,358,518 米国特許第5298350号明細書US Pat. No. 5,298,350 特開2003−306733号公報JP 2003-306733 A

しかし前記特許文献5記載発明の鉛基合金にはハンドリング時などに変形が生じるという問題がある。またユーザーからは鉛蓄電池の更なる寿命向上が求められている。
本発明の目的は、耐グロス性に優れ、かつハンドリング時などに変形を生じない鉛蓄電池用鉛基合金および前記鉛基合金を正極基板に用いた長寿命の鉛蓄電池を提供することにある。
However, the lead-based alloy of the invention described in Patent Document 5 has a problem that deformation occurs during handling. In addition, users are demanding further improvement in the life of lead-acid batteries.
An object of the present invention is to provide a lead-base alloy for a lead-acid battery that has excellent gloss resistance and does not deform during handling, and a long-life lead-acid battery using the lead-base alloy as a positive electrode substrate.

請求項1記載発明は、Caを0.02mass%以上0.05mass%未満、Snを0.4mass%以上4.0mass%以下、Baを0.0.02mass%以上0.014mass%以下、Aを0.04mass%以下含有し、さらにK、P、の元素群から選ばれる少なくとも1元素を合計で0.01mass%以上0.1mass%以下含有し、残部が鉛と不可避不純物からなることを特徴とする鉛蓄電池用鉛基合金である。 According to claim 1 invention, Ca less than 0.02 mass% or more 0.05 mass%, Sn of 0.4 mass% or more 4.0 mass% or less, 0.0.02mass% or more 0.014Mass% or less Ba, A l the containing less 0.04 mass%, K Moreover, P, of containing less 0.01 mass% or more 0.1mass% in total of at least one element selected from the element group, the balance of lead and unavoidable impurities A lead-based alloy for a lead-acid battery.

請求項2記載発明は、請求項1記載の鉛蓄電池用鉛基合金を正極基板に用いた鉛蓄電池であって、前記正極基板が重力鋳造法、連続鋳造法、圧延・エキスパンド加工法、押出・エキスパンド加工法、押出・圧延・エキスパンド加工法のいずれかの方法により製造されていることを特徴とする鉛蓄電池である。   The invention according to claim 2 is a lead storage battery using the lead-based alloy for lead storage battery according to claim 1 as a positive electrode substrate, wherein the positive electrode substrate is a gravity casting method, a continuous casting method, a rolling / expanding method, an extrusion / expanding method, A lead-acid battery produced by any one of an expanding process, an extrusion / rolling / expanding process.

請求項1記載発明は、Ca、Sn、Ba、Alを適量含有し、さらにK、P、の元素群から選ばれる少なくとも1元素を適量含有する鉛基合金であり、前記鉛基合金を用いて製造される正極基板は、前記Ca、Baの作用により耐食性および強度が向上し、前記SnはK、Pなどの元素と反応し金属間化合物を形成して微細かつ均一に分散するので粒子分散強化により強度が向上する。これにより正極基板のグロスが抑制されて電池寿命が向上し、またハンドリング時などにおける変形が防止される。前記ハンドリング時などにおける変形防止は、特に、前記金属間化合物による粒子分散強化の影響が大きい。またAlは溶融時優先的に酸化してCaとBaの酸化を防止するのでCaとBaの作用が効率良く発現される。前記Snには湯流れ性を改善して鋳造基板の品質を高める働きもある。 According to claim 1 invention, Ca, Sn, containing an appropriate amount Ba, the Al, a lead-base alloy containing a suitable amount of at least one element selected in further K, P, from the following element group of, using the lead-based alloy the positive electrode substrate manufactured Te, the Ca, corrosion resistance and strength is improved by the action of Ba, the Sn is K, finely and uniformly dispersed because the particle dispersion to form a P reaction was intermetallic compounds which element Strength improves by strengthening. Thereby, the gloss of the positive electrode substrate is suppressed, the battery life is improved, and deformation during handling is prevented. The prevention of deformation during handling or the like is particularly affected by the strengthening of particle dispersion by the intermetallic compound. Moreover, since Al is preferentially oxidized during melting to prevent the oxidation of Ca and Ba, the action of Ca and Ba is efficiently expressed. The Sn also functions to improve the quality of the cast substrate by improving the hot water flow.

前記鉛基合金は正極基板に、重力鋳造法、連続鋳造法、圧延・エキスパンド加工法、押出・エキスパンド加工法、または押出・圧延・エキスパンド加工法により、高品質に且つ効率よく製造される。   The lead-based alloy is produced on the positive electrode substrate with high quality and efficiency by a gravity casting method, a continuous casting method, a rolling / expanding method, an extrusion / expanding method, or an extrusion / rolling / expanding method.

本発明の鉛基合金は耐食性および強度に優れるため、前記鉛基合金を用いて製造した正極基板は薄肉化が可能であり、車体の軽量化、鉛蓄電池の高電圧化(12→36)、ハイブリッド車(HEV)における鉛蓄電池の出力アップの実現に有利である。 Since the lead-based alloy of the present invention is excellent in corrosion resistance and strength, the positive electrode substrate manufactured using the lead-based alloy can be thinned, reducing the weight of the vehicle body and increasing the voltage of the lead-acid battery (12 V → 36 V). ), Which is advantageous for increasing the output of the lead-acid battery in a hybrid vehicle (HEV).

本発明の鉛基合金は、耐食性および強度に優れているため、負極基板(負極格子基板)にも、或いはストラップ、端子などの鉛蓄電池用部材にも良好に適用できる。   Since the lead-based alloy of the present invention is excellent in corrosion resistance and strength, it can be applied well to a negative electrode substrate (negative electrode lattice substrate) or a lead storage battery member such as a strap or a terminal.

本発明の鉛蓄電池は、ITなどの産業用電池(バックアップ電源)やUPS(無停電電源装置)、エネルギー貯蔵用電池などに適用しても、自動車用鉛蓄電池の場合と同様の効果が得られ、鉛蓄電池の用途拡大に大きく貢献できる。   Even if the lead storage battery of the present invention is applied to industrial batteries (backup power supply) such as IT, UPS (uninterruptible power supply), energy storage batteries, etc., the same effect as in the case of automotive lead storage batteries can be obtained. , Can greatly contribute to the expansion of the use of lead-acid batteries.

請求項1記載発明は、Ca、Sn、Ba、Alを適量含有し、さらにK、P、の元素群から選ばれる少なくとも1元素を適量含有する鉛基合金である。
前記本発明の鉛基合金において、Caは耐食性および強度の向上に寄与する。その含有量を0.02mass%以上0.05mass%以下に規定する理由は、0.02mass%未満では十分な耐食性および強度が得られず、0.05mass%を超えると耐食性が低下するためである。Caのより好ましい含有量は0.03mass%以上0.045mass%以下である。
According to claim 1 invention, Ca, Sn, containing an appropriate amount Ba, the Al, a lead-base alloy containing a suitable amount of at least one element selected in further K, P, from the following element group of.
In the lead-based alloy of the present invention, Ca contributes to improvement of corrosion resistance and strength. The reason why the content is specified to be 0.02 mass% or more and 0.05 mass% or less is that sufficient corrosion resistance and strength cannot be obtained if it is less than 0.02 mass%, and if it exceeds 0.05 mass%, the corrosion resistance is reduced. . The more preferable content of Ca is 0.03 mass% or more and 0.045 mass% or less.

Baは強度向上に寄与する。その含有量を0.002mass%以上0.014mass%以下に規定する理由は、0.002mass%未満ではその効果が十分に得られず、0.014mass%を超えると耐食性が急速に低下するためである。Baのより好ましい含有量は0.002mass%以上0.010mass%以下である。   Ba contributes to strength improvement. The reason for prescribing its content to be 0.002 mass% or more and 0.014 mass% or less is that the effect cannot be sufficiently obtained if it is less than 0.002 mass%, and if it exceeds 0.014 mass%, the corrosion resistance is rapidly lowered. is there. A more preferable content of Ba is 0.002 mass% or more and 0.010 mass% or less.

本発明では、Caを0.02mass%以上0.05mass%未満に規定し、Baを0.002〜0.014mass%に規定することで両者が相乗効果を発揮し、強度を高めながら耐食性を向上させることができるのである。   In the present invention, when Ca is specified to be 0.02 mass% or more and less than 0.05 mass% and Ba is specified to be 0.002 to 0.014 mass%, the two exhibit a synergistic effect and improve corrosion resistance while increasing strength. It can be made.

Snは耐食性および強度の向上に寄与する。Snの含有量を0.4mass%以上4.0mass%以下に規定する理由は、0.4mass%未満では十分な耐食性および強度が得られず、4.0mass%を超えると粒界にSnが多量に偏析して耐食性が低下し、また融点と凝固点が乖離して鋳造欠陥(焼き折れ)が発生し易くなるためである。   Sn contributes to improvement of corrosion resistance and strength. The reason for prescribing the Sn content to be 0.4 mass% or more and 4.0 mass% or less is that sufficient corrosion resistance and strength cannot be obtained if it is less than 0.4 mass%, and if it exceeds 4.0 mass%, a large amount of Sn is present at the grain boundary. This is because the corrosion resistance is lowered due to segregation, and the melting point and the freezing point are separated from each other, so that a casting defect (baking breakage) is likely to occur.

Alは溶解鋳造時に優先的に酸化してCaとBaの酸化ロスを低減する。Alの含有量を0.005mass%以上0.04mass%以下に規定する理由は、0.005mass%未満ではその効果が十分に得られず、0.04mass%を超えるとドロスが発生し易くなるためである。なお、非酸化性雰囲気中で溶解鋳造する場合は、Alは添加する必要がない。   Al is preferentially oxidized during melt casting to reduce the oxidation loss of Ca and Ba. The reason for prescribing the Al content to be 0.005 mass% or more and 0.04 mass% or less is that the effect cannot be obtained sufficiently if it is less than 0.005 mass%, and dross is likely to occur if it exceeds 0.04 mass%. It is. In addition, when melt casting in a non-oxidizing atmosphere, it is not necessary to add Al.

K、P、の元素群は、Snと反応して金属間化合物を形成し微細に分散(粒子分散強化)して強度の向上に寄与する。前記金属間化合物は微細かつ均一に分散するため耐食性を悪化させるようなことがない。前記元素群の合計含有量を0.01mass%以上0.1mass%以下に規定する理由は、0.01mass%未満ではその効果が十分に得られず、0.1mass%を超えると粗大な金属間化合物が生成して耐食性が低下するためである。特に好ましい含有量は0.03mass%以上0.08mass%以下である。 The element group of K and P reacts with Sn to form an intermetallic compound and finely disperse (strengthen particle dispersion) to contribute to the improvement of strength. Since the intermetallic compound is finely and uniformly dispersed, the corrosion resistance is not deteriorated. The reason for prescribing the total content of the element group to 0.01 mass% or more and 0.1 mass% or less is that the effect cannot be sufficiently obtained if the content is less than 0.01 mass%, and if the content exceeds 0.1 mass%, the coarse intermetallic This is because the compound is formed and the corrosion resistance is lowered. A particularly preferable content is 0.03 mass% or more and 0.08 mass% or less.

本発明では、前記粒子分散強化により正極基板のハンドリング時や活物質充填時などにおける変形が防止される。鋳造後の正極基板を熱処理して時効硬化させることによりさらに強度が向上し、変形がより確実に防止される。   In the present invention, the particle dispersion strengthening prevents deformation during handling of the positive electrode substrate or filling of the active material. By heat-treating the positive electrode substrate after casting and age hardening, the strength is further improved, and deformation is more reliably prevented.

前記熱処理は80〜140℃で0.5〜10時間の条件で行う。特に90〜130℃で1〜6時間の条件が好ましい。   The heat treatment is performed at 80 to 140 ° C. for 0.5 to 10 hours. In particular, conditions of 90 to 130 ° C. and 1 to 6 hours are preferable.

本発明の鉛基合金は正極基板などとして使用される。正極基板には、重力鋳造法、連続鋳造法、圧延・エキスパンド加工法、押出・エキスパンド加工法、押出・圧延・エキスパンド加工法などにより高品質に且つ効率よく製造することができる。   The lead-based alloy of the present invention is used as a positive electrode substrate. The positive electrode substrate can be manufactured with high quality and efficiency by a gravity casting method, a continuous casting method, a rolling / expanding method, an extrusion / expanding method, an extrusion / rolling / expanding method, or the like.

前記正極基板は活物質を充填し熟成・乾燥して正極未化成板とし、これに負極未化成板をセパレータを介在させて複数枚ずつ交互に積層し、前記積層体の正極未化成板群と負極未化成板群をそれぞれストラップで一体化して電槽に組込み、稀硫酸を注入し、電槽化成を行って鉛蓄電池に製造される。   The positive electrode substrate is filled with an active material, aged and dried to form a positive electrode unformed plate, and a plurality of negative electrode unformed plates are alternately laminated with a separator interposed therebetween, and the positive electrode unformed plate group of the laminate is The negative electrode unformed plate group is integrated with a strap and incorporated into a battery case, diluted sulfuric acid is injected, and the battery case is formed to produce a lead storage battery.

従来から、負極基板にはPb−Sn合金、Pb−Ca合金、Pb−Ca−Sn合金が、ストラップと極柱にはPb−Sn合金が、端子にはPb−Sb合金がそれぞれ使用されているが、前記部材などに、本発明の耐食性および強度に優れる鉛基合金を使用すれば各々の信頼性が向上する。   Conventionally, Pb—Sn alloy, Pb—Ca alloy, Pb—Ca—Sn alloy are used for the negative electrode substrate, Pb—Sn alloy is used for the strap and the pole column, and Pb—Sb alloy is used for the terminal. However, if the lead-based alloy having excellent corrosion resistance and strength according to the present invention is used for the member or the like, the respective reliability is improved.

以下に本発明を実施例により詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to examples.

Pb−0.04mass%Ca−1.0mass%Sn−0.008mass%Ba−0.02mass%Al合金の引張強度に及ぼすK、P、の各元素の影響を調べた。引張強度はJIS Z 2241に準拠して測定した。結果を表1に示す。 Pb-0.04mass% Ca-1.0mass% Sn-0.008mass% Ba-0.02mass% Al K to be adversely tensile strength of the alloy were examined P, and the influence of each element. The tensile strength was measured according to JIS Z 2241. The results are shown in Table 1.

表1から明らかなように、前記いずれの元素もその含有量が0.01mass%以上で強度の増加が認められ、含有量の増加に伴って上昇し、0.1mass%を超えたところで飽和する。従って前記元素群の含有量は合計で0.01〜0.1mass%以下に規定する。   As is clear from Table 1, any of the above elements has an increase in strength when the content is 0.01 mass% or more, increases with the increase in content, and saturates when the content exceeds 0.1 mass%. . Therefore, the content of the element group is specified to be 0.01 to 0.1 mass% or less in total.

前記Pb−Ca−Sn−Ba−Al合金(実施例1で用いた合金)の耐食性に及ぼすCaの影響を下記方法により調べた。即ち、前記合金を鋳造して得た正極基板から試験片を切り出し、これを20℃における比重が1.280の稀硫酸に浸漬し、1350mV(vs HgO/HSO)の定電位で720時間陽極酸化し、陽極酸化前後の試験片の重量差(腐食量mg/cm)を測定して調べた。結果を図1に示す。 The effect of Ca on the corrosion resistance of the Pb—Ca—Sn—Ba—Al alloy (the alloy used in Example 1) was examined by the following method. That is, a test piece was cut out from a positive electrode substrate obtained by casting the alloy, immersed in dilute sulfuric acid having a specific gravity of 1.280 at 20 ° C., and 720 at a constant potential of 1350 mV (vs HgO / H 2 SO 4 ). After anodizing for a time, the weight difference (corrosion amount mg / cm 2 ) between the test pieces before and after anodization was measured and examined. The results are shown in FIG.

図1から明らかなように、腐食量はCaが0.05mass%未満において12mg/cm以下と少なく、0.05mass%以上で急激に増加する。 As apparent from FIG. 1, the corrosion amount is as small as 12 mg / cm 2 or less when Ca is less than 0.05 mass%, and increases rapidly when the Ca content is 0.05 mass% or more.

前記Pb−Ca−Sn−Ba−Al合金の耐食性に及ぼすSnの影響を実施例2と同じ方法により調べた。結果を図2に示す。   The effect of Sn on the corrosion resistance of the Pb—Ca—Sn—Ba—Al alloy was examined by the same method as in Example 2. The results are shown in FIG.

図2から明らかなように、腐食量はSn量が0.4〜4.0mass%において12mg/cm以下と少ない。 As apparent from FIG. 2, the corrosion amount is as small as 12 mg / cm 2 or less when the Sn amount is 0.4 to 4.0 mass%.

前記Pb−Ca−Sn−Ba−Al合金の耐食性に及ぼすBaの影響を実施例2と同じ方法により調べた。結果を図3に示す。   The influence of Ba on the corrosion resistance of the Pb—Ca—Sn—Ba—Al alloy was examined by the same method as in Example 2. The results are shown in FIG.

図3から明らかなように、腐食量はBa量が0.014mass%以下において12mg/cm以下と少ない。 As apparent from FIG. 3, the corrosion amount is as small as 12 mg / cm 2 or less when the Ba amount is 0.014 mass% or less.

前記Pb−Ca−Sn−Ba−Al合金の耐食性に及ぼすK、P、の各元素の影響を実施例2と同じ方法により調べた。
結果を表2に示す。
K to be adversely corrosion resistance of the Pb-Ca-Sn-Ba- Al alloy was examined by the same method P, a second embodiment the impact of each element.
The results are shown in Table 2.

表2から明らかなように、前記いずれの元素もその含有量が0.01mass%以上で腐食量が減少し、その後、含有量の増加に伴って減少するが、0.1mass%を超えると逆に増加する。   As is clear from Table 2, the corrosion amount of any of the above elements decreases when the content is 0.01 mass% or more, and then decreases as the content increases. To increase.

前記Pb−Ca−Sn−Ba−Al合金の高温クリープ特性に及ぼすBaの影響を下記方法により調べた。即ち、実施例2で使用したのと同じ試験片に120℃で1時間の時効硬化処理を施して、荷重16.5MPa、試験温度100℃の条件で高温クリープ試験を行った。結果を図4に示す。   The influence of Ba on the high temperature creep properties of the Pb—Ca—Sn—Ba—Al alloy was examined by the following method. That is, the same test piece used in Example 2 was subjected to age hardening at 120 ° C. for 1 hour, and a high temperature creep test was performed under the conditions of a load of 16.5 MPa and a test temperature of 100 ° C. The results are shown in FIG.

図4から明らかなように、クリープ破断時間は、Ba含有量が0.002mass%以上において27時間以上になり、耐グロス性に優れることが示唆される。   As is apparent from FIG. 4, the creep rupture time is 27 hours or more when the Ba content is 0.002 mass% or more, and it is suggested that the creep resistance is excellent.

前記Pb−Ca−Sn−Ba−Al合金の高温クリープ特性に及ぼすSnの影響を実施例6と同じ方法により調べた。結果を図5に示す。   The effect of Sn on the high temperature creep properties of the Pb—Ca—Sn—Ba—Al alloy was examined by the same method as in Example 6. The results are shown in FIG.

図5から明らかなように、クリープ破断時間は、Snの含有量が0.4〜4.0mass%において27時間以上になり、耐グロス性に優れることが示唆される。   As is apparent from FIG. 5, the creep rupture time is 27 hours or longer when the Sn content is 0.4 to 4.0 mass%, suggesting that the creep resistance is excellent.

前記Pb−Ca−Sn−Ba−Al合金の高温クリープ特性に及ぼすK、Pなどの元素群の影響を実施例6と同じ方法により調べた。結果を表3に示す。 The Pb-Ca-Sn-Ba- Al K to be adversely high temperature creep properties of the alloy were examined by the same method as in Example 6 the effect of P of which the element group. The results are shown in Table 3.

表3から明らかなように、クリープ破断時間は各元素とも、含有量が0.01mass%以上において27時間以上になり、耐グロス性に優れることが示唆される。   As is apparent from Table 3, the creep rupture time for each element is 27 hours or more when the content is 0.01 mass% or more, suggesting that it has excellent gloss resistance.

本発明で規定した組成の鉛基合金を、ブックモールドを用いて毎分15面の速度で正極基板に鋳造し、得られた正極基板を120℃で1時間熱処理して時効硬化させ、前記正極基板に活物質を充填し熟成・乾燥して正極未化成板とし、これに常法により製造した負極未化成板とをポリエチレンセパレータを介在させて複数枚ずつ交互に積層し、前記積層体の正極未化成板群と負極未化成板群とをそれぞれストラップで一体化して電槽内に組み込み、そこへ比重1.200稀硫酸を注入し、電槽化成を行って5時間率容量が4.0Ahの液式鉛蓄電池(D23サイズ)を製造した。前記熟成は温度4.0℃、相対湿度95%の雰囲気中に24時間保持して行った。   The lead-based alloy having the composition defined in the present invention is cast on a positive electrode substrate at a rate of 15 surfaces per minute using a book mold, and the obtained positive electrode substrate is heat-treated at 120 ° C. for 1 hour to age-harden the positive electrode. A substrate is filled with an active material, aged and dried to form a positive electrode non-formed plate, and a negative electrode non-formed plate manufactured by a conventional method is alternately laminated with a polyethylene separator, and a positive electrode of the laminate The unformed plate group and the negative electrode unformed plate group are each integrated with a strap and incorporated in the battery case, and a sulfuric acid is injected into the battery case with a specific gravity of 1.200, and the battery case is formed, and the 5-hour rate capacity is 4.0 Ah. Liquid lead acid battery (D23 size) was manufactured. The aging was carried out for 24 hours in an atmosphere at a temperature of 4.0 ° C. and a relative humidity of 95%.

この液式鉛蓄電池について、JIS D 5301の軽負荷試験によりサイクル寿命試験を行い、実施例2と同じ方法により耐食性を調べ、実施例1と同じ方法により引張強度を調べた。前記寿命試験は、試験温度を通常の40℃から75℃に上げて加速して行った。   This liquid lead-acid battery was subjected to a cycle life test by a light load test of JIS D 5301. The corrosion resistance was examined by the same method as in Example 2, and the tensile strength was examined by the same method as in Example 1. The life test was carried out by increasing the test temperature from the usual 40 ° C. to 75 ° C.

比較例1として、正極基板に本発明規定外組成の鉛基合金を用いた他は、実施例9と同じ方法により液式鉛蓄電池を製造し、実施例9と同じ方法により寿命試験を行い、また正極基板の耐食性および引張強度を調べた。   As Comparative Example 1, a liquid lead-acid battery was produced by the same method as in Example 9, except that a lead-based alloy having a composition outside the scope of the present invention was used for the positive electrode substrate, and a life test was performed by the same method as in Example 9. Further, the corrosion resistance and tensile strength of the positive electrode substrate were examined.

実施例9および比較例1の調査結果を表4に示す。   The investigation results of Example 9 and Comparative Example 1 are shown in Table 4.

表4から明らかなように、実施例9(本発明例)の鉛蓄電池は、いずれも寿命が長かった。これは正極基板の耐食性および引張強度が高く、正極基板にグロスが起きなかったためである。また実施例9の正極基板はハンドリング時或いは活物質充填時に変形するようなことがなかった。
これに対し、比較例1の鉛蓄電池は、いずれも寿命が短かった。これは正極基板の耐食性または/および引張強度が低く、正極基板にグロスが起きて活物質が剥離したためである。また比較例1の正極基板は活物質充填時などで変形するものがあった。
As is clear from Table 4, all the lead storage batteries of Example 9 (examples of the present invention) had a long life. This is because the positive electrode substrate has high corrosion resistance and high tensile strength, and the positive electrode substrate was not glossed. Further, the positive electrode substrate of Example 9 was not deformed during handling or filling of the active material.
In contrast, the lead storage battery of Comparative Example 1 had a short life. This is because the positive electrode substrate has low corrosion resistance and / or tensile strength, and gloss has occurred on the positive electrode substrate, causing the active material to peel off. Further, the positive electrode substrate of Comparative Example 1 was deformed when the active material was filled.

本発明で規定した組成の鉛基合金を、インゴットに鋳造し、これを圧延加工して厚さ0.9mmの鉛板とし、この鉛板をエキスパンド加工して正極基板を作製し、得られた正極基板に120℃で1時間の熱処理を施して時効硬化させ、次いでこの正極基板に正極ペーストを常法により充填し、次いで熟成および乾燥を行って正極未化成板を作製した。   A lead-based alloy having a composition defined in the present invention was cast into an ingot, and this was rolled into a 0.9 mm-thick lead plate, and this lead plate was expanded to produce a positive electrode substrate. The positive electrode substrate was heat-treated at 120 ° C. for 1 hour to age-harden, and then the positive electrode substrate was filled with the positive electrode paste by a conventional method, and then aging and drying were performed to produce a positive electrode unformed plate.

次に、前記正極未化成板と、常法により作製した負極未化成板とを複数枚ずつ微細なガラス繊維からなるリテーナマットセパレータを介して交互に積層し、この積層体の複数を電気接続して電槽内に組み込み、そこへ比重1.200の稀硫酸を注入し、電槽化成を行って、5時間率容量が24Ahの36Vのシール電池(D26サイズ)を製造した。   Next, the positive electrode unformed plate and the negative electrode unformed plate produced by a conventional method are alternately laminated via a retainer mat separator made of fine glass fibers, and a plurality of the laminates are electrically connected. Into the battery case, diluted sulfuric acid having a specific gravity of 1.200 was injected, and the battery case was formed to produce a 36V seal battery (D26 size) having a 5-hour rate capacity of 24 Ah.

得られた鉛蓄電池について、実施例9と同じサイクル寿命試験を行った。試験温度は、ハイブリッド車の使用パターンを模擬して高温(60℃)に設定した。
正極基板については、実施例1と同じ方法により耐食性および引張強度を調べた。
About the obtained lead acid battery, the same cycle life test as Example 9 was done. The test temperature was set to a high temperature (60 ° C.) by simulating the usage pattern of a hybrid vehicle.
The positive electrode substrate was examined for corrosion resistance and tensile strength by the same method as in Example 1.

比較例2として、本発明規定外組成の鉛基合金を用いた他は、実施例10と同じ方法により液式鉛蓄電池を製造し、実施例10と同じ方法により、寿命試験を行い、また正極基板の耐食性および引張強度を調べた。   As Comparative Example 2, a liquid lead-acid battery was manufactured by the same method as in Example 10 except that a lead-based alloy having a composition outside the scope of the present invention was used, and a life test was performed by the same method as in Example 10. The substrate was examined for corrosion resistance and tensile strength.

実施例10および比較例2の調査結果を表5に示す。   The investigation results of Example 10 and Comparative Example 2 are shown in Table 5.

表5から明らかなように、実施例10(本発明例)の鉛蓄電池は、いずれも寿命が長かった。これは正極基板の耐食性および引張強度が高く、正極基板にグロスが起きなかったためである。また実施例10の正極基板はハンドリング時或いは活物質充填時に変形するようなことがなかった。
これに対し、比較例2の鉛蓄電池は、いずれも寿命が短かった。これは正極基板の耐食性または/および引張強度が低く、正極基板にグロスが起きて活物質が剥離したためである。また比較例2の正極基板は活物質充填時などで変形するものがあった。
As is clear from Table 5, the lead storage batteries of Example 10 (examples of the present invention) all had a long life. This is because the positive electrode substrate has high corrosion resistance and high tensile strength, and the positive electrode substrate was not glossed. Further, the positive electrode substrate of Example 10 was not deformed during handling or filling of the active material.
On the other hand, the lead storage battery of Comparative Example 2 had a short life. This is because the positive electrode substrate has low corrosion resistance and / or tensile strength, and gloss has occurred on the positive electrode substrate, causing the active material to peel off. Moreover, the positive electrode substrate of Comparative Example 2 was deformed when the active material was filled.

Ca添加量と腐食量の関係を示す図である。It is a figure which shows the relationship between Ca addition amount and corrosion amount. Sn添加量と腐食量の関係を示す図である。It is a figure which shows the relationship between Sn addition amount and corrosion amount. Ba添加量と腐食量の関係を示す図である。It is a figure which shows the relationship between Ba addition amount and corrosion amount. Ba添加量とクリープ破断時間の関係を示す図である。It is a figure which shows the relationship between Ba addition amount and creep rupture time. Sn添加量とクリープ破断時間の関係を示す図である。It is a figure which shows the relationship between Sn addition amount and creep rupture time.

Claims (2)

Caを0.02mass%以上0.05mass%未満、Snを0.4mass%以上4.0mass%以下、Baを0.002mass%以上0.014mass%以下、Alを0.005mass%以上0.04mass%以下含有し、さらにK、P、の元素群から選ばれる少なくとも1元素を合計で0.01mass%以上0.1mass%以下含有し、残部が鉛と不可避不純物からなることを特徴とする鉛蓄電池用鉛基合金。 Ca is 0.02 mass% or more and less than 0.05 mass%, Sn is 0.4 mass% or more and 4.0 mass% or less, Ba is 0.002 mass% or more and 0.014 mass% or less, and Al is 0.005 mass% or more and 0.04 mass% or less. contains the following, lead-acid batteries further to K, containing less 0.01 mass% or more 0.1mass% P, at least one element selected from the group consisting of a total, the balance being made of lead and unavoidable impurities Lead-based alloy. 請求項1記載の鉛蓄電池用鉛基合金を正極基板に用いた鉛蓄電池であって、前記正極基板が重力鋳造法、連続鋳造法、圧延・エキスパンド加工法、押出・エキスパンド加工法、押出・圧延・エキスパンド加工法のいずれかの方法により製造されていることを特徴とする鉛蓄電池。 A lead-acid battery using the lead-based alloy for a lead-acid battery according to claim 1 as a positive electrode substrate, wherein the positive electrode substrate is a gravity casting method, a continuous casting method, a rolling / expanding method, an extrusion / expanding method, an extrusion / rolling method. A lead-acid battery manufactured by any one of the expanding methods.
JP2004148189A 2004-05-18 2004-05-18 Lead-based alloy for lead-acid battery and lead-acid battery using the lead-based alloy as a positive electrode substrate Expired - Fee Related JP4248446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004148189A JP4248446B2 (en) 2004-05-18 2004-05-18 Lead-based alloy for lead-acid battery and lead-acid battery using the lead-based alloy as a positive electrode substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004148189A JP4248446B2 (en) 2004-05-18 2004-05-18 Lead-based alloy for lead-acid battery and lead-acid battery using the lead-based alloy as a positive electrode substrate

Publications (2)

Publication Number Publication Date
JP2005330516A JP2005330516A (en) 2005-12-02
JP4248446B2 true JP4248446B2 (en) 2009-04-02

Family

ID=35485384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004148189A Expired - Fee Related JP4248446B2 (en) 2004-05-18 2004-05-18 Lead-based alloy for lead-acid battery and lead-acid battery using the lead-based alloy as a positive electrode substrate

Country Status (1)

Country Link
JP (1) JP4248446B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196283A (en) * 2005-01-13 2006-07-27 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2006196342A (en) * 2005-01-14 2006-07-27 Matsushita Electric Ind Co Ltd Lead acid storage battery

Also Published As

Publication number Publication date
JP2005330516A (en) 2005-12-02

Similar Documents

Publication Publication Date Title
KR100566624B1 (en) Lead­based alloy for lead storage battery, plate for lead storage battery and lead storage battery
US20050221191A1 (en) Lead alloy and lead storage battery using it
JP4160856B2 (en) Lead-based alloy for lead-acid battery and lead-acid battery using the same
JP2003520293A (en) Alloys for thin positive grids for lead-acid batteries and methods of manufacturing this grid
JP2010522275A (en) Lead-tin-silver-bismuth containing alloys for positive grids of lead acid batteries
JP5087950B2 (en) Lead acid battery
JP3987370B2 (en) Positive electrode plate for lead acid battery and lead acid battery using the same
JP4274873B2 (en) Lead-acid battery substrate and lead-acid battery using the same
JP4248446B2 (en) Lead-based alloy for lead-acid battery and lead-acid battery using the lead-based alloy as a positive electrode substrate
JP2002175798A (en) Sealed lead-acid battery
JP2006114417A (en) Lead-acid storage battery
JP4892827B2 (en) Lead acid battery
JP2005044760A (en) Manufacturing method of lead-acid storage battery positive electrode plate lattice
JP2007087700A (en) Lead-acid battery
JP2004200028A (en) Manufacturing method of lead acid storage battery electrode grid
JP7198890B1 (en) lead acid battery
JP2006114416A (en) Lead-acid battery
WO2009113166A1 (en) Lead storage battery
JP6762975B2 (en) Positive electrode grid for lead-acid batteries and lead-acid batteries
JP2006079951A (en) Lead-acid storage battery grid body and lead alloy for it
JP4503358B2 (en) Lead acid battery
KR100281299B1 (en) Maintenance-free cells and alloys for cell grids and cells
JP2006114236A (en) Lead acid storage battery
JP2003178806A (en) Charging control method of lead-acid battery
JP2006196283A (en) Lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees