JP4247932B2 - Wire electrical discharge machine - Google Patents

Wire electrical discharge machine Download PDF

Info

Publication number
JP4247932B2
JP4247932B2 JP22202798A JP22202798A JP4247932B2 JP 4247932 B2 JP4247932 B2 JP 4247932B2 JP 22202798 A JP22202798 A JP 22202798A JP 22202798 A JP22202798 A JP 22202798A JP 4247932 B2 JP4247932 B2 JP 4247932B2
Authority
JP
Japan
Prior art keywords
wire electrode
wire
machining
processing
standard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22202798A
Other languages
Japanese (ja)
Other versions
JP2000052150A (en
Inventor
秀二 岡崎
光宏 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sodick Co Ltd
Original Assignee
Sodick Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sodick Co Ltd filed Critical Sodick Co Ltd
Priority to JP22202798A priority Critical patent/JP4247932B2/en
Publication of JP2000052150A publication Critical patent/JP2000052150A/en
Application granted granted Critical
Publication of JP4247932B2 publication Critical patent/JP4247932B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えば角型コネクタ等のプラスチックス成形体を射出成形により製作する際の金型に用いられるコアピンの如き、微細な寸法形状と高い加工精度が要求される多数の加工を、確実で高速で行なうことができるワイヤ放電加工方法、及びそのような加工方法を効率よく実施するのに適合した構成を有するワイヤ放電加工装置に関する。
【0002】
【従来の技術】
図8Aは、前述の金型のコアピンとして最も典型的なコアピンの斜視図で、以下斯種のコアピンについて説明するが、コアピンとしては同図8B及びCの如き形状物の場合もあり、以下の本発明は之等のコアピンをも対象に包含しているものである。 図8Aのようなコアピンの場合、薄板状の胴部11Bの1端縁に長さL対幅Dの比(L/D)が大きいピン11−1,11−2,…11−nが前記端縁に沿い、胴部11B板面と平行に櫛歯状に列設された構成を有するが、該コアピンは、表面が面粗度0.5μmRmaX、全長が5μm以内、全幅が±3μm以内の寸法精度、そして5μm以内の形状精度を有すると共に、1.5μm以内の厚さ精度が要求され、かつピン11−1,11−2,…11−nの胴部11B付根部の内角の半径R(インコーナR)は0.05mm以下に仕上げることが要請される所から、ワイヤ放電加工機により加工して仕上げるには、細線により微細加工を加えて仕上げるべき加工物である。 即ち、上述のような微細な寸法・形状精度が要求される所から、その仕上げ加工、特に内角の半径R部の加工には、従来通常の仕上げ加工の場合のように、単に放電パルスの微細化、微小エネルギ化などの電気的加工条件の切換設定だけでなく、更に工具としてのワイヤ電極として、ワイヤ径がφ0.2mm前後という標準サイズのワイヤ電極から、ワイヤ径がφ0.1mm乃至φ0.05mm程度またはそれ以下の細線ワイヤ電極への切換が必須となる。
【0003】
そして、斯種コアピンは図9の斜視図に示すように適宜直方体等の形状をしたチャック椢代11Aを有する被加工体の素材11から、ワイヤ放電加工による先端面を含む各外周面加工の外形の成形仕上げ加工、コアピン部11−1〜nに於ける溝11Cの切込み加工による列状コア11Dの形成加工、前記コア部から胴部11Bにかけての切込み11Eの加工を前記列方向に所定の微細間隔で順次に行なうことによる多数のコアピンの形成加工、そして通常別工程の形成された各コアピンを椢代部や結合部11Aから分離する切離し加工11Fを順次に実行する加工を、多数個の被加工体素材に対し繰り返し行なうことになるから、相当に長時間の加工である。
このため、上述仕上げ加工に於て使用するワイヤ電極の線径、例えばφ0.05mm前後の細線ワイヤ電極を加工開始から用い、放電加工の加工条件を中加工以下の仕上げ加工条件とする加工を、上述コアピン加工の全加工工程に適用することは、より長時間の加工を要し、加工効率が悪いことから採用されることはなく、上記仕上げ加工の際のワイヤ電極線径よりも太い、通常標準線径(φ0.2mm)のワイヤ電極を用い、加工条件を中加工以上の荒加工用の高速加工条件とする加工と、上記細線ワイヤ電極によるセカンドカット以後の仕上げ加工との少なくとも2段階またはそれ以上の加工工程に分けた加工によって行なわれるのが普通である。
【0004】
【発明が解決しようとする課題】
ワイヤ放電加工の手順をこのようにすると、標準線径(通常φ0.2mm)のワイヤ電極を用いて前述外形成形加工、溝11Cの切込みによる列状コア11D形成加工、及び該コア部から胴部11Bへかけての切込み11E加工を高速荒加工で行なった後、ワイヤ電極を前述細線ワイヤ電極(φ0.1〜φ0.05mmまたはそれ以下)と交換して再び溝11C及び切り込み11Eを加工するが、このワイヤ電極の交換作業に多大の時間を要し、加工効率を低下させていた。ワイヤ放電加工機によっては、使用ワイヤ電極の交換装置を備えているものもあるが、通常極めて高価であると共に、実用上信頼性に乏しく、通常は、作業者が手作業で交換するシステムを採用することとなっているからである。そして、いずれにしても折角細線ワイヤ電極に交換しても、当該被加工体素材11の仕上げ加工が終了した後は、パレットチェンジャやロボット等により交換された次の新しい被加工体の加工のために工具ワイヤ電極を元の標準線径のワイヤ電極に交換する必要があり、以下新しい被加工体の毎にこれを繰り返す必要があるからである。
【0005】
また、通常型のワイヤ放電加工機は、鉛直Z軸方向に間隔を置いて一対のワイヤガイドを配置してワイヤ電極をZ軸方向に更新走行移動せしめ、之に対し前記ワイヤガイド間のワイヤ電極と直角に交差する水平なXY2軸平面の載物台上に被加工体を配置し、前記ワイヤ電極と被加工体載物台とを前記水平面内の2軸方向に相対的に加工送り移動させる構成となっているから、前述図9で図示説明した素材11の加工をするには、素材11のコアピン部11−1〜n側先端をワイヤ電極に平面一軸方向から相対向するように載物台上縁部から突出横設させて所定部位の加工をすることになるが、前記外周各面や溝及び切断切込み等の各加工部位に対する加工の順序によっては、前記横設した素材11を前記平面一軸の廻りに通常90°順次に割出し回動させて加工を進めて行く必要があり、この素材11の載物台上に於ける把持配置及び順次加工に際しての所定角度の旋回による割出し位置決め等を治具等を設けて行なわせる必要がある上、前述ワイヤ電極も標準線径のものから所望細線線径のものへの交換も必要であるから、高度な技術と熟練を要した。
【0006】
ワイヤ電極を荒加工等の高速加工用の標準ワイヤ電極と、微細仕上げ等の仕上げ加工用の細線ワイヤ電極とに張替える手段を省くには、例えば、特開平6−155168号公報に記載開示されているように、ワイヤ電極による放電加工ステージを、Z軸に互いに平行で、かつ所定既知の間隔を置いて2組並設し、夫々に所望異径のワイヤ電極を走行移動可能に張架させておき、XYテーブルの載物台等に設けた被加工体を加工手順に従って、所定の放電加工ステージのワイヤ電極に相対向させて順次に加工を行なうようにすることが考えられるが、各ワイヤ電極の加工部がZ軸に平行な鉛直方向に形成されている所から、前述被加工体の旋回・割出し等の設置及び位置決め加工治具等は依然必要で、該治具等を高価なシール仕様構造とする必要があると共に、加工時の、特に被加工体の交換には、特別な交換装置を必要とし、また交換時に加工槽から加工液を排出する必要があることから作業性等も高くし得ない等の問題があった。
【0007】
そこで本発明は、上述の問題点を解消するもので、微細ピンの胴部の付根部に微細な内角の半径R部を有すると共に高い寸法・形状精度を有するコアピンのような加工形状の被加工体を短時間で大量に、効率よく、そして取扱い操作性を含めて作業性良く運転して加工できるワイヤ放電加工装置及びワイヤ放電加工方法を提供しようとするものである。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明のワイヤ放電加工装置(1)は、ベッド上の加工槽内のテーブル上に、荒加工用の標準線径のワイヤ電極と仕上げ加工用の前記標準線径よりも細い細線径のワイヤ電極とを、水平面内の一軸に対して平行に所定の間隔で、かつ、加工槽内のテーブル上面から所定の高さ位置離隔して加工液に浸漬状態で軸方向に走行させるように張架して2つの放電加工部位を形成させる各一対のワイヤ電極位置決めガイドを有し、さらに該各一対のワイヤガイド中の各一方のワイヤガイドが、前記水平面と直交する鉛直軸方向と、該鉛直軸および加工部位ワイヤ電極軸と直交する水平軸方向とに、夫々位置調整可能に前記テーブル上に調整ステージを介して取付けられている走行経路形成手段と、 ワイヤ電極ワイヤ電極の供給手段と引取手段とを標準ワイヤ電極と細線ワイヤ電極とで夫々ユニット化するとともに、夫々が、加工槽内のワイヤ電極走行経路形成手段をワイヤ電極軸方向の加工槽外から挟むように別かれては配置され、さらに、各ユニットに於いて、ワイヤ供給手段から前記走行経路形成手段に一端側から送り出されたワイヤ電極が、走行経路上の他端側に於いて折返し走行させられ、前記一端側の引取手段により引取り回収される前記標準ワイヤ電極と細線ワイヤ電極の各供給手段と引取手段と、
前記標準ワイヤ電極と細線ワイヤ電極との2つの放電加工部位の軸線に対して直交する水平軸方向に移動するラムと、
該ラムに載置される、前記放電加工部位の軸線に対して直交する鉛直加工移動軸を有する加工ヘッドと、
該加工ヘッドの軸端に設置される、被加工体を着脱自在に懸垂把持する保持手段と、
前記加工ヘッドに内蔵され、該加工ヘッドを前記テーブルに対して相対的に旋回・割出し制御する旋回・割り出し装置と、
前記標準ワイヤ電極と細線ワイヤ電極の夫々を、予め各供給手段から走行経路形成手段、及び引取手段を介して張架した状態にしておいて、前記被加工体を前記標準ワイヤ電極と細線ワイヤ電極とに順次に相対向させて所望の放電荒加工と仕上げ加工とを行なう段階に移行させる制御装置を備えたことを特徴とするワイヤ放電加工装置。
【0009】
また、本発明の上記ワイヤ放電加工装置(1)は、更に、前記加工槽が前記ベッドに固定して設けられると共に、前記加工ヘッドが鉛直軸方向に加えて水平面内の直交2軸方向に移動する構成を備えて成るか、または、前記加工槽が前記標準ワイヤ電極と細線ワイヤ電極との放電加工部位の軸線に沿った水平面内の1軸方向に沿って移動するとともに、前記ラムが水平面内の他の直交1軸方向に移動する構成を備えて成ることを特徴とする。
【0010】
また、本発明の上記ワイヤ放電加工装置(1)は、更に、前記細線ワイヤ電極の前記供給手段と引取手段とを前記テーブルに連結して固定した構成に設け、または、更に前記供給手段と引取手段とを一体としてワイヤ電極の走行経路上の一方の端部側に於てテーブルに連結固定して設けられると共に、前記ワイヤ電極供給手段から前記走行経路形成手段に送り出されたワイヤ電極が走行経路上の他端側に於て折返して走行させられ、前記一端側の前記引取手段により引取り回収される構成に設けられて成るものであることを特徴とする。
【0011】
また、上記の目的を達成するため、本発明のワイヤ放電加工装置(2)は、走行移動するワイヤ電極と被加工体とが加工液の介在する微小間隙で間歇的な放電を繰り返し発生させて加工するワイヤ放電加工装置に於て、ベッド、コラム等から成る機械のフレームと、
前記フレームにX,Y,Zの直交3軸方向に相対的に移動可能に設けられる、前記被加工体を懸垂把持する被加工体保持手段と、前記ワイヤ電極による加工部を形成する各一対のワイヤ電極の位置決めガイドが標準ワイヤ電極用と細線ワイヤ電極用との2組、前記加工部ワイヤ電極が水平一軸方向に平行に位置するように取り付けられたテーブルと、該テーブルを収納する加工槽と、
前記標準ワイヤ電極に所定の張力を付与させた状態で前記加工部を走行移動させるワイヤ電極の供給手段と引取手段と、該標準ワイヤ電極用の供給・引取手段の代わりに切換選択されて加工に供される前記細線ワイヤ電極用の供給手段と引取手段と、
前記標準ワイヤ電極加工部と保持手段の被加工体間に所望の荒加工の加工条件の加工放電電力を加工電源から供給する給電手段と、該高速加工用給電手段と切換選択可能に設けられる前記細線ワイヤ電極と被加工体間に所定仕上げ加工条件の加工放電電力を供給する給電手段と、
前記加工槽に制御された加工液を供給循環させる加工液供給手段と、
前記被加工体保持手段は、その軸線の方向が前記標準及び細線ワイヤ電極の放電加工部位の軸線と直交する鉛直軸上に設けられ、また前記被加工体保持手段が前記テーブルに対して、前記鉛直軸の廻りに旋回及び割出し可能に設けられる旋回・割出手段と、
前記被加工体に所望形状の加工を施すように加工の工程に於て選定された前記走行ワイヤ電極と前記被加工体との間に相対送りを行なわせる制御送り手段と、
前記加工放電電力の切換選択給電手段、加工液供給手段、及び前記被加工体保持手段と前記加工槽の選択されたワイヤ電極の位置決めガイド加工部間の前記旋回・割出しを含む相対送り手段、とを制御する数値制御装置を含む制御手段とから成ることを特徴とする。
【0012】
また、本発明の上記ワイヤ放電加工装置(2)は、更に、前記標準ワイヤ電極と細線ワイヤ電極の両方または何れか一方の前記供給手段と引取手段とが、その加工部ワイヤ電極軸の一方の側に設けられ、該一方の側の供給手段から加工槽内加工部へ供給されたワイヤ電極が前記軸の他方の側の加工槽端部側に於て折返されて前記一方の側の引取手段により回収される走行経路が構成されて成るものであることを特徴とする。
【0013】
また、本発明の上記ワイヤ放電加工装置(2)は、更に、前記標準ワイヤ電極の供給手段及び引取手段と、前記細線電極の供給手段及び引取手段とが、加工槽内加工部ワイヤ電極軸の両側端外に別れて設けられて成ることを特徴とする。
【0014】
また、本発明の上記ワイヤ放電加工装置(2)は、更に、前記標準ワイヤ電極の供給手段と引取手段とが一体にユニット化されて機械フレームに連結して並置され、前記細線ワイヤ電極の供給手段と引取手段とは一体にユニット化されて前記テーブルに連結固定して取付けられて成ることを特徴とする。
【0015】
また、本発明の上記ワイヤ放電加工装置(2)は、更に、前記標準ワイヤ電極用と細線ワイヤ電極用の前記各一対のワイヤガイド中の各一方のワイヤガイドが、前記水平面と直交する鉛直軸方向と、該鉛直軸及び加工部位ワイヤ電極軸と直交する水平軸方向とに、夫々位置調整可能に前記テーブルに調整ステージを介して取付けられていることを特徴とする。
【0016】
また、本発明の上記ワイヤ放電加工装置(2)は、更に、前記標準ワイヤ電極用のワイヤガイドがダイス状ガイドであって、前記細線ワイヤ電極用のワイヤガイドがV溝ガイドであって、所望により加工液噴出ノズルが設けられる構成であることを特徴とする。
【0017】
また、本発明の上記ワイヤ放電加工装置(2)は、更に、前記被加工体を所望複数個格納する被加工体マガジン及び該マガジンが格納する未加工被加工体と加工ヘッドの保持手段に保持された加工済被加工体とを交換する被加工体交換手段とが設けられ、被加工体を順次に交換して加工を実行するものであることを特徴とする。
【0018】
また、上記の目的を達成するため、本発明のワイヤ放電加工方法は、一対の間隔を置いて配置したワイヤガイド間を走行移動する加工部ワイヤ電極に、該ワイヤ電極軸と略直角な平面方向から、該平面内の一軸を旋回及び割出し可能な軸とし、該軸の軸端に保持された被加工体を相対向させ、該被加工体に所望形状の加工を施すように前記対向方向及び旋回・割出しにつき所定にプログラムされた加工送りを相対的に与えて所定の高速加工と引き続いての仕上げ加工を行なうワイヤ放電加工方法に於て、前記被加工体が懸垂把持された状態に保持手段を加工ヘッドに設けると共に、前記高速加工用の標準ワイヤ電極と仕上げ加工用の細線ワイヤ電極との各加工部が、前記加工ヘッドの保持軸と相対向する加工槽内テーブル面の所定高さ位置に、テーブル面の一軸と互に平行で他の一軸方向に所定の間隔を置いて予め設けられ、前記被加工体を一方の前記標準ワイヤ電極と所望に相対向させ、高速加工の放電加工条件を設定し、プログラムされた加工送りを相対的に与えて所定のワイヤ放電加工をした後、該被加工体を他方の前記細線ワイヤ電極と所望に相対向させ、仕上げ加工の放電加工条件を設定し、プログラムされた所定の加工送りを相対的に与えて所定の仕上げワイヤ放電加工をするようにしたことを特徴とする。
【0019】
【発明の実施の形態】
以下、本発明の一実施の形態を図面にもとづいて説明する。図1は、本発明の一実施例ワイヤ放電加工装置の全体構成及びその配置を示す正面図で、1は加工機本体、2はコンピュータ制御のワイヤ放電加工用電源及び数値制御装置を含む電源及び制御手段、3は所謂荒加工等の所望の高速加工条件で加工をする際に使用する標準線径(通常φ0.2mm)のワイヤ電極の供給、引取り、及び回収手段が一体に構成された標準ワイヤ電極の供給・引取手段で、之等は加工機本体1を中心に水平一軸方向の両側に設けられ、また加工機本体1のワイヤ電極加工部の加工槽へ加工液を供給及び回収して浄化処理する加工液供給手段は、前記本体1から供給・引取手段3の後方部等に設けられている。
【0020】
而して、前記加工機本体1は、ベッド4と水平一軸(左右X軸)方向の移動台6を支持するサドル5と、べッド4後方上に立てられ前記水平一軸と水平面内に於て直交する軸(前後Y軸)方向の移動ラム8を支持するコラム7等から成る機械フレームから成る。前記移動台6上にはテーブル9が設けられ、他方前記Y軸移動ラム8の前方面には前記テーブル9上面と鉛直(Z軸)に対向して加工ヘッド10が設けられ、該加工ヘッド10は下方先端部に被加工体11を懸垂把持する保持手段12、該加工ヘッド10を前記鉛直方向に加工送り及び位置決めする送り手段13、及び前記保持手段12を軸の廻りに制御旋回及び割出しする旋回・割出し手段14を備え、ワイヤ電極加工部走行経路形成手段15がその上面に設けられる前記テーブル9は、加工時に加工部形成手段15が加工液浸漬状態となるように前記移動台6と一体に設けられた昇降式加工槽16が上昇上位に達した時に、前記テーブル9は上記加工槽16によって囲まれる。17A,17Bは、前記テーブル9の前記水平一軸方向の両端縁部に設けられたワイヤ電極加工部形成手段15と標準ワイヤ電極及び後述細線ワイヤ電極の各供給・引取手段3,18との間の、各複数の案内プーリを有する夫々のワイヤ電極案内引廻し手段である。
【0021】
また、上記加工機本体1には、前記標準ワイヤ電極使用による所定の荒加工条件での加工後の中仕上げ以上の仕上げ加工の際に使用する細線径(通常φ0.1〜φ0.05mmまたはそれ以下)のワイヤ電極の供給手段18Aと引取り回収手段18Bを一体とした供給・引取手段18が、テーブル9、従って該テーブル9上のワイヤ電極加工部形成手段15及び案内手段17A,17Bと、加工送り等によって位置関係が変化しないように前記テーブル9と一体の枠台19に取付けてある。20は、加工ヘッド10に保持された被加工体11の加工済及び未加工被加工体11Hの自動交換手段付貯蔵マガジンで、所定必要数の被加工体11Hが交換可能に設けられるものであり、前記ベッド4の側端または後方縁に設けられた台21に取付けて設けられ、その他の付加設置物、例えば加工済被加工体11を浸漬または噴霧等により防錆処理する防錆手段は上記台21に取り付ける等して設けられる。
【0022】
前記標準ワイヤ電極の供給・引取手段3は、この実施例の場合、供給手段3Aと引取手段3Bと回収手段3Cとが一体となっていて、その一体物が加工機本体1と相対的に移動することがないよう連結手段22によりベッド4等に結合してあり、前記ワイヤ電極案内手段17A,17Bを含むワイヤ電極加工部形成手段15との間は、加工ヘッド10の被加工体11との相対位置決め時等以外、特に加工中はテーブル9が水平一軸方向(X軸)に移動するとその間の距離が変化してワイヤ電極の張力等が変化すると共に、該張力変化による各種の加工障害、さらにはワイヤ電極断線を生ずることになるので、通常、特に加工中は動かさないで使用されるものである。
その点、加工槽16及びテーブル9が、ベッド4に対して固定されるテーブル固定式で、ラム8がX、Y2軸に移動し、加工ヘッド10がZ軸に移動する機械フレームの構成の場合には、各ワイヤ電極の供給・引取手段3、18が、前記一体固定の機械フレームに連結固定されている限り、上述のような問題は生じない。
【0023】
而して、加工槽16内テーブル9上のワイヤ電極加工部形成手段15廻りの張架走行経路及び走行状態等については後に詳述するが、その供給、引取り、及び回収については次の如くである。
標準ワイヤ電極の供給・引取手段3の場合、その供給手段3Aは、標準ワイヤ電極の貯蔵リールと張架走行のためのブレーキ装置を備えてワイヤ電極を所定に制動制御しながらまたは一定速度で送り出し、加工部の案内手段17Aから加工部形成手段15、そして後述する折返し手段から案内手段17Aを経て帰って来たワイヤ電極は、引取手段3Bの前記制動制御に対する一定速度引取りまたは一定速度送り出しに対する制御引取りを行ない、回収手段3Cのバケットに回収する構成となっているが、コアピン加工の場合被加工体の寸法及びその個数によるが相当な長時間加工になる場合には、前記供給手段3Aの貯蔵リールを大径のリールを用いる専用の貯蔵供給手段として手段3Aの送り出し手段に供給するようにするとか、前記貯蔵リールの自動交換または補給手段を設けておくことが好ましい。また標準ワイヤ電極については上述の如くであるから、加工槽16内で標準ワイヤ電極を折返し走行させることにより加工部形成手段廻り、特にワイヤガイド用ワイヤ電極加工部の前述Y軸方向の相対送り空間が狭くなる場合等には、ワイヤ電極供給手段3Aに対する引取手段3B及び回収手段3Cは加工機本体1の反対側等適宜の位置に設けられるものである。
之に対し、細線ワイヤ電極用の供給・引取手段18の場合、前記供給手段18Aと引取手段18Bとを常に一体として加工機本体1の水平一軸(加工部電極軸、X線)方向の一方の端部に設ける必要はないが、供給手段18A及び巻取リールでも良い回収手段を備える引取手段18Bとは、夫々加工部形成手段15と位置決め送り等の位置移動によって相対位置が変化しない同一物、図示の場合テーブル9に固定保持されていることが、断線事故防止及び加工寸法精度を出すためにも必要である。
【0024】
また、29は、前記電源及び制御手段2と、加工機本体1及び標準・細線ワイヤ電極の各供給・引取手段3、18、或いは更に図示しない加工液供給手段との間に設けられる前記制御手段2が制御する切換手段で、荒加工から仕上げ加工等の順次の加工の切換に際し、プログラム等により指定して設定されたワイヤ電極の供給・引取手段の作動制御への切換や選定されたワイヤ電極と被加工体11間へのプログラム等された加工条件の電圧パルスの印加給電制御への切換、及びその他の切換え設定を司るものである。
【0025】
図2は加工機本体1の加工槽16内またはテーブル9上の前記標準及び細線ワイヤ電極用の各供給・引取手段3,18との間の導入導出の案内手段17A,17Bを含むワイヤ電極加工部形成手段15廻りの説明用上面図で、加工槽16のテーブル9上には、標準ワイヤ電極23用と細線ワイヤ電極24用の各一対のガイドブロック23A,23B、24A,24Bを水平一軸(X軸)方向に所定の間隔を置いてかつ互に平行に取付けるための一対のベース25A,25Bが設けられている。前記標準ワイヤ電極23用と細線ワイヤ電極24用の各一対のガイドブロック中の各1個のガイドブロック23A,24Aは、前記取付けベース中の一方のベース25Aに位置決め固定して取付けられるが、他方のガイドブロック23B,24Bは、各ワイヤ電極23,24軸と直角な水平の鉛直方向と平行の水平Y軸方向の微細位置の調整設定が可能なステージ23C,24Cを介してベース25Bに取付けられており、ガイドブロック23A,23B間、24A,24B間の加工部ワイヤ電極23,24の前述高さの水平、左右または前後の平行が調整設定される。前記各ガイドブロックは、図示実施例の場合、ワイヤガイドとして標準ワイヤ電極23用にダイス状ガイド23Dを、また細線ワイヤ電極24用としてV溝ガイド24Dが設けられ、さらに各ワイヤ電極23,24と接触して給電する給電子23E,24Eが設けられ、該各給電子23E,24Eには、加工電源から所定高速加工用及び仕上げ加工用の電圧パルスが給電線により加工槽電源ターミナル26A,26Bから図示しないガイドブロック部各給電端子を介して給電される。
【0026】
次に、各標準及び細線各ワイヤ電極23,24の張架走行構成について説明すると、前記標準ワイヤ電極23の場合、前述図1及び後述標準ワイヤ電極による加工部廻りを説明する正面図の図3を同時に参照するに、標準ワイヤ電極の供給手段3Aから所定に制動を制御しながら送り出された標準ワイヤ電極23は、適宜必要に応じて設けられた案内経路の案内プーリを介して加工槽16及び/またはテーブル9に固定して設けた案内手段17Aに到り、該案内手段17Aに設けた導入及び方向変更案内プーリ27Aにより下向に誘導し、もう1つの方向変更案内プーリ27Bによって一方のガイドブロック23Aへ導入位置決めし、他方のガイドブロック23Bへと送り出し、挿通し、該ガイドブロック23B後方の折返し案内プーリ27Cにより経路を返転させて前記案内手段17Aの方向変更プーリ27D,27Eにより順次及び所望に経路を変更させた後、引取手段3Bにより、前記供給手段3Aの制動制御に対する一定速度引取りを行ない、回収手段3Cのバケットに回収し、前記ガイドブロック23A,23B間で、所定の張力が付与された状態で、所定の速度で走行更新される標準ワイヤ電極23による加工部が形成される。
【0027】
また、細線ワイヤ電極24は上述標準ワイヤ電極23の場合と、ワイヤ電極の供給・引取手段18、及び一対のガイドブロック24A,24B等の各具体的な構成等が相違する他はほぼ同様で、前述図1及び後述細線ワイヤ電極24による加工部廻りを説明する正面図の図4を同時に参照することにより明らかなので重複を避けるため説明は省略する。なお、24F,24Gは案内ローラであり、また案内手段17Bの方向変更案内プーリの数、配置等に前述のものと微差があるが、実質的には変わりがないものである。
【0028】
図5の5A,5B、及び図6の6A,6Bは、標準ワイヤ電極用と細線ワイヤ電極用の各ガイドブロック中、位置調整ステージ23C,24Cを介してベース25Bに取付けた側の各ガイドブロック23B,24B廻りの拡大上面図と正面図で、前記各ステージ23C,24Cの水平方向の調整手段23C−H,24C−Hと、垂直方向の調整手段23C−V,24C−Vの設置状況が示されている。
【0029】
このように構成されたワイヤ放電加工装置に於ては、加工ヘッド10の保持手段12に懸垂保持された直方体状等の適宜の形状の被加工体11を次のようにして加工成形して行きコアピンを得るものである。
なお、必要により更なる自動化等も不可能ではないが、ワイヤ放電加工の開始時点以後は、予めのプログラムにより加工は順次に自動的に進行するものとする。
【0030】
先ず、各標準及び細線ワイヤ電極23,24の各ガイドブロック23Aと23B、及び24Aと24B間の加工部ワイヤ電極23,24間の間隔と各水平度(鉛直軸に対する)、及び相互平行度をレーザ等所定測定器及び各ステージ23C, 24Cの垂直及び水平調整手段23C−V,23C−H,24C−V,24C−Hにて出す。
次に、標準ワイヤ電極23と細線ワイヤ電極24の各残量が、プログラムした加工をするのに充分かどうかを確かめ、不足するワイヤ電極がある場合には、新しいワイヤ電極リールと交換する。
各ワイヤ電極23,24を夫々の張架走行経路中に挿通セットすると共にプログラムされたワイヤ放電加工の条件の張力及び走行速度で走行するように各ワイヤ電極23,24の走行条件をセットし、プログラムのスタート及び進行により、プログラム選定された側のワイヤ電極が選択されると共に所定張架状態で、走行をするようにプログラムセットする。
【0031】
適宜のシャンク等に取付けた被加工体11を必要個数マガジン20に設置し、プログラムで選定した被加工体を図示しない交換手段で、保持手段12に懸垂把持させ、取付及び送りに対する垂直度と、旋回・割出し手段14に対するオリエンテーション調整、及び、標準ワイヤ電極23、細線ワイヤ電極24に対する位置出し、プログラム加工スタート位置への位置決め等を、テーブル9、加工槽16等の基準位置、基準球等の治具、または加工部ワイヤ電極23および細線ワイヤ電極24との接触検知や、測定器具により測定して行なう。
【0032】
特に2本のワイヤ電極の何れかによって被加工体が放電加工される本発明では、各ワイヤ電極と被加工体との位置が以下のように検出、記憶され、利用される。 (1)2つのワイヤ電極径を入力する。(2)被加工体の加工面を1つのワイヤ電極に正対させるように調整する。(3)被加工体の両面を加工する場合、加工面に垂直な断面方向の厚みと中心位置を算出する。1つのワイヤ電極に対して両側から接触感知して、被加工体のその位置を検出し、そのデータに基づいて演算して求める(片面加工の場合の説明は省略する)。(4)他の加工面があれば、この加工面をワイヤ電極に正対させるように割り出してから、同様にして垂直な断面方向の厚みと中心位置を算出する。(5)2つのワイヤ電極間の距離およびワイヤ電極と被加工体との位置関係を接触感知によって検出し、これを表示する。こうしておけば、それぞれのワイヤ電極に対して被加工体をアプローチして加工する移動軌跡を補間制御するプログラムを作成するときに、それぞれのワイヤ電極についての座標系をワイヤ電極間の距離を参照して設定し、それぞれの座標系の上でそれぞれの加工プログラムを作成する。荒加工と仕上げ加工との加工軌跡は、上述した微細なインコーナR等の加工部位の加工軌跡が若干異なる他、ほとんど同一であるからプログラムが容易に作成することができる。もちろん、セカンド加工以降の加工は、細線の座標系で加工され、加工条件も異なる。
【0033】
前述予めの加工プログラムによって、ワイヤ電極として標準ワイヤ電極23が選定されて所望の高速荒加工が行なわれる場合には、加工電圧パルス条件が標準ワイヤ電極23に供給されるように、また細線ワイヤ電極24が切換.選定されて所定の仕上げ加工が行なわれる際には、その仕上げ加工条件の電圧パルスが細線ワイヤ電極24に供給されるように電源及び制御手段2は放電加工電力の供給を切り換える。
【0034】
このように、本発明の放電加工は2種類のワイヤ電極23、24の何れかが使用される態様となるので、例えば該当する加工プログラムの先頭に識別コード等を付加して、加工プログラム上でワイヤ電極が指定されるようになっているのが好ましく、この指定に従って指定されたワイヤ電極の供給・引取手段3または18に制御手段2から指令信号が送られ、ワイヤ電極の送行速度及び張力が設定制御され、指令に従う加工条件の放電パルスを生じさせる電圧パルスが指定されたワイヤ電極と被加工体11間の極間に供給印加される。
【0035】
前述のように被加工体11を標準ワイヤ電極23に対して、加工スタート位置にセットし、加工槽16を所定位置迄上昇セットし、図示しない加工液供給装置から水系または鉱物油系の加工液を、ガイドブロック23A,23B間標準ワイヤ電極23加工部、及び該加工部ワイヤ電極23と相対向して加工される被加工体11部分、特にその放電間隙部分が好ましくは常時加工液中浸漬状態にあるように、加工液は循環供給される。図示実施例の場合、標準ワイヤ電極用のガイドブロック23A,23Bは、ワイヤ電極23に同軸な加工液噴出ノズルとして使用され得る構成となっていて、高速加工の効率を更に上げることができる。また、例えば、被加工体11を懸垂軸と直角な水平(Y軸)方向に送って加工をする場合には、水平に形成される加工溝からの加工屑の排出が不良となって、加工の安定度が悪くなり、加工が遅くなって加工精度等も悪化するから、かかる場合には、例えば、ガイドブロック24A,24Bの側部等に放電間隙に指向させた加工液噴出ノズルを設けるようにすることが推奨される。もちろん、前記ノズル24A、24Bは、加工部ワイヤ電極24に同軸のノズルが好ましくガイドブロック23A、23Bと同様なものであってもよい。
【0036】
以上のように加工の段取りをした図7の被加工体素材11に対するワイヤ放電加工の進行状況について図7を参照しつつ説明すると、加工プログラムのスタートにより加工電極として標準ワイヤ電極23が選定され、供給手段3Aと引取手段3B間で所定の張力付与状態で、所定の速度の走行が開始され、該標準ワイヤ電極23と被加工体11間には所定の高速度加工の加工電源出力が接続供給され、また加工液が加工槽16内所定液位置を維持するように供給充填、さらには循環及びノズル噴流が行なわれる状態となり、この時被加工体11は先の位置決め及び加工準備作業により、加工を開始する面Aが、ガイドブロック23A,23Bの走行する加工部ワイヤ電極23と平行で、被加工体11先端下面Eよりも僅かに下方の、かつ前記面Aを加工成形するワイヤ電極23軸と直角方向の所定寸法位置にある。
【0037】
ここで、加工スタート釦を押す等して加工を開始させると、プログラムに従い被加工体11は、Z軸方向の下降送りが与えられ、ワイヤ電極23との接近により間歇放電が始まって荒加工が開始される。加工が進行して前記面Aの円弧面Rの形成位置に達すると、前記被加工体11に対する下降送りに対する所定割合の面Aに直角なY軸方向の送りがワイヤ電極23との間に与えられ、円弧面Rが加工成形され加工はさらに面Aの所定上部位置迄前記下降送りにより継続される。加工が所定部位に達すると、A面加工プログラムは終了し、送りを停止すると共に加工電圧印加を中断し、そしてこの時必要に応じてワイヤ電極23の走行及び加工液の供給等をも中断し、プログラムの実行により加工ヘッド10は加工時の下降送りの経路を逆に辿って上昇し、前述加工開始前の位置まで上昇位置して停止する。上述の場合、被加工体11の面Aの表層部は、通常荒加工の段階で、切り離し落下させる加工の態様とすると、中子処理手段等の特別な手段及び操作を要しないので好ましいものである。
そして、この場合、面A及びCの加工の場合も同様な場合があるが、面B、D、及びEの加工は、該各面が所定の寸法となる或る厚さの薄板を切取る加工か、または表面からワイヤ電極の径より小さい或る厚さの表面層を加工除去する加工となる場合があるが、上記切取り加工の場合、前述のように、切り離し片として落下させることにより中子処理を必要としない。そして、このことは、ワイヤ電極を水平面に沿って張架走行させるのに対し、軸の廻りに旋回・割出し可能な昇降鉛直軸に被加工体を懸垂把持させて相対向させ、前記鉛直軸と対向方向に直角な2軸方向との相対送りによる本発明に於ける加工の態様が、前述段落[0005]〜[0006]で説明した鉛直ワイヤ電極に対して水平軸回動の被加工体治具を使用する構成の加工の態様に比較して優れた特徴があることが判る。
【0038】
次いでプログラムの実行により、旋回・割出し手段14を駆動して90°割出し、面Bをワイヤ電極23加工部と平行にすると共に該面Bに直角なY軸方向の位置決めをし、ワイヤ電極23の走行、加工電圧の給電及び加工液の供給を再開し、加工ヘッド10のZ軸方向下降送りによる面Bの所定成形加工を開始する。このようにして各面B,C,Dをプログラムに従って順次に割出し及び位置決めして各面を標準ワイヤ電極23の使用による所定の高速の放電加工条件で加工成形して行き、そして通常は最後に先端下面Eの寸法及び平坦度出し加工を行ない標準ワイヤ電極23による加工は終了する。
【0039】
而して、次は細線ワイヤ電極24により前述高速放電加工による加工面A,B,C,D,Eの寸法精度、及び面粗度の仕上げ加工に移行する訳であるが、前記面Eの荒加工等の高速加工による加工の終了後、プログラムにより自動で、または一部以上を手動により、加工電圧の給電を荒加工等の高速加工から所定仕上げ加工条件と、しかも細線ワイヤ電極24と被加工体11間の給電に切換えると共に、標準ワイヤ電極23の走行を停止し、細線ワイヤ電極24の所定の張力付与及び速度での走行を開始させる。そして、加工液は当該仕上げ加工が、単なる浸漬加工であれば、ガイドブロック23A,23Bからの加工液のノズル噴射を停止して、所定量の循環供給を行なうようにすれば良いが、細線用ワイヤ電極24による仕上げ加工に同軸またはその他の付設ノズル等を用いる必要がある場合には、当然に架設して用いられるものである。
上記細線ワイヤ電極24の加工部は、前加工工程の標準ワイヤ電極23の加工部と平行で、また通常は同一水平面上に在って間隔等位置の寸法関係がはっきりしている所から、前記標準ワイヤ電極23に対して位置決め加工された被加工体11の細線ワイヤ電極24に対する位置決めをNCプログラム等により行なうことは、放電加工条件の違いによる極間距離の違いの補正等は必要なものの、比較的容易であって、上記荒加工等の高速加工の終了後細線ワイヤ電極24による仕上げ加工に、短時間の内に容易に切換え移行することができ、前述標準ワイヤ電極23による荒加工による場合とほぼ同様にして、各面A,B,C,D,及びEを順次に割出し、及び位置決めを繰り返して、使用ワイヤ電極の細線径の寸法に応じた角Rの形状を有すると共に、当該ワイヤ放電加工の寸法精度、及び設定仕上げ放電加工条件の微細面粗度に仕上げることができる。
【0040】
以上は、図8のA図に示したコアピンを加工、成形、切出しする素材の外周5面の加工、成形加工であって、前記コアピンを作成するには、さらに図9により説明した溝11C切りによる列状コア11Dの形成加工、該列状コア部から胴部11Bにかけての切込み11E加工を順次に、標準ワイヤ電極23による所定高速加工と、細線ワイヤ電極24による仕上げ加工とに工程を分けて前述した外周成形加工の場合と同様コアピンを精密に加工成形して仕上げることができる。
そして、通常ここで、標準ワイヤ電極23により適宜の放電加工条件で、または標準ワイヤ電極23と細線ワイヤ電極24とを使用する荒加工と仕上げ加工との組合せ加工により、切離し加工部11Fから切離されて落下回収されることになるが、所望により、微小切残し部を残した状態として切離しを別の後工程により行なうようにすることもできる。そして、何れにしてもここで、被加工体11の加工残り掴み代部11A、または被加工体を図示しない交換手段により加工ヘッド10の保持手段12から取り外してマガジン20の所定ホルダに保持させ、プログラムにより指定したホルダから次に加工すべき被加工体11Hを取出し、前記保持手段12に取付け、以後は前述段落番号〔0029〕以後の作業及びワイヤ放電加工を、マガジン20内の未加工被加工体が無くなる迄、標準ワイヤ電極23及び/または、細線ワイヤ電極24を適宜補給しながら繰返すのである。
【0041】
以上本発明を図示した実施例により説明を加えたが、特許請求の範囲に記載する本発明の精神を逸脱しない範囲で、各部へ各種の変更を加えての実施が可能なものである。 例えば、加工対象の被加工体としては、プレス加工に用いる円弧状の座(カキアゲ部)の付いたR座付きパンチ(通称カキアゲパンチ)の如きものに適用できるだけでなく、被加工体が軸の廻りに割出し制御が可能な加工ヘッド10に保持されている所から、標準及び細線ワイヤ電極の各一対のガイドブロックに所謂U軸及びV軸移動及び制御手段を設けなくても、任意の大角度でのテーパ加工が可能である。また標準ワイヤ電極による所定高速のワイヤ放電加工と細線ワイヤ電極による所定精度及び仕上げ面粗度の仕上げワイヤ放電加工との両方または何れか一方を2工程またはそれ以上の複数工程の加工、例えば、前者の場合荒加工と中加工、また後者の場合中仕上げ加工と仕上げ加工、または仕上げ加工を超仕上げ加工として加工目的の達成確度を高めることができる。また標準及び細線各ワイヤ電極の位置決め用のワイヤガイドとしても開閉形式のダイス状ガイドとかV−平ガイド等を選定使用することができるだけでなく、機械フレームのX,Y,Zの直交3軸方向の相対移動、及び旋回・割出し手段の相対移動の構成も図示説明のものに限定されるものでないことも明らかである。そして、テーブル9をベッドに固定して、加工ヘッド10をX、Y、Zの3軸に移動する機械構成と成し得ること既に述べた通りである。
【0042】
なお、前述実施例のワイヤ放電加工装置に於けるX,Y、及びZの移動軸の制御の好ましい設定制御の態様を示すと次の如くである。通常のワイヤ放電加工機の加工プログラムに於ては、加工輪郭形状がX,Y平面上において定義されている。然るに前述本発明実施例のワイヤ放電加工機では、ワイヤ電極23、24の各走行経路形成手段15によって形成される加工部ワイヤ電極の軸が従来機のX軸と平行である所から、加工プログラム上のXY水平面上での加工輪郭形状の補間が、従来機のYZ平面上での補間として行われるように、各移動制御軸を、元X→新Z、元Y→新X、及び元Z→新Yと入れ替えた工作機械の右手直交座標系に切換えて制御に供するようにすることが好ましい(図7参照)。この場合、座標系は、所望により切換え可能としてあってもよい。
【0043】
【発明の効果】
以上詳細に説明したように、本発明の請求項1の発明によれば、走行移動するワイヤ電極と被加工体との加工液が介在する微小間隙で間歇的な放電を繰り返し発生させて加工するワイヤ放電加工装置に於て、ベッド、コラム等から成る機械のフレームと、前記フレームにX,Y,Zの直交3軸方向に相対的に移動可能に設けられる、前記被加工体を懸垂把持する被加工体保持手段と、前記ワイヤ電極による加工部を形成する各一対のワイヤ電極の位置決めガイドを標準ワイヤ電極用と細線ワイヤ電極用との2組を前記加工部ワイヤ電極が水平一軸方向に平行に位置するように取り付けられたテーブルと、該テーブルを収納する加工槽と、前記標準ワイヤ電極に所定の張力を付与させた状態で前記加工部を走行移動させるワイヤ電極の供給手段と引取手段と、該標準ワイヤ電極用の供給・引取手段と切換選択作動可能に設けられる前記細線ワイヤ電極用の供給手段と引取手段と、前記標準ワイヤ電極加工部と保持手段の被加工体間に所定高速加工条件の加工放電電力を加工電源から供給する給電手段と、該高速加工用給電手段と切換選択可能に設けられる前記細線ワイヤ電極と被加工体間に所定仕上げ加工条件の加工放電電力を供給する給電手段と、前記加工槽に制御された加工液を供給循環させる加工液供給手段と、前記被加工体保持手段は、その軸線の方向が前記標準及び細線ワイヤ電極の加工部電極軸と直交するように設けられ、また前記被加工体保持手段と前記2組の位置決めガイドが設けられたテーブルとを、前記直交軸の廻りに相対的に旋回及び割出し可能に設ける旋回・割出手段と、前記被加工体に所望形状の加工を施すように加工の工程に於て選定された前記走行ワイヤ電極と前記被加工体との間に相対送りを行なわせる制御送り手段と、前記ワイヤ電極の切換選択及び選択されたワイヤ電極の供給・引取手段、前記加工放電電力の切換選択給電手段、加工液供給手段、及び前記被加工体保持手段と前記加工槽の選択されたワイヤ電極の位置決めガイド加工部間の前記旋回・割出しを含む相対送り手段と、を制御する数値制御装置を含む制御手段とを設けたから、加工成形のワイヤ放電加工は、先ず標準線径のワイヤ電極を使用して所望の高速加工で行なわれ、次いで加工面粗度及び形状精度が要求される仕上げワイヤ放電加工が細線ワイヤ電極を使用する所望仕上げ加工で行なわれると共に、その高速と仕上げの切換えはワイヤ電極を張架交換するのではなく、相互に位置関係を決めて張架走行可能に設けた標準ワイヤ電極と細線ワイヤ電極とに対する被加工体の移動によって行なわれるから、高速、短時間で目的の加工をすることができ、しかも前記標準及び細線の各ワイヤ電極は、加工槽内を水平で平行に走行するように張架され、之等の両ワイヤ電極に対し、被加工体が、前記水平に対し直角方向に相対的に加工送りが与えられる加工ヘッドに軸の廻りの制御旋回及び割出し可能に保持して設けられるので、複数個の被加工物を予め貯蔵して置いて次々と新たな被加工体に変換して加工することが可能容易となり、金型用コアピン等大量品の高寸法、形状加工に有効である。
【0044】
また、本発明の請求項3の発明によれば、細線ワイヤ電極の供給及び引取手段の配置として実施すると、テーブル及び加工槽がX軸方向に移動する機械構成の場合に、段取り作業等でテーブルを移動させてもワイヤ電極の切断が生ずることがなく、また、標準ワイヤ電極と細線ワイヤ電極の両方または一方の供給と引取りを加工機本体の左または右側の一方の側に於て操作調整ができるから作業性が良い。
【0045】
また、本発明によれば、前項同様細線ワイヤ電極の切断事故が生ぜず、また、標準ワイヤ電極と細線ワイヤ電極の各供給手段と引取手段とが加工機本体の左右等に分かれて設けられるので夫々のワイヤ電極についての作業性が改善される。
【0046】
また、本発明によれば、各ワイヤ電極の供給手段と引取手段が一体に構成されるのでコンパクトになると共に細線ワイヤ電極用の上記一体構成体が、テーブルまたは加工槽に取付けられ、ワイヤ電極加工部と一体となるから、X,Y,Z3軸等の相対移動によって供給・引取手段とワイヤ電極加工部間の相対位置の変化がなく、前記軸移動による張力変化や断線は生じない。
【0047】
また、本発明によれば、標準ワイヤ電極と細線ワイヤ電極のワイヤガイド間加工部、各所望に水平に、また相互に平行に所定の位置関係に調整し て形成させることができる。
【0048】
また、本発明によれば、標準ワイヤ電極と細線ワイヤ電極を夫々好適に位置決めガイドできると共に加工効率を上げさせることができる。
【0049】
また、本発明によれば、加工ヘッドの保持手段に被加工体を懸垂把持させて、被加工体マガジンとの間で自動交換するようにしたから、交換パレット等を使用するものに比較してコンパクトが交換時間も短くでき加工効率を上げることができる。
【0050】
また、本発明のワイヤ放電加工方法によれば、本発明のワイヤ放電加工装置を用いて、金型用のコアピン等を効率よく加工して行くことができる。
【図面の簡単な説明】
【図1】 本発明の一実施例ワイヤ放電加工装置の全体構成及びその配置を示す正面図。
【図2】 加工機本体の加工槽内の配置、構成物を説明するための上面図。
【図3】 標準ワイヤ電極加工部廻りを説明するための正面図。
【図4】 細線ワイヤ電極加工部廻りを説明するための正面図。
【図5】 標準ワイヤ電極用ガイドブロックの案内、支持構成を示す上面図と正面図。
【図6】 細線ワイヤ電極用ガイドブロックの案内、支持構成を示す上面図と正面図。
【図7】 一例の被加工体の斜視図で、加工仕方の説明図。
【図8】 A:本発明の加工成形の対象となるコアピンの部分斜視図。 B:他のコアピン例の斜視図。 C:また他のコアピン例の斜視図。
【図9】 直方体の被加工体を順次に加工をして行く態様を説明する斜視図。
【符号の説明】
1 加工機本体
2 電源及び制御手段
3 標準ワイヤ電極の供給・引取手段
4 ベッド
5 サドル
6 移動台
7 コラム
8 移動ラム
9 テーブル
10 加工ヘッド
11 被加工体
12 保持手段
13 送り手段
14 旋回・割出し手段
15 加工部走行経路形成手段
16 加工槽
17A,17B 案内手段
18 細線ワイヤ電極の供給・引取手段
19 枠台
20 被加工体マガジン
21 台
22 連結手段
23 標準ワイヤ電極
24 細線ワイヤ電極
23A,23B 標準ワイヤ電極のガイドブロック
24A,24B 細線ワイヤ電極のガイドブロック
25A,25B 取付けベース
23C,24C ステージ
23D,24D ガイド
23E,24E 給電子
26A,26B 電源ターミナル
27A,27B,27C,27D,27E 案内、方向変更プーリ
28A,28B,28C,28D,28E 案内、方向変更プーリ
24F,24G 案内ローラ
23C−V,24C−V 垂直方向調整手段
23C−H,24C−H 水平方向調整手段
29 切換手段
[0001]
BACKGROUND OF THE INVENTION
  The present invention is capable of reliably performing a large number of processes requiring a fine dimensional shape and high processing accuracy, such as a core pin used in a mold when a plastics molded body such as a square connector is manufactured by injection molding. The present invention relates to a wire electric discharge machining method that can be performed at high speed, and a wire electric discharge machining apparatus having a configuration that is adapted to efficiently implement such a machining method.
[0002]
[Prior art]
  FIG. 8A is a perspective view of the most typical core pin as the core pin of the above-described mold. Hereinafter, such a core pin will be described. However, the core pin may be shaped as shown in FIGS. 8B and 8C. The present invention also covers these core pins. In the case of the core pin as shown in FIG. 8A, the pins 11-1, 11-2,..., 11-n having a large length L to width D ratio (L / D) are formed on one end edge of the thin plate-like body 11B. The core pins are arranged in a comb-like shape along the edge and parallel to the plate surface of the body portion 11B. The core pin has a surface roughness of 0.5 μm RmaX, a total length of 5 μm or less, and a total width of ± 3 μm or less. Dimensional accuracy and shape accuracy within 5 μm, thickness accuracy within 1.5 μm are required, and radius R of the inner corner of the base portion 11B of the pins 11-1, 11-2,. Since (Incorner R) is required to be finished to 0.05 mm or less, it is a workpiece to be finished by adding fine processing with fine lines to finish it with a wire electric discharge machine. That is, from the point where the above-mentioned fine dimensional and shape accuracy is required, the finishing process, particularly the processing of the radius R portion of the inner corner, is simply performed by the fineness of the discharge pulse as in the conventional normal finishing process. In addition to the setting of switching of electrical machining conditions such as reduction in energy and micro energy, as a wire electrode as a tool, the wire diameter is changed from φ0.1 mm to φ0. Switching to a thin wire electrode of about 05 mm or less is essential.
[0003]
   Such a core pin has an outer shape of each outer peripheral surface machining including a tip surface by wire electric discharge machining from a workpiece material 11 having a chuck collar 11A appropriately shaped like a rectangular parallelepiped as shown in a perspective view of FIG. Forming process of the core 11D by cutting the grooves 11C in the core pin portions 11-1 to n, and processing of the notches 11E from the core portion to the body portion 11B in the row direction. A process of forming a large number of core pins by sequentially performing intervals, and a process of sequentially executing a separation process 11F for separating each core pin formed in a separate process from the flange part and the coupling part 11A, Since it is repeatedly performed on the workpiece material, it takes a considerably long time.
  For this reason, the wire diameter of the wire electrode used in the above-mentioned finishing process, for example, a thin wire electrode having a diameter of about 0.05 mm is used from the start of machining, and the machining condition of the electric discharge machining is set to the finishing machining condition of medium machining or less, Applying to all the processing steps of core pin processing described above requires longer processing time and is not adopted because of poor processing efficiency, usually thicker than the wire electrode wire diameter at the time of the above finishing processing, Using a wire electrode with a standard wire diameter (φ0.2 mm) and at least two stages of processing with high processing conditions for rough processing over medium processing and finishing processing after the second cut with the fine wire electrode Usually, it is performed by processing divided into further processing steps.
[0004]
[Problems to be solved by the invention]
  If the procedure of the wire electric discharge machining is performed in this manner, the above-described outer shape forming process using the wire electrode having a standard wire diameter (usually φ0.2 mm), the columnar core 11D forming process by cutting the groove 11C, and the body part to the body part After the cutting 11E to 11B is processed by high-speed roughing, the wire electrode is replaced with the fine wire electrode (φ0.1 to φ0.05 mm or less), and the groove 11C and the cutting 11E are processed again. The wire electrode replacement work takes a lot of time and reduces the processing efficiency. Some wire electric discharge machines are equipped with a wire electrode replacement device, but they are usually extremely expensive and practically unreliable, and usually employ a system in which workers manually replace them. Because it is supposed to do. In any case, even if the wire electrode is replaced with a folded thin wire electrode, after finishing of the workpiece material 11 is finished, for processing of the next new workpiece to be replaced by a pallet changer, a robot or the like. This is because it is necessary to replace the tool wire electrode with the wire electrode of the original standard wire diameter, and it is necessary to repeat this for each new workpiece.
[0005]
  In addition, a normal type wire electric discharge machine has a pair of wire guides arranged at intervals in the vertical Z-axis direction to move the wire electrodes in the Z-axis direction, and moves the wire electrodes between the wire guides. The workpiece is placed on a horizontal XY biaxial plane mounting table that intersects at right angles to the workpiece electrode, and the wire electrode and the workpiece mounting table are moved relative to each other in the biaxial direction in the horizontal plane. In order to process the material 11 illustrated and described with reference to FIG. 9 described above, the loaded material 11 is configured such that the core pin portions 11-1 to n side tips of the material 11 are opposed to the wire electrode from a plane uniaxial direction. The predetermined part is processed by projecting laterally from the upper edge of the table, but depending on the processing order for each processing part such as the outer peripheral surfaces, grooves and cutting cuts, the laterally arranged material 11 is Normally 90 ° sequentially around one axis It is necessary to proceed with the processing by turning it out, and holding the material 11 on the stage and indexing positioning by turning at a predetermined angle at the time of sequential processing is performed by providing a jig or the like. In addition, it is necessary to replace the wire electrode with a standard wire diameter from the standard wire diameter, so that high technology and skill are required.
[0006]
  To omit the means for replacing the wire electrode with a standard wire electrode for high speed processing such as roughing and a fine wire electrode for finishing processing such as fine finishing, for example, it is disclosed in JP-A-6-155168. As shown in the figure, two sets of electric discharge machining stages using wire electrodes are arranged in parallel with each other at a predetermined known interval parallel to the Z-axis, and wire electrodes having different diameters are stretched so as to be able to travel. It is conceivable that the workpiece provided on the table of the XY table is processed sequentially by facing the wire electrode of a predetermined electric discharge machining stage according to the machining procedure. Since the machining part of the electrode is formed in the vertical direction parallel to the Z-axis, the above-mentioned installation and positioning jigs for turning and indexing the workpiece are still necessary, and the jigs are expensive. Must have a seal specification structure In addition, a special exchange device is required for exchanging the workpiece, especially during machining, and it is necessary to discharge the machining liquid from the machining tank during the exchange, so workability etc. cannot be improved. There was a problem.
[0007]
  Therefore, the present invention solves the above-mentioned problems, and has a work shape of a machining shape such as a core pin having a radius R portion with a fine inner angle at the root portion of the body portion of the fine pin and having high dimensional and shape accuracy. It is an object of the present invention to provide a wire electric discharge machining apparatus and a wire electric discharge machining method capable of operating and machining a body in a large amount in a short time, efficiently and with good workability including handling operability.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a wire electric discharge machining apparatus (1) of the present invention comprises a wire electrode having a standard wire diameter for rough machining and a standard wire diameter for finishing machining on a table in a machining tank on a bed. A thin wire electrode having a thin wire diameter is immersed in a machining liquid in a axial direction in a state where it is immersed in a machining liquid at a predetermined interval parallel to one axis in a horizontal plane and at a predetermined height position from the upper surface of the table in the machining tank. Each of the pair of wire electrode positioning guides has a pair of wire electrode positioning guides that are stretched so as to run to form two electric discharge machining portions, and each of the pair of wire guides has a vertical axis that is orthogonal to the horizontal plane Traveling path forming means mounted on the table via an adjustment stage so as to be position-adjustable in a direction and a horizontal axis direction orthogonal to the vertical axis and the processing part wire electrode axis, and a wire electrode wire electrode Serving Feeding and taking-up means are unitized with standard wire electrodes and fine wire electrodes, respectively.In addition, each of the wire electrode travel path forming means in the processing tank is arranged separately from the outside of the processing tank in the wire electrode axial direction, and in each unit, the travel from the wire supply means is performed. The wire electrode fed from one end side to the path forming means is turned back on the other end side on the travel path, and is collected by the take-up means on the one end side.Each supply means and take-up means of the standard wire electrode and the fine wire electrode,
  A ram that moves in a horizontal axis direction perpendicular to the axes of the two electric discharge machining sites of the standard wire electrode and the fine wire electrode;
  A machining head mounted on the ram and having a vertical machining movement axis perpendicular to the axis of the electrical discharge machining part;
  A holding means installed at the shaft end of the processing head to detachably suspend and hold the workpiece;
  A turning / indexing device that is built in the machining head and that controls turning / indexing of the machining head relative to the table;
  Each of the standard wire electrode and the fine wire electrode is previously supplied to each supply means.RunningIn a state of being stretched via a path forming means and a take-up means, the workpiece is sequentially opposed to the standard wire electrode and the fine wire electrode to perform desired electric discharge roughing and finishing. A wire electric discharge machining apparatus comprising a control device for shifting to a performing stage.
[0009]
  In the wire electric discharge machining apparatus (1) of the present invention, the machining tank is fixedly provided on the bed, and the machining head moves in two orthogonal axes in a horizontal plane in addition to the vertical axis. The processing tank moves along one axial direction in the horizontal plane along the axis of the electric discharge machining portion of the standard wire electrode and the fine wire electrode, and the ram is in the horizontal plane. It comprises the structure which moves to another orthogonal 1 axis direction, It is characterized by the above-mentioned.
[0010]
  Further, the wire electric discharge machining apparatus (1) of the present invention is further provided in a configuration in which the supply means and the take-up means of the fine wire electrode are connected and fixed to the table, or further, the supply means and the take-off means. And a wire electrode fed from the wire electrode supply means to the travel path forming means is connected to the table on one end of the wire electrode on the travel path. It is characterized in that it is configured such that it is turned back at the other end on the upper side and is collected and collected by the take-up means on the one end.
[0011]
  In order to achieve the above object, the wire electrical discharge machining apparatus (2) of the present invention repeatedly generates intermittent electrical discharges in a minute gap between the traveling and moving wire electrodes and the workpiece. In the wire electrical discharge machining equipment to be machined, a machine frame consisting of a bed, a column, etc.,
  A pair of workpiece holding means for suspending and gripping the workpiece and provided with a processing portion by the wire electrode, which is provided on the frame so as to be relatively movable in three orthogonal X, Y, and Z directions. Two sets of wire electrode positioning guides for standard wire electrodes and fine wire electrodes, a table mounted so that the processed portion wire electrodes are positioned in parallel in a horizontal uniaxial direction, and a processing tank for storing the table ,
  The wire electrode supply means and take-up means for running and moving the processing portion in a state where a predetermined tension is applied to the standard wire electrode, and switching and selection instead of the standard wire electrode supply / take-out means are selected for processing. Supply means and take-up means for the fine wire electrode provided;
  The power supply means for supplying a machining discharge power under a desired roughing machining condition from a machining power source between the standard wire electrode machining portion and the workpiece of the holding means, and the power supply means for high-speed machining are provided so as to be switchable. A power supply means for supplying machining discharge power of a predetermined finishing machining condition between the thin wire electrode and the workpiece;
  Machining fluid supply means for supplying and circulating a controlled machining fluid to the machining tank;
  The workpiece holding means is provided on a vertical axis whose direction of the axis is orthogonal to the axis of the electric discharge machining portion of the standard and thin wire electrodes, and the workpiece holding means is Swiveling / indexing means provided so as to be able to swivel and index around the vertical axis;
  Control feed means for performing a relative feed between the traveling wire electrode and the workpiece selected in a machining step so as to machine the workpiece into a desired shape;
  The machining discharge power switching selection power supply means, the machining liquid supply means, and the relative feeding means including the turning and indexing between the workpiece holding means and the positioning guide machining portion of the selected wire electrode of the machining tank, And a control means including a numerical control device for controlling.
[0012]
  In the wire electric discharge machining apparatus (2) of the present invention, the standard wire electrode and the fine wire electrode, or any one of the supply means and the take-up means may further include one of the machining portion wire electrode shafts. The wire electrode provided on the side and supplied from the supply means on the one side to the processing part in the processing tank is folded back at the end of the processing tank on the other side of the shaft, and is taken up on the one side. The traveling route collected by the above is constituted.
[0013]
  In the wire electric discharge machining apparatus (2) of the present invention, the standard wire electrode supply means and take-up means, and the thin-wire electrode supply means and take-up means are further connected to the in-working portion wire electrode shaft. It is characterized by being provided separately on both ends.
[0014]
  In the wire electric discharge machining apparatus (2) of the present invention, the standard wire electrode supply means and the take-up means are further integrated into a unit and connected in parallel to a machine frame to supply the fine wire electrode. The means and the take-up means are unitized as a unit and are connected and fixed to the table.
[0015]
  The wire electrical discharge machining apparatus (2) of the present invention further includes a vertical axis in which each one of the pair of wire guides for the standard wire electrode and the fine wire electrode is perpendicular to the horizontal plane. It is attached to the table via an adjustment stage so that the position can be adjusted in each of the direction and the horizontal axis direction perpendicular to the vertical axis and the processing part wire electrode axis.
[0016]
  In the wire electric discharge machining apparatus (2) of the present invention, the wire guide for the standard wire electrode is a die-shaped guide, and the wire guide for the fine wire electrode is a V-groove guide, Is characterized in that a machining fluid ejection nozzle is provided.
[0017]
  Further, the wire electric discharge machining apparatus (2) of the present invention is further held by a workpiece magazine for storing a desired plurality of workpieces, an unmachined workpiece to be stored in the magazine, and a holding means for the machining head. And a workpiece exchange means for exchanging the machined workpieces that have been processed, wherein the workpieces are sequentially exchanged to perform machining.The
[0018]
  In order to achieve the above object, the wire electric discharge machining method according to the present invention includes a machining portion wire electrode that travels and moves between a pair of spaced apart wire guides in a plane direction substantially perpendicular to the wire electrode axis. Thus, one axis in the plane is set as a pivotable and indexable axis, the workpieces held at the shaft ends of the axes are opposed to each other, and the workpiece is processed in a desired shape. And a wire electric discharge machining method for performing predetermined high-speed machining and subsequent finishing by relatively giving a predetermined programmed feed for turning and indexing, in which the workpiece is suspended and gripped. A holding means is provided on the processing head, and each processing portion of the standard wire electrode for high speed processing and the fine wire electrode for finishing processing has a predetermined height of the table surface in the processing tank facing the holding shaft of the processing head. In position Preliminarily provided at a predetermined interval in the other axis direction parallel to one axis of the table surface, the workpiece to be opposed to one of the standard wire electrodes as desired, and set the electric discharge machining conditions for high-speed machining Then, after performing a predetermined wire electric discharge machining by relatively giving a programmed machining feed, the workpiece is opposed to the other fine wire electrode as desired, and an electric discharge machining condition for finishing machining is set. It is characterized in that a predetermined finishing wire electric discharge machining is performed by giving a programmed predetermined machining feed relatively.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
  Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a front view showing an overall configuration and arrangement of a wire electric discharge machining apparatus according to an embodiment of the present invention. 1 is a machine body, 2 is a computer-controlled power supply for wire electric discharge machining, and a power supply including a numerical controller. The control means 3 is configured integrally with the supply, take-up and recovery means of a wire electrode having a standard wire diameter (usually φ0.2 mm) used when processing under desired high-speed processing conditions such as so-called roughing. Standard wire electrode supply / take-off means are provided on both sides in the horizontal uniaxial direction with the processing machine body 1 as the center, and supply and recovery of the processing fluid to the processing tank of the wire electrode processing section of the processing machine body 1 The processing fluid supply means for purifying the liquid is provided from the main body 1 to the rear portion of the supply / take-out means 3 or the like.
[0020]
  Thus, the processing machine main body 1 includes a bed 4, a saddle 5 that supports a horizontal uniaxial (left-right X-axis) moving table 6, and a bed 4 that stands on the rear side of the bed 4 in the horizontal uniaxial and horizontal plane. And a machine frame comprising a column 7 and the like for supporting the moving ram 8 in the direction perpendicular to the axis (front-rear Y-axis). A table 9 is provided on the moving table 6, while a processing head 10 is provided on the front surface of the Y-axis moving ram 8 so as to face the upper surface of the table 9 vertically (Z axis). Is a holding means 12 for suspending and gripping the workpiece 11 at the lower tip, a feeding means 13 for feeding and positioning the machining head 10 in the vertical direction, and a control turning and indexing of the holding means 12 around the axis. The table 9 is provided with a turning / indexing means 14 and a wire electrode machining section travel path forming means 15 provided on the upper surface thereof. The moving table 6 is arranged so that the machining section forming means 15 is immersed in the machining liquid during machining. When the elevating processing tank 16 provided integrally with the upper tank reaches the upper position, the table 9 is surrounded by the processing tank 16. 17A and 17B are provided between the wire electrode processing portion forming means 15 provided at both end edges in the horizontal uniaxial direction of the table 9 and the supply / take-out means 3 and 18 for the standard wire electrode and the thin wire electrode described later. Each wire electrode guide routing means having a plurality of guide pulleys.
[0021]
  Further, the processing machine body 1 has a fine wire diameter (usually φ0.1 to φ0.05 mm or higher) used for finishing processing of intermediate finishing or higher after processing under predetermined roughing conditions using the standard wire electrode. The wire electrode supply means 18A and the collection / recovery means 18B are integrated into the table 9, the wire electrode processing portion forming means 15 and the guide means 17A, 17B on the table 9, and It is attached to a frame base 19 integrated with the table 9 so that the positional relationship does not change due to processing feed or the like. Reference numeral 20 denotes a storage magazine with automatic replacement means for processed and unprocessed workpieces 11H held by the processing head 10, and a predetermined required number of workpieces 11H are provided in a replaceable manner. The rust prevention means that is attached to the base 21 provided at the side edge or the rear edge of the bed 4 and that rust-proofs the other workpieces, for example, the processed workpiece 11 by dipping or spraying, is as described above. It is provided by being attached to the base 21.
[0022]
  In the case of this embodiment, the standard wire electrode supply / take-out means 3 is composed of supply means 3A, take-up means 3B, and recovery means 3C which are integrated with each other and move relative to the processing machine main body 1. It is connected to the bed 4 or the like by the connecting means 22 so that the wire electrode processing portion forming means 15 including the wire electrode guiding means 17A and 17B is connected to the workpiece 11 of the processing head 10. Other than during relative positioning, etc., especially during processing, when the table 9 moves in the horizontal uniaxial direction (X axis), the distance between them changes, and the tension of the wire electrode changes, and various processing obstacles due to the change in tension, Will cause wire electrode disconnection, and is usually used without moving especially during processing.
  In that respect, in the case of a machine frame configuration in which the processing tank 16 and the table 9 are fixed to the bed 4 and the ram 8 moves along the X and Y axes and the machining head 10 moves along the Z axis. As long as the wire electrode supply / take-out means 3 and 18 are connected and fixed to the integrally fixed machine frame, the above-mentioned problems do not occur.
[0023]
  Thus, the stretch travel route and travel state around the wire electrode processing portion forming means 15 on the table 9 in the processing tank 16 will be described in detail later, but the supply, take-up and recovery are as follows. It is.
  In the case of the standard wire electrode supply / take-out means 3, the supply means 3A is equipped with a standard wire electrode storage reel and a brake device for stretching, and sends out the wire electrode with predetermined braking control or at a constant speed. The wire electrode returned from the processing portion guide means 17A to the processing portion forming means 15 and from the return means described later via the guide means 17A is applied to the constant speed take-up or constant speed delivery for the braking control of the take-up means 3B. Although the control take-up is performed and the bucket is recovered in the bucket of the recovery means 3C, in the case of core pin processing, depending on the dimensions and the number of workpieces, if the processing takes a long time, the supply means 3A The storage reel is supplied to the delivery means of the means 3A as a dedicated storage supply means using a large-diameter reel. It is preferable to provide the automatic replacement or replenishment means Lumpur. Also, since the standard wire electrode is as described above, the relative feed space in the Y-axis direction of the wire guide wire electrode processing portion, in particular, around the processing portion forming means by causing the standard wire electrode to run back in the processing tank 16. Is narrowed, the take-up means 3B and the collection means 3C with respect to the wire electrode supply means 3A are provided at appropriate positions, such as on the opposite side of the processing machine body 1.
  On the other hand, in the case of the supply / take-out means 18 for the fine wire electrode, the supply means 18A and the take-up means 18B are always integrated as one unit in the horizontal uniaxial (working part electrode axis, X-ray) direction of the processing machine body 1. It is not necessary to provide at the end, but the supply means 18A and the take-up means 18B provided with the collection means which may be a take-up reel are the same thing whose relative position does not change by the position movement such as the processing part forming means 15 and positioning feed, In the case shown in the figure, it is necessary to be fixedly held on the table 9 in order to prevent disconnection accidents and to obtain machining dimensional accuracy.
[0024]
  Reference numeral 29 denotes the control means provided between the power supply and control means 2 and the processing machine main body 1 and each of the standard / fine wire electrode supply / take-out means 3 and 18, or a machining liquid supply means (not shown). 2 is the switching means controlled by the switch to the wire electrode supply / take-up means operation control specified by the program, etc. when switching from roughing to finishing, etc. And switching to the application and supply control of the voltage pulse of the machining conditions programmed between the workpiece 11 and the workpiece 11 and other switching settings.
[0025]
  FIG. 2 shows wire electrode processing including guide means 17A and 17B for introducing and derivation between the standard and fine wire electrode supply / take-out means 3 and 18 in the processing tank 16 of the processing machine body 1 or on the table 9. In the top view for explanation around the portion forming means 15, a pair of guide blocks 23 A, 23 B, 24 A, 24 B for the standard wire electrode 23 and the fine wire electrode 24 are arranged on the table 9 of the processing tank 16 in a horizontal axis ( A pair of bases 25A and 25B are provided to be attached in parallel to each other at a predetermined interval in the (X-axis) direction. One guide block 23A, 24A in each of the pair of guide blocks for the standard wire electrode 23 and the fine wire electrode 24 is positioned and fixed to one base 25A in the mounting base. The guide blocks 23B and 24B are attached to the base 25B via stages 23C and 24C capable of adjusting and setting a fine position in the horizontal Y-axis direction parallel to the horizontal vertical direction perpendicular to the wire electrodes 23 and 24 axes. The horizontal, left / right or front / rear parallel of the aforementioned heights of the processed portion wire electrodes 23, 24 between the guide blocks 23A, 23B and 24A, 24B are adjusted and set. In the illustrated embodiment, each guide block is provided with a die-shaped guide 23D for the standard wire electrode 23 as a wire guide, and a V-groove guide 24D for the fine wire electrode 24. Feeders 23E and 24E for supplying power in contact with each other are provided, and voltage pulses for predetermined high-speed machining and finishing are fed from the machining tank power supply terminals 26A and 26B to the respective feeds 23E and 24E from the machining power source by feeding lines. Power is supplied through each power supply terminal of a guide block unit (not shown).
[0026]
  Next, a description will be given of a stretch traveling configuration of each standard and thin wire electrode 23, 24. FIG. 3 is a front view illustrating the above-described FIG. Simultaneously, the standard wire electrode 23 fed out from the standard wire electrode supply means 3A while controlling braking to a predetermined degree is supplied to the processing tank 16 and the guide tank 16 through a guide pulley provided as necessary. / Or reaches the guide means 17A provided fixed to the table 9, is guided downward by the introduction and direction change guide pulley 27A provided in the guide means 17A, and one guide is provided by the other direction change guide pulley 27B. Introduced and positioned in the block 23A, sent to the other guide block 23B, inserted, inserted into the guide block 23B, and turned back to guide pulley 27 The path is turned back and the direction changing pulleys 27D and 27E of the guide means 17A change the path sequentially and as desired, and then the take-up means 3B performs a constant speed take-up for the braking control of the supply means 3A. A processing portion is formed by the standard wire electrode 23 which is recovered in the bucket of the recovery means 3C and is updated and traveled at a predetermined speed with a predetermined tension applied between the guide blocks 23A and 23B.
[0027]
  The thin wire electrode 24 is substantially the same as the above-described standard wire electrode 23 except that the specific configuration of the wire electrode supply / take-out means 18 and the pair of guide blocks 24A and 24B is different. Since it is clear by simultaneously referring to FIG. 1 and FIG. 4 of the front view for explaining the processing portion around the thin wire electrode 24 described later, the description is omitted to avoid duplication. Reference numerals 24F and 24G are guide rollers, and the number and arrangement of the direction change guide pulleys of the guide means 17B are slightly different from those described above, but are substantially unchanged.
[0028]
  5A and 5B in FIG. 5 and 6A and 6B in FIG. 6 are guide blocks on the side attached to the base 25B via the position adjustment stages 23C and 24C among the guide blocks for standard wire electrodes and fine wire electrodes. In the enlarged top view and the front view around 23B and 24B, the installation states of the horizontal adjustment means 23C-H and 24C-H and the vertical adjustment means 23C-V and 24C-V of the stages 23C and 24C are shown. It is shown.
[0029]
  In the wire electric discharge machining apparatus configured as described above, the workpiece 11 having an appropriate shape such as a rectangular parallelepiped suspended from the holding means 12 of the machining head 10 is processed and formed as follows. A core pin is obtained.
  Further automation is not impossible if necessary, but after the start of wire electric discharge machining, machining is automatically advanced sequentially by a pre-program.
[0030]
  First, the distance between each guide block 23A and 23B of each standard and thin wire electrode 23 and 24, and the distance between the processed part wire electrodes 23 and 24 between 24A and 24B, each horizontal degree (relative to the vertical axis), and mutual parallelism. A predetermined measuring device such as a laser and vertical and horizontal adjusting means 23C-V, 23C-H, 24C-V, 24C-H of each stage 23C, 24C are used.
  Next, it is checked whether the remaining amount of each of the standard wire electrode 23 and the fine wire electrode 24 is sufficient for the programmed processing, and if there is a shortage of wire electrode, it is replaced with a new wire electrode reel.
  The wire electrodes 23 and 24 are inserted and set in the respective stretch travel paths, and the travel conditions of the wire electrodes 23 and 24 are set so as to travel at the tension and travel speed of the programmed wire electric discharge machining conditions. As the program starts and progresses, the wire electrode on the program selected side is selected and the program is set to run in a predetermined tension state.
[0031]
  Workpieces 11 attached to appropriate shanks or the like are installed in the required number of magazines 20, and the workpieces selected by the program are suspended and held by the holding means 12 by exchange means (not shown). Orientation adjustment with respect to the turning / indexing means 14, positioning with respect to the standard wire electrode 23 and fine wire electrode 24, positioning to the program processing start position, etc. This is performed by detecting contact with the jig or the processed portion wire electrode 23 and the fine wire electrode 24 or by measuring with a measuring instrument.
[0032]
  In particular, in the present invention in which the workpiece is subjected to electric discharge machining by one of the two wire electrodes, the positions of the wire electrodes and the workpiece are detected, stored, and used as follows. (1) Input two wire electrode diameters. (2) Adjust so that the processed surface of the workpiece is directly opposed to one wire electrode. (3) When processing both surfaces of the workpiece, the thickness and center position in the cross-sectional direction perpendicular to the processing surface are calculated. One wire electrode is sensed from both sides, the position of the workpiece is detected, and calculated based on the data (description is omitted in the case of single-side machining). (4) If there is another processing surface, the processing surface is determined so as to face the wire electrode, and the thickness and center position in the vertical cross-sectional direction are calculated in the same manner. (5) The distance between the two wire electrodes and the positional relationship between the wire electrode and the workpiece are detected by contact sensing and displayed. In this way, when creating a program that interpolates and controls the movement trajectory for machining by approaching the workpiece to each wire electrode, refer to the coordinate system for each wire electrode and the distance between the wire electrodes. And create each machining program on each coordinate system. The machining trajectories for rough machining and finishing machining are almost the same except that the machining trajectories of the machining parts such as the fine inner corner R described above are slightly different, so that the program can be easily created. Of course, the processing after the second processing is performed in a thin line coordinate system, and the processing conditions are also different.
[0033]
  When the standard wire electrode 23 is selected as the wire electrode by the above-described machining program and desired high speed rough machining is performed, the machining voltage pulse condition is supplied to the standard wire electrode 23, and the fine wire electrode 24 is switched. When selected and a predetermined finishing process is performed, the power supply and control means 2 switches the supply of electric discharge machining power so that a voltage pulse of the finishing process condition is supplied to the thin wire electrode 24.
[0034]
  As described above, since the electric discharge machining of the present invention is in a mode in which one of the two types of wire electrodes 23 and 24 is used, for example, an identification code or the like is added to the head of the corresponding machining program, The wire electrode is preferably designated, and a command signal is sent from the control means 2 to the supply / take-out means 3 or 18 of the wire electrode designated in accordance with this designation, and the wire electrode feeding speed and tension are controlled. A voltage pulse that is set and controlled to generate a discharge pulse with a machining condition according to the command is supplied and applied between the designated wire electrode and the workpiece 11.
[0035]
  As described above, the workpiece 11 is set at the machining start position with respect to the standard wire electrode 23, the machining tank 16 is raised and set to a predetermined position, and a water-based or mineral oil-based machining fluid is supplied from a machining fluid supply device (not shown). Of the standard wire electrode 23 between the guide blocks 23A and 23B, and the portion of the workpiece 11 processed opposite to the processed portion wire electrode 23, particularly the discharge gap portion thereof is preferably always immersed in the processing liquid. As shown in FIG. In the case of the illustrated embodiment, the standard wire electrode guide blocks 23A and 23B can be used as a machining liquid jet nozzle coaxial with the wire electrode 23, so that the efficiency of high-speed machining can be further increased. Further, for example, when processing the workpiece 11 in the horizontal (Y-axis) direction perpendicular to the suspension axis, the processing waste discharged from the processing groove formed horizontally becomes defective, and the processing In such a case, for example, a working fluid ejection nozzle directed to the discharge gap is provided on the side portions of the guide blocks 24A and 24B. It is recommended that Of course, the nozzles 24A, 24B are preferably nozzles coaxial with the processing portion wire electrode 24, and may be the same as the guide blocks 23A, 23B.
[0036]
  The progress of wire electric discharge machining for the workpiece material 11 of FIG. 7 that has been set up as described above.Figure 7To explain with reference, the standard wire electrode 23 is selected as the machining electrode by the start of the machining program, and the running at a predetermined speed is started between the supply means 3A and the take-up means 3B with a predetermined tension applied. A machining power output for a predetermined high-speed machining is connected and supplied between the electrode 23 and the workpiece 11, and the processing liquid is supplied and filled so as to maintain a predetermined liquid position in the machining tank 16, and further, circulation and nozzle jet flow are performed. At this time, due to the previous positioning and processing preparation work, the workpiece 11 is parallel to the processing portion wire electrode 23 on which the guide blocks 23A and 23B travel and the workpiece 11 is processed. It is in a predetermined dimension position slightly below the tip lower surface E and in a direction perpendicular to the axis of the wire electrode 23 for machining and forming the surface A.
[0037]
  Here, when machining is started by pressing a machining start button or the like, the workpiece 11 is given a downward feed in the Z-axis direction according to the program, and intermittent discharge starts due to the approach to the wire electrode 23, and rough machining is performed. Be started. When the machining progresses and the formation position of the circular arc surface R of the surface A is reached, a feed in the Y-axis direction perpendicular to the surface A at a predetermined ratio with respect to the downward feed with respect to the workpiece 11 is given to the wire electrode 23. Then, the arc surface R is processed and formed, and the processing is further continued by the downward feeding to a predetermined upper position of the surface A. When the machining reaches a predetermined part, the A-side machining program is finished, the feeding is stopped and machining voltage application is interrupted, and at this time, the running of the wire electrode 23 and the supply of the machining fluid are also interrupted as necessary. By executing the program, the machining head 10 moves up following the downward feed path during machining, rises to the position before the machining start, and stops. In the above-described case, the surface layer portion of the surface A of the workpiece 11 is preferably a processing mode in which it is separated and dropped at the stage of roughing because it does not require special means such as core processing means and operation. is there.
  In this case, the surfaces A and C may be processed in the same manner. However, the surfaces B, D, and E are processed by cutting a thin plate having a predetermined thickness on each surface. In some cases, the surface layer with a certain thickness smaller than the diameter of the wire electrode is removed from the surface. Does not require child processing. This means that the wire electrode is stretched along a horizontal plane, while the vertical axis that can be swung and indexed around the axis is suspended and gripped so that the workpiece is opposed to the vertical axis. The processing mode in the present invention by the relative feed in the biaxial direction perpendicular to the opposing direction is the workpiece to be rotated in the horizontal axis with respect to the vertical wire electrode described in the paragraphs [0005] to [0006] above. It can be seen that there are excellent features compared to the processing mode of the configuration using the jig.
[0038]
  Next, by executing the program, the turning / indexing means 14 is driven to index 90 °, the surface B is parallel to the processed portion of the wire electrode 23, and positioning in the Y-axis direction perpendicular to the surface B is performed. 23, the feeding of the machining voltage and the supply of the machining fluid are resumed, and the predetermined forming process of the surface B by the Z-axis direction downward feed of the machining head 10 is started. In this way, each surface B, C, D is sequentially indexed and positioned according to the program, and each surface is processed and molded under a predetermined high-speed electric discharge machining condition by using the standard wire electrode 23, and usually the last. Then, the processing of obtaining the dimension and flatness of the tip bottom surface E is performed, and the processing by the standard wire electrode 23 is completed.
[0039]
  Thus, next, the fine wire electrode 24 shifts to finishing processing of the dimensional accuracy and surface roughness of the processed surfaces A, B, C, D, E by the high-speed electric discharge machining. After completion of machining by high-speed machining such as rough machining, the machining voltage is automatically supplied by a program or manually by a part or more, and the machining voltage is supplied from high-speed machining such as rough machining to predetermined finishing machining conditions, While switching to the electric power feeding between the processed bodies 11, the traveling of the standard wire electrode 23 is stopped, and the traveling of the fine wire electrode 24 with a predetermined tension and speed is started. If the finishing fluid is a simple dipping process, the nozzle of the machining liquid from the guide blocks 23A and 23B may be stopped to supply a predetermined amount of circulating fluid. When it is necessary to use a coaxial or other attached nozzle or the like for finishing by the wire electrode 24, it is naturally installed and used.
  Since the processed portion of the thin wire electrode 24 is parallel to the processed portion of the standard wire electrode 23 in the pre-processing step, and is usually on the same horizontal plane, the dimensional relationship such as the interval is clear. Positioning the workpiece 11 that has been positioned with respect to the standard wire electrode 23 with respect to the fine wire electrode 24 by an NC program or the like requires correction of the difference in the distance between the electrodes due to the difference in the electrical discharge machining conditions. When it is relatively easy and can be easily switched to the finishing process by the fine wire electrode 24 after the completion of the high speed machining such as the above rough machining within a short time. In the same manner as above, each surface A, B, C, D, and E is sequentially indexed and positioned repeatedly, so that the shape of the corner R according to the size of the thin wire diameter of the used wire electrode is obtained. Rutotomoni can be finished the dimensional accuracy of the wire electric discharge machining, and a fine surface roughness of setting finishing discharge machining conditions.
[0040]
  The above is the processing and molding of the outer peripheral five surfaces of the material for processing, molding and cutting the core pin shown in FIG. 8A. In order to create the core pin, the groove 11C cutting described with reference to FIG. The process of forming the columnar core 11D by the process and the cutting 11E process from the columnar core part to the body part 11B are sequentially divided into a predetermined high-speed process by the standard wire electrode 23 and a finish process by the fine wire electrode 24. As in the case of the outer periphery forming process described above, the core pin can be precisely processed and finished.
  Usually, the separation is performed from the separation portion 11F by the standard wire electrode 23 under appropriate electric discharge machining conditions or by the combination of roughing and finishing using the standard wire electrode 23 and the fine wire electrode 24. Although it is dropped and collected, if desired, the separation can be performed in a separate post-process with the minute cut-off portion remaining. In any case, the unprocessed gripping margin portion 11A of the workpiece 11 or the workpiece is removed from the holding means 12 of the processing head 10 by an exchange means (not shown) and held in a predetermined holder of the magazine 20, The workpiece 11H to be processed next is taken out from the holder designated by the program, and is attached to the holding means 12. Thereafter, the operation after the paragraph number [0029] and the wire electric discharge machining are performed on the unmachined workpiece in the magazine 20. Until the body disappears, the standard wire electrode 23 and / or the fine wire electrode 24 are replenished while being appropriately replenished.
[0041]
  Although the present invention has been described above with reference to the illustrated embodiments, various modifications can be made to the respective parts without departing from the spirit of the present invention described in the claims. For example, as a workpiece to be machined, not only can it be applied to a punch with an R seat (commonly called Kakiage punch) with an arc-shaped seat (kakiage punch) used for press working, but the workpiece can be turned around its axis. Even if a so-called U-axis and V-axis movement and control means are not provided in each pair of guide blocks of the standard and fine wire electrodes, the large angle can be arbitrarily set. Can be tapered. Further, a predetermined high-speed wire electric discharge machining with a standard wire electrode and a finish wire electric discharge machining with a predetermined accuracy and finished surface roughness with a fine wire electrode or both of them are processed in two or more processes, for example, the former In the case of the above, roughing and intermediate processing, and in the latter case, the intermediate finishing and finishing, or the finishing process can be used as super-finishing to increase the accuracy of achievement of the processing purpose. In addition, as a wire guide for positioning standard and fine wire electrodes, not only can open and close die guides or V-flat guides be used, but also three orthogonal directions of X, Y, and Z on the machine frame. It is obvious that the relative movement and the relative movement of the turning / indexing means are not limited to those shown in the drawings. As described above, the table 9 can be fixed to the bed and the machining head 10 can be moved to the three axes X, Y, and Z.
[0042]
  A preferred setting control mode for controlling the X, Y, and Z movement axes in the wire electric discharge machining apparatus according to the above-described embodiment is as follows. In a machining program of a normal wire electric discharge machine, machining contour shapes are defined on the X and Y planes. However, in the wire electric discharge machine of the above-described embodiment of the present invention, since the axis of the processed part wire electrode formed by the travel path forming means 15 of the wire electrodes 23 and 24 is parallel to the X axis of the conventional machine, the machining program Each movement control axis is moved from the original X to the new Z, the original Y to the new X, and the original Z so that the machining contour shape on the XY horizontal plane is interpolated on the YZ plane of the conventional machine. →New YIt is preferable to switch to the right-handed orthogonal coordinate system of the replaced machine tool for control (see FIG. 7). In this case, the coordinate system may be switchable as desired.
[0043]
【The invention's effect】
  As described above in detail, according to the first aspect of the present invention, machining is performed by repeatedly generating intermittent discharge in a minute gap in which the machining fluid between the traveling wire electrode and the workpiece is interposed. In a wire electric discharge machine, a machine frame composed of a bed, a column, and the like, and the work piece provided on the frame so as to be relatively movable in three orthogonal X, Y, and Z directions are suspended and held. The workpiece holding means and the positioning guides for each pair of wire electrodes forming the processed portion by the wire electrode are used as two sets of a standard wire electrode and a fine wire electrode. The processed portion wire electrode is parallel to a horizontal uniaxial direction. A table mounted so as to be located at a position, a processing tank for storing the table, and a wire electrode supply means for moving and moving the processing portion in a state where a predetermined tension is applied to the standard wire electrode Between the workpiece of the take-up means, the supply / take-off means for the standard wire electrode, the supply means for the thin wire electrode and the take-up means provided so as to be capable of switching and selecting, and the workpiece of the standard wire electrode processing section and the holding means Power supply means for supplying machining discharge power under a predetermined high-speed machining condition from a machining power source, and machining discharge power under a predetermined finishing machining condition between the thin wire electrode provided so as to be switchable between the high-speed machining power supply means and the workpiece. The power supply means for supplying, the machining liquid supply means for supplying and circulating the controlled machining liquid to the machining tank, and the workpiece holding means have the axis directions of the standard and fine wire electrode electrodes, Swivel provided so as to be orthogonal to each other, and to provide the workpiece holding means and the table provided with the two sets of positioning guides so that they can be rotated and indexed relatively around the orthogonal axis. Indexing means; and control feeding means for performing relative feeding between the traveling wire electrode selected in the machining step and the workpiece so as to process the workpiece into a desired shape; Switching selection of the wire electrode and supply / take-off means of the selected wire electrode, switching selection power supply means of the machining discharge power, machining liquid supply means, and the wire electrode selected of the workpiece holding means and the processing tank Since there is provided a relative feeding means including the turning and indexing between the positioning guide machining parts, and a control means including a numerical control device for controlling the wire guide electrical discharge machining, first, a wire electrode having a standard wire diameter is provided. The finish wire electrical discharge machining, which requires the desired surface roughness and shape accuracy, is then performed in the desired finish machining using the fine wire electrode, and the high speed and finish. Since the switching of raising is not performed by exchanging the wire electrode, it is performed by moving the workpiece with respect to the standard wire electrode and the fine wire electrode that are determined so as to be able to run while being stretched. The target processing can be performed in a short time, and each of the standard and fine wire electrodes is stretched so as to run horizontally and in parallel in the processing tank. Since the body is provided so as to be capable of controlled turning and indexing around the shaft on the machining head to which machining feed is given in a direction perpendicular to the horizontal, a plurality of workpieces are stored in advance. It is easy to place and convert to a new workpiece one after another, making it easy to process high-dimensions and shapes of large-scale products such as mold core pins.
[0044]
  According to the invention of claim 3 of the present invention, when it is implemented as the supply of the fine wire electrode and the arrangement of the take-up means, in the case of a mechanical configuration in which the table and the processing tank move in the X-axis direction, The wire electrode will not be cut even if it is moved, and both the standard wire electrode and the fine wire electrode, or the supply and take-off of the wire wire electrode, will be adjusted on the left or right side of the machine body. Workability is good.
[0045]
  In addition, according to the present invention, the thin wire electrode is not cut off as in the previous section, and the standard wire electrode, the thin wire electrode supply means, and the take-up means are provided separately on the left and right sides of the processing machine body. The workability for each wire electrode is improved.
[0046]
  In addition, according to the present invention, since the supply means and the take-up means for each wire electrode are integrally formed, the structure becomes compact and the integrated structure for the fine wire electrode is attached to a table or a processing tank, and wire electrode processing Since it is integrated with the part, there is no change in the relative position between the supply / take-off means and the wire electrode processing part due to relative movement of the X, Y, Z3 axes and the like, and there is no change in tension or disconnection due to the axial movement.
[0047]
  In addition, according to the present invention, the processed portions between the wire guides of the standard wire electrode and the fine wire electrode can be formed by adjusting them to a predetermined positional relationship horizontally and parallel to each other as desired.
[0048]
  Further, according to the present invention, the standard wire electrode and the fine wire electrode can be suitably positioned and guided, and the processing efficiency can be increased.
[0049]
  In addition, according to the present invention, the workpiece is suspended and gripped by the holding means of the machining head and automatically exchanged with the magazine of the workpiece, so that it is compared with those using an exchange pallet or the like. The compact can shorten the replacement time and increase the machining efficiency.
[0050]
  Moreover, according to the wire electric discharge machining method of the present invention, a core pin for a mold or the like can be efficiently processed using the wire electric discharge machining apparatus of the present invention.
[Brief description of the drawings]
FIG. 1 is a front view showing the overall configuration and arrangement of a wire electric discharge machining apparatus according to an embodiment of the present invention.
FIG. 2 is a top view for explaining the arrangement and components in the processing tank of the processing machine main body.
FIG. 3 is a front view for explaining the area around the standard wire electrode processing portion.
FIG. 4 is a front view for explaining the area around the fine wire electrode processing part.
FIGS. 5A and 5B are a top view and a front view showing a guide and support structure of a standard wire electrode guide block. FIGS.
FIGS. 6A and 6B are a top view and a front view showing a guide and support structure of a guide wire for a thin wire electrode.
FIG. 7 is a perspective view of an example of a workpiece, and an explanatory view of a processing method.
FIG. 8A is a partial perspective view of a core pin to be processed and molded according to the present invention. B: Perspective view of another core pin example. C: Perspective view of another core pin example.
FIG. 9 is a perspective view illustrating an aspect in which a rectangular parallelepiped workpiece is sequentially processed.
[Explanation of symbols]
         1 Processing machine body
         2 Power supply and control means
         3 Standard wire electrode supply / take-out means
         4 beds
         5 saddle
         6 Moving table
         7 Column
         8 Moving ram
         9 tables
         10 Processing head
         11 Workpiece
         12 Holding means
         13 Feeding means
         14 Turning and indexing means
         15 Processing unit travel route forming means
         16 Processing tank
         17A, 17B Guide means
         18 Fine wire electrode supply / take-out means
         19 frame base
         20 Workpiece magazine
         21 units
         22 Connecting means
         23 Standard wire electrode
         24 Fine wire electrode
         23A, 23B Standard wire electrode guide block
         24A, 24B Fine wire electrode guide block
         25A, 25B Mounting base
         23C, 24C stage
         23D, 24D guide
         23E, 24E
         26A, 26B Power terminal
         27A, 27B, 27C, 27D, 27E Guide, direction change pulley
         28A, 28B, 28C, 28D, 28E Guide, direction change pulley
         24F, 24G guide rollers
         23C-V, 24C-V Vertical adjustment means
         23C-H, 24C-H Horizontal adjustment means
         29 Switching means

Claims (3)

ベッド上の加工槽内のテーブル上に、荒加工用の標準線径のワイヤ電極と仕上げ加工用の前記標準線径よりも細い細線径のワイヤ電極とを、水平面内の一軸に対して平行に所定の間隔で、かつ、加工槽内のテーブル上面から所定の高さ位置離隔して加工液に浸漬状態で軸方向に走行させるように張架して2つの放電加工部位を形成させる各一対のワイヤ電極位置決めガイドを有し、さらに該各一対のワイヤガイド中の各一方のワイヤガイドが、前記水平面と直交する鉛直軸方向と、該鉛直軸および加工部位ワイヤ電極軸と直交する水平軸方向とに、夫々位置調整可能に前記テーブル上に調整ステージを介して取付けられている走行経路形成手段と、
ワイヤ電極の供給手段と引取手段とを標準ワイヤ電極と細線ワイヤ電極とで夫々ユニット化するとともに、夫々が、加工槽内のワイヤ電極走行経路形成手段をワイヤ電極軸方向の加工槽外から挟むように別かれては配置され、さらに、各ユニットに於いて、ワイヤ供給手段から前記走行経路形成手段に一端側から送り出されたワイヤ電極が、走行経路上の他端側に於いて折返し走行させられ、前記一端側の引取手段により引取り回収される前記標準ワイヤ電極と細線ワイヤ電極の各供給手段と引取手段と、
前記標準ワイヤ電極と細線ワイヤ電極との2つの放電加工部位の軸線に対して直交する水平軸方向に移動するラムと、
該ラムに載置される、前記放電加工部位の軸線に対して直交する鉛直加工移動軸を有する加工ヘッドと、
該加工ヘッドの軸端に設置される、被加工体を着脱自在に懸垂把持する保持手段と、
前記加工ヘッドに内蔵され、該加工ヘッドを前記テーブルに対して相対的に旋回・割出し制御する旋回・割り出し装置と、
前記標準ワイヤ電極と細線ワイヤ電極の夫々を、予め各供給手段から走行経路形成手段、及び引取手段を介して張架した状態にしておいて、前記被加工体を前記標準ワイヤ電極と細線ワイヤ電極とに順次に相対向させて所望の放電荒加工と仕上げ加工とを行なう段階に移行させる制御装置を備えたことを特徴とするワイヤ放電加工装置。
A wire electrode with a standard wire diameter for roughing and a wire electrode with a fine wire diameter thinner than the standard wire diameter for finishing are parallel to one axis in a horizontal plane on a table in a processing tank on the bed. Each pair of two electrical discharge machining parts is formed by stretching so as to run in the axial direction while being immersed in the machining liquid at a predetermined interval and at a predetermined height from the table upper surface in the machining tank. A wire electrode positioning guide, and each one of the pair of wire guides includes a vertical axis direction orthogonal to the horizontal plane, and a horizontal axis direction orthogonal to the vertical axis and the processing part wire electrode axis. In addition, traveling path forming means attached to the table via an adjustment stage so that the respective positions can be adjusted,
The wire electrode supply means and take-up means are unitized by standard wire electrodes and fine wire electrodes , respectively, and each wire electrode travel path forming means in the processing tank is sandwiched from outside the processing tank in the wire electrode axial direction. Further, in each unit, the wire electrode fed from one end side to the travel route forming means from the wire supply means is turned back on the other end side on the travel route in each unit. and the supply means and take-up means before Symbol standard wire electrode and the thin wire electrode which is taking collected by take-up means of said one end,
A ram that moves in a horizontal axis direction perpendicular to the axes of the two electric discharge machining sites of the standard wire electrode and the fine wire electrode;
A machining head mounted on the ram and having a vertical machining movement axis perpendicular to the axis of the electrical discharge machining part;
A holding means installed at the shaft end of the processing head to detachably suspend and hold the workpiece;
A turning / indexing device that is built in the machining head and that controls turning / indexing of the machining head relative to the table;
Respectively of the standard wire electrode and the thin wire electrodes, advance the supply means or we travel route forming unit, and leave this state of being stretched over the take-up means, the said workpiece standard wire electrode and the thin line A wire electric discharge machining apparatus comprising: a control device that makes a desired electric discharge roughing and finishing process go to a stage in which the wire electrodes are sequentially opposed to each other.
前記加工槽が前記ベッドに固定して設けられると共に、前記加工ヘッドが鉛直軸方向に加えて水平面内の直交2軸方向に移動する構成を備えて成るか、または、前記加工槽が前記標準ワイヤ電極と細線ワイヤ電極との放電加工部位の軸線に沿った水平面内の1軸方向に沿って移動するとともに、前記ラムが水平面内の他の直交1軸方向に移動する構成を備えて成ることを特徴とする請求項1に記載のワイヤ放電加工装置。  The processing tank is fixedly provided on the bed, and the processing head is configured to move in two orthogonal directions in a horizontal plane in addition to the vertical axis direction, or the processing tank is the standard wire. The electrode and the fine wire electrode are configured to move along one axial direction in the horizontal plane along the axis of the electric discharge machining portion of the electrode and the thin wire electrode, and the ram moves in another orthogonal one axial direction in the horizontal plane. The wire electric discharge machining apparatus according to claim 1. 前記細線ワイヤ電極の前記供給手段と引取手段とを前記テーブルに連結して固定した構成に設け、または、更に前記供給手段と引取手段とを一体としてワイヤ電極の走行経路上の一方の端部側に於てテーブルに連結固定して設けられると共に、前記ワイヤ電極供給手段から前記走行経路形成手段に送り出されたワイヤ電極が走行経路上の他端側に於て折返して走行させられ、前記一端側の前記引取手段により引取り回収される構成に設けられて成るものであることを特徴とする請求項1、または2に記載のワイヤ放電加工装置。  Provided in a configuration in which the supply means and take-up means of the fine wire electrode are connected and fixed to the table, or further, the supply means and the take-up means are integrated into one end side on the travel path of the wire electrode The wire electrode fed from the wire electrode supply means to the travel route forming means is folded and traveled on the other end side on the travel route, and is connected to the table. 3. The wire electric discharge machining apparatus according to claim 1, wherein the wire electric discharge machining apparatus is provided so as to be collected and collected by said take-up means.
JP22202798A 1998-08-05 1998-08-05 Wire electrical discharge machine Expired - Fee Related JP4247932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22202798A JP4247932B2 (en) 1998-08-05 1998-08-05 Wire electrical discharge machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22202798A JP4247932B2 (en) 1998-08-05 1998-08-05 Wire electrical discharge machine

Publications (2)

Publication Number Publication Date
JP2000052150A JP2000052150A (en) 2000-02-22
JP4247932B2 true JP4247932B2 (en) 2009-04-02

Family

ID=16775954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22202798A Expired - Fee Related JP4247932B2 (en) 1998-08-05 1998-08-05 Wire electrical discharge machine

Country Status (1)

Country Link
JP (1) JP4247932B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103920949A (en) * 2014-04-03 2014-07-16 江南大学 Electrolyte circulating type low-speed electrolytic wire cut electrical discharge machining device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103990870B (en) * 2013-02-15 2016-05-18 株式会社沙迪克 Wire electric discharge machine and wire electric discharge machining method
CN114472564B (en) * 2022-04-14 2022-06-21 天津市天欣金属制品有限公司 A wire drawing equipment for galvanized wire production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103920949A (en) * 2014-04-03 2014-07-16 江南大学 Electrolyte circulating type low-speed electrolytic wire cut electrical discharge machining device

Also Published As

Publication number Publication date
JP2000052150A (en) 2000-02-22

Similar Documents

Publication Publication Date Title
US6935003B2 (en) Compound fabrication process and apparatus
CN100506470C (en) Method of processing electrically conductive work piece and combined processing apparatus
US7013544B2 (en) Machine tool and pallet changer for machine tool
JPH0529786Y2 (en)
JP5026884B2 (en) Machine tool with automatic tool changer
EP0145138B1 (en) Automatic travelling wire electroerosion machining system
JP2734145B2 (en) Wire electric discharge machine
US5091622A (en) Compound machining method and apparatus
JP5289910B2 (en) Press machine
KR20180043254A (en) machine tool
JP4247932B2 (en) Wire electrical discharge machine
JPS6355416B2 (en)
JPH09136222A (en) Electric discharge working machine provided with electrode guide automatic exchanger
JP3575993B2 (en) Electric discharge machine
JP2599392B2 (en) NC electric discharge machine with separate control
JP2008105158A (en) Vertical type machine tool
JP3335386B2 (en) Pallet supply device
KR100633571B1 (en) Machining center
JP7109588B2 (en) Electric discharge machining method, electric discharge machine and electric discharge machining system for carrying out the electric discharge machining method
JP3002627U (en) Machining waste removal device of electric discharge machine
CN109240218A (en) A kind of control circuit of spray head numerical control machine tool
JPH0435804A (en) Working for plural works and device therefor
CN112888529B (en) Machine tool
JP3732290B2 (en) Electric discharge machining apparatus and electric discharge machining method
JPS62120960A (en) F.m.s.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071031

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071109

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees