JP4247591B2 - In-cylinder injection internal combustion engine control device - Google Patents

In-cylinder injection internal combustion engine control device Download PDF

Info

Publication number
JP4247591B2
JP4247591B2 JP2000046742A JP2000046742A JP4247591B2 JP 4247591 B2 JP4247591 B2 JP 4247591B2 JP 2000046742 A JP2000046742 A JP 2000046742A JP 2000046742 A JP2000046742 A JP 2000046742A JP 4247591 B2 JP4247591 B2 JP 4247591B2
Authority
JP
Japan
Prior art keywords
combustion mode
fuel ratio
cylinder
air
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000046742A
Other languages
Japanese (ja)
Other versions
JP2001227387A (en
Inventor
衛 馬渕
平樹 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000046742A priority Critical patent/JP4247591B2/en
Priority to DE2001107160 priority patent/DE10107160A1/en
Publication of JP2001227387A publication Critical patent/JP2001227387A/en
Application granted granted Critical
Publication of JP4247591B2 publication Critical patent/JP4247591B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、運転状態に応じて燃焼モードを成層燃焼モード(圧縮行程噴射モード)と均質燃焼モード(吸気行程噴射モード)との間で切り換えるようにした筒内噴射式内燃機関の制御装置に関するものである。
【0002】
【従来の技術】
近年、低燃費、低排気エミッション、高出力の特長を兼ね備えた筒内噴射式エンジン(直噴式エンジン)の需要が急増している。この筒内噴射式エンジンは、低負荷時には、少量の燃料を圧縮行程で筒内に直接噴射して成層混合気を形成して成層燃焼させることで燃費を向上させ、一方、中・高負荷時には、燃料噴射量を増量して吸気行程で筒内に直接噴射して均質混合気を形成して均質燃焼させることで、エンジン出力を高めるようにしている。このような筒内噴射式エンジンでは、特開平10−299536公報に示すように、燃焼モード切換条件が成立した時(燃焼モード切換要求があった時)に、切換先の燃焼モードに応じて目標空燃比を変化させてから燃焼モードを切り換えるようにしたものがある。
【0003】
【発明が解決しようとする課題】
しかし、燃焼モードの切換の際に、目標空燃比を設定しても、吸入空気系の過渡的な遅れにより筒内の実際の空燃比が目標空燃比に追従しないため、目標空燃比を判定基準として燃焼モードを切り換えると、燃焼が不安定になって失火やトルクショックが発生するおそれがある。特に、成層燃焼モードでは、要求トルク等に応じて燃料噴射量が決定された後に、この燃料噴射量に応じて空気量(スロットル開度)が決定される燃料優先方式の制御が行われるため、目標空燃比と実空燃比とのずれが大きくなり、上記の問題が生じやすくなる。
【0004】
本発明はこのような事情を考慮してなされたものであり、従ってその目的は、成層燃焼、均質燃焼のいずれの燃焼モードに切り換える場合でも、燃焼を不安定にさせることなく燃焼モードを切り換えることができ、燃焼モード切換時の失火やトルクショックを抑えてドライバビリティを向上することができる筒内噴射式内燃機関の制御装置を提供することにある。
【0005】
本発明は、燃焼モード切換時において、その切換の前後の筒内の空燃比が燃焼安定性に大きく影響することに着目し、請求項1では、圧縮行程で筒内に燃料を噴射して成層燃焼させる成層燃焼モードで運転する成層燃焼モード制御手段と、吸気行程で筒内に燃料を噴射して均質燃焼させる均質燃焼モードで運転する均質燃焼モード制御手段と、前記成層燃焼モード制御手段による成層燃焼モードと前記均質燃焼モード制御手段による均質燃焼モードとを燃焼モード切換要求に応じて切り換える燃焼モード切換手段とを備えた筒内噴射式内燃機関の制御装置において、前記成層燃焼モード制御手段は、要求負荷に応じて目標燃料量を設定して燃料優先方式で成層燃焼モードの運転を制御し、前記均質燃焼モード制御手段は、要求負荷に応じて目標空気量を設定して空気優先方式で均質燃焼モードの運転を制御し、前記燃焼モード切換手段は、燃焼モード切換要求があった時に、成層燃焼、均質燃焼のいずれの燃焼モードにおいても、常に成層燃焼モードと仮定して筒内空燃比を推定する筒内空燃比推定手段と、この推定筒内空燃比に基づいて燃焼モード切換タイミングを判定して燃焼モードを切り換える手段とを備え、前記筒内空燃比推定手段は、スロットル通過空気量と機関回転速度等から筒内空気量を推定し、この推定筒内空気量を要求負荷に応じて設定された目標燃料量で割り算して推定筒内空燃比を算出する。つまり、均質燃焼と比較して成層燃焼の方が目標空燃比と実空燃比とのずれが大きく且つ燃焼が不安定になりやすいため、請求項1のように、常に成層燃焼モードと仮定して、燃焼安定性に大きく影響する筒内空燃比を推定し、この推定筒内空燃比に基づいて燃焼モード切換タイミングを決定すれば、成層燃焼、均質燃焼のいずれの燃焼モードに切り換える場合でも、燃焼を不安定にさせることなく燃焼モードを安定した燃焼状態で切り換えることができ、燃焼モード切換時の失火やトルクショックを抑えてドライバビリティを向上することができる。
【0006】
この場合、請求項1に係る発明では、筒内空燃比を推定する際に、スロットル通過空気量と機関回転速度等から筒内空気量を推定し、この推定筒内空気量を要求負荷に応じて設定された目標燃料量で割り算して推定筒内空燃比を算出するようにしている。筒内空燃比=筒内空気量/燃料量であるが、筒内空気量と燃料量は測定できないため、推定する必要がある。筒内空気量の推定方法は、スロットル通過空気量(エアフローメータの検出値)と機関回転速度等を入力情報とする筒内空気量推定モデル(吸入空気系のモデル)を用いて、筒内空気量を推定すれば良い。また、燃料を直接筒内に噴射する筒内噴射式内燃機関では、吸気ポート内壁に付着する燃料(ウェット)が存在しないため、燃料量は、目標燃料量と等しいと仮定しても良い。従って、推定筒内空燃比=推定筒内空気量/目標燃料量の計算によって推定筒内空燃比を精度良く算出することができる。
【0007】
前述した請求項1では、現在の燃焼モードが成層燃焼、均質燃焼のいずれの燃焼モードであっても、常に、成層燃焼モードと仮定して筒内空燃比を推定したが、請求項のように、切換え先の燃焼モードと仮定して筒内空燃比を推定し、この推定筒内空燃比に基づいて燃焼モード切換タイミングを判定して燃焼モードを切り換えるようにしても良い。例えば、成層燃焼モードから均質燃焼モードに切り換える場合は、均質燃焼モードと仮定して筒内空燃比を推定し、その反対に、均質燃焼モードから成層燃焼モードに切り換える場合は、成層燃焼モードと仮定して筒内空燃比を推定する。このようにすれば、常に、切換え先の燃焼モードの燃焼安定性を考慮して、より安定した燃焼モードの切換を行うことができる。
【0008】
この場合、請求項2に係る発明では、筒内空燃比を推定する際に、切換え先の燃焼モードが成層燃焼モードの場合は、スロットル通過空気量と機関回転速度等から筒内空気量を推定して、この推定筒内空気量を要求負荷に応じて設定された目標燃料量で割り算して成層燃焼モードでの推定筒内空燃比を算出し、一方、切換え先の燃焼モードが均質燃焼モードの場合は、要求負荷に応じて設定された目標空燃比を均質燃焼モードでの推定筒内空燃比とすれば良い。つまり、成層燃焼モードでの推定筒内空燃比は、請求項と同じ方法で推定すれば良いが、空気優先方式で制御する均質燃焼モードでは、燃料優先方式で制御する成層燃焼モードと比較して、目標空燃比と筒内空燃比とのずれが小さいため、均質燃焼モードでの推定筒内空燃比は、目標空燃比と等しいと仮定しても良い。
【0009】
また、請求項のように、推定筒内空燃比が所定範囲内に達した時に燃焼モードを切り換えるようにしても良い。つまり、燃焼安定性を確保できる筒内空燃比の範囲はある程度の幅があるため、それを考慮して、燃焼モードを切り換える推定筒内空燃比の範囲にある程度の幅を持たせても良く、これによって、成層燃焼、均質燃焼のいずれの燃焼モードに切り換える場合でも、燃焼安定性を確保できる筒内空燃比の範囲内で早期に燃焼モードを切り換えることができる。
【0010】
或は、請求項のように、推定筒内空燃比が燃焼切換可能な範囲内の中央値に達した時に燃焼モードを切り換えるようにしても良い。つまり、燃焼切換可能な範囲内の中央値付近は、燃焼状態が最も安定して切換可能であるため、推定筒内空燃比が燃焼切換可能な範囲内の中央値に達した時に燃焼モードを切り換えれば、燃焼状態が最も安定している時期に燃焼モードを切り換えることができる。
【0011】
【発明の実施の形態】
[実施形態(1)]
以下、本発明の実施形態(1)を図1乃至図6に基づいて説明する。まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。筒内噴射式内燃機関である筒内噴射式エンジン11の吸気管12の最上流部には、エアクリーナ(図示せず)が設けられ、このエアクリーナの下流側には、吸入空気量を検出するエアーフローメータ13が設けられている。このエアーフローメータ13の下流側には、DCモータ等のモータ14によって開度調節されるスロットルバルブ15が設けられている。このモータ14がエンジン電子制御回路(以下「ECU」と表記する)16からの出力信号に基づいて駆動されることで、スロットルバルブ15の開度(スロットル開度)が制御され、そのスロットル開度に応じて各気筒ヘの吸入空気量(筒内空気量)が調節される。
【0012】
このスロットルバルブ15の下流側にはサージタンク17が設けられ、このサージタンク17に、吸気圧を検出する吸気圧センサ18が取り付けられている。サージタンク17には、エンジン11の各気筒に空気を導入する吸気マニホールド19が接続され、各気筒の吸気マニホールド19内には、エンジン11の筒内のスワール流を制御するためのスワールコントロールバルブ20が設けられている。
【0013】
エンジン11の各気筒の上部には、燃料を筒内に直接噴射する燃料噴射弁21が取り付けられ、燃料タンク22内の燃料が燃料ポンプ23によって高圧に加圧されて各気筒の燃料噴射弁21に供給され、その燃料の圧力(燃圧)が燃圧センサ24によって検出される。エンジン11のシリンダヘッドには、各気筒毎に点火プラグ25が取り付けられ、各点火プラグ25の火花放電によって筒内の混合気に点火される。
【0014】
エンジン11の吸気バルブ26と排気バルブ27は、それぞれカム軸28,29によって駆動され、吸気側のカム軸28には、運転状態に応じて吸気バルブ26の開閉タイミングを可変する油圧式の可変バルブタイミング機構30が設けられている。この可変バルブタイミング機構30を駆動する油圧は、油圧制御弁31によって制御される。エンジン11の各気筒のピストン32の往復運動によってクランク軸33が回転駆動され、このクランク軸33の回転トルクによって外部負荷34(エアコンのコンプレッサ、オルタネータ、パワーステアリングのポンプ等)と車両駆動系が駆動される。エンジン11のシリンダブロックには、冷却水温を検出する水温センサ35が取り付けられている。
【0015】
一方、エンジン11の排気管36には、排ガスを浄化する三元触媒等の触媒37が設けられ、この触媒37の上流側に排ガスの空燃比を検出する空燃比センサ38が設けられている。排気管36のうちの空燃比センサ38の上流側とサージタンク17との間には、排ガスの一部を吸気側に環流させるためのEGR配管39が接続され、このEGR配管39の途中に排ガス環流量(EGR量)を制御するEGRバルブ40が設けられている。
【0016】
エンジン運転状態を制御するECU16は、マイクロコンピュータを主体として構成され、そのROM(記憶媒体)に記憶されたトルクディマンド制御プログラムを実行することで、図2に示す要求図示トルク演算手段51、燃焼モード切換手段52、均質燃焼モード制御手段53、成層燃焼モード制御手段54、目標空燃比設定手段55、筒内空燃比推定手段56の各機能を実現する。以下、これら各機能について具体的に説明する。
【0017】
要求図示トルク演算手段51は、アクセルペダルの開度(アクセル開度)を検出するアクセルセンサ41の出力等に基づいて要求図示トルクを算出する。ここで、要求図示トルクは、図示トルクの要求値(目標値)であり、図示トルクは、エンジン11の燃焼によって発生するトルク、つまりエンジン11の内部損失トルクや外部負荷トルク(補機類の負荷)を含めたトルクである。従って、図示トルクから内部損失トルクや外部負荷トルクを差し引いたトルクは、クランク軸33から取り出される軸トルク(正味トルク)となり、この軸トルクによって車両駆動系が駆動される。
【0018】
図3に示すように、要求図示トルク演算手段51は、アクセルセンサ41の出力(アクセル開度)、エンジン回転速度Ne、車速等に基づいて要求軸トルクを算出し、この要求軸トルクに後述する各種の損失トルクを加算し、更に、このトルクからアイドルスピードコントロール(ISC制御)によるトルク増減分を補正して要求図示トルクを求める。ここで、要求軸トルクに加算する内部損失トルクは、機械摩擦損失とポンピング損失であり、機械摩擦損失は、エンジン回転速度Neと冷却水温THWとに基づいてマップ又は数式によって算出され、ポンピング損失は、エンジン回転速度Neと吸気圧Pmとに基づいてマップ又は数式によって算出される。また、要求軸トルクに加算する外部負荷トルクは、エンジン11の動力で駆動される補機類(エアコンのコンプレッサ、オルタネータ、パワーステアリングのポンプ等)の負荷トルクであり、エアコン信号、オルタネータのフィールド電流等に応じて設定される。
【0019】
更に、要求図示トルク演算手段51は、内部損失トルクと外部負荷トルクを加算した要求軸トルクを、アイドルスピードコントロール(ISC制御)によるトルク増減分を補正することで、要求図示トルクを求める。ISC制御による補正トルク(トルク増減分)は、目標アイドル回転速度Netargetと現在のエンジン回転速度Neとに基づいてマップ又は数式によって算出される。
【0020】
一方、目標空燃比設定手段55は、要求図示トルク演算手段51で演算した要求図示トルクとエンジン回転速度Neとに基づいてマップ等により目標空燃比(目標A/F)を設定する。この目標空燃比は、均質燃焼モード制御手段53と成層燃焼モード制御手段54の両方で共通して使用される。
【0021】
燃焼モード切換手段52は、要求図示トルクとエンジン回転速度Neに応じてマップ等から要求燃焼モードを判定し、要求燃焼モードが現在の燃焼モードと異なる場合は、燃焼モード切換要求有りと判断して、後述する筒内空燃比推定手段56で算出した推定筒内空燃比が所定範囲内に達した時に燃焼モード制御手段53,54を切り換えて、燃焼モードを切り換える。例えば、低回転領域、低トルク領域では、成層燃焼モード制御手段54が選択され、成層燃焼モードで運転される。この成層燃焼モード運転時には、少量の燃料を圧縮行程で筒内に直接噴射して成層混合気を形成して成層燃焼させることで、燃費を向上させる。また、中・高回転領域、中・高トルク領域では、均質燃焼モード制御手段53が選択され、均質燃焼モードで運転される。この均質燃焼モード運転時には、燃料噴射量を増量して吸気行程で筒内に直接噴射して均質混合気を形成して均質燃焼させることで、エンジン出力や軸トルクを高める。
【0022】
一方、筒内空燃比推定手段56は、燃焼モード切換要求があった時に、成層燃焼、均質燃焼のいずれの燃焼モードにおいても、常に成層燃焼モードと仮定して推定筒内空燃比を次式により算出する。
推定筒内空燃比=推定筒内空気量/目標燃料量
【0023】
実際には、筒内空燃比=筒内空気量/燃料量であるが、筒内空気量と燃料量は測定できないため、推定する必要がある。筒内空気量の推定方法は、スロットル通過空気量(エアフローメータ13の検出値)、エンジン回転速度Ne、吸気圧Pm、EGR量等を入力情報とする筒内空気量推定モデル(吸入空気系のモデル)を用いて、筒内空気量を推定する。また、燃料を直接筒内に噴射する筒内噴射式エンジン11では、吸気ポート内壁に付着する燃料(ウェット)が存在しないため、燃料量は、目標燃料量と等しいと仮定しても良い。従って、図4に示すように、筒内空燃比推定手段56は、推定筒内空燃比=推定筒内空気量/目標燃料量の計算によって推定筒内空燃比を算出する。この際、目標燃料量は、要求図示トルクとエンジン回転速度Neとに基づいてマップ等により算出する。
【0024】
次に、図5(a)に基づいて、均質燃焼モード制御手段53の各機能を説明する。均質燃焼モード制御手段53は、要求図示トルクを目標空気量に変換してスロットル開度を設定する空気優先方式のトルクディマンド制御を行う。その際、点火時期や筒内の空燃比によって図示トルクが変動することを考慮して、要求図示トルクを点火時期効率(SA効率)と空燃比効率(A/F効率)とによって次式により補正する。
【0025】
補正後の要求図示トルク=要求図示トルク/(点火時期効率×空燃比効率)ここで、点火時期効率は、点火遅角量に応じてマップ等により設定され、点火遅角量が0の時に図示トルクが最大になることから、点火遅角量が0の時に点火時期効率=1に設定される。また、空燃比効率は、前述した目標空燃比に応じてマップ等により設定される。
【0026】
そして、補正後の要求図示トルクとエンジン回転速度Neに基づいてマップ等により目標空気量を算出し、この目標空気量とエンジン回転速度Ne、目標EGR量、内部EGR量(可変バルブタイミング機構30の進角量)等に基づいて空気系逆モデルを用いてスロットル開度の指令値を算出する。ここで、空気系逆モデルは、スロットルバルブ15から吸気ポートまでの空気の流れを模擬した空気系モデルの入出力関係を逆に解いたモデルである。この空気系逆モデルで算出したスロットル開度の指令値に応じた制御信号を電子スロットルシステムのモータ14に出力し、スロットルバルブ15を駆動してスロットル開度を制御する。
【0027】
また、均質燃焼モード制御手段53は、推定筒内空気量(又は実空気量)を目標空燃比で割り算して目標燃料量を算出し、この目標燃料量に各種の補正係数(水温補正係数、フィードバック補正係数、学習補正係数等)を乗算して最終的な燃料噴射量を求め、この燃料噴射量に応じたパルス幅の噴射パルスを、各気筒の吸気行程で燃料噴射弁21に出力して燃料噴射を実行する。これにより、均質燃焼モード運転時には、吸気行程で燃料を筒内に直接噴射して均質混合気を形成して均質燃焼させる。
【0028】
更に、均質燃焼モード制御手段53は、運転状態に応じて目標EGR量をマップ等により算出し、その算出結果に応じてEGRバルブ40を駆動してEGR量を目標EGR量に制御する。
【0029】
また、均質燃焼モード制御手段53は、運転状態に応じて各気筒の点火時期をマップ等により算出し、その点火時期に点火プラグ25に高電圧を印加して火花放電を発生させる。この点火時期から前述した点火時期効率が算出される。
【0030】
次に、図5(b)に基づいて、成層燃焼モード制御手段54の各機能を説明する。成層燃焼モード制御手段54は、要求図示トルクを目標燃料量に変換し、この目標燃料量と目標空燃比とを乗算して目標空気量を求めてスロットル開度を設定する燃料優先方式のトルクディマンド制御を行う。その際、筒内の空燃比によって図示トルクが変動することを考慮して、要求図示トルクを空燃比効率で割り算して要求図示トルクを補正する。
補正後の要求図示トルク=要求図示トルク/空燃比効率
ここで、空燃比効率は、目標空燃比に応じてマップ等により算出する。
【0031】
そして、補正後の要求図示トルクとエンジン回転速度Neとに基づいてマップ等により目標燃料量を算出し、この目標燃料量に各種の補正係数(水温補正係数、フィードバック補正係数、学習補正係数等)を乗算して最終的な燃料噴射量を求め、この燃料噴射量に応じたパルス幅の噴射パルスを、各気筒の圧縮行程で燃料噴射弁21に出力して燃料噴射を実行する。これにより、成層燃焼モード運転時には、圧縮行程で燃料を筒内に直接噴射して成層混合気を形成して成層燃焼させる。
【0032】
更に、成層燃焼モード制御手段54は、目標燃料量とエンジン回転速度Neに応じて点火時期をマップ等により算出し、その点火時期に点火プラグ25に高電圧を印加して火花放電を発生させる。
【0033】
また、成層燃焼モード制御手段54は、目標燃料量に目標空燃比を乗算して目標空気量を算出し、この目標空気量、エンジン回転速度Ne、目標EGR量、内部EGR量(可変バルブタイミング機構30の進角量)等に基づいて空気系逆モデルを用いてスロットル開度の指令値を算出し、このスロットル開度の指令値に応じた制御信号を電子スロットルシステムのモータ14に出力し、スロットルバルブ15を駆動してスロットル開度を制御する。更に、目標EGR量に応じてEGRバルブ40を駆動してEGR量を目標EGR量に制御する。
【0034】
以上説明した筒内噴射式エンジン11のトルクディマンド制御は、ECU16によって図6に示すような手順で実行される。まず、ステップ101で、アクセルセンサ41の出力(アクセル開度)、エンジン回転速度Ne、車速等に基づいて要求軸トルクを算出し、この要求軸トルクに内部損失トルクと外部負荷トルクを加算し、更に、このトルクをISC制御によるトルク増減分で補正して要求図示トルクを求める。この後、ステップ102に進み、要求図示トルクとエンジン回転速度Neに応じてマップ等から均質燃焼モードと成層燃焼モードのいずれか一方を要求燃焼モードとして選択し、次のステップ103で、この要求燃焼モードが現在の燃焼モードと異なるか否かで燃焼モード切換要求有りか否かを判定する。燃焼モード切換要求が無ければ、現在の燃焼モードをそのまま継続する(ステップ108〜110)。
【0035】
もし、ステップ103で、燃焼モード切換要求有りと判定されれば、ステップ104に進み、要求図示トルクとエンジン回転速度Neとに基づいてマップ等により燃焼モード切換用の目標空燃比を設定する。この後、ステップ105で、成層燃焼、均質燃焼のいずれの燃焼モードにおいても、常に成層燃焼モードと仮定して推定筒内空燃比を次式により算出する。
推定筒内空燃比=推定筒内空気量/目標燃料量
【0036】
この際、推定筒内空気量は、スロットル通過空気量(エアフローメータ13の検出値)、エンジン回転速度Ne等を入力情報とする筒内空気量推定モデルによって算出し、目標燃料量は、要求図示トルクとエンジン回転速度Neとに基づいてマップ等により算出する。
【0037】
推定筒内空燃比の算出後、ステップ106に進み、推定筒内空燃比が燃焼切換可能な所定範囲内(A/Flow <推定筒内空燃比<A/Fhigh)であるか否かを判定し、推定筒内空燃比が燃焼切換可能な所定範囲内でなければ、燃焼モード切換タイミングに達していないと判断して、ステップ105に戻り、再度、推定筒内空燃比を算出して、推定筒内空燃比が燃焼切換可能な所定範囲内に達したか否かを判定する処理を繰り返す。
【0038】
その後、推定筒内空燃比が燃焼切換可能な所定範囲内に達した時に、燃焼モード切換タイミングに達したと判断して、ステップ107に進み、要求燃焼モードが均質燃焼モードであるか否かを判定し、要求燃焼モードが均質燃焼モードであれば、ステップ109に進み、燃焼モードを均質燃焼モードに切り換え、要求燃焼モードが成層燃焼モードであれば、ステップ110に進み、燃焼モードを成層燃焼モードに切り換える。
【0039】
均質燃焼モードの運転中は、要求図示トルクとエンジン回転速度Neとに基づいてマップ等により目標空気量を算出し、この目標空気量とエンジン回転速度Ne等に基づいて空気系逆モデルを用いてスロットル開度の指令値を算出する。その後、このスロットル開度の指令値に応じた制御信号を電子スロットルシステムのモータ14に出力し、スロットルバルブ15を駆動してスロットル開度を制御する。
【0040】
また、均質燃焼モードの運転中は、次のようにして燃料噴射量を算出する。まず、筒内空気量推定モデルを用いてスロットル通過空気量、吸気圧Pm、エンジン回転速度Neから推定筒内空気量を算出する。この後、推定筒内空気量を目標空燃比で割り算して目標燃料量を算出し、この目標燃料量に各種の補正係数(水温補正係数、フィードバック補正係数、学習補正係数等)を乗算して最終的な燃料噴射量を求める。その後、この燃料噴射量に応じたパルス幅の噴射パルスを、各気筒の吸気行程で燃料噴射弁21に出力して燃料噴射を実行する。これにより、均質燃焼モード運転時には、吸気行程で燃料を筒内に直接噴射して均質混合気を形成して均質燃焼させる。
【0041】
一方、成層燃焼モードの運転中は、要求図示トルクとエンジン回転速度Neとに基づいてマップ等により目標燃料量を算出し、この目標燃料量に各種の補正係数(水温補正係数、フィードバック補正係数、学習補正係数等)を乗算して最終的な燃料噴射量を求め、この燃料噴射量に応じたパルス幅の噴射パルスを、各気筒の圧縮行程で燃料噴射弁21に出力して燃料噴射を実行する。これにより、成層燃焼モード運転時には、圧縮行程で燃料を筒内に直接噴射して成層混合気を形成して成層燃焼させる。
【0042】
更に、成層燃焼モードの運転中は、目標空燃比と目標燃料量とを乗算して目標空気量を求め、この目標空気量とエンジン回転速度Ne等に基づいて空気系逆モデルを用いてスロットル開度の指令値を算出する。そして、このスロットル開度の指令値に応じた制御信号を電子スロットルシステムのモータ14に出力し、スロットルバルブ15を駆動してスロットル開度を制御する。
【0043】
以上説明した本実施形態(1)の筒内噴射式エンジン11の燃焼モード切換判定方法によれば、燃焼モード切換時において、その切換の前後の筒内の空燃比が燃焼安定性に大きく影響することに着目し、また、均質燃焼と比較して成層燃焼の方が目標空燃比と実空燃比とのずれが大きく且つ燃焼が不安定になりやすいことを考慮して、燃焼モード切換要求があった時に、成層燃焼、均質燃焼のいずれの燃焼モードにおいても、常に成層燃焼モードと仮定して筒内空燃比を推定し、この推定筒内空燃比に基づいて燃焼モード切換タイミングを判定して燃焼モードを切り換えるようにしたので、成層燃焼、均質燃焼のいずれの燃焼モードに切り換える場合でも、燃焼を不安定にさせることなく燃焼モードを安定した燃焼状態で切り換えることができ、燃焼モード切換時の失火やトルクショックを抑えてドライバビリティを向上することができる。
【0044】
[実施形態(2)]
前記実施形態(1)では、現在の燃焼モードが成層燃焼、均質燃焼のいずれの燃焼モードであっても、常に、成層燃焼モードと仮定して筒内空燃比を推定したが、図7及び図8に示す本発明の実施形態(2)では、燃焼モード切換要求があった時に、切換え先の燃焼モードと仮定して筒内空燃比を推定し、この推定筒内空燃比に基づいて燃焼モード切換タイミングを判定して燃焼モードを切り換えるようにしている。以下、前記実施形態(1)と異なる部分について説明する。
【0045】
本実施形態(2)では、成層燃焼モード用の筒内空燃比推定手段57と均質燃焼モード用の筒内空燃比推定手段58を備えている。成層燃焼モード用の筒内空燃比推定手段57は、燃焼モードを均質燃焼モードから成層燃焼モードに切り換える場合に、成層燃焼モードでの推定筒内空燃比を次式により算出する。
【0046】
成層燃焼モードでの推定筒内空燃比=推定筒内空気量/目標燃料量
この推定筒内空燃比の算出方法は、前記実施形態(1)の筒内空燃比推定手段56と全く同じである。
【0047】
一方、均質燃焼モード用の筒内空燃比推定手段58は、燃焼モードを成層燃焼モードから均質燃焼モードに切り換える場合に、均質燃焼モードでの推定筒内空燃比を目標空燃比設定手段55で設定された目標空燃比と同一の値に設定する。
【0048】
均質燃焼モードでの推定筒内空燃比=目標空燃比
つまり、空気優先方式で制御する均質燃焼モードでは、燃料優先方式で制御する成層燃焼モードと比較して、目標空燃比と筒内空燃比とのずれが小さいため、均質燃焼モードでの推定筒内空燃比は、目標空燃比と等しいと仮定しても良い。
【0049】
本実施形態(2)の筒内噴射式エンジン11のトルクディマンド制御は、ECU16によって図8に示すような手順で実行される。まず、ステップ201,202で、前記実施形態(1)のステップ101,102と同じ方法で、要求図示トルクを演算して、この要求図示トルク等から要求燃焼モードを選択する。次のステップ203で、燃焼モード切換要求が無いと判定されれば、現在の燃焼モードをそのまま継続するが(ステップ210〜212)、燃焼モード切換要求が有ると判定されれば、ステップ203からステップ204に進み、前記実施形態(1)のステップ104と同じ方法で燃焼モード切換用の目標空燃比を設定した後、ステップ205に進み、現在の燃焼モードが均質燃焼モードであるか否かを判定する。
【0050】
現在の燃焼モードが均質燃焼モードである場合は、ステップ206に進み、切換先の燃焼モードとなる成層燃焼モードでの推定筒内空燃比を、前記実施形態(1)のステップ105と同じ方法で算出する。
成層燃焼モードでの推定筒内空燃比=推定筒内空気量/目標燃料量
【0051】
一方、現在の燃焼モードが成層燃焼モードである場合は、ステップ207に進み、切換先の燃焼モードとなる均質燃焼モードでの推定筒内空燃比を、ステップ204で設定された目標空燃比と同一の値に設定する。
均質燃焼モードでの推定筒内空燃比=目標空燃比
【0052】
以上のようにしたステップ206又は207で、切換先の燃焼モードでの推定筒内空燃比を算出した後、ステップ208に進み、推定筒内空燃比が燃焼切換可能な所定範囲内(A/Flow <推定筒内空燃比<A/Fhigh)であるか否かを判定し、推定筒内空燃比が燃焼切換可能な所定範囲内でなければ、燃焼モード切換タイミングに達していないと判断して、ステップ205に戻り、再度、切換先の燃焼モードでの推定筒内空燃比を算出して、推定筒内空燃比が燃焼切換可能な所定範囲内に達したか否かを判定する処理を繰り返す。
【0053】
その後、切換先の燃焼モードでの推定筒内空燃比が燃焼切換可能な所定範囲内に達した時に、燃焼モード切換タイミングに達したと判断して、ステップ209に進み、要求燃焼モードが均質燃焼モードであるか否かを判定し、要求燃焼モードが均質燃焼モードであれば、ステップ211に進み、燃焼モードを均質燃焼モードに切り換え、要求燃焼モードが成層燃焼モードであれば、ステップ212に進み、燃焼モードを成層燃焼モードに切り換える。
【0054】
以上説明した本実施形態(2)の筒内噴射式エンジン11の燃焼モード切換判定方法によれば、燃焼モードを切り換える際に、切換え先の燃焼モードと仮定して筒内空燃比を推定し、この推定筒内空燃比に基づいて燃焼モード切換タイミングを判定して燃焼モードを切り換えるようにしたので、常に、切換え先の燃焼モードの燃焼安定性を考慮して、より安定した燃焼モードの切換を行うことができる。
【0055】
尚、各実施形態(1),(2)では、推定筒内空燃比が燃焼切換可能な所定範囲内(A/Flow <推定筒内空燃比<A/Fhigh)に達した時に、燃焼モードを切り換えるようにしたが、推定筒内空燃比が燃焼切換可能な範囲内の中央値に達した時に燃焼モードを切り換えるようにしても良い。つまり、燃焼切換可能な範囲内の中央値付近は、燃焼状態が最も安定して切換可能であるため、推定筒内空燃比が燃焼切換可能な範囲内の中央値に達した時に燃焼モードを切り換えれば、燃焼状態が最も安定している時に燃焼モードを切り換えることができる。
【0056】
また、燃焼モードの切換判定に用いる所定範囲(A/Flow 〜A/Fhigh)又は所定値(中央値)を、切換先の燃焼モードに応じて変更するようにしても良い。このようにすれば、切換先の燃焼モードに最も適したタイミングで燃焼モードを切り換えることができる。
【0057】
その他、本発明は、筒内空燃比の推定方法を適宜変更しても良い等、種々変更して実施できる。
【図面の簡単な説明】
【図1】実施形態(1)を示す筒内噴射式エンジン制御システム全体の概略構成図
【図2】実施形態(1)の筒内噴射式エンジンのトルクディマンド制御の概要を説明するブロック図
【図3】要求図示トルク演算手段の機能を説明するブロック図
【図4】筒内空燃比推定手段の機能を説明するブロック図
【図5】(a)は均質燃焼モード制御手段の機能を説明するブロック図、(b)は成層燃焼モード制御手段の機能を説明するブロック図
【図6】実施形態(1)の筒内噴射式エンジンのトルクディマンド制御の概要を説明するフローチャート
【図7】実施形態(2)の筒内噴射式エンジンのトルクディマンド制御の概要を説明するブロック図
【図8】実施形態(2)の筒内噴射式エンジンのトルクディマンド制御の概要を説明するフローチャート
【符号の説明】
11…筒内噴射式エンジン(筒内噴射式内燃機関)、12…吸気管、13…エアフローメータ、15…スロットルバルブ、16…ECU(燃焼モード切換手段)、18…吸気圧センサ、21…燃料噴射弁、25…点火プラグ、33…クランク軸、34…外部負荷、36…排気管、40…EGRバルブ、41…アクセルセンサ、51…要求図示トルク演算手段、52…燃焼モード切換手段、53…均質燃焼モード制御手段、54…成層燃焼モード制御手段、55…目標空燃比設定手段、56…筒内空燃比推定手段、57…成層燃焼モード用の筒内空燃比推定手段、58…均質燃焼モード用の筒内空燃比推定手段。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control apparatus for a direct injection internal combustion engine that switches a combustion mode between a stratified combustion mode (compression stroke injection mode) and a homogeneous combustion mode (intake stroke injection mode) in accordance with an operating state. It is.
[0002]
[Prior art]
In recent years, the demand for in-cylinder injection engines (direct injection engines) that combine the features of low fuel consumption, low exhaust emissions, and high output has been increasing rapidly. This in-cylinder injection type engine improves fuel economy by injecting a small amount of fuel directly into the cylinder during the compression stroke to form a stratified mixture and stratified combustion at low loads, while at the middle and high loads The engine output is increased by increasing the fuel injection amount and directly injecting it into the cylinder during the intake stroke to form a homogeneous mixture and to perform homogeneous combustion. In such an in-cylinder injection engine, as shown in Japanese Patent Laid-Open No. 10-299536, when a combustion mode switching condition is satisfied (when a combustion mode switching request is made), a target is selected according to the combustion mode of the switching destination. Some change the combustion mode after changing the air-fuel ratio.
[0003]
[Problems to be solved by the invention]
However, even if the target air-fuel ratio is set when switching the combustion mode, the actual air-fuel ratio in the cylinder does not follow the target air-fuel ratio due to a transient delay of the intake air system. If the combustion mode is switched, the combustion becomes unstable and there is a risk of misfire or torque shock. In particular, in the stratified combustion mode, after the fuel injection amount is determined according to the required torque or the like, the fuel priority system control is performed in which the air amount (throttle opening) is determined according to the fuel injection amount. The difference between the target air-fuel ratio and the actual air-fuel ratio becomes large, and the above problem is likely to occur.
[0004]
The present invention has been made in view of such circumstances, and therefore the object of the present invention is to switch the combustion mode without destabilizing the combustion, regardless of whether the combustion mode is stratified combustion or homogeneous combustion. An object of the present invention is to provide a control device for a direct injection internal combustion engine that can improve drivability by suppressing misfire and torque shock at the time of switching the combustion mode.
[0005]
The present invention focuses on the fact that when the combustion mode is switched, the air-fuel ratio in the cylinder before and after the switching greatly affects the combustion stability. A stratified combustion mode control means that operates in a stratified combustion mode in which fuel is injected into the cylinder during the compression stroke, and a homogeneous combustion mode that operates in a homogeneous combustion mode in which fuel is injected into the cylinder during the intake stroke to perform homogeneous combustion An in-cylinder injection internal combustion engine comprising: a control unit; and a combustion mode switching unit that switches between a stratified combustion mode by the stratified combustion mode control unit and a homogeneous combustion mode by the homogeneous combustion mode control unit according to a combustion mode switching request. In the control device, the stratified combustion mode control means controls the operation of the stratified combustion mode by a fuel priority method by setting a target fuel amount according to the required load, and the homogeneous combustion mode control means responds to the required load. Set the target air amount and control the operation in the homogeneous combustion mode with the air priority method, Combustion mode switching means always estimates the in-cylinder air-fuel ratio when it is requested to switch the combustion mode, assuming that the combustion mode is stratified combustion or homogeneous combustion. In-cylinder air-fuel ratio estimating means The combustion mode switching timing is determined on the basis of the estimated in-cylinder air-fuel ratio, and the combustion mode is switched. And the in-cylinder air-fuel ratio estimating means estimates the in-cylinder air amount from the throttle passing air amount, the engine speed, etc., and the estimated in-cylinder air amount is set according to the required load. The estimated in-cylinder air-fuel ratio is calculated by dividing by. That is, the stratified charge combustion is more likely to be unstable than the homogeneous combustion because the difference between the target air-fuel ratio and the actual air-fuel ratio is larger and the combustion tends to be unstable. If the in-cylinder air-fuel ratio that greatly affects the combustion stability is estimated and the combustion mode switching timing is determined based on this estimated in-cylinder air-fuel ratio, the combustion can be performed regardless of whether the combustion mode is switched to stratified combustion or homogeneous combustion. The combustion mode can be switched in a stable combustion state without destabilizing the engine, and misfire and torque shock at the time of switching the combustion mode can be suppressed to improve drivability.
[0006]
In this case, the claim In the invention according to 1, When estimating the in-cylinder air-fuel ratio, the in-cylinder air amount is estimated from the amount of air passing through the throttle and the engine speed, etc., and this estimated in-cylinder air amount is divided by the target fuel amount set according to the required load. To calculate the estimated in-cylinder air-fuel ratio is doing . In-cylinder air-fuel ratio = in-cylinder air amount / fuel amount. However, since the in-cylinder air amount and the fuel amount cannot be measured, they need to be estimated. The in-cylinder air amount is estimated by using an in-cylinder air amount estimation model (intake air system model) that uses as input information the amount of air passing through the throttle (detected value of the air flow meter) and the engine speed. What is necessary is just to estimate the quantity. Further, in a direct injection internal combustion engine that injects fuel directly into a cylinder, there is no fuel (wet) adhering to the inner wall of the intake port, so the fuel amount may be assumed to be equal to the target fuel amount. Therefore, the estimated in-cylinder air-fuel ratio can be accurately calculated by calculating the estimated in-cylinder air-fuel ratio = estimated in-cylinder air amount / target fuel amount.
[0007]
In the above-described claim 1, the in-cylinder air-fuel ratio is always assumed to be the stratified combustion mode regardless of whether the current combustion mode is stratified combustion or homogeneous combustion. 2 As described above, the in-cylinder air-fuel ratio may be estimated on the assumption that the combustion mode is the switching destination, and the combustion mode switching timing may be determined based on the estimated in-cylinder air-fuel ratio to switch the combustion mode. For example, when switching from the stratified combustion mode to the homogeneous combustion mode, the in-cylinder air-fuel ratio is estimated assuming the homogeneous combustion mode, and conversely, when switching from the homogeneous combustion mode to the stratified combustion mode, the stratified combustion mode is assumed. Thus, the in-cylinder air-fuel ratio is estimated. In this way, it is possible to always switch the combustion mode more stably in consideration of the combustion stability of the combustion mode of the switching destination.
[0008]
In this case, the claim In the invention according to 2 When estimating the in-cylinder air-fuel ratio, if the switching destination combustion mode is the stratified combustion mode, the in-cylinder air amount is estimated from the amount of air passing through the throttle and the engine speed, and the estimated in-cylinder air amount is calculated. Divide by the target fuel amount set according to the required load to calculate the estimated in-cylinder air-fuel ratio in the stratified combustion mode. On the other hand, if the switching combustion mode is the homogeneous combustion mode, set according to the required load The estimated target air-fuel ratio is used as the estimated in-cylinder air-fuel ratio in the homogeneous combustion mode. If good. That is, the estimated in-cylinder air-fuel ratio in the stratified combustion mode is as follows: 1 However, in the homogeneous combustion mode controlled by the air priority method, the difference between the target air-fuel ratio and the in-cylinder air-fuel ratio is small compared to the stratified combustion mode controlled by the fuel priority method. The estimated in-cylinder air-fuel ratio in the homogeneous combustion mode may be assumed to be equal to the target air-fuel ratio.
[0009]
Claims 3 As described above, the combustion mode may be switched when the estimated in-cylinder air-fuel ratio reaches a predetermined range. In other words, the range of the in-cylinder air / fuel ratio at which combustion stability can be ensured has a certain range, and in consideration thereof, the estimated in-cylinder air / fuel ratio range for switching the combustion mode may have a certain range, As a result, even when switching between the stratified combustion mode and the homogeneous combustion mode, the combustion mode can be switched at an early stage within the range of the in-cylinder air-fuel ratio that can ensure the combustion stability.
[0010]
Or claims 4 As described above, the combustion mode may be switched when the estimated in-cylinder air-fuel ratio reaches the median value within the range where combustion switching is possible. In other words, near the median value within the combustion switchable range, the combustion state can be switched most stably, so the combustion mode is switched when the estimated in-cylinder air-fuel ratio reaches the median value within the combustion switchable range. If so, the combustion mode can be switched when the combustion state is most stable.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
[Embodiment (1)]
Hereinafter, an embodiment (1) of the present invention will be described with reference to FIGS. First, a schematic configuration of the entire engine control system will be described with reference to FIG. An air cleaner (not shown) is provided at the most upstream portion of the intake pipe 12 of the direct injection internal combustion engine 11 which is an indirect injection internal combustion engine, and air for detecting the intake air amount is provided downstream of the air cleaner. A flow meter 13 is provided. A throttle valve 15 whose opening degree is adjusted by a motor 14 such as a DC motor is provided on the downstream side of the air flow meter 13. The motor 14 is driven based on an output signal from an engine electronic control circuit (hereinafter referred to as “ECU”) 16, whereby the opening degree of the throttle valve 15 (throttle opening degree) is controlled. Accordingly, the intake air amount (in-cylinder air amount) to each cylinder is adjusted.
[0012]
A surge tank 17 is provided on the downstream side of the throttle valve 15, and an intake pressure sensor 18 for detecting intake pressure is attached to the surge tank 17. An intake manifold 19 for introducing air into each cylinder of the engine 11 is connected to the surge tank 17, and a swirl control valve 20 for controlling the swirl flow in the cylinder of the engine 11 is provided in the intake manifold 19 of each cylinder. Is provided.
[0013]
A fuel injection valve 21 for directly injecting fuel into the cylinder is attached to the upper part of each cylinder of the engine 11. The fuel in the fuel tank 22 is pressurized to a high pressure by the fuel pump 23, and the fuel injection valve 21 for each cylinder. The fuel pressure (fuel pressure) is detected by the fuel pressure sensor 24. A spark plug 25 is attached to the cylinder head of the engine 11 for each cylinder, and the air-fuel mixture in the cylinder is ignited by the spark discharge of each spark plug 25.
[0014]
The intake valve 26 and the exhaust valve 27 of the engine 11 are driven by cam shafts 28 and 29, respectively. The intake-side cam shaft 28 is a hydraulic variable valve that varies the opening and closing timing of the intake valve 26 according to the operating state. A timing mechanism 30 is provided. The hydraulic pressure that drives the variable valve timing mechanism 30 is controlled by a hydraulic control valve 31. The crankshaft 33 is rotationally driven by the reciprocating motion of the piston 32 of each cylinder of the engine 11, and the external load 34 (air conditioner compressor, alternator, power steering pump, etc.) and the vehicle drive system are driven by the rotational torque of the crankshaft 33. Is done. A water temperature sensor 35 for detecting the cooling water temperature is attached to the cylinder block of the engine 11.
[0015]
On the other hand, the exhaust pipe 36 of the engine 11 is provided with a catalyst 37 such as a three-way catalyst that purifies the exhaust gas, and an air-fuel ratio sensor 38 that detects the air-fuel ratio of the exhaust gas is provided upstream of the catalyst 37. An EGR pipe 39 for circulating a part of the exhaust gas to the intake side is connected between the upstream side of the air-fuel ratio sensor 38 in the exhaust pipe 36 and the surge tank 17. An EGR valve 40 for controlling the ring flow rate (EGR amount) is provided.
[0016]
The ECU 16 that controls the engine operating state is configured mainly by a microcomputer, and executes a torque demand control program stored in a ROM (storage medium) thereof, whereby the requested indicated torque calculation means 51, combustion mode shown in FIG. Each function of the switching means 52, the homogeneous combustion mode control means 53, the stratified combustion mode control means 54, the target air-fuel ratio setting means 55, and the in-cylinder air-fuel ratio estimation means 56 is realized. Each of these functions will be specifically described below.
[0017]
The requested indicated torque calculation means 51 calculates the indicated indicated torque based on the output of the accelerator sensor 41 that detects the opening of the accelerator pedal (accelerator opening). Here, the required indicated torque is a required value (target value) of the indicated torque, and the indicated torque is a torque generated by combustion of the engine 11, that is, an internal loss torque of the engine 11 or an external load torque (load of auxiliary equipment). ) Including torque. Therefore, the torque obtained by subtracting the internal loss torque and the external load torque from the indicated torque becomes the shaft torque (net torque) extracted from the crankshaft 33, and the vehicle drive system is driven by this shaft torque.
[0018]
As shown in FIG. 3, the required indicated torque calculating means 51 calculates a required shaft torque based on the output (accelerator opening) of the accelerator sensor 41, the engine rotational speed Ne, the vehicle speed, etc., and this required shaft torque will be described later. Various loss torques are added, and the required indicated torque is obtained by correcting the torque increase / decrease by idle speed control (ISC control) from this torque. Here, the internal loss torque added to the required shaft torque is a mechanical friction loss and a pumping loss. The mechanical friction loss is calculated by a map or a mathematical formula based on the engine speed Ne and the coolant temperature THW, and the pumping loss is Based on the engine speed Ne and the intake pressure Pm, it is calculated by a map or a mathematical expression. The external load torque to be added to the required shaft torque is the load torque of auxiliary equipment (air conditioner compressor, alternator, power steering pump, etc.) driven by the power of the engine 11, and the air conditioner signal and the field current of the alternator. It is set according to etc.
[0019]
Further, the requested indicated torque calculating means 51 obtains the requested indicated torque by correcting the torque increase / decrease by the idle speed control (ISC control) with respect to the required shaft torque obtained by adding the internal loss torque and the external load torque. The correction torque (torque increase / decrease) by the ISC control is calculated by a map or a mathematical formula based on the target idle rotation speed Netarget and the current engine rotation speed Ne.
[0020]
On the other hand, the target air-fuel ratio setting means 55 sets the target air-fuel ratio (target A / F) by a map or the like based on the required indicated torque calculated by the required indicated torque calculating means 51 and the engine speed Ne. This target air-fuel ratio is used in common by both the homogeneous combustion mode control means 53 and the stratified combustion mode control means 54.
[0021]
The combustion mode switching means 52 determines the required combustion mode from a map or the like according to the required indicated torque and the engine rotational speed Ne. If the required combustion mode is different from the current combustion mode, it determines that there is a combustion mode switching request. When the estimated in-cylinder air-fuel ratio calculated by the in-cylinder air-fuel ratio estimating means 56 described later reaches a predetermined range, the combustion mode control means 53, 54 are switched to switch the combustion mode. For example, in the low rotation region and the low torque region, the stratified combustion mode control means 54 is selected and operated in the stratified combustion mode. During this stratified combustion mode operation, a small amount of fuel is directly injected into the cylinder in the compression stroke to form a stratified mixture and stratified combustion to improve fuel efficiency. In the middle / high rotation range and the middle / high torque range, the homogeneous combustion mode control means 53 is selected and operated in the homogeneous combustion mode. During this homogeneous combustion mode operation, the engine output and the shaft torque are increased by increasing the fuel injection amount and directly injecting into the cylinder during the intake stroke to form a homogeneous mixture and performing homogeneous combustion.
[0022]
On the other hand, the in-cylinder air-fuel ratio estimating means 56 always assumes the stratified combustion mode in any of the stratified combustion mode and the homogeneous combustion mode when the combustion mode switching request is made, and calculates the estimated in-cylinder air-fuel ratio by the following equation. calculate.
Estimated in-cylinder air-fuel ratio = Estimated in-cylinder air amount / Target fuel amount
[0023]
Actually, the in-cylinder air-fuel ratio = the in-cylinder air amount / the fuel amount. However, since the in-cylinder air amount and the fuel amount cannot be measured, they need to be estimated. The in-cylinder air amount is estimated by using a cylinder air amount estimation model (intake air system model) that uses as input information a throttle passing air amount (detected value of the air flow meter 13), an engine speed Ne, an intake pressure Pm, an EGR amount, and the like. Model) to estimate the in-cylinder air amount. Further, in the in-cylinder injection type engine 11 that directly injects fuel into the cylinder, there is no fuel (wet) adhering to the inner wall of the intake port, so the fuel amount may be assumed to be equal to the target fuel amount. Therefore, as shown in FIG. 4, the in-cylinder air-fuel ratio estimating means 56 calculates the estimated in-cylinder air-fuel ratio by calculating: estimated in-cylinder air-fuel ratio = estimated in-cylinder air amount / target fuel amount. At this time, the target fuel amount is calculated by a map or the like based on the required indicated torque and the engine speed Ne.
[0024]
Next, each function of the homogeneous combustion mode control means 53 is demonstrated based on Fig.5 (a). The homogeneous combustion mode control means 53 performs air priority type torque demand control in which the required indicated torque is converted into a target air amount to set the throttle opening. At that time, considering that the indicated torque fluctuates depending on the ignition timing and the air-fuel ratio in the cylinder, the required indicated torque is corrected by the following equation based on the ignition timing efficiency (SA efficiency) and the air-fuel ratio efficiency (A / F efficiency). To do.
[0025]
Requested indicated torque after correction = requested indicated torque / (ignition timing efficiency × air-fuel ratio efficiency) Here, the ignition timing efficiency is set by a map or the like according to the ignition retard amount, and is shown when the ignition retard amount is zero. Since the torque becomes maximum, the ignition timing efficiency is set to 1 when the ignition retard amount is zero. The air-fuel ratio efficiency is set by a map or the like according to the target air-fuel ratio described above.
[0026]
Then, a target air amount is calculated by a map or the like based on the corrected requested indicated torque and the engine rotational speed Ne, and the target air amount, the engine rotational speed Ne, the target EGR amount, the internal EGR amount (of the variable valve timing mechanism 30). A command value for the throttle opening is calculated using an air system inverse model based on the advance amount). Here, the air system inverse model is a model obtained by reversing the input / output relationship of the air system model simulating the air flow from the throttle valve 15 to the intake port. A control signal corresponding to the command value of the throttle opening calculated by the air system inverse model is output to the motor 14 of the electronic throttle system, and the throttle valve 15 is driven to control the throttle opening.
[0027]
The homogeneous combustion mode control means 53 calculates a target fuel amount by dividing the estimated in-cylinder air amount (or actual air amount) by the target air-fuel ratio, and various correction coefficients (water temperature correction coefficient, The final fuel injection amount is obtained by multiplying the feedback correction coefficient, the learning correction coefficient, etc.), and an injection pulse having a pulse width corresponding to the fuel injection amount is output to the fuel injection valve 21 in the intake stroke of each cylinder. Perform fuel injection. As a result, during the homogeneous combustion mode operation, fuel is directly injected into the cylinder during the intake stroke to form a homogeneous mixture and cause homogeneous combustion.
[0028]
Further, the homogeneous combustion mode control means 53 calculates a target EGR amount by a map or the like according to the operating state, and drives the EGR valve 40 according to the calculation result to control the EGR amount to the target EGR amount.
[0029]
Further, the homogeneous combustion mode control means 53 calculates the ignition timing of each cylinder by a map or the like according to the operating state, and applies a high voltage to the spark plug 25 at the ignition timing to generate spark discharge. The ignition timing efficiency described above is calculated from this ignition timing.
[0030]
Next, each function of the stratified combustion mode control means 54 will be described based on FIG. The stratified combustion mode control means 54 converts the required indicated torque into a target fuel amount, multiplies the target fuel amount and the target air-fuel ratio, obtains the target air amount, and sets the throttle opening so as to set the throttle opening. Take control. At this time, taking into consideration that the indicated torque varies depending on the air-fuel ratio in the cylinder, the required indicated torque is corrected by dividing the required indicated torque by the air-fuel ratio efficiency.
Requested indicated torque after correction = Requested indicated torque / Air-fuel ratio efficiency
Here, the air-fuel ratio efficiency is calculated by a map or the like according to the target air-fuel ratio.
[0031]
Then, a target fuel amount is calculated by a map or the like based on the corrected requested indicated torque and the engine rotational speed Ne, and various correction coefficients (water temperature correction coefficient, feedback correction coefficient, learning correction coefficient, etc.) are calculated for this target fuel amount. To obtain a final fuel injection amount, and an injection pulse having a pulse width corresponding to the fuel injection amount is output to the fuel injection valve 21 in the compression stroke of each cylinder to execute fuel injection. Thus, during the stratified combustion mode operation, fuel is directly injected into the cylinder in the compression stroke to form a stratified mixture and stratified combustion.
[0032]
Further, the stratified combustion mode control means 54 calculates the ignition timing according to the target fuel amount and the engine rotational speed Ne by using a map or the like, and applies a high voltage to the spark plug 25 at the ignition timing to generate spark discharge.
[0033]
Further, the stratified combustion mode control means 54 calculates a target air amount by multiplying the target fuel amount by the target air-fuel ratio, and this target air amount, engine rotational speed Ne, target EGR amount, internal EGR amount (variable valve timing mechanism). 30), a throttle opening command value is calculated using an air system inverse model, and a control signal corresponding to the throttle opening command value is output to the motor 14 of the electronic throttle system, The throttle valve 15 is driven to control the throttle opening. Further, the EGR valve 40 is driven according to the target EGR amount to control the EGR amount to the target EGR amount.
[0034]
The torque demand control of the in-cylinder injection engine 11 described above is executed by the ECU 16 in the procedure as shown in FIG. First, in step 101, a required shaft torque is calculated based on the output of the accelerator sensor 41 (accelerator opening), the engine speed Ne, the vehicle speed, and the like, and internal loss torque and external load torque are added to the required shaft torque, Further, the required indicated torque is obtained by correcting this torque by the torque increase / decrease by the ISC control. Thereafter, the routine proceeds to step 102, where either the homogeneous combustion mode or the stratified combustion mode is selected as a required combustion mode from a map or the like according to the required indicated torque and the engine speed Ne, and in the next step 103, this required combustion is selected. It is determined whether or not there is a combustion mode switching request depending on whether or not the mode is different from the current combustion mode. If there is no combustion mode switching request, the current combustion mode is continued as it is (steps 108 to 110).
[0035]
If it is determined in step 103 that there is a combustion mode switching request, the routine proceeds to step 104, where a target air-fuel ratio for combustion mode switching is set by a map or the like based on the requested indicated torque and the engine speed Ne. Thereafter, in step 105, the estimated in-cylinder air-fuel ratio is calculated by the following equation on the assumption that the stratified combustion mode is always used in both the stratified combustion mode and the homogeneous combustion mode.
Estimated in-cylinder air-fuel ratio = Estimated in-cylinder air amount / Target fuel amount
[0036]
At this time, the estimated in-cylinder air amount is calculated by a in-cylinder air amount estimation model using the throttle passing air amount (detected value of the air flow meter 13), the engine rotational speed Ne, and the like as input information. A map or the like is calculated based on the torque and the engine speed Ne.
[0037]
After calculating the estimated in-cylinder air-fuel ratio, the routine proceeds to step 106, where it is determined whether or not the estimated in-cylinder air-fuel ratio is within a predetermined range (A / Flow <estimated in-cylinder air-fuel ratio <A / Fhigh) where combustion can be switched. If the estimated in-cylinder air-fuel ratio is not within a predetermined range where combustion switching is possible, it is determined that the combustion mode switching timing has not been reached, and the routine returns to step 105, where the estimated in-cylinder air-fuel ratio is calculated again, and the estimated cylinder air-fuel ratio is calculated. The process of determining whether or not the internal air-fuel ratio has reached a predetermined range in which combustion switching can be performed is repeated.
[0038]
Thereafter, when the estimated in-cylinder air-fuel ratio reaches a predetermined range within which combustion can be switched, it is determined that the combustion mode switching timing has been reached, and the routine proceeds to step 107, where it is determined whether the required combustion mode is the homogeneous combustion mode. If the required combustion mode is the homogeneous combustion mode, the process proceeds to step 109, and the combustion mode is switched to the homogeneous combustion mode. If the required combustion mode is the stratified combustion mode, the process proceeds to step 110, and the combustion mode is changed to the stratified combustion mode. Switch to.
[0039]
During the operation in the homogeneous combustion mode, the target air amount is calculated by a map or the like based on the required indicated torque and the engine rotational speed Ne, and the air system inverse model is used based on the target air amount and the engine rotational speed Ne. Calculate the throttle opening command value. Thereafter, a control signal corresponding to the command value of the throttle opening is output to the motor 14 of the electronic throttle system, and the throttle valve 15 is driven to control the throttle opening.
[0040]
Further, during operation in the homogeneous combustion mode, the fuel injection amount is calculated as follows. First, an estimated in-cylinder air amount is calculated from the throttle passing air amount, the intake pressure Pm, and the engine rotational speed Ne using the in-cylinder air amount estimation model. Thereafter, the target fuel amount is calculated by dividing the estimated in-cylinder air amount by the target air-fuel ratio, and this target fuel amount is multiplied by various correction coefficients (water temperature correction coefficient, feedback correction coefficient, learning correction coefficient, etc.). Obtain the final fuel injection amount. Thereafter, an injection pulse having a pulse width corresponding to the fuel injection amount is output to the fuel injection valve 21 in the intake stroke of each cylinder to execute fuel injection. As a result, during the homogeneous combustion mode operation, fuel is directly injected into the cylinder during the intake stroke to form a homogeneous mixture and cause homogeneous combustion.
[0041]
On the other hand, during operation in the stratified combustion mode, a target fuel amount is calculated by a map or the like based on the required indicated torque and the engine rotational speed Ne, and various correction coefficients (water temperature correction coefficient, feedback correction coefficient, The final fuel injection amount is obtained by multiplying the learning correction coefficient and the like, and an injection pulse having a pulse width corresponding to the fuel injection amount is output to the fuel injection valve 21 in the compression stroke of each cylinder to execute the fuel injection. To do. Thus, during the stratified combustion mode operation, fuel is directly injected into the cylinder in the compression stroke to form a stratified mixture and stratified combustion.
[0042]
Further, during operation in the stratified combustion mode, the target air amount is obtained by multiplying the target air-fuel ratio and the target fuel amount, and the throttle opening is performed using the air system inverse model based on the target air amount and the engine rotational speed Ne. Calculate the command value. Then, a control signal corresponding to the command value of the throttle opening is output to the motor 14 of the electronic throttle system, and the throttle valve 15 is driven to control the throttle opening.
[0043]
According to the combustion mode switching determination method of the direct injection engine 11 of the present embodiment (1) described above, the air-fuel ratio in the cylinder before and after the switching greatly affects the combustion stability when the combustion mode is switched. Considering this, and considering that the difference between the target air-fuel ratio and the actual air-fuel ratio is larger in stratified combustion than in homogeneous combustion, and combustion tends to become unstable, there is a request for switching the combustion mode. In both the stratified combustion mode and the homogeneous combustion mode, the in-cylinder air-fuel ratio is always estimated by assuming the stratified combustion mode, and the combustion mode switching timing is determined based on the estimated in-cylinder air-fuel ratio. Since the mode is switched, it is possible to switch the combustion mode in a stable combustion state without destabilizing the combustion, regardless of whether the combustion mode is stratified combustion or homogeneous combustion. , It is possible to improve the drivability by suppressing the misfire and torque shock combustion mode switching.
[0044]
[Embodiment (2)]
In the embodiment (1), the in-cylinder air-fuel ratio is always estimated by assuming the stratified combustion mode regardless of whether the current combustion mode is stratified combustion or homogeneous combustion. In the embodiment (2) of the present invention shown in FIG. 8, when there is a combustion mode switching request, the in-cylinder air-fuel ratio is estimated on the assumption that the combustion mode is the switching destination combustion mode, and the combustion mode is based on this estimated in-cylinder air-fuel ratio. The combustion timing is switched by determining the switching timing. Hereinafter, a different part from the said embodiment (1) is demonstrated.
[0045]
In this embodiment (2), the in-cylinder air-fuel ratio estimating means 57 for the stratified combustion mode and the in-cylinder air-fuel ratio estimating means 58 for the homogeneous combustion mode are provided. When the combustion mode is switched from the homogeneous combustion mode to the stratified combustion mode, the in-cylinder air / fuel ratio estimation means 57 for the stratified combustion mode calculates the estimated in-cylinder air / fuel ratio in the stratified combustion mode by the following equation.
[0046]
Estimated in-cylinder air-fuel ratio in stratified charge combustion mode = Estimated in-cylinder air amount / Target fuel amount
The calculation method of the estimated in-cylinder air / fuel ratio is exactly the same as the in-cylinder air / fuel ratio estimation means 56 of the embodiment (1).
[0047]
On the other hand, the in-cylinder air-fuel ratio estimating means 58 for the homogeneous combustion mode sets the estimated in-cylinder air-fuel ratio in the homogeneous combustion mode with the target air-fuel ratio setting means 55 when the combustion mode is switched from the stratified combustion mode to the homogeneous combustion mode. To the same value as the target air-fuel ratio.
[0048]
Estimated in-cylinder air-fuel ratio in homogeneous combustion mode = target air-fuel ratio
In other words, in the homogeneous combustion mode controlled by the air priority method, the difference between the target air-fuel ratio and the in-cylinder air-fuel ratio is small compared to the stratified combustion mode controlled by the fuel priority method. It may be assumed that the air-fuel ratio is equal to the target air-fuel ratio.
[0049]
The torque demand control of the direct injection type engine 11 of the present embodiment (2) is executed by the ECU 16 in the procedure as shown in FIG. First, in steps 201 and 202, the required indicated torque is calculated by the same method as in steps 101 and 102 of the embodiment (1), and the required combustion mode is selected from the required indicated torque. In the next step 203, if it is determined that there is no combustion mode switching request, the current combustion mode is continued as it is (steps 210 to 212), but if it is determined that there is a combustion mode switching request, steps 203 to step are performed. Proceed to step 204, set the target air-fuel ratio for switching the combustion mode in the same manner as in step 104 of the embodiment (1), and then proceed to step 205 to determine whether the current combustion mode is the homogeneous combustion mode. To do.
[0050]
When the current combustion mode is the homogeneous combustion mode, the process proceeds to step 206, and the estimated in-cylinder air-fuel ratio in the stratified combustion mode that is the switching destination combustion mode is set in the same manner as in step 105 of the embodiment (1). calculate.
Estimated in-cylinder air-fuel ratio in stratified charge combustion mode = Estimated in-cylinder air amount / Target fuel amount
[0051]
On the other hand, when the current combustion mode is the stratified combustion mode, the routine proceeds to step 207, where the estimated in-cylinder air-fuel ratio in the homogeneous combustion mode that becomes the switching destination combustion mode is the same as the target air-fuel ratio set in step 204 Set to the value of.
Estimated in-cylinder air-fuel ratio in homogeneous combustion mode = target air-fuel ratio
[0052]
After calculating the estimated in-cylinder air-fuel ratio in the switching destination combustion mode in step 206 or 207 as described above, the process proceeds to step 208, where the estimated in-cylinder air-fuel ratio is within a predetermined range (A / Flow) <Estimated in-cylinder air-fuel ratio <A / Fhigh) is determined. If the estimated in-cylinder air-fuel ratio is not within a predetermined range in which combustion switching is possible, it is determined that the combustion mode switching timing has not been reached, Returning to step 205, the estimated in-cylinder air-fuel ratio in the switching destination combustion mode is calculated again, and the process of determining whether or not the estimated in-cylinder air-fuel ratio has reached a predetermined range in which combustion switching is possible is repeated.
[0053]
Thereafter, when the estimated in-cylinder air-fuel ratio in the combustion mode at the switching destination has reached a predetermined range in which combustion switching is possible, it is determined that the combustion mode switching timing has been reached, and the routine proceeds to step 209 where the required combustion mode is the homogeneous combustion. If the required combustion mode is the homogeneous combustion mode, the process proceeds to step 211, and the combustion mode is switched to the homogeneous combustion mode. If the required combustion mode is the stratified combustion mode, the process proceeds to step 212. The combustion mode is switched to the stratified combustion mode.
[0054]
According to the combustion mode switching determination method of the in-cylinder injection engine 11 of the present embodiment (2) described above, when switching the combustion mode, the in-cylinder air-fuel ratio is estimated assuming the switching destination combustion mode, Since the combustion mode switching timing is determined on the basis of the estimated in-cylinder air-fuel ratio, the combustion mode is switched, so that the combustion mode of the switching destination combustion mode is always taken into consideration to switch the combustion mode more stably. It can be carried out.
[0055]
In each of the embodiments (1) and (2), when the estimated in-cylinder air-fuel ratio reaches a predetermined range (A / Flow <estimated in-cylinder air-fuel ratio <A / Fhigh) in which combustion switching is possible, the combustion mode is changed. Although the switching is performed, the combustion mode may be switched when the estimated in-cylinder air-fuel ratio reaches a median value within a range in which combustion can be switched. In other words, near the median value within the combustion switchable range, the combustion state can be switched most stably, so the combustion mode is switched when the estimated in-cylinder air-fuel ratio reaches the median value within the combustion switchable range. If so, the combustion mode can be switched when the combustion state is most stable.
[0056]
Further, a predetermined range (A / Flow to A / Fhigh) or a predetermined value (median value) used for determination of switching of the combustion mode may be changed according to the combustion mode of the switching destination. In this way, the combustion mode can be switched at a timing most suitable for the combustion mode to be switched to.
[0057]
In addition, the present invention can be implemented with various modifications such as a method for appropriately estimating the in-cylinder air-fuel ratio.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an entire in-cylinder injection engine control system showing an embodiment (1).
FIG. 2 is a block diagram for explaining the outline of torque demand control of the direct injection type engine of the embodiment (1).
FIG. 3 is a block diagram for explaining the function of the requested indicated torque calculation means.
FIG. 4 is a block diagram for explaining the function of the cylinder air-fuel ratio estimating means;
5A is a block diagram for explaining the function of the homogeneous combustion mode control means, and FIG. 5B is a block diagram for explaining the function of the stratified combustion mode control means.
FIG. 6 is a flowchart for explaining the outline of torque demand control of the direct injection engine of the embodiment (1).
FIG. 7 is a block diagram for explaining an outline of torque demand control of the direct injection type engine of the embodiment (2).
FIG. 8 is a flowchart for explaining an outline of torque demand control of the direct injection type engine of the embodiment (2).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Cylinder injection type engine (Cylinder injection type internal combustion engine), 12 ... Intake pipe, 13 ... Air flow meter, 15 ... Throttle valve, 16 ... ECU (combustion mode switching means), 18 ... Intake pressure sensor, 21 ... Fuel Injection valve, 25 ... Spark plug, 33 ... Crankshaft, 34 ... External load, 36 ... Exhaust pipe, 40 ... EGR valve, 41 ... Accelerator sensor, 51 ... Required torque calculation means, 52 ... Combustion mode switching means, 53 ... Homogeneous combustion mode control means, 54 ... stratified combustion mode control means, 55 ... target air / fuel ratio setting means, 56 ... cylinder air / fuel ratio estimation means, 57 ... cylinder air / fuel ratio estimation means for stratified combustion mode, 58 ... homogeneous combustion mode In-cylinder air-fuel ratio estimating means.

Claims (4)

圧縮行程で筒内に燃料を噴射して成層燃焼させる成層燃焼モードで運転する成層燃焼モード制御手段と、
吸気行程で筒内に燃料を噴射して均質燃焼させる均質燃焼モードで運転する均質燃焼モード制御手段と、
前記成層燃焼モード制御手段による成層燃焼モードと前記均質燃焼モード制御手段による均質燃焼モードとを燃焼モード切換要求に応じて切り換える燃焼モード切換手段とを備えた筒内噴射式内燃機関の制御装置において、
前記成層燃焼モード制御手段は、要求負荷に応じて目標燃料量を設定して燃料優先方式で成層燃焼モードの運転を制御し、
前記均質燃焼モード制御手段は、要求負荷に応じて目標空気量を設定して空気優先方式で均質燃焼モードの運転を制御し、
前記燃焼モード切換手段は、燃焼モード切換要求があった時に、成層燃焼、均質燃焼のいずれの燃焼モードにおいても、常に成層燃焼モードと仮定して筒内空燃比を推定する筒内空燃比推定手段と、この推定筒内空燃比に基づいて燃焼モード切換タイミングを判定して燃焼モードを切り換える手段とを備え、
前記筒内空燃比推定手段は、スロットル通過空気量と機関回転速度等から筒内空気量を推定し、この推定筒内空気量を要求負荷に応じて設定された目標燃料量で割り算して推定筒内空燃比を算出することを特徴とする筒内噴射式内燃機関の制御装置。
Stratified combustion mode control means for operating in the stratified combustion mode in which fuel is injected into the cylinder in the compression stroke and stratified combustion is performed;
A homogeneous combustion mode control means for operating in a homogeneous combustion mode in which fuel is injected into the cylinder in the intake stroke to perform homogeneous combustion ;
In a control apparatus for a direct injection internal combustion engine comprising combustion mode switching means for switching between a stratified combustion mode by the stratified combustion mode control means and a homogeneous combustion mode by the homogeneous combustion mode control means in accordance with a combustion mode switching request ,
The stratified combustion mode control means sets the target fuel amount according to the required load and controls the operation of the stratified combustion mode by the fuel priority method,
The homogeneous combustion mode control means controls the operation of the homogeneous combustion mode with an air priority method by setting a target air amount according to a required load,
The in-cylinder air-fuel ratio estimating means for estimating the in-cylinder air-fuel ratio by always assuming the stratified combustion mode in any combustion mode of stratified combustion and homogeneous combustion when the combustion mode switching request is made. And a means for determining the combustion mode switching timing based on the estimated in-cylinder air-fuel ratio and switching the combustion mode ,
The in-cylinder air-fuel ratio estimating means estimates the in-cylinder air amount from the throttle passing air amount, the engine rotational speed, etc., and divides this estimated in-cylinder air amount by the target fuel amount set according to the required load. A control apparatus for a cylinder injection internal combustion engine, characterized by calculating a cylinder air-fuel ratio .
圧縮行程で筒内に燃料を噴射して成層燃焼させる成層燃焼モードで運転する成層燃焼モード制御手段と、
吸気行程で筒内に燃料を噴射して均質燃焼させる均質燃焼モードで運転する均質燃焼モード制御手段と、
前記成層燃焼モード制御手段による成層燃焼モードと前記均質燃焼モード制御手段による均質燃焼モードとを燃焼モード切換要求に応じて切り換える燃焼モード切換手段とを備えた筒内噴射式内燃機関の制御装置において、
前記成層燃焼モード制御手段は、要求負荷に応じて目標燃料量を設定して燃料優先方式で成層燃焼モードの運転を制御し、
前記均質燃焼モード制御手段は、要求負荷に応じて目標空気量を設定して空気優先方式で均質燃焼モードの運転を制御し、
前記燃焼モード切換手段は、燃焼モード切換要求があった時に、切換え先の燃焼モードと仮定して筒内空燃比を推定する筒内空燃比推定手段と、この推定筒内空燃比に基づいて燃焼モード切換タイミングを判定して燃焼モードを切り換える手段とを備え、
前記筒内空燃比推定手段は、切換え先の燃焼モードが成層燃焼モードの場合は、スロットル通過空気量と機関回転速度等から筒内空気量を推定して、この推定筒内空気量を要求負荷に応じて設定された目標燃料量で割り算して成層燃焼モードでの推定筒内空燃比を算出し、一方、切換え先の燃焼モードが均質燃焼モードの場合は、要求負荷に応じて設定された目標空燃比を均質燃焼モードでの推定筒内空燃比とすることを特徴とする筒内噴射式内燃機関の制御装置。
Stratified combustion mode control means for operating in the stratified combustion mode in which fuel is injected into the cylinder in the compression stroke and stratified combustion is performed;
A homogeneous combustion mode control means for operating in a homogeneous combustion mode in which fuel is injected into the cylinder in the intake stroke to perform homogeneous combustion ;
In a control apparatus for a direct injection internal combustion engine comprising combustion mode switching means for switching between a stratified combustion mode by the stratified combustion mode control means and a homogeneous combustion mode by the homogeneous combustion mode control means in accordance with a combustion mode switching request ,
The stratified combustion mode control means sets the target fuel amount according to the required load and controls the operation of the stratified combustion mode by the fuel priority method,
The homogeneous combustion mode control means controls the operation of the homogeneous combustion mode with an air priority method by setting a target air amount according to a required load,
The combustion mode switching means is configured to estimate the in-cylinder air-fuel ratio assuming that the combustion mode is switched to when a combustion mode switching request is made, and to perform combustion based on the estimated in-cylinder air-fuel ratio. Means for determining the mode switching timing and switching the combustion mode ,
The in-cylinder air-fuel ratio estimating means estimates the in-cylinder air amount from the throttle passing air amount and the engine speed when the switching destination combustion mode is the stratified combustion mode, and uses the estimated in-cylinder air amount as a required load. The estimated in-cylinder air-fuel ratio in the stratified combustion mode is calculated by dividing by the target fuel amount set in accordance with the above, while when the switching destination combustion mode is the homogeneous combustion mode, it is set according to the required load. A control apparatus for an in-cylinder injection internal combustion engine, wherein the target air-fuel ratio is an estimated in-cylinder air-fuel ratio in the homogeneous combustion mode .
前記燃焼モード切換手段は、前記推定筒内空燃比が所定範囲内に達した時に燃焼モードを切り換えることを特徴とする請求項1又は2に記載の筒内噴射式内燃機関の制御装置。The control apparatus for a cylinder injection internal combustion engine according to claim 1 or 2 , wherein the combustion mode switching means switches the combustion mode when the estimated in-cylinder air-fuel ratio reaches a predetermined range. 前記燃焼モード切換手段は、前記推定筒内空燃比が燃焼切換可能な範囲内の中央値に達した時に燃焼モードを切り換えることを特徴とする請求項1又は2に記載の筒内噴射式内燃機関の制御装置。The in-cylinder injection internal combustion engine according to claim 1 or 2 , wherein the combustion mode switching means switches the combustion mode when the estimated in-cylinder air-fuel ratio reaches a median value within a range in which combustion can be switched. Control device.
JP2000046742A 2000-02-18 2000-02-18 In-cylinder injection internal combustion engine control device Expired - Fee Related JP4247591B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000046742A JP4247591B2 (en) 2000-02-18 2000-02-18 In-cylinder injection internal combustion engine control device
DE2001107160 DE10107160A1 (en) 2000-02-18 2001-02-15 Fuel injection ECU has arrangement for estimating fuel-air mixture and exhaust gas recirculation rate so that the point at which engine operation switches between safe and homogenous modes is more accurately determined

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000046742A JP4247591B2 (en) 2000-02-18 2000-02-18 In-cylinder injection internal combustion engine control device

Publications (2)

Publication Number Publication Date
JP2001227387A JP2001227387A (en) 2001-08-24
JP4247591B2 true JP4247591B2 (en) 2009-04-02

Family

ID=18569106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000046742A Expired - Fee Related JP4247591B2 (en) 2000-02-18 2000-02-18 In-cylinder injection internal combustion engine control device

Country Status (1)

Country Link
JP (1) JP4247591B2 (en)

Also Published As

Publication number Publication date
JP2001227387A (en) 2001-08-24

Similar Documents

Publication Publication Date Title
US6497212B2 (en) Control apparatus for a cylinder injection type internal combustion engine capable of suppressing undesirable torque shock
JP3680491B2 (en) Control device for internal combustion engine
EP1384875A2 (en) Fuel control system and method of engine
US7628013B2 (en) Control device of charge compression ignition-type internal combustion engine
JP2006046084A (en) Ignition timing controller for internal combustion engine
JP4567950B2 (en) Control device for internal combustion engine
JP2007009807A (en) Control device for internal combustion engine
JP2008128082A (en) Engine torque control device and adjustment method therefor
JP3654010B2 (en) Control device for internal combustion engine
JP4415509B2 (en) Control device for internal combustion engine
JP2001227399A (en) Control device for internal combustion engine
JP5276693B2 (en) Control device for internal combustion engine
JP4247591B2 (en) In-cylinder injection internal combustion engine control device
JP2010019108A (en) Fuel injection controller of internal combustion engine
JP4501107B2 (en) Fuel injection control method for internal combustion engine
JP4352791B2 (en) Control device for internal combustion engine
JP2004169634A (en) Controller of internal combustion engine
JP4339599B2 (en) In-cylinder injection internal combustion engine control device
JP2001227377A (en) Control device for direct cylinder injection type internal combustion engine
JP4534968B2 (en) Control device for internal combustion engine
JP2001221091A (en) Controller for cylinder injection type internal combustion engine
JP2002317681A (en) Control device of internal combustion engine
JP3332011B2 (en) Control device for internal combustion engine
JP3307306B2 (en) Combustion system control device for internal combustion engine
JP2004124899A (en) Engine control equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081230

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees