JP4244671B2 - Optical transmitter - Google Patents

Optical transmitter Download PDF

Info

Publication number
JP4244671B2
JP4244671B2 JP2003079343A JP2003079343A JP4244671B2 JP 4244671 B2 JP4244671 B2 JP 4244671B2 JP 2003079343 A JP2003079343 A JP 2003079343A JP 2003079343 A JP2003079343 A JP 2003079343A JP 4244671 B2 JP4244671 B2 JP 4244671B2
Authority
JP
Japan
Prior art keywords
face
phase modulation
waveguide
pair
waveguides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003079343A
Other languages
Japanese (ja)
Other versions
JP2004287116A (en
Inventor
雅博 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003079343A priority Critical patent/JP4244671B2/en
Publication of JP2004287116A publication Critical patent/JP2004287116A/en
Application granted granted Critical
Publication of JP4244671B2 publication Critical patent/JP4244671B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は光伝送装置に係り、特に、半導体レーザの出力光を外部変調する光学部品または上記光学部品の光出力を伝送光ファイバに結合する出力部をもつ光伝送装置に関連し、特に毎秒ギガビット程度以上の高速光通信システムに適した光送信装置に関するものである。
【0002】
【従来の技術】
光ファイバ通信システムにおける伝送情報の大容量化、中継距離の長距離化の基本ニーズに応えるためには、送信光源の高速化と低チャープ化が不可欠である。この結果、特に長距離幹線系ではレーザダイオードの直接変調方式に代り本質的に低チャープ化に有利な外部変調方式が主に採用されている。この外部変調方式で採用される光変調器としてLiNbO3材料を用いたマッハツェンダー(MZ)変調器(図1)と半導体材料を用いた電界吸収(EA)変調器(図2)の2通りが主流である。この他、GaAsやInP系量子井戸を用いた半導体MZ変調器(図3)がある。この内、EA変調器は分布帰還(DFB;Distributed FeedBack)型レーザダイオードとモノリシック集積ができ、小型で低消費電力な光送信装置の実現に有利である。これは、電気光学係数の大きな吸収係数の変化を用いているためである。一方、MZ変調器は吸収係数の変化に比べ電気光学係数が桁で小さい屈折率変化を動作原理としているため、素子長が大きく且つ動作電圧も高いという本質的問題がある。動作電圧を3〜5Vに低減できる進行波型光変調器はLiNbO3やGaAs材料を用いたMZ変調器の基本構造となっているが、素子長が数十mmと大きい。また、InP系量子井戸を用いた半導体MZ変調器は、小型ではあるものの10Gbit/s動作で4V程度以上の駆動電圧が必要である。このように、MZ変調器はEA変調器に比べ、駆動電圧・変調帯域の比で決まる、性能指数が大きく劣っているのが現状である。しかし、MZ変調器には特にチャーピングを人為制御できるというEA変調器にはない特長を有する。例えば、いわゆるプッシュプル駆動を行えば、チャーピングをゼロに設定できる。また、位相電圧を調整すれば負チャーピング動作も実現できる。しかしながら、プッシュプル駆動や位相電圧調整はこのこのチャーピング制御を用いるため、性能指数を犠牲にしながらもMZ変調器は仕様されているのが現状である。
【0003】
尚、LiNbO3材料を用いたMZ変調器に関する公知文献として、Kawano, K.; Kitoh, T.; Jumonji, H.; Nozawa, T.; Yanagibashi, M.; Suzuki, T.; "Spectral-domain analysis of coplanar waveguide traveling-wave electrodes and their applications to Ti:LiNbO3 Mach-Zehnder optical modulators" Microwave Theory and Techniques, IEEE Transactions on , Volume: 39 Issue: 9 , Sep. 1991, Page(s): 1595 1601が揚げられる。また、半導体バルク材料、量子閉じ込めシュタルク効果を用いたMZ変調器の公知文献として、それぞれWalker, R.G., "High-speed III-V semiconductor intensity modulators" Quantum Electronics, IEEE Journal of , Volume: 27 Issue: 3 , March 1991, Page(s): 654 -667、Adams, D.M., Rolland, C et al., "1.55 μm transmission at 2.5 Gbit/s over 1102 km of NDSF using discrete and monolithically integrated InGaAsP-InP Mach-Zehnder modulator and DFB laser", Electronics Letters , Volume: 34 Issue: 8 , 16 April 1998, Page(s): 771 -773が揚げられる。
【0004】
一方、EA変調器の性能指数を倍増する手法としてダブルパスEA変調器が知られている(図4)。通常のEA変調器では、信号光が変調器導波路内を一方向のみに進行する。ダブルパス構造では、従来の変調器出射端面に、高反射膜を施しここで信号光を全反射させることにより、同一の変調器導波路内を信号光が二度通過する。この結果、半分の導波路長で同じ変調コントラストが得られるため、変調器の性能指数が倍増する原理である。しかしながら、本構造では光の入力導波路、出力導波路が同一であるため、入出力光の分離が容易でない。これを解決するために、光サーキュレータを用いる手法が提案されているが、光サーキュレータ自体が大型で高価である問題がある。また、光吸収する変調器活性層の体積が減った分、変調可能な上限光出力は低減する。本質的には性能指数が倍増すれば、最大光出力は半減する。このため、ダブルパスEA変調器は概念提案に留まっているのが現状である。
【0005】
尚、ダブルパスEA変調器に関する公知文献としてKoji Yamada, Koji Nakamura, and Hideaki Horikawa, "Design of Double-Pass Electroabsorption Modulators with Low-Voltage, High-Speed Properties for 40 Gb/s Modulation"., JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 15, NO. 12, DECEMBER 1997, pp.2287-2293が揚げられる。
【0006】
【発明が解決しようとする課題】
本発明の課題は、半導体を用いたMZ変調器の性能指数を倍増することにある。特に、多重量子井戸導波路のダブルパス構成を用いた集中定数型MZ変調器に関し、簡単な構成で性能指数を倍増することができる。この際、従来ダブルパスEA変調器の最大の問題であった、入出力分離を実現することが解決課題である。また、プッシュプル駆動を簡単な手法で実現する光送信装置の構成を提供することをさらなる目的としている。加えて、変調器の入出力部にペア光部品を組み合わせることにより、複雑な光学実装を容易にすることを目的としている。
【0007】
以上に様に、本発明は半導体集中定数型MZ変調器の新規な素子構造およびその電気的・光学的実装手法を提供することを目的とし、これらの光素子を搭載した低コストで高性能動作可能な光モジュールを提供する課題の解決を図るものである。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明者らは、MZ変調器の合分波器に入出力導波路が2×2構成の多モード干渉導波路を用いたダブルパス構造を考案した。これにより、入出力光の位置的分離とダブルパス構造による変調器の性能指数倍増が同時に達成できる。
【0009】
また、このダブルパスMZ変調器と正補の差動出力対を有する変調器ドライバICを組み合わせ、ドライバICの出力段とMZ変調器の駆動電極を対称配置することにより、容易な手法でプッシュプル駆動に最適な実装構造・手法を提供する。さらに、光信号の入出力に用いる集光光学レンズ、光アイソレータ、光を外部に導く光ファイバ等の光学部品が並列接続されたペア光学部品を用いて発明の光変調器を簡単に光学実装できる実装構造・手法を提供する。
【0010】
本発明の好ましい実施態様は、基板上に2×2MMI(多モード干渉導波路)型合分波器が設けられ、
前記合分波器の第1の端面には入力光導波路と出力光導波路のそれぞれ第1の端面が接続され、前記第1の端面に対向する第2の端面には第1および第2の光導波路のそれぞれ第1の端面が接続され、
前記入力光導波路、前記出力光導波路、前記第1および第2の光導波路は前記基板上の設けられ、
前記入力光導波路および前記出力光導波路のそれぞれの前記第1の端面と反対側の端面である第2の端面には無反射コート膜が設けられ、
前記入力光導波路の第2の端面からアイソレータを介して入力光が入射されるものであり、前記アイソレータは前記入力光の伝播方向には光を透過しやすく、かつ、それとは逆方向の光の伝播を阻止するように配置され、
前記第1および第2の光導波路のそれぞれの前記第1の端面と反対側の端面である第2の端面には一対の位相変調導波路の第1の端面がそれぞれ接続され、前記一対の位相変調導波路の前記第1の端面と反対側の端面である第2の端面にはそれぞれ高反射膜が設けられ、
前記一対の位相変調導波路は前記基板上に設けられ、
前記一対の位相変調導波路には電極を介して変調電圧信号が印加可能に構成され、
前記一対の位相変調導波路が変調されていないときには、前記入力光導波路の第2の端面から入射した前記入力光は前記合分波器および前記一対の位相変調導波路を伝播し、前記一対の位相変調導波路の前記第2の端面で反射して前記合分波器を介して前記出力光導波路に出力されるように構成され、前記一対の位相変調導波路間の位相差がπとなるように前記変調電圧信号が前記一対の位相変調導波路に印加されたときには、前記入力光導波路の第2の端面から入射した前記入力光は前記合分波器および前記一対の位相変調導波路を伝播し、前記一対の位相変調導波路の前記第2の端面で反射して前記合分波器を介して前記入力光導波路に出力されるように構成されていることを特徴とする光送信装置である。
【0011】
前記2×2MMI型合分波器は前記第1の端面に結合された第1、第2の導波路と、前記第2の端面の結合された第3、第4の導波路を有し、前記第1、第2の導波路は互いに離間して設けられ、前記第3、第4の導波路は互いに離間して設けられ、
前記第1の導波路の前記第1の端面での結合部と前記第3の導波路の前記第2の端面での結合部との直線距離は前記第1の導波路の前記第1の端面での結合部と前記第4の導波路の前記第2の端面での結合部との直線距離よりも小さく、
前記第2の導波路の前記第1の端面での結合部と前記第4の導波路の前記第2の端面での結合部との直線距離は前記第2の導波路の前記第1の端面での結合部と前記第3の導波路の前記第2の端面での結合部との直線距離よりも小さく、
前記第1の導波路からの入力光は前記第4の導波路に出力され、前記第2の導波路からの入力光は前記第2の導波路に出力されるように前記2×2MMI型合分波器は構成されていることが好ましい。
【0012】
この2×2MMI型合分波器は、その導波路の進行波の伝播方向に垂直方向の高さ、伝播方向の長さ、導波路を構成する材料等を適切に選択することにより入力光の出力先を定めることが可能である。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を図5〜図12を用いて説明する。
<実施の形態1>
図5は本発明のMZ光変調器の動作原理(同図(a))と素子構造(同図(b))を表わす。同図(a)はそれぞれ一対の入出力端を有するMZ光変調器の上面図である。2×2の多モード干渉導波路(MMI)を合分波器に用いている。合分波器間には、対称構造を有する一対の位相変調導波路が配されており、共に上部に変調電圧信号を印加するための電極を有する。また、素子の両端面は共に無反射コート(AR)膜が形成されている。本構成では図中の#1ポートへの入力光が無変調状態ではクロスポートとなる#4端へ出力される。また、一対の位相導波路電極のどちらかまたは両者に変調電圧信号を印加し、位相変調導波路間の位相差がπとなるように設定すると、入力光はバーポートとなる#3端へ出力され、#4端はオフ状態となる。この結果、入力光は、#3ポートまたは#4ポートへスイッチング変調されることになる。
【0014】
次に本構成においてMZ光変調器の位相変調導波路のほぼ中央で素子を分割し、その片方の分割端面に反射率が95%程度以上の高反射膜を形成した図5(b)のダブルパス構成を考える。本構成は、図5(a)構成の鏡対称構造であるため、上述と同じスイッチング変調動作が得られる。すなわち、図5(b)の#1ポートへの入力光は無変調状態ではクロスポートに相当する#2端へ出力される。また、一対の位相導波路電極のどちらかまたは両者に変調電圧信号を印加し、位相変調導波路間の位相差がπとなるように設定すると、入力光はバーポートに相当する#1端へ戻ってくる。このとき#2端はオフ状態となる。従って、#1ポートを光入力端、#2ポートを光出力端とすれば、所望のMZ光変調動作が得られる。ここで、#1ポートには光アイソレータを導入して、戻り光が光源部に戻らないようにすることが必要であるが、通常用いられている30dB程度のアイソレーション比のものを用いれば良い。この構成は従来型のMZ光変調器と同様である。従来のEA変調器のダブルパス構成では、入出力端が同一であるため、入出力光の分離のため光サーキュレータが必要であった。本構成では、より安価なアイソレータを使ったダブルパス構成が可能となった。当然のことながら、ダブルパス構成により位相変調導波路長は半分となっているため、位相変調導波路部の寄生容量も半減している。この結果、変調器の性能指数である変調帯域/電圧比はほぼ倍増することになる。また、MZ変調器では基本的に光吸収は発生しないため、変調器活性層の体積が減った分、変調可能な上限光出力は低減することは無いことも、ダブルパスEA変調器に比べた優位点であることを付記する。
<実施の形態2>
図6(a)は実施の形態1で説明したダブルパスMZ光変調器のより具体的な素子である。以下この作製手法とその特性に関し詳述する。
【0015】
図6(a)に示すように、n型(100)InP半導体基板601上に有機金属気相成長法によりn型InPバッファ層1.5μm652、n型InGaAsP下側ガイド層0.03μm653、アンドープ多重量子井戸層(13nm厚の無歪InGaAsP(組成波長1.48μm)井戸層、5nm厚のInP障壁層、20周期)602、アンドープInGaAsP上側ガイド層0.03μm655、p型InP第一クラッド層0.05μm656、p型InAlAsエッチング停止層0.05μm657、p型InP第二クラッド層1.7μm658、p型InGaAsP(組成波長1.3μm)キャップ層30nm、p型InGaAs電極接触層0.2μm 659を順次成長する(図6挿絵)。続いて、図6(a)に示す導波路構造を形成する。ここで、導波路のパターニングにはメタンガスをによる反応性イオンエッチング(RIE)法を用いた。この場合、InAlAs材料はほとんど削られないため、エッチングはInAlAsエッチング停止層657上で停止し、図6(a)に示すリッジ導波路構造が自動形成される。ここで、多モード干渉導波路(MMI)は横幅12.0μm、長さ202μmとした。後に、位相変調器となる領域に狭ストライプ形状にp型電極605、606を形成し、基板側には裏面電極609を形成した。所望の位置でへき開した後、入出力端には反射率約0.1%の低反射膜607を位相変調器後端面には反射率約98%の高反射膜608をそれぞれ公知の手法により形成した。位相変調器長は400μm、入出力導波路の間隔は250μmとした。
【0016】
作製したダブルパスMZ変調器の入力端に波長1.55μm帯のTE偏波信号光を入射し、単相駆動条件での変調特性を評価した。この評価には、ファイバ芯間隔が250μmの標準ペアファイバを用いた。図6(b)に、入力信号波長を1550nmとした場合の変調カーブを示す。半波長電圧Vπは約2.6Vであった。このVπは同一ウェハ上に作製した従来型のMZ変調器(位相変調器長は800μm)の測定値と比べ約半分である。一方、変調帯域は約18GHzであり、毎秒10Gbit/s動作に十分な特性となった。
<実施の形態3>
本発明のMZ光変調器構成において、一対の位相変調器を差動動作(いわゆるプッシュプル動作)させると、駆動振幅電圧は更に半減すると共に変調器のゼロチャーピング動作を実現することができる。図7(a)に示す送信機の構成はその実施例の上面図である。また同図(b)はその斜視図である。あらかじめ、高周波線路が形成された実装キャリア701を準備する。実装キャリア701上には、一対の信号線路709とそれらの間および両側のグランドライン710を有する。この実装キャリア上にダブルパスMZ変調器702と電圧駆動IC703を図示のようにダブルパスMZ変調器の後方端面側に実装する。ここで、電圧駆動IC703は通常の差動出力端(図ではPおよびQ)を持ちそれぞれDCバイアス調整が可能である。差動出力端P、Qの差動電圧出力信号は、実装キャリア701上の高周波ライン709およびワイヤリング712を通ってダブルパスMZ変調器702の位相変調導波路に給電される。本構成では、図中の参照線に関し線対称の構造となっている。このため、差動出力端P、QからダブルパスMZ変調器の電極に至る高周波信号線の長さの総和は短く且つ両者は基本的に等価である。このため本構成はプッシュプル動作の最大の課題である、二種駆動信号の位相遅延を未然に防止された構造となっていることが最大の特徴である。これは、本MZ光変調器では折り返し構造であるため、MZ変調器の後方端面側に電圧駆動ICを近接して実装できることに起因している。本実施の形態の送信機により、プッシュプル電圧約1.3Vppにて、10Gbit/sゼロチャーピング動作が実現できた。
<実施の形態4>
図8は本発明のMZ光変調器の光実装に関し更なる改良を加えた実施の形態を表す。本発明のMZ光変調器では、同一端面側に光の入出力端子を有する。このため、図8に示すように入出力用の光部品をペア構成とすることにより、部品点数の削減や光学調整などモジュール作製工程の簡素化が計れる。実施の形態3に示した光送信機において、光信号の入出力に用いるそれぞれ一対の光学レンズ、アイソレータ、ファイバを一体化したペア部品とする。ここで、これらの光学部品の光軸間隔は250μmとした。この値は、標準化の観点から選択した値であり、本質的な値ではない。アイソレータは図示のように、光進行方向が互いに逆のものが一体化されている。場合によって、光学レンズとアイソレータは一体となっても良い。これらのペア部品を用いると入出力どちらか一方の光路調整を施せば、他方は自動的に調芯されるため、光結合に伴なう作製工程が半減する効能がある。また、以上は光学調整を前提とした議論であったが、光学調整を伴なわないいわゆるパッシブアライメント法を適用した場合にも、同様の効能が期待できることを付記する。
<実施の形態5>
図9は以上の本発明形態を用いて作製した光モジュールの斜視図である。実施の形態3に示した電気実装と実施の形態4に示した光学実装を共に用いてMZ光変調器と電圧駆動ICとが一体化されたキャリア501をモジュール筐体502内に配置した構成である。電気入力部には、高周波コネクタ504を配し、光学系には光学レンズとアイソレータが一体と成ったバルクレンズ503とペアファイバ(506、507)とを用いた。本構成によれば、ファイバ入出力がモジュールの同じ側に配置されているため、送信機のファイバ方向の長さを大きく短縮することができるため、光送信機の小型化に有効である。
【0017】
【発明の効果】
本発明の実施例に係る半導体発光素子よれば、MZ光変調器の性能指数を倍増できる。特に、多重量子井戸導波路のダブルパス構成を用いた集中定数型MZ変調器に関し、簡単な構成で性能指数を倍増することができる。この際、従来ダブルパスEA変調器の最大の問題であった入出力光の分離が可能となる。また、プッシュプル駆動を簡単な手法で実現する光送信装置が実現できる。加えて、変調器の入出力部にペア光部品を組み合わせることにより、複雑な光学実装を容易にできる。本発明を用いれば、素子性能、歩留まりが飛躍的に向上するだけでなく、この素子を適用した光通信システムの低価格化、大容量化、長距離化に貢献できる。
【図面の簡単な説明】
【図1】従来技術を説明するための図である。
【図2】従来技術を説明するための図である。
【図3】従来技術を説明するための図である。
【図4】従来技術を説明するための図である。
【図5】本発明の実施例を説明するための図である。
【図6】本発明の実施例を説明するための図である。
【図7】本発明の実施例を説明するための図である。
【図8】本発明の実施例を説明するための図である。
【図9】本発明の実施例を説明するための図である。
【符号の説明】
601…n型(100)InP半導体基板、602…アンドープ多重量子井戸層、604…光合分波器、605…位相変調器電極、606…位相変調器電、607…低反射膜、608…高反射膜、652…n型InPバッファ層1.5μm、653…n型InGaAsP下側ガイド層、654…InGaAsP上側ガイド層、655…p型InP第一クラッド層、656…p型InAlAsエッチング停止層、657…p型InP第二クラッド層、658…p型InGaAs電極接触層、
701…実装キャリア、702…ダブルパスMZ変調器、703…電圧駆動IC、709…高周波信号線、710…グランド線、711…終端抵抗、712…ワイヤリング、
801…ペア光学レンズ、802…ペアアイソレータ、803…ペアファイバ、
501…実装キャリア、502…モジュール筐体、503…光学レンズ付きペアアイソレータ、504…高周波コネクタ、505…フェルール、506…入力用ファイバ、507…出力用ファイバ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical transmission apparatus, and more particularly to an optical transmission apparatus having an output part for coupling an optical output of a semiconductor laser to an optical component for external modulation or an optical output of the optical component to a transmission optical fiber. The present invention relates to an optical transmission apparatus suitable for a high-speed optical communication system of a degree or more.
[0002]
[Prior art]
In order to meet the basic needs for an increase in transmission information capacity and a long relay distance in an optical fiber communication system, it is indispensable to increase the transmission light source speed and to reduce the chirp. As a result, particularly in the long-distance trunk line system, an external modulation system that is essentially advantageous for low chirp is mainly employed instead of the direct modulation system of the laser diode. There are two main types of optical modulators used in this external modulation system: Mach-Zehnder (MZ) modulator (Fig. 1) using LiNbO3 material and Electroabsorption (EA) modulator (Fig. 2) using semiconductor material. It is. In addition, there is a semiconductor MZ modulator (FIG. 3) using GaAs or InP-based quantum wells. Among these, the EA modulator can be monolithically integrated with a distributed feedback (DFB) type laser diode, and is advantageous for realizing a small-sized and low-power-consumption optical transmitter. This is because a change in absorption coefficient having a large electro-optic coefficient is used. On the other hand, the MZ modulator has an essential problem that the element length is large and the operating voltage is high because the principle of operation is a change in refractive index whose electro-optic coefficient is smaller by orders of magnitude compared with a change in absorption coefficient. A traveling wave optical modulator capable of reducing the operating voltage to 3 to 5 V has the basic structure of an MZ modulator using LiNbO3 or GaAs material, but its element length is as large as several tens of mm. In addition, a semiconductor MZ modulator using an InP quantum well requires a drive voltage of about 4 V or more at 10 Gbit / s operation although it is small. As described above, the MZ modulator is currently inferior in performance index, which is determined by the ratio of the driving voltage and the modulation band, to the EA modulator. However, the MZ modulator has a feature that the EA modulator does not have in particular that chirping can be artificially controlled. For example, if so-called push-pull driving is performed, chirping can be set to zero. Further, negative chirping operation can be realized by adjusting the phase voltage. However, since push-pull drive and phase voltage adjustment use this chirping control, the MZ modulator is currently specified while sacrificing the figure of merit.
[0003]
In addition, as well-known literatures regarding MZ modulators using LiNbO3 materials, Kawano, K .; Kitoh, T .; Jumonji, H .; Nozawa, T .; Yanagibashi, M .; Suzuki, T .; "Spectral-domain analysis of coplanar waveguide traveling-wave electrodes and their applications to Ti: LiNbO3 Mach-Zehnder optical modulators "Microwave Theory and Techniques, IEEE Transactions on, Volume: 39 Issue: 9, Sep. 1991, Page (s): 1595 1601 . Also, as well-known literatures on semiconductor bulk materials and MZ modulators using quantum confined Stark effect, Walker, RG, "High-speed III-V semiconductor intensity modulators" Quantum Electronics, IEEE Journal of, Volume: 27 Issue: 3 , March 1991, Page (s): 654 -667, Adams, DM, Rolland, C et al., "1.55 μm transmission at 2.5 Gbit / s over 1102 km of NDSF using discrete and monolithically integrated InGaAsP-InP Mach-Zehnder modulator and DFB laser ", Electronics Letters, Volume: 34 Issue: 8, 16 April 1998, Page (s): 771-773.
[0004]
On the other hand, a double-pass EA modulator is known as a method for doubling the figure of merit of the EA modulator (FIG. 4). In a normal EA modulator, signal light travels in only one direction in the modulator waveguide. In the double-pass structure, the signal light passes twice in the same modulator waveguide by applying a highly reflective film to the conventional modulator output end face and totally reflecting the signal light here. As a result, since the same modulation contrast can be obtained with half the waveguide length, the principle is that the figure of merit of the modulator is doubled. However, in this structure, since the input waveguide and the output waveguide of light are the same, it is not easy to separate input / output light. In order to solve this, a method using an optical circulator has been proposed, but there is a problem that the optical circulator itself is large and expensive. Further, the upper limit light output that can be modulated is reduced by the reduction in the volume of the modulator active layer that absorbs light. Essentially, if the figure of merit doubles, the maximum light output is halved. For this reason, the current situation is that the double-pass EA modulator remains a conceptual proposal.
[0005]
Koji Yamada, Koji Nakamura, and Hideaki Horikawa, "Design of Double-Pass Electroabsorption Modulators with Low-Voltage, High-Speed Properties for 40 Gb / s Modulation"., JOURNAL OF LIGHTWAVE TECHNOLOGY , VOL. 15, NO. 12, DECEMBER 1997, pp.2287-2293.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to double the figure of merit of an MZ modulator using a semiconductor. In particular, with respect to a lumped constant type MZ modulator using a double path configuration of a multiple quantum well waveguide, the figure of merit can be doubled with a simple configuration. In this case, the problem to be solved is to realize input / output separation, which is the biggest problem of the conventional double-pass EA modulator. It is another object of the present invention to provide a configuration of an optical transmission device that realizes push-pull driving by a simple method. In addition, it is intended to facilitate complicated optical mounting by combining paired optical components with the input / output section of the modulator.
[0007]
As described above, an object of the present invention is to provide a novel element structure of a semiconductor lumped constant type MZ modulator and an electrical / optical mounting method thereof, and to perform high-performance operation at low cost equipped with these optical elements. It is intended to solve the problem of providing a possible optical module.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors have devised a double-path structure using a multimode interference waveguide having an input / output waveguide of 2 × 2 configuration for the multiplexer / demultiplexer of the MZ modulator. As a result, the positional separation of the input / output light and the performance index doubling of the modulator by the double pass structure can be achieved at the same time.
[0009]
This double-pass MZ modulator is combined with a modulator driver IC with a complementary differential output pair, and the driver IC output stage and the drive electrode of the MZ modulator are placed symmetrically, making push-pull driving easy. Provide optimal mounting structure and method. Furthermore, the optical modulator of the present invention can be easily optically mounted using a pair optical component in which optical components such as a condensing optical lens used for input / output of an optical signal, an optical isolator, and an optical fiber for guiding light to the outside are connected in parallel. Provide mounting structure and method.
[0010]
In a preferred embodiment of the present invention, a 2 × 2 MMI (multimode interference waveguide) type multiplexer / demultiplexer is provided on a substrate,
The first end face of the multiplexer / demultiplexer is connected to the first end face of each of the input optical waveguide and the output optical waveguide, and the first and second light guides are connected to the second end face opposite to the first end face. Each first end face of the waveguide is connected;
The input optical waveguide, the output optical waveguide, the first and second optical waveguides are provided on the substrate;
A non-reflective coating film is provided on the second end face that is the end face opposite to the first end face of each of the input optical waveguide and the output optical waveguide,
Input light is incident from the second end face of the input optical waveguide via an isolator, and the isolator easily transmits light in the propagation direction of the input light, and transmits light in the opposite direction. Arranged to prevent propagation,
First end faces of a pair of phase modulation waveguides are connected to second end faces that are opposite to the first end faces of the first and second optical waveguides, respectively, and the pair of phase is provided. A high reflection film is provided on each of the second end surfaces that are opposite to the first end surface of the modulation waveguide,
The pair of phase modulation waveguides are provided on the substrate,
The pair of phase modulation waveguides are configured such that a modulation voltage signal can be applied via electrodes,
When the pair of phase modulation waveguides are not modulated, the input light incident from the second end face of the input optical waveguide propagates through the multiplexer / demultiplexer and the pair of phase modulation waveguides, and Reflected by the second end face of the phase modulation waveguide and output to the output optical waveguide via the multiplexer / demultiplexer, the phase difference between the pair of phase modulation waveguides is π Thus, when the modulation voltage signal is applied to the pair of phase modulation waveguides, the input light incident from the second end face of the input optical waveguide passes through the multiplexer / demultiplexer and the pair of phase modulation waveguides. An optical transmitter configured to propagate, reflect on the second end face of the pair of phase modulation waveguides, and output to the input optical waveguide via the multiplexer / demultiplexer It is.
[0011]
The 2 × 2 MMI type multiplexer / demultiplexer includes first and second waveguides coupled to the first end face, and third and fourth waveguides coupled to the second end face, The first and second waveguides are provided apart from each other, and the third and fourth waveguides are provided apart from each other,
The linear distance between the coupling portion at the first end face of the first waveguide and the coupling portion at the second end face of the third waveguide is the first end face of the first waveguide. Smaller than the linear distance between the coupling portion at the second waveguide and the coupling portion at the second end face of the fourth waveguide,
The linear distance between the coupling portion at the first end face of the second waveguide and the coupling portion at the second end face of the fourth waveguide is the first end face of the second waveguide. Smaller than the linear distance between the coupling portion at the third waveguide and the coupling portion at the second end face of the third waveguide,
Input light from the first waveguide is output to the fourth waveguide, and input light from the second waveguide is output to the second waveguide. The duplexer is preferably configured.
[0012]
This 2 × 2 MMI type multiplexer / demultiplexer is used to select the input light by appropriately selecting the height in the direction perpendicular to the propagation direction of the traveling wave of the waveguide, the length in the propagation direction, and the material constituting the waveguide. It is possible to determine the output destination.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
<Embodiment 1>
FIG. 5 shows an operation principle (FIG. 5A) and an element structure (FIG. 5B) of the MZ optical modulator of the present invention. FIG. 2A is a top view of an MZ optical modulator having a pair of input / output ends. A 2 × 2 multimode interference waveguide (MMI) is used for the multiplexer / demultiplexer. Between the multiplexer / demultiplexer, a pair of phase modulation waveguides having a symmetric structure is arranged, and both have electrodes for applying a modulation voltage signal on the upper part. In addition, an antireflective coating (AR) film is formed on both end faces of the element. In this configuration, the input light to the # 1 port in the figure is output to the # 4 end which is a cross port in the non-modulated state. In addition, when a modulation voltage signal is applied to one or both of the pair of phase waveguide electrodes and the phase difference between the phase modulation waveguides is set to π, the input light is output to the # 3 end that is a bar port The # 4 end is turned off. As a result, the input light is subjected to switching modulation to the # 3 port or # 4 port.
[0014]
Next, in this configuration, the element is divided at approximately the center of the phase modulation waveguide of the MZ optical modulator, and a high-reflection film having a reflectivity of about 95% or more is formed on one of the divided end faces. Consider the configuration. Since this configuration is a mirror-symmetric structure of the configuration of FIG. 5A, the same switching modulation operation as described above can be obtained. That is, the input light to the # 1 port in FIG. 5B is output to the # 2 end corresponding to the cross port in the unmodulated state. Further, when a modulation voltage signal is applied to one or both of the pair of phase waveguide electrodes and the phase difference between the phase modulation waveguides is set to be π, the input light is directed to the # 1 end corresponding to the bar port. Come back. At this time, the # 2 end is turned off. Therefore, if the # 1 port is used as an optical input end and the # 2 port is used as an optical output end, a desired MZ optical modulation operation can be obtained. Here, it is necessary to introduce an optical isolator to the # 1 port so that the return light does not return to the light source unit. However, a normally used isolation ratio of about 30 dB may be used. . This configuration is the same as that of a conventional MZ optical modulator. In the conventional double-pass configuration of the EA modulator, the input / output ends are the same, so an optical circulator is required to separate the input / output light. With this configuration, a double-pass configuration using a cheaper isolator is possible. As a matter of course, the length of the phase modulation waveguide is halved by the double path configuration, and the parasitic capacitance of the phase modulation waveguide portion is also halved. As a result, the modulation band / voltage ratio, which is a figure of merit of the modulator, is almost doubled. In addition, since MZ modulators basically do not absorb light, the upper limit of the light output that can be modulated is not reduced by the volume of the modulator active layer, which is superior to double-pass EA modulators. It is added that it is a point.
<Embodiment 2>
FIG. 6A shows more specific elements of the double-pass MZ optical modulator described in the first embodiment. Hereinafter, this manufacturing method and its characteristics will be described in detail.
[0015]
As shown in FIG. 6A, an n-type InP buffer layer 1.5 μm 652, an n-type InGaAsP lower guide layer 0.03 μm 653, an undoped multiple quantum well on an n-type (100) InP semiconductor substrate 601 by metal organic vapor phase epitaxy. Layer (13 nm thick unstrained InGaAsP (composition wavelength 1.48 μm) well layer, 5 nm thick InP barrier layer, 20 periods) 602, undoped InGaAsP upper guide layer 0.03 μm655, p-type InP first cladding layer 0.05 μm656, p-type InAlAs An etching stop layer 0.05 μm 657, a p-type InP second cladding layer 1.7 μm 658, a p-type InGaAsP (composition wavelength 1.3 μm) cap layer 30 nm, and a p-type InGaAs electrode contact layer 0.2 μm 659 are sequentially grown (illustration in FIG. 6). Subsequently, the waveguide structure shown in FIG. Here, a reactive ion etching (RIE) method using methane gas was used for patterning the waveguide. In this case, since the InAlAs material is scarcely etched, the etching stops on the InAlAs etching stop layer 657, and the ridge waveguide structure shown in FIG. 6A is automatically formed. Here, the multimode interference waveguide (MMI) was 12.0 μm wide and 202 μm long. Later, p-type electrodes 605 and 606 were formed in a narrow stripe shape in a region to be a phase modulator, and a back electrode 609 was formed on the substrate side. After cleaving at a desired position, a low reflection film 607 having a reflectance of about 0.1% was formed at the input / output end, and a high reflection film 608 having a reflectance of about 98% was formed at the rear end face of the phase modulator by a known method. The phase modulator length was 400 μm, and the interval between the input and output waveguides was 250 μm.
[0016]
TE polarized signal light with a wavelength of 1.55 μm was incident on the input end of the fabricated double-pass MZ modulator, and the modulation characteristics under single-phase driving conditions were evaluated. For this evaluation, a standard pair fiber having a fiber core interval of 250 μm was used. FIG. 6B shows a modulation curve when the input signal wavelength is 1550 nm. Half-wave voltage V [pi was about 2.6V. This V π is about half of the measured value of a conventional MZ modulator (phase modulator length is 800 μm) fabricated on the same wafer. On the other hand, the modulation band is about 18 GHz, which is sufficient for 10 Gbit / s operation per second.
<Embodiment 3>
In the MZ optical modulator configuration of the present invention, when the pair of phase modulators are differentially operated (so-called push-pull operation), the driving amplitude voltage is further reduced by half and the zero chirping operation of the modulator can be realized. The configuration of the transmitter shown in FIG. 7A is a top view of the embodiment. FIG. 2B is a perspective view thereof. A mounting carrier 701 on which a high-frequency line is formed is prepared in advance. On the mounting carrier 701, a pair of signal lines 709 and ground lines 710 between and on both sides are provided. On this mounting carrier, a double pass MZ modulator 702 and a voltage driving IC 703 are mounted on the rear end face side of the double pass MZ modulator as shown in the figure. Here, the voltage driving IC 703 has a normal differential output terminal (P and Q in the figure), and each can adjust the DC bias. The differential voltage output signals of the differential output terminals P and Q are fed to the phase modulation waveguide of the double-pass MZ modulator 702 through the high-frequency line 709 and the wiring 712 on the mounting carrier 701. This configuration has a line-symmetric structure with respect to the reference line in the figure. For this reason, the total sum of the lengths of the high-frequency signal lines extending from the differential output terminals P and Q to the electrode of the double-pass MZ modulator is short, and both are basically equivalent. For this reason, this configuration is characterized in that it has a structure that prevents the phase delay of the two kinds of drive signals, which is the biggest problem of the push-pull operation. This is because the voltage driving IC can be mounted close to the rear end face side of the MZ modulator because the MZ optical modulator has a folded structure. With the transmitter of the present embodiment, a 10 Gbit / s zero chirping operation was realized at a push-pull voltage of about 1.3 V pp .
<Embodiment 4>
FIG. 8 shows an embodiment in which further improvements are made regarding the optical mounting of the MZ optical modulator of the present invention. The MZ optical modulator of the present invention has a light input / output terminal on the same end face side. For this reason, as shown in FIG. 8, by making the input / output optical parts in a pair configuration, the module manufacturing process such as reduction of the number of parts and optical adjustment can be simplified. In the optical transmitter shown in the third embodiment, a pair of optical lenses, an isolator, and a fiber, which are used for input / output of optical signals, are integrated into a pair part. Here, the optical axis interval of these optical components was 250 μm. This value is selected from the viewpoint of standardization and is not an essential value. As shown, the isolators are integrated with light traveling directions opposite to each other. In some cases, the optical lens and the isolator may be integrated. When these paired parts are used, if one of the input / output optical paths is adjusted, the other is automatically aligned, so that the manufacturing process associated with optical coupling is reduced by half. Although the above discussion is based on the assumption of optical adjustment, it will be noted that the same effect can be expected even when a so-called passive alignment method without optical adjustment is applied.
<Embodiment 5>
FIG. 9 is a perspective view of an optical module manufactured using the above embodiment of the present invention. A configuration in which a carrier 501 in which an MZ optical modulator and a voltage driving IC are integrated is arranged in a module housing 502 by using both the electrical mounting shown in the third embodiment and the optical mounting shown in the fourth embodiment. is there. A high-frequency connector 504 is provided in the electrical input section, and a bulk lens 503 in which an optical lens and an isolator are integrated and a pair fiber (506, 507) are used in the optical system. According to this configuration, since the fiber input / output is arranged on the same side of the module, the length of the transmitter in the fiber direction can be greatly shortened, which is effective for downsizing the optical transmitter.
[0017]
【The invention's effect】
According to the semiconductor light emitting device according to the embodiment of the present invention, the figure of merit of the MZ optical modulator can be doubled. In particular, with respect to a lumped constant type MZ modulator using a double path configuration of a multiple quantum well waveguide, the figure of merit can be doubled with a simple configuration. At this time, it becomes possible to separate the input / output light, which was the biggest problem of the conventional double-pass EA modulator. Further, it is possible to realize an optical transmission device that realizes push-pull driving by a simple method. In addition, complicated optical mounting can be facilitated by combining paired optical components with the input / output section of the modulator. By using the present invention, not only the device performance and the yield are dramatically improved, but also it is possible to contribute to the cost reduction, capacity increase, and distance increase of the optical communication system to which this device is applied.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining a conventional technique.
FIG. 2 is a diagram for explaining a conventional technique.
FIG. 3 is a diagram for explaining a conventional technique.
FIG. 4 is a diagram for explaining a conventional technique.
FIG. 5 is a diagram for explaining an embodiment of the present invention.
FIG. 6 is a diagram for explaining an embodiment of the present invention.
FIG. 7 is a diagram for explaining an embodiment of the present invention.
FIG. 8 is a diagram for explaining an embodiment of the present invention.
FIG. 9 is a diagram for explaining an embodiment of the present invention.
[Explanation of symbols]
601 ... n-type (100) InP semiconductor substrate, 602 ... undoped multiple quantum well layer, 604 ... optical multiplexer / demultiplexer, 605 ... phase modulator electrode, 606 ... phase modulator electric, 607 ... low reflection film, 608 ... high reflection Film, 652 ... n-type InP buffer layer 1.5 μm, 653 ... n-type InGaAsP lower guide layer, 654 ... InGaAsP upper guide layer, 655 ... p-type InP first cladding layer, 656 ... p-type InAlAs etching stop layer, 657 ... p-type InP second cladding layer, 658... p-type InGaAs electrode contact layer,
701 ... Mounting carrier, 702 ... Double path MZ modulator, 703 ... Voltage driving IC, 709 ... High frequency signal line, 710 ... Ground line, 711 ... Terminal resistor, 712 ... Wiring,
801 ... Pair optical lens, 802 ... Pair isolator, 803 ... Pair fiber,
501 ... mounting carrier, 502 ... module housing, 503 ... pair isolator with optical lens, 504 ... high frequency connector, 505 ... ferrule, 506 ... input fiber, 507 ... output fiber.

Claims (1)

実装キャリア上に2×2MMI(多モード干渉導波路)型合分波器が設けられ、
前記合分波器の第1の端面には入力光導波路と出力光導波路のそれぞれ第1の端面が接続され、前記合分波器の第1の端面に対向する第2の端面には第1および第2の光導波路のそれぞれ第1の端面が接続され、
前記入力光導波路、前記出力光導波路、前記第1および第2の光導波路は前記実装キャリア上設けられ、
前記入力光導波路および前記出力光導波路のそれぞれの前記第1の端面と反対側の端面である第2の端面には無反射コート膜が設けられ、
前記入力光導波路の第2の端面からアイソレータを介して入力光が入射されるものであり、前記アイソレータは前記入力光の伝播方向には光を透過しやすく、かつ、それとは逆方向の光の伝播を阻止するように設けられ、
前記第1および第2の光導波路のそれぞれの前記第1の端面と反対側の端面である第2の端面には一対の位相変調導波路の第1の端面がそれぞれ接続され、前記一対の位相変調導波路の前記第1の端面と反対側の端面である第2の端面にはそれぞれ高反射膜が設けられ、
前記一対の位相変調導波路は前記実装キャリア上に設けられ、
前記一対の位相変調導波路には電極を介して変調電圧信号が印加可能に構成され、
前記一対の位相変調導波路が変調されていないときには、前記入力光導波路の第2の端面から入射した前記入力光は前記合分波器および前記一対の位相変調導波路を伝播し、前記一対の位相変調導波路の前記第2の端面で反射して前記合分波器を介して前記出力光導波路に出力されるように構成され、前記一対の位相変調導波路間の位相差がπとなるように前記変調電圧信号が前記一対の位相変調導波路に印加されたときには、前記入力光導波路の第2の端面から入射した前記入力光は前記合分波器および前記一対の位相変調導波路を伝播し、前記一対の位相変調導波路の前記第2の端面で反射して前記合分波器を介して前記入力光導波路に出力されるように構成されたダブルパスMZ変調器が前記実装キャリア上に設けられ、
面形状が四角形である電圧駆動IC前記実装キャリア上に設けられ、
前記電圧駆動ICの一端面上にグランド端子と、前記グランド端子の隣りに第1の差動出力端と、前記グランド端子の反対側の隣りに第2の差動出力端とが設けられ、
前記一対の位相変調導波路の線対称となる軸の延長上に、前記線対称となる軸に対してそれぞれ対称な形状をもつ前記グランド端子及び前記電圧駆動ICが配置され、かつ、前記高反射膜のある前記第2端面に対向して前記電圧駆動ICの一端面が配置され、
前記グランド端子は接地され、
前記第1の差動出力端と前記第1の差動出力端に近い側の一方の前記位相変調導波路の電極との間が第1のワイヤリングを含む第1の高周波信号線を介して電気的に接続され、前記第2の差動出力端と前記第2の差動出力端に近い側の他方の前記位相変調導波路の電極との間が第2のワイヤリングを含む第2の高周波信号線を介して電気的に接続されており、
前記第1の差動出力端、前記第1のワイヤリングを含む第1の高周波信号線、及び前記第1の差動出力端に近い側の一方の前記位相変調導波路の電極、前記第2の差動出力端、前記第2のワイヤリングを含む第2の高周波信号線、及び前記第2の差動出力端に近い側の他方の前記位相変調導波路の電極とは、前記線対称となる軸に関してそれぞれ対称となる構造を有し、かつそれぞれの長さが同等となっている光送信装置。
A 2 × 2 MMI (multimode interference waveguide) type multiplexer / demultiplexer is provided on the mounting carrier,
The first end face of the input / output waveguide is connected to the first end face of the multiplexer / demultiplexer, and the first end face of the multiplexer / demultiplexer is opposite to the first end face. And a first end face of each of the second and second optical waveguides is connected,
It said input optical waveguide, said output optical waveguide, said first and second optical waveguides are provided on the mounting carrier,
A non-reflective coating film is provided on the second end face that is the end face opposite to the first end face of each of the input optical waveguide and the output optical waveguide,
Input light is incident from the second end face of the input optical waveguide via an isolator, and the isolator easily transmits light in the propagation direction of the input light, and transmits light in the opposite direction. It provided to prevent the propagation,
First end faces of a pair of phase modulation waveguides are connected to second end faces that are opposite to the first end faces of the first and second optical waveguides, respectively, and the pair of phase is provided. A high reflection film is provided on each of the second end surfaces that are opposite to the first end surface of the modulation waveguide,
The pair of phase modulation waveguides are provided on the mounting carrier,
The pair of phase modulation waveguides are configured such that a modulation voltage signal can be applied via electrodes,
When the pair of phase modulation waveguides are not modulated, the input light incident from the second end face of the input optical waveguide propagates through the multiplexer / demultiplexer and the pair of phase modulation waveguides, and Reflected by the second end face of the phase modulation waveguide and output to the output optical waveguide via the multiplexer / demultiplexer, the phase difference between the pair of phase modulation waveguides is π Thus, when the modulation voltage signal is applied to the pair of phase modulation waveguides, the input light incident from the second end face of the input optical waveguide passes through the multiplexer / demultiplexer and the pair of phase modulation waveguides. A double-pass MZ modulator configured to propagate, reflect on the second end face of the pair of phase modulation waveguides, and output to the input optical waveguide via the multiplexer / demultiplexer is provided on the mounting carrier. Provided in
Voltage driving IC flat surface shape is square is provided on the mounting carrier,
On one end face of said voltage driving IC, a ground terminal, a first differential output end next to the ground terminal, a second differential output terminal is provided next to the opposite side of the ground terminal,
On the extension of the axis of the line symmetry of the pair of phase modulation waveguides, the ground terminal及 beauty said voltage driving IC, each having a symmetrical shape with respect to the axis of the said symmetrical are arranged, and the high one end face of said voltage driving IC so as to face the second end face with a reflective film is disposed,
The ground terminal is grounded;
The first differential output end and the electrode of one of the phase modulation waveguides close to the first differential output end are electrically connected via a first high frequency signal line including a first wiring. And a second high-frequency signal including a second wiring between the second differential output end and the electrode of the other phase modulation waveguide on the side close to the second differential output end Are electrically connected via wires ,
The first differential output end, the first high-frequency signal line including the first wiring, the electrode of one of the phase modulation waveguides on the side close to the first differential output end, and the second The differential output end, the second high-frequency signal line including the second wiring, and the other electrode of the phase modulation waveguide on the side close to the second differential output end are in line symmetry. An optical transmission device having a structure that is symmetrical with respect to an axis and having the same length .
JP2003079343A 2003-03-24 2003-03-24 Optical transmitter Expired - Fee Related JP4244671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003079343A JP4244671B2 (en) 2003-03-24 2003-03-24 Optical transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003079343A JP4244671B2 (en) 2003-03-24 2003-03-24 Optical transmitter

Publications (2)

Publication Number Publication Date
JP2004287116A JP2004287116A (en) 2004-10-14
JP4244671B2 true JP4244671B2 (en) 2009-03-25

Family

ID=33293475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003079343A Expired - Fee Related JP4244671B2 (en) 2003-03-24 2003-03-24 Optical transmitter

Country Status (1)

Country Link
JP (1) JP4244671B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4977377B2 (en) 2006-02-22 2012-07-18 日本オプネクスト株式会社 Semiconductor light emitting device
US7433549B2 (en) * 2006-09-20 2008-10-07 Lucent Technologies Inc. Optical modulator
US8842942B2 (en) * 2010-02-08 2014-09-23 Samsung Electronics Co., Ltd. Optical modulator formed on bulk-silicon substrate
KR101683543B1 (en) * 2010-02-08 2016-12-07 삼성전자 주식회사 Modulator formed on bulk-silicon substrate
JP5455053B2 (en) * 2010-02-24 2014-03-26 国立大学法人東北大学 Apparatus and method for removing waveform distortion of ultrafast optical pulse
JP5573309B2 (en) 2010-04-01 2014-08-20 住友電気工業株式会社 Mach-Zehnder light modulator
US9477134B2 (en) 2012-12-28 2016-10-25 Futurewei Technologies, Inc. Hybrid integration using folded Mach-Zehnder modulator array block

Also Published As

Publication number Publication date
JP2004287116A (en) 2004-10-14

Similar Documents

Publication Publication Date Title
US6150667A (en) Semiconductor optical modulator
US8068744B2 (en) Optical transmitter
US8412008B2 (en) Semiconductor optical device
JP3885528B2 (en) Light modulator
JP5263718B2 (en) Semiconductor optical modulator
EP0766122B1 (en) Mach-Zehnder type modulator and method of driving the same
US5742423A (en) Semiconductor optical modulator
CN114583420A (en) Phase shifter and manufacturing method thereof, semiconductor device and optical communication system
US5757985A (en) Semiconductor mach-zehnder-type optical modulator
CN115718381A (en) Lithium niobate optical transceiver and forming method thereof
JP4244671B2 (en) Optical transmitter
JP6002066B2 (en) Semiconductor light modulator
JP5553151B2 (en) Semiconductor optical modulator and semiconductor optical transmitter using the same
US5953149A (en) Semiconductor electroabsorption optical modulator
JPH02226232A (en) Directional coupler type optical switch
JP3422279B2 (en) Optical modulator, optical communication light source, optical module using the same, and optical communication system
JP3378376B2 (en) Light control type semiconductor optical switch
JPH09293927A (en) Optical semiconductor laser
US5999298A (en) Electroabsorption optical intesity modulator having a plurality of absorption edge wavelengths
JP4550371B2 (en) Electroabsorption optical modulator, semiconductor integrated device with electroabsorption optical modulator, module using them, and method for manufacturing semiconductor integrated device with electroabsorption optical modulator
WO2023228403A1 (en) Optical device
Yasui et al. Lossless 10-Gbit/s InP npin Mach-Zehnder modulator monolithically integrated with semiconductor optical amplifier
Yamanaka et al. High-performance InP-based optical modulators
JP2002023205A (en) Directional coupler, optical modulator and wavelength selector
Pedretti Monolithic separate absorption and modulation Mach-Zehnder wavelength converters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050519

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081229

R151 Written notification of patent or utility model registration

Ref document number: 4244671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees