JP4242248B2 - Tin plating method using insoluble anode - Google Patents

Tin plating method using insoluble anode Download PDF

Info

Publication number
JP4242248B2
JP4242248B2 JP2003362408A JP2003362408A JP4242248B2 JP 4242248 B2 JP4242248 B2 JP 4242248B2 JP 2003362408 A JP2003362408 A JP 2003362408A JP 2003362408 A JP2003362408 A JP 2003362408A JP 4242248 B2 JP4242248 B2 JP 4242248B2
Authority
JP
Japan
Prior art keywords
tin
plating
tank
anode
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003362408A
Other languages
Japanese (ja)
Other versions
JP2005126753A (en
Inventor
八七 大八木
雅史 大田
良子 古屋
瑠梨香 中野
Original Assignee
石川金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川金属工業株式会社 filed Critical 石川金属工業株式会社
Priority to JP2003362408A priority Critical patent/JP4242248B2/en
Publication of JP2005126753A publication Critical patent/JP2005126753A/en
Application granted granted Critical
Publication of JP4242248B2 publication Critical patent/JP4242248B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、例えば、鉄系素材あるいは銅ないし銅系合金素材等に対し、不溶性陽極を用いて錫めっきを連続的に行う際の錫めっき浴の組成をコントロールするための不溶性陽極を使用する錫めっき方法に関する。 The present invention relates to, for example, a tin that uses an insoluble anode for controlling the composition of a tin plating bath when performing tin plating continuously on an iron-based material or copper or copper-based alloy material using an insoluble anode. The present invention relates to a plating method.

電子部品や電子回路を構成する部材を製造するため、鉄系素材あるいは銅ないし銅系合金素材の帯状物を所定形状に打抜き加工を行い、全表面あるいは特定部分に銅めっき、ニッケルめっき、錫めっきを行う方法が多く行われている。これらのめっきの内、錫めっきは半田性の確保が最大の目的であり、殆どめっき最表面に施されることが多い。従来、この錫めっきは、錫−鉛合金(即ち、半田めっき)としてめっきされることが多かったが、近年では鉛を使用しない方向にあり(例えば、特許文献1参照)、純錫めっきが適用されている。めっきする部位としては、全面めっきする場合もあるが、半田性が必要な部位のみにめっきする部分めっきが多用されている。 In order to manufacture electronic components and components that make up electronic circuits, a strip of iron-based material or copper or copper-based alloy material is punched into a predetermined shape, and copper plating, nickel plating, or tin plating is applied to the entire surface or specific parts. There are many ways to do it. Of these platings, tin plating has the greatest purpose of ensuring solderability and is often applied to the outermost surface of the plating. Conventionally, this tin plating is often plated as a tin-lead alloy (that is, solder plating). However, in recent years, there is a tendency not to use lead (see, for example, Patent Document 1), and pure tin plating is applied. Has been. As a part to be plated, there is a case where the entire surface is plated, but partial plating for plating only a part requiring solderability is frequently used.

全面めっきの場合、可溶性陽極方式が採用可能であり、めっき浴への錫イオンの補給は特に問題はないが、部分めっきを行う場合、めっき不要部位をマスクで覆う等の操作が必要となり、寸法形状がめっき時間の経過によって変化しない不溶性陽極方式のめっきが行われる。不溶性陽極によるめっき方式の場合、可溶性陽極の場合と同様に陰極で錫の析出が起こり、陽極では酸素発生が起こり、液中に水素イオンが生成し、残存する。可溶性陽極の場合、陽極では錫の溶解反応が起こり、陰極で消費された錫イオンの補給が行われ浴組成は一定に保たれる。不溶性陽極の場合は、陽極にて錫の補給がなされないため錫イオン濃度が減少する。また、陽極にて水素イオンが発生するため、浴中に水素イオン(今後、遊離酸と称する)が蓄積することになる。
従って、例えば、特許文献2に記載のように、外部より錫イオンを補給する必要が生じ、錫化合物を高濃度に溶解した補給液で補給される。
In the case of full-surface plating, a soluble anode method can be adopted, and there is no particular problem with replenishment of tin ions to the plating bath. However, when partial plating is performed, an operation such as covering a portion that does not require plating with a mask is required. Insoluble anode plating is performed in which the shape does not change with the lapse of plating time. In the case of a plating method using an insoluble anode, tin is deposited at the cathode as in the case of the soluble anode, oxygen is generated at the anode, and hydrogen ions are generated and remain in the liquid. In the case of a soluble anode, a tin dissolution reaction occurs at the anode, and tin ions consumed at the cathode are replenished to keep the bath composition constant. In the case of an insoluble anode, tin is not replenished at the anode, so that the tin ion concentration decreases. Further, since hydrogen ions are generated at the anode, hydrogen ions (hereinafter referred to as free acid) accumulate in the bath.
Therefore, for example, as described in Patent Document 2, it is necessary to replenish tin ions from the outside, and replenishment is performed with a replenisher solution in which a tin compound is dissolved at a high concentration.

特開2000−219993号公報Japanese Unexamined Patent Publication No. 2000-219993 特表平10−511743号公報Japanese National Patent Publication No. 10-511743

しかしながら、錫化合物を高濃度に溶解した補給液での補給では、錫イオンの補給は出来ても増加する遊離酸を減少させることができないため、遊離酸はめっき浴中に蓄積され、濃度限界を超える場合には、めっき液の希釈、系外への排出等を行う必要が生じる。 However, replenishment with a replenisher solution in which a tin compound is dissolved at a high concentration cannot reduce the free acid that increases even though tin ions can be replenished. When exceeding, it is necessary to dilute the plating solution, discharge it out of the system, and the like.

錫めっきを構成する陰極及び陽極反応が進行するにつれ、2価の錫イオンが減少し、遊離酸が増加することになるが、長期的及び連続的に安定した品質の錫めっきを行うためには、消費される2価の錫イオンと同量の錫イオンを供給し、増加する遊離酸と同量の遊離酸を減少させ、イオン濃度を常に最適な組成で一定に保つことが必要である。
本発明は、不溶性陽極を使用する錫めっき方法において、錫めっき浴の濃度を一定に維持管理するための簡便で経済的な不溶性陽極を使用する錫めっき方法を提供することを目的とする。
As the cathodic and anodic reactions that make up tin plating proceed, divalent tin ions decrease and free acid increases, but in order to perform long-term and continuously stable quality tin plating It is necessary to supply the same amount of tin ions as the divalent tin ions consumed, to reduce the amount of free acids that are increased, and to keep the ion concentration constant at an optimal composition.
An object of the present invention is to provide a simple and economical tin plating method using an insoluble anode for maintaining and maintaining a constant concentration of a tin plating bath in a tin plating method using an insoluble anode.

前記目的に沿う請求項1記載の不溶性陽極を使用する錫めっき方法は、めっき対象物を陰極として不溶性陽極を使用する錫めっき方法において、主めっき槽の他に、水素イオンは通し錫イオンは通さない隔膜で区分された陽極室及び陰極室を有し、しかも前記陽極室には溶解性錫陽極を備え、前記陰極室は金属イオンを含まないメタンスルフォン酸、フェノールスルフォン酸、又は硫酸からなるベース酸で満たされた副反応槽を設け、
前記主めっき槽と前記陽極室の間にめっき液の循環回路を形成し、前記主めっき槽の反応により起こる錫イオン濃度の減少を補償し
前記主めっき槽は1又は2以上の単位主めっき槽からなって、前記副反応槽は1又は2以上の単位副反応槽からなって、前記単位主めっき槽の電気量の合計と、前記単位副反応槽の電気量の合計とを合致させ、
前記単位副反応槽は2以上あって、それぞれの前記単位副反応槽は電流密度によって水素イオンの通過度合いがそれぞれ異なるイオン交換膜からなる前記隔膜を備え、前記各単位副反応槽に流す電流密度を変えると共にそのオンオフ通電時間を制御して、前記主めっき槽の錫イオン濃度及び水素イオン濃度を一定に保っている。
The tin plating method using an insoluble anode according to claim 1, which meets the above object, is a tin plating method using an insoluble anode with a plating object as a cathode. In addition to the main plating tank, hydrogen ions pass and tin ions pass. An anode chamber and a cathode chamber separated by a diaphragm, and the anode chamber is provided with a soluble tin anode, and the cathode chamber is made of methanesulfonic acid, phenolsulfonic acid, or sulfuric acid containing no metal ions. Provided a side reaction tank filled with base acid,
Forming a circulation circuit of a plating solution between the main plating tank and the anode chamber to compensate for a decrease in tin ion concentration caused by the reaction of the main plating tank ,
The main plating tank is composed of one or more unit main plating tanks, the sub-reaction tank is composed of one or two or more unit sub-reaction tanks, and the total amount of electricity of the unit main plating tank and the unit Match the total amount of electricity in the side reaction tank,
There are two or more unit subreaction tanks, and each of the unit subreaction tanks is provided with the diaphragm made of an ion exchange membrane in which the degree of passage of hydrogen ions varies depending on the current density, and the current density that flows to each unit subreaction tank In addition, the on-off energization time is controlled and the tin ion concentration and hydrogen ion concentration of the main plating tank are kept constant .

ここで、めっき対象物とは、例えば、リードフレーム等の電子部品等であり、めっき対象物の全部又は一部にめっきする場合(所謂、部分めっき)も本発明に含まれる。ベース酸とはめっき液を構成している主要な酸をいう。不溶性陽極は、白金めっきチタン電極、イリジウム酸化物を焼成したチタン電極等がある。また、錫めっき浴としては、MSA(メタンスルフォン酸)、PSA(フェノールスルフォン酸)や硫酸等のベース酸中に、2価の錫イオン、光沢添加剤、酸化防止剤等が適宜添加されている。なお、本発明はこれらの不溶性陽極の材料、あるいは添加剤の種類によって限定されるものではない。
電気回路的には、主めっき槽と副反応槽を直列に繋いでもよいが、主めっき槽におけるめっき効率と、副反応槽における錫の溶解効率は僅少の範囲で異なるので、それぞれ独立に調製できる電源を設けて、錫イオン濃度を制御してもよい。
Here, the plating object is, for example, an electronic component such as a lead frame, and the case where all or a part of the plating object is plated (so-called partial plating) is also included in the present invention. The base acid is a main acid constituting the plating solution. Examples of insoluble anodes include platinum-plated titanium electrodes and titanium electrodes obtained by firing iridium oxide. In addition, as a tin plating bath, divalent tin ions, gloss additives, antioxidants, and the like are appropriately added to base acids such as MSA (methane sulfonic acid), PSA (phenol sulfonic acid), and sulfuric acid. . In addition, this invention is not limited by the material of these insoluble anodes, or the kind of additive.
In terms of electrical circuit, the main plating tank and the sub-reaction tank may be connected in series, but the plating efficiency in the main plating tank and the dissolution efficiency of tin in the sub-reaction tank differ within a very small range, and can be prepared independently. A power source may be provided to control the tin ion concentration.

水素イオンと錫イオンを比較した場合、錫イオンより水素イオンの方が小さい。従って、副反応槽の隔膜は、水素イオンは通すが錫イオンは通さない性質を有するものを使用する。この隔膜は、中性の隔膜であってもよいが、後述のようにイオン交換樹脂膜(イオン交換膜)であってもよい。なお、使用する前に、水素イオンと錫イオンの透過性については十分実験した上で選定する。
これによって、副反応槽の陽極室では錫が溶けて錫イオンが発生し、副反応槽の陰極室では水素ガスが発生する。そして、陽極室と陰極室は前記した隔膜で仕切られているので、隔膜を透過する水素イオン量に対して数%レベルの錫イオンが透過することがある。透過した錫イオンはステンレス製の陰極上に析出するため、定期的(例えば、1週間に1度位)に清掃する必要がある。
また、主めっき槽でめっき処理によって、錫イオンが減少し水素イオンが増加すると、主めっき槽と副反応槽の陽極室は、循環回路を介して連結されているので、主めっき槽のめっき液が副反応槽の陽極室に移動し、結果としてめっき処理によって増加した水素イオンが主めっき槽から副反応槽の陽極室に移動する。この陽極室で増加しようとする水素イオンは、隔膜を通じて陰極室に移動し、陰極で電子を貰って水素ガスとなる。一方、陽極室で増加した錫イオンは主めっき槽に送られ、減少した錫イオンを補う。
When hydrogen ions and tin ions are compared, hydrogen ions are smaller than tin ions. Thus, the diaphragm of the secondary reaction vessel, the hydrogen ions pass through but the tin ions are used that have the qualities not be passed. The membrane may be a neutral membrane, but may be an ion exchange resin membrane (ion exchange membrane) as described later. Before use, the permeability of hydrogen ions and tin ions is selected after sufficient experimentation.
As a result, tin melts and tin ions are generated in the anode chamber of the side reaction tank, and hydrogen gas is generated in the cathode chamber of the side reaction tank. Since the anode chamber and the cathode chamber are partitioned by the above-described diaphragm, tin ions of several percent level may permeate with respect to the amount of hydrogen ions that permeate the diaphragm. Since the permeated tin ions are deposited on the stainless steel cathode, it is necessary to clean them regularly (for example, once a week).
When tin ions are reduced and hydrogen ions are increased by plating in the main plating tank, the main plating tank and the anode chamber of the sub-reaction tank are connected via a circulation circuit. Moves to the anode chamber of the side reaction tank, and as a result, hydrogen ions increased by the plating process move from the main plating tank to the anode chamber of the side reaction tank. Hydrogen ions to be increased in the anode chamber move to the cathode chamber through the diaphragm, and scavenge electrons at the cathode to become hydrogen gas. On the other hand, the increased tin ions in the anode chamber are sent to the main plating tank to compensate for the decreased tin ions.

請求項2記載の不溶性陽極を使用する錫めっき方法は、請求項1記載の不溶性陽極を使用する錫めっき方法において、新たにベース酸を貯留する貯留槽を設け、該貯留槽と前記陰極室とをベース酸循環回路で連結して、前記陰極室のベース酸の濃度を一定範囲に保持している。これによってベース酸の濃度の乱れが少なくなり、結果として主めっき槽内のめっき液の水素イオン濃度の安定性が確保できる。 The tin plating method using the insoluble anode according to claim 2 is a tin plating method using the insoluble anode according to claim 1, wherein a storage tank for newly storing a base acid is provided, and the storage tank, the cathode chamber, Are connected by a base acid circulation circuit to keep the concentration of the base acid in the cathode chamber within a certain range. As a result, the disturbance of the concentration of the base acid is reduced, and as a result, the stability of the hydrogen ion concentration of the plating solution in the main plating tank can be ensured.

請求項記載の不溶性陽極を使用する錫めっき方法は、前記主めっき槽は1又は2以上の単位主めっき槽からなって、前記副反応槽は1又は2以上の単位副反応槽からなって、前記単位主めっき槽の電気量の合計と、前記単位副反応槽の電気量の合計とを実質的に合致させているので、単位主めっき槽が複数の場合には、それぞれの単位主めっき槽にそれぞれ入れためっき対象物を同時に、並列にめっきすることができる。これは、例えば、同一のめっき対象物に厚みのあるめっきを複数回に渡って行うこと、複数の部品等を同時にめっきすることが可能となる。
そして、単位主めっき槽の電気量の合計と、単位副反応槽の電気量の合計とを実質的に合致させているので、めっき液から減少する錫イオンと、めっき液中に溶け込む錫イオンの量が一致し、錫イオンの濃度バランスを保つことができる。
The tin plating method using the insoluble anode according to claim 1 , wherein the main plating tank is composed of one or more unit main plating tanks, and the sub-reaction tank is composed of one or more unit sub-reaction tanks. , the sum of the electric quantity of the unit main plating bath, since substantially to coincide and the total quantity of electricity of the unit secondary reactor, when the unit main plating bath is plural, each unit main plating The objects to be plated placed in the tanks can be simultaneously plated in parallel. For example, it is possible to perform thick plating on the same plating object a plurality of times and to plate a plurality of components simultaneously.
Since the total amount of electricity in the unit main plating tank and the total amount of electricity in the unit sub-reaction tank are substantially matched, the tin ions that decrease from the plating solution and the tin ions that dissolve in the plating solution The amounts match and the tin ion concentration balance can be maintained.

そして、特に、請求項記載の不溶性陽極を使用する錫めっき方法は、前記単位副反応槽は2以上あって、それぞれの前記単位副反応槽は電流密度によって水素イオンの通過度合いがそれぞれ異なるイオン交換膜からなる前記隔膜を備え、前記各単位副反応槽に流す電流密度を変えると共にそのオンオフ通電時間を制御して、前記主めっき槽の錫イオン濃度及び水素イオン濃度を一定に保っている。 In particular, in the tin plating method using the insoluble anode according to claim 1 , there are two or more unit sub-reaction tanks, and each of the unit sub-reaction tanks has different degrees of hydrogen ion passage depending on current density. The diaphragm comprising the exchange membrane is provided, and the current density flowing in each unit sub-reaction tank is changed and the ON / OFF energization time is controlled to keep the tin ion concentration and hydrogen ion concentration of the main plating tank constant.

実験によれば、イオン透過性を有する隔膜、特にイオン交換膜においては、通過する電流の電流密度が異なると、錫イオンと水素イオンとが混在している電解液においては水素イオンの通過性が異なり、一般に電流密度が小さい程、水素イオンの通過性がよくなる。これは、電流密度が高いとイオン交換膜が、通過しない錫イオンによって閉塞されやすく、これによって水素イオンが通過しにくくなるものと考えられる。
そして、錫のめっき効率と錫の溶解効率は僅少の範囲で異なるので、主めっき槽の電流と副反応槽の電流が同一であっても、時間の経過と共に錫イオンと水素イオンのバランスが崩れる(通常は徐々に水素イオンが増加する傾向にある)。
According to experiments, in ion-permeable membranes, especially ion exchange membranes, if the current density of the current passing through is different, the electrolyte solution in which tin ions and hydrogen ions are mixed has a hydrogen ion permeability. In contrast, in general, the smaller the current density, the better the passage of hydrogen ions. This is considered that when the current density is high, the ion exchange membrane is likely to be clogged with tin ions that do not pass through, thereby making it difficult for hydrogen ions to pass through.
And since the plating efficiency of tin and the dissolution efficiency of tin are slightly different, even if the current in the main plating tank and the current in the secondary reaction tank are the same, the balance between tin ions and hydrogen ions is lost over time. (Normally, hydrogen ions tend to increase gradually).

そこで、単位副反応槽中でのイオン交換膜からなる隔膜を通過する水素イオンが、その電流密度によって異なることを利用すれば、主めっき槽内のめっき液の増加する水素イオンの濃度を制御することができる。ここで、隔膜の面積を増減すれば電流密度は異なり、水素イオンの濃度を適正に保つ制御を行うことも可能であり、これらのオンオフ通電時間を制御することによって、錫イオンに対する水素イオンの濃度を一定に保つことが可能となるが、本発明においては、同一の単位副反応槽を複数用意し、これらの電流密度を変えると共にオンオフ通電時間を制御することによって、錫イオンに対する水素イオンの濃度を一定に保っている。なお、この場合、各単位副反応槽を通過する電流量の合計と、各単位主めっき槽を通過する電流量の合計を、実質同一にするように制御することは当然である。 Therefore, by utilizing the fact that the hydrogen ions passing through the ion exchange membrane in the unit sub-reaction tank differ depending on the current density, the concentration of hydrogen ions in the plating solution in the main plating tank is controlled. be able to. Here, if the area of the diaphragm is increased / decreased, the current density is different, and it is also possible to perform control to keep the concentration of hydrogen ions at an appropriate level. By controlling the on-off energization time, the concentration of hydrogen ions with respect to tin ions However, in the present invention, by preparing a plurality of the same unit subreaction tanks, changing the current density and controlling the on-off energization time, the concentration of hydrogen ions with respect to tin ions can be maintained. Is kept constant. In this case, it is natural to control the total amount of current passing through each unit sub-reaction tank and the total amount of current passing through each unit main plating tank to be substantially the same.

請求項1、2記載の不溶性陽極を使用する錫めっき方法は、以上の説明からも明らかなように、不溶性陽極を使用する錫めっき方法において、めっき液の成分濃度を一定に制御することができる。これによって、めっきの品質が向上し、めっきの操業性がよくなる。また、めっき液の処理に対しても安定した処理が可能となる。
従って、本発明は、不溶性陽極を使用する錫めっき方法において、増加又は減少するイオン種を、極めて簡便で経済性に優れた方法で一定値に保つ方法を提供するものであり、品質の安定、操業の安定、補給薬剤費の大幅な減少を可能とするものである。
The tin plating method using the insoluble anode according to claims 1 and 2 is, as is apparent from the above description, in the tin plating method using the insoluble anode, the component concentration of the plating solution can be controlled to be constant. . This improves the plating quality and improves the operability of plating. In addition, stable processing is possible with respect to the processing of the plating solution.
Accordingly, the present invention provides a method for keeping the ionic species that increase or decrease in a tin plating method using an insoluble anode at a constant value by a very simple and economical method. This enables stable operation and a significant reduction in supplementary drug costs.

特に、請求項2記載の不溶性陽極を使用する錫めっき方法は、新たにベース酸を貯留する貯留槽を設けているので、ベース酸の濃度の乱れが少なくなり、結果として主めっき槽内のめっき液の水素イオン濃度の安定性が確保できる。 In particular, since the tin plating method using the insoluble anode according to claim 2 is newly provided with a storage tank for storing the base acid, the concentration of the base acid is less disturbed, resulting in plating in the main plating tank. The stability of the hydrogen ion concentration of the liquid can be ensured.

請求項記載の不溶性陽極を使用する錫めっき方法においては、単位主めっき槽が複数の場合には、それぞれの単位主めっき槽にそれぞれ入れためっき対象物を同時に、並列にめっきすることができ、めっき効率の向上を図ることができる。副反応槽を複数の単位副反応槽とした場合には、それぞれの陽極及び陰極からの通電性を均一に制御することが可能となり、より均一に錫イオンの形成が可能となる。
また、単位主めっき槽の電気量の合計と、単位副反応槽の電気量の合計とを実質的に合致させているので、めっき液から減少する錫イオンと、めっき液中に溶け込む錫イオンの量が一致し、錫イオンの濃度バランスを保つことができる。
In the tin plating method using the insoluble anode according to claim 1 , when there are a plurality of unit main plating tanks, the plating objects respectively put in the unit main plating tanks can be simultaneously plated in parallel. The plating efficiency can be improved. When the side reaction tank is composed of a plurality of unit side reaction tanks, it is possible to uniformly control the conductivity from the respective anodes and cathodes and to form tin ions more uniformly.
In addition, since the total amount of electricity in the unit main plating tank and the total amount of electricity in the unit secondary reaction tank are substantially matched, the tin ions that decrease from the plating solution and the tin ions that dissolve in the plating solution The amounts match and the tin ion concentration balance can be maintained.

請求項記載の不溶性陽極を使用する錫めっき方法は、単位副反応槽は2以上あって、それぞれの単位副反応槽は電流密度によって水素イオンの通過度合いがそれぞれ異なるイオン交換膜からなる隔膜を備え、各単位副反応槽に流す電流密度を変えると共にそのオンオフ通電時間を制御して、主めっき槽の錫イオン濃度及び水素イオン濃度を一定に保っているので、長時間めっき処理をした場合に発生する錫イオンに対する水素イオン(遊離酸)の濃度の増加を自動的に一定に保つことができる。
なお、不溶性陽極を使用する錫めっき方法において、2以上の単位副反応槽を有する場合、それぞれの単位副反応槽の陽極室を流れるめっき液が直列であっても並列であってもよい。
The tin plating method using the insoluble anode according to claim 1, wherein there are two or more unit subreaction tanks, and each unit subreaction tank is formed of an ion exchange membrane having different degrees of passage of hydrogen ions depending on the current density. In addition, by changing the current density flowing in each unit sub-reaction tank and controlling the on-off energization time, the tin ion concentration and hydrogen ion concentration of the main plating tank are kept constant, so when plating for a long time The increase in the concentration of hydrogen ions (free acid) relative to the generated tin ions can be automatically kept constant.
In addition, in the tin plating method using an insoluble anode, when it has two or more unit side reaction tanks, the plating solution which flows through the anode chamber of each unit side reaction tank may be in series or in parallel.

続いて添付した図面を参照しつつ、本発明を具体化した実施の形態に係る不溶性陽極を使用する錫めっき方法について説明し、本発明の理解に供する。
ここに、図1は本発明の第1の実施の形態に係る不溶性陽極を使用する錫めっき方法を適用する錫めっき浴装置の概略説明図、図2は同方法の作用効果を示す説明図であり、(A)は比較例に係る不溶性陽極を使用する錫めっき方法における主めっき槽のイオン濃度変化を示す説明図、(B)は同実施の形態に係る不溶性陽極を使用する錫めっき方法を適用した場合の主めっき槽におけるイオン濃度変化を示す説明図、図3は本発明の第2の実施の形態に係る不溶性陽極を使用する錫めっき方法を適用した錫めっき浴装置の概略説明図である。
Subsequently, a tin plating method using an insoluble anode according to an embodiment embodying the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention.
FIG. 1 is a schematic explanatory view of a tin plating bath apparatus to which the tin plating method using the insoluble anode according to the first embodiment of the present invention is applied, and FIG. 2 is an explanatory view showing the operation and effect of the method. Yes, (A) is an explanatory view showing the ion concentration change of the main plating tank in the tin plating method using the insoluble anode according to the comparative example, and (B) is the tin plating method using the insoluble anode according to the embodiment. FIG. 3 is a schematic explanatory view of a tin plating bath apparatus to which a tin plating method using an insoluble anode according to the second embodiment of the present invention is applied. is there.

図1に示すように、本発明の第1の実施の形態に係る不溶性陽極を使用する錫めっき方法を適用した錫めっき浴装置10は、主めっき槽11と、内部の液を隔膜12で区分された陽極室13及び陰極室14からなる副反応槽15とを有している。副反応槽15の陰極室14には、図示しないベース酸循環回路(管路とポンプ)によって連結されたベース酸循環タンク16が連結される。そして、主めっき槽11と陽極室13とにそれぞれ第1、第2のめっき液循環回路(図示せず)によって連結されためっき液循環タンク17が備えられている。以下、これらについて詳しく説明する。 As shown in FIG. 1, a tin plating bath apparatus 10 to which a tin plating method using an insoluble anode according to the first embodiment of the present invention is applied is divided into a main plating tank 11 and an inner liquid by a diaphragm 12. And a side reaction tank 15 comprising an anode chamber 13 and a cathode chamber 14. A base acid circulation tank 16 connected by a base acid circulation circuit (pipe and pump) (not shown) is connected to the cathode chamber 14 of the side reaction tank 15. A plating solution circulation tank 17 connected to the main plating tank 11 and the anode chamber 13 by first and second plating solution circulation circuits (not shown) is provided. These will be described in detail below.

主めっき槽11は、めっき対象物(例えば、条材に形成されたリードフレーム、その他の電子部品で、これらの非めっき部分には、マスクがされている)である陰極18と、白金めっきチタン電極、又はイリジウム酸化物等を焼成したチタン電極からなる不溶性陽極19で構成されている。主めっき槽11の錫めっき浴としては、MSA(メタンスルフォン酸)、PSA(フェノールスルフォン酸)、あるいは硫酸等のベース酸の中に、2価の錫イオン、光沢添加剤、酸化防止剤等が適宜添加されている。
なお、本実施の形態では、主めっき槽11は1つだが、目標とする付着量に応じて、主めっき槽数を複数個とし、それぞれを単位主めっき槽としてもよい。
The main plating tank 11 includes a cathode 18 that is an object to be plated (for example, a lead frame formed on a strip material and other electronic components, and these non-plated portions are masked), and platinum-plated titanium. The electrode is composed of an insoluble anode 19 made of a titanium electrode obtained by firing an iridium oxide or the like. The tin plating bath of the main plating tank 11 includes divalent tin ions, gloss additives, antioxidants, etc. in base acids such as MSA (methane sulfonic acid), PSA (phenol sulfonic acid), or sulfuric acid. It is added as appropriate.
In the present embodiment, the number of main plating tanks 11 is one. However, the number of main plating tanks may be plural according to the target adhesion amount, and each may be a unit main plating tank.

副反応槽15は、錫めっき浴中のイオン濃度を一定に保つために、錫を陽極溶解する陽極室13と、水素イオン(遊離酸)を減少させるための陰極室14より構成され、陰極室14と陽極室13は水素イオンを通し、錫イオンを通し難い隔膜12の一例であるイオン交換膜により分割されている。
陽極室13には、主めっき槽11に使用される錫めっき液がめっき液循環タンク17より供給され、溶解性錫陽極の一例であるチタン籠内に収納されている金属錫ボール20が陽極溶解され、2価の錫イオン濃度が上昇した状態でめっき液循環タンク17に戻される。
陰極室14には、2価の錫イオン(即ち、金属イオン)を実質含まないベース酸単独液がベース酸循環タンク(貯留槽の一例)16より供給される。
The side reaction tank 15 is composed of an anode chamber 13 for anodic dissolution of tin and a cathode chamber 14 for reducing hydrogen ions (free acid) in order to keep the ion concentration in the tin plating bath constant. 14 and the anode chamber 13 are divided by an ion exchange membrane which is an example of the diaphragm 12 through which hydrogen ions pass and tin ions do not easily pass.
In the anode chamber 13, a tin plating solution used in the main plating tank 11 is supplied from a plating solution circulation tank 17, and metal tin balls 20 housed in a titanium basket which is an example of a soluble tin anode are anodic dissolved. Then, it is returned to the plating solution circulation tank 17 with the divalent tin ion concentration increased.
A base acid single solution substantially free of divalent tin ions (ie, metal ions) is supplied to the cathode chamber 14 from a base acid circulation tank (an example of a storage tank) 16.

ここで、隔膜としては、錫イオンは通さず水素イオンのみを透過させる選択透過能を有するものであれば、いずれの隔膜も使用可能であり、ここではイオン交換膜を使用している。イオン交換膜はある特定のイオンのみの選択透過能を期待して設置される。本実施の形態の場合、水素イオンのみの選択透過を期待しているため、カチオン透過膜を選択するのが普通であるが、水素イオンの半径が小さいため、アニオン透過膜の使用も可能である。従って、本発明ではイオン交換樹脂のタイプは特に限定するものではない。
イオン交換膜を透過してきた水素イオンは、陰極室14内に設置されている陰極(SUS又はTi等)表面にて水素ガス発生反応に消費され、結果として錫めっき浴中の遊離酸濃度の減少に役立つことになる。
Here, as the diaphragm, any diaphragm can be used as long as it has a selective permeability that allows only hydrogen ions to pass therethrough, and an ion exchange membrane is used here. An ion exchange membrane is installed in the hope of selective permeation of only certain ions. In the case of this embodiment, since selective permeation of only hydrogen ions is expected, a cation permeable membrane is usually selected. However, since the radius of hydrogen ions is small, an anion permeable membrane can also be used. . Therefore, in the present invention, the type of ion exchange resin is not particularly limited.
The hydrogen ions that have permeated the ion exchange membrane are consumed in the hydrogen gas generation reaction on the surface of the cathode (SUS, Ti, etc.) installed in the cathode chamber 14, resulting in a decrease in the free acid concentration in the tin plating bath. Will be helpful.

このような副反応槽15での反応は、主めっき槽11で起こる反応の逆反応を起こさせるものであり、主めっき槽11でのめっき析出(陰極反応)は、副反応槽15での錫溶解(陽極反応)で補い、主めっき槽11での水素イオン濃度上昇(陽極反応)は、副反応槽15での水素発生(陰極反応)で補うことにより、めっき浴組成を一定に保つ役割を果たしている。従って、流す電流値としては、1ないし複数個の主めっき槽(単位主めっき槽)に流されている総電流(電気量)と、1ないし複数個の副反応槽(単位副反応槽)に流される総電流(電気量)はほぼ同一のもので良い。通常、錫めっき析出反応は約95%の電流効率で起こるため、副反応槽15での溶解反応もその程度の効率で溶解させる必要がある。副反応槽15の錫溶解は、高液流速条件下では約95%の効率で起こるが、液流速が遅い場合には、90%以下の溶解効率に落ちる場合があり、その場合には、電源を別にするか又は補助電源等を用いて溶解効率低下に見合った電気量を流すのがよい。
なお、図1において、21、22は直流電源であって、この実施の形態では別々に設けられているが、一つの電源によって構成し、主めっき槽11と副反応槽15を直列に接続してもよい。この場合は、主めっき槽11と副反応槽15の電流が完全に一致する。
Such a reaction in the side reaction tank 15 causes a reverse reaction of the reaction occurring in the main plating tank 11, and the plating deposition (cathode reaction) in the main plating tank 11 is caused by the tin reaction in the sub reaction tank 15. Compensation by dissolution (anode reaction), and the increase in hydrogen ion concentration (anode reaction) in the main plating tank 11 is supplemented by hydrogen generation (cathode reaction) in the sub-reaction tank 15, thereby maintaining a constant plating bath composition. Plays. Accordingly, the current value to be passed is the total current (amount of electricity) flowing through one or more main plating tanks (unit main plating tanks) and one or more sub reaction tanks (unit sub reaction tanks). The total current (amount of electricity) that flows is almost the same. Usually, the tin plating precipitation reaction occurs at a current efficiency of about 95%, so the dissolution reaction in the side reaction tank 15 also needs to be dissolved with such an efficiency. The tin dissolution in the side reaction tank 15 occurs at an efficiency of about 95% under a high liquid flow rate condition. However, when the liquid flow rate is low, the dissolution efficiency may drop to 90% or less. It is preferable to flow an amount of electricity commensurate with a decrease in dissolution efficiency using an auxiliary power source or the like.
In FIG. 1, reference numerals 21 and 22 denote DC power supplies, which are separately provided in this embodiment, but are constituted by one power supply, and the main plating tank 11 and the sub reaction tank 15 are connected in series. May be. In this case, the currents in the main plating tank 11 and the sub reaction tank 15 completely match.

続いて、本発明の第2の実施の形態に係る不溶性陽極を使用する錫めっき方法について説明するが、この不溶性陽極を使用する錫めっき方法の技術的背景は以下の通りである。
即ち、主めっき槽11側にて減少する2価の錫イオンと増加する遊離酸の比率は流される電気量に応じた特定の値を示す。隔膜12として性能のよいイオン交換膜を使用した場合であっても、副反応槽15にて、その比率と全く同じ比率で2価の錫イオンを増加させ、遊離酸(即ち、水素イオン)を減少させるのはかなり難しい内容を含んでいる(即ち、イオン交換膜を含む隔膜の特性、液の流速の相違、温度条件等によって変わる)。
Subsequently, a tin plating method using the insoluble anode according to the second embodiment of the present invention will be described. The technical background of the tin plating method using the insoluble anode is as follows.
That is, the ratio of the divalent tin ion decreasing on the main plating tank 11 side and the increasing free acid shows a specific value corresponding to the amount of electricity that flows. Even when an ion exchange membrane with good performance is used as the diaphragm 12, divalent tin ions are increased in the side reaction tank 15 at exactly the same ratio, and free acid (that is, hydrogen ions) is increased. It is quite difficult to reduce (that is, it depends on the characteristics of the diaphragm including the ion exchange membrane, the difference in the flow rate of the liquid, the temperature condition, etc.).

副反応槽15で増加する2価の錫イオンと遊離酸の比率は、使用するイオン交換膜の特性にも依存することを理解することが重要である。
イオン交換膜を実際に使用すると、低電流密度(例えば、3A/dm2)では、めっき液中の遊離酸が減少する速度が相対的に速く、高電流密度(例えば、5A/dm2)では、めっき液中の2価の錫イオンの増加速度が相対的に速くなる。実際に使用するイオン交換膜のこれらの値を事前に把握し、主めっき槽11に対応する比率でのイオン濃度を調整するには、複数個の単位副反応槽を用意し、それぞれイオン交換膜に対する電流密度を異なったものとする。異なった比率(△Sn2+/△H+)で増減する反応槽の組合せで主めっき槽11に対応するイオン濃度変化を起こさせる方法を採用することで完璧な濃度コントロールが可能となる。
第2の実施の形態に係る不溶性陽極を使用する錫めっき方法は、このような目的のために成されたものである。
It is important to understand that the ratio of divalent tin ions and free acids that increase in the side reaction tank 15 also depends on the characteristics of the ion exchange membrane used.
When an ion exchange membrane is actually used, at a low current density (for example, 3 A / dm 2 ), the rate of reduction of free acid in the plating solution is relatively high, and at a high current density (for example, 5 A / dm 2 ). The increase rate of divalent tin ions in the plating solution becomes relatively fast. In order to grasp these values of the ion exchange membrane actually used in advance and adjust the ion concentration at a ratio corresponding to the main plating tank 11, a plurality of unit side reaction tanks are prepared, and each of the ion exchange membranes is prepared. The current density for is different. By adopting a method of causing an ion concentration change corresponding to the main plating tank 11 with a combination of reaction tanks that increase or decrease at different ratios (ΔSn 2+ / ΔH + ), perfect concentration control is possible.
The tin plating method using the insoluble anode according to the second embodiment is made for such a purpose.

図3に示すように、本発明の第2の実施の形態に係る不溶性陽極を使用する錫めっき方法を用いた錫めっき浴装置24は、主めっき槽11と、副反応槽を構成する同一構造の第1、第2の単位副反応槽25、26とを有している。この実施の形態では、主めっき槽11は一つ、副反応槽は二つであるが、本発明はこの数に限定されず、主めっき槽11を複数、副反応槽を三つ以上にしてもよい。主めっき槽11には、錫めっき浴装置10と同様、めっき対象物とによって構成される陰極18と、不溶性陽極19を有している。
第1、第2の単位副反応槽25、26はそれぞれ隔膜の一例であるイオン交換膜27、27aで仕切られる陽極室28、29と陰極室30、31を有している。陽極室28、29には多数の金属性錫ボールをチタン製籠に入れた陽極32、33が、陰極室30、31にはステンレス製の陰極34、35がそれぞれ設けられている。
As shown in FIG. 3, the tin plating bath device 24 using the tin plating method using the insoluble anode according to the second embodiment of the present invention has the same structure constituting the main plating tank 11 and the sub-reaction tank. The first and second unit subreaction tanks 25 and 26 are provided. In this embodiment, there is one main plating tank 11 and two sub-reaction tanks, but the present invention is not limited to this number, and there are a plurality of main plating tanks 11 and three or more sub-reaction tanks. Also good. Similar to the tin plating bath device 10, the main plating tank 11 has a cathode 18 constituted by an object to be plated and an insoluble anode 19.
The first and second unit subreaction tanks 25 and 26 have anode chambers 28 and 29 and cathode chambers 30 and 31, respectively, which are partitioned by ion exchange membranes 27 and 27a, which are examples of diaphragms. The anode chambers 28 and 29 are provided with anodes 32 and 33 in which a number of metallic tin balls are placed in a titanium cage, and the cathode chambers 30 and 31 are provided with cathodes 34 and 35 made of stainless steel, respectively.

第1、第2の単位副反応槽25、26の陽極室28、29には、前記した錫めっき浴装置10に使用しためっき液と同一成分のめっき液が充填されている。陽極室28、29は直列に連結され、めっき液循環タンク36とは、図示しない循環回路によって連結され、例えば、めっき液循環タンク36から陽極室28に、陽極室28から陽極室29に、陽極室29からめっき液循環タンク36への循環回路を形成している。なお、この実施の形態では陽極室28、29は直列に接続しているが、並列に接続してもよい。
一方、陰極室30、31は、それぞれ独立のベース酸循環回路によって貯留槽の一例であるベース酸循環タンク37に連結され、常時、陰極室30、31のベース酸が一定の濃度を保つようになっている。
The anode chambers 28 and 29 of the first and second unit subreaction tanks 25 and 26 are filled with a plating solution having the same component as the plating solution used in the tin plating bath apparatus 10 described above. The anode chambers 28 and 29 are connected in series, and are connected to the plating solution circulation tank 36 by a circulation circuit (not shown). For example, the plating solution circulation tank 36 is connected to the anode chamber 28, and the anode chamber 28 is connected to the anode chamber 29. A circulation circuit from the chamber 29 to the plating solution circulation tank 36 is formed. In this embodiment, the anode chambers 28 and 29 are connected in series, but may be connected in parallel.
On the other hand, the cathode chambers 30 and 31 are connected to a base acid circulation tank 37, which is an example of a storage tank, by independent base acid circulation circuits so that the base acids in the cathode chambers 30 and 31 always maintain a constant concentration. It has become.

第1の単位副反応槽25の陽極32及び陰極34は、直流電源38の第1の直流出力端子に接続され、第2の単位副反応槽26の陽極33及び陰極35は、直流電源38の第2の直流出力端子に接続されている。直流電源38の第1及び第2の直流出力端子は独立に電流値と、オンオフの時間を制御でき、この実施の形態では、第1の単位副反応槽25に例えば10分間のうちに60Aで6分オンした後4分オフすることができ、第2の単位副反応槽26に例えば10分間のうちに40Aで6分オンした後4分オフすることができる。
一方、第1、第2の単位副反応槽25、26のイオン交換膜27、27aは同一素材のイオン交換膜からなっている。なお、図中、符号39、40は、個々の電源を示す。
The anode 32 and the cathode 34 of the first unit sub reaction tank 25 are connected to the first DC output terminal of the DC power supply 38, and the anode 33 and the cathode 35 of the second unit sub reaction tank 26 are connected to the DC power supply 38. The second direct current output terminal is connected. The first and second DC output terminals of the DC power supply 38 can independently control the current value and the ON / OFF time. In this embodiment, the first unit sub-reaction tank 25 is supplied with 60 A in 10 minutes, for example. It can be turned off for 4 minutes after being turned on for 6 minutes, and can be turned off for 4 minutes after being turned on for 6 minutes at 40 A in 10 minutes in the second unit side reaction tank 26, for example.
On the other hand, the ion exchange membranes 27 and 27a of the first and second unit side reaction tanks 25 and 26 are made of the same material. In the figure, reference numerals 39 and 40 denote individual power sources.

続いて、前記した錫めっき浴装置10、24を用いて、本発明の作用、効果を確認するために行った実施例について説明する。
(実施例1)
電子部品電極部材を製造するため、板厚0.1mm、幅35mmの鉄基材連続帯状物を所定形状に打ち抜き、アルカリ洗浄−電解洗浄−酸活性−青化銅めっき−硫酸銅めっき−ニッケルめっき−錫めっき、の一貫工程ラインに通板し、銅(全面)5ミクロン+ニッケル(全面)0.2ミクロン+錫(部分めっき)6ミクロンのめっきを行った。
その際、錫めっき液としては、メタンスルフォン酸150g/l、2価の錫イオン60g/l、適量の添加剤を含む錫めっき液をめっき液循環タンクに1000リットル建浴し、不溶性陽極を内蔵する部分めっき装置(主めっき槽)に循環した。部分めっき装置は、めっき必要部位のみ開孔したゴムマスクを有し、このゴムを鉄基材表面に押当て、開孔部より鉄基材表面にめっき液を噴流し、通電(めっき)後、噴流を止め、マスクを離し、基材が搬送される仕組みになっている。長期連続運転を行えば、不溶性陽極を使用しているため、めっき液中の2価錫イオンは減少し、遊離酸が増加してくることとなる。
Then, the Example performed in order to confirm the effect | action and effect of this invention using above-described tin plating bath apparatus 10 and 24 is described.
(Example 1)
In order to manufacture an electronic component electrode member, an iron base continuous strip having a thickness of 0.1 mm and a width of 35 mm is punched into a predetermined shape, and alkali cleaning, electrolytic cleaning, acid activity, copper bromide plating, copper sulfate plating, nickel plating -Plated through an integrated process line of tin plating, copper (overall surface) 5 microns + nickel (overall surface) 0.2 microns + tin (partial plating) 6 microns.
At that time, a tin plating solution containing 150 g / l of methanesulfonic acid, 60 g / l of divalent tin ions, and an appropriate amount of additives as a tin plating solution was built in 1000 liters in a plating solution circulation tank, and an insoluble anode was incorporated. It circulated to the partial plating apparatus (main plating tank). The partial plating equipment has a rubber mask that is opened only at the necessary parts for plating. This rubber is pressed against the surface of the iron base, and the plating solution is jetted onto the surface of the iron base from the opening, and after energization (plating), the jet flows Is stopped, the mask is released, and the substrate is transported. If a long-term continuous operation is performed, since the insoluble anode is used, the divalent tin ion in the plating solution decreases and the free acid increases.

図1に示すような構成でイオン交換膜で仕切られた副反応槽を準備し、陽極室には約150kgの錫ボール(径28mm)を内蔵するチタン籠を設置し、イオン交換膜に対する電流密度3A/dm2、総電流60Aにて錫ボールを陽極溶解した。この際、主めっき槽のめっき総電流は60Aであり、錫ボールの溶解電流はめっき電流と同一に設定されている。
対極となる陰極室には、ベース酸循環タンクより、50g/lのメタンスルフォン酸液が循環され、設置されたSUS陰極表面にて水素発生反応が起こっている。
副反応槽が存在しない場合、イオン濃度は図2(A)に示すようにめっき時間の経過と共に、錫イオン濃度は減少し、遊離酸濃度が増加するが、副反応槽を使用することにより両方のイオン濃度を一定に保ち、安定した品質の製品を得ることができる。
A sub-reaction vessel partitioned by an ion exchange membrane with the structure shown in FIG. 1 is prepared, and a titanium basket containing about 150 kg of tin balls (diameter 28 mm) is installed in the anode chamber, and the current density with respect to the ion exchange membrane Tin balls were anodically dissolved at 3 A / dm 2 and a total current of 60 A. At this time, the total plating current of the main plating tank is 60 A, and the melting current of the tin balls is set to be the same as the plating current.
A 50 g / l methanesulfonic acid solution is circulated from the base acid circulation tank to the counter electrode cathode chamber, and a hydrogen generation reaction occurs on the surface of the installed SUS cathode.
When the side reaction tank does not exist, the ion concentration decreases as the plating time passes and the free acid concentration increases as the plating time elapses as shown in FIG. 2 (A). The ion concentration can be kept constant, and a stable quality product can be obtained.

(実施例2)
実施例1の作業を1ヶ月間続けたところ、2価錫イオン濃度はほぼ一定値をキープできたが、遊離酸が5g/l増加する変化がみられた。このような変化を修正し元に戻すため、図3に示すように、2個の単位副反応槽を準備した。2個の単位副反応槽には同じような液循環を行い、イオン交換膜に対する電流密度を片方は3A/dm2、もう片方は2A/dm2となるよう条件設定し通電した。但し、両単位副反応槽の運転時間は、両槽とも6割(例えば、10分間のうち6分のみ通電し、4分間はオフ時間とする)とし、トータル通電量としては3A/dm2の連続通電と同等の電気量になるように設定した。結果を図2(B)に示す。
このように2A/dm2の通電時間を採用することにより、遊離酸の減少比率が高まり、遊離酸の増加を押さえ込むことが可能となった。
(Example 2)
When the operation of Example 1 was continued for one month, the divalent tin ion concentration was kept at a substantially constant value, but a change in which the free acid increased by 5 g / l was observed. In order to correct such a change and restore it, two unit side reaction tanks were prepared as shown in FIG. The two unit sub-reactor performs a similar liquid circulation, one of the current density for the ion exchange membrane 3A / dm 2, and the other is a condition set to be 2A / dm 2 current. However, the operating time of both unit side reaction tanks is 60% in both tanks (for example, energizing only 6 minutes in 10 minutes and turning off for 4 minutes), and the total energization amount is 3 A / dm 2 . Electricity was set to be equivalent to continuous energization. The results are shown in FIG.
By adopting the energization time of 2 A / dm 2 in this way, the reduction rate of free acid was increased, and it was possible to suppress the increase in free acid.

なお、本発明は前記実施の形態や実施例の具体的数字に限定されるものではなく、本発明の要旨を変更しない範囲で、そのめっき条件を変えることもできる。例えば、主めっき槽の電源と副反応槽の電源を別々にして、副反応槽の電流量を主めっき槽の錫イオンを検出しながら、常時一定範囲になるように副反応槽の電源を制御する場合も本発明の権利範囲に含まれる。
また、主めっき槽の水素イオンの濃度をチェックしながら、それぞれ条件が予め設定された複数の単位副反応槽の通電時間と通電量を制御して、主めっき槽の水素イオンを一定範囲に保つ場合も本発明の権利範囲に含まれる。
In addition, this invention is not limited to the specific number of the said embodiment and an Example, The plating conditions can also be changed in the range which does not change the summary of this invention. For example, the power supply of the main plating tank and the power supply of the sub-reaction tank are separated, and the power of the sub-reaction tank is controlled so that the current amount in the sub-reaction tank is always within a certain range while detecting the tin ions in the main plating tank. Such cases are also included in the scope of rights of the present invention.
In addition, while checking the hydrogen ion concentration in the main plating tank, the energization time and the energization amount of a plurality of unit sub-reaction tanks each set in advance are controlled to keep the hydrogen ions in the main plating tank within a certain range. Such cases are also included in the scope of rights of the present invention.

本発明の第1の実施の形態に係る不溶性陽極を使用する錫めっき方法を適用する錫めっき浴装置の概略説明図である。It is a schematic explanatory drawing of the tin plating bath apparatus which applies the tin plating method which uses the insoluble anode which concerns on the 1st Embodiment of this invention. 同方法の作用効果を示す説明図であり、(A)は比較例に係る不溶性陽極を使用する錫めっき方法における主めっき槽のイオン濃度変化を示す説明図、(B)は同実施の形態に係る不溶性陽極を使用する錫めっき方法を適用した場合の主めっき槽におけるイオン濃度変化を示す説明図である。It is explanatory drawing which shows the effect of the method, (A) is explanatory drawing which shows the ion concentration change of the main plating tank in the tin plating method which uses the insoluble anode which concerns on a comparative example, (B) is the embodiment. It is explanatory drawing which shows the ion concentration change in the main plating tank at the time of applying the tin plating method using the insoluble anode which concerns. 本発明の第2の実施の形態に係る不溶性陽極を使用する錫めっき方法を適用した錫めっき浴装置の概略説明図である。It is a schematic explanatory drawing of the tin plating bath apparatus to which the tin plating method using the insoluble anode which concerns on the 2nd Embodiment of this invention is applied.

符号の説明Explanation of symbols

10:錫めっき浴装置、11:主めっき槽、12:隔膜、13:陽極室、14:陰極室、15:副反応槽、16:ベース酸循環タンク、17:めっき液循環タンク、18:陰極、19:不溶性陽極、20:金属錫ボール、21:直流電源、22:直流電源、24:錫めっき浴装置、25:第1の単位副反応槽、26:第2の単位副反応槽、27:イオン交換膜、27a:イオン交換膜、28:陽極室、29:陽極室、30:陰極室、31:陰極室、32:陽極、33:陽極、34:陰極、35:陰極、36:めっき液循環タンク、37:ベース酸循環タンク、38:直流電源、39、40:電源 10: tin plating bath device, 11: main plating tank, 12: diaphragm, 13: anode chamber, 14: cathode chamber, 15: side reaction tank, 16: base acid circulation tank, 17: plating solution circulation tank, 18: cathode , 19: Insoluble anode, 20: Metal tin ball, 21: DC power supply, 22: DC power supply, 24: Tin plating bath device, 25: First unit subreaction tank, 26: Second unit subreaction tank, 27 : Ion exchange membrane, 27a: ion exchange membrane, 28: anode chamber, 29: anode chamber, 30: cathode chamber, 31: cathode chamber, 32: anode, 33: anode, 34: cathode, 35: cathode, 36: plating Liquid circulation tank, 37: Base acid circulation tank, 38: DC power supply, 39, 40: Power supply

Claims (2)

めっき対象物を陰極として不溶性陽極を使用する錫めっき方法において、主めっき槽の他に、水素イオンは通し錫イオンは通さない隔膜で区分された陽極室及び陰極室を有し、しかも前記陽極室には溶解性錫陽極を備え、前記陰極室は金属イオンを含まないメタンスルフォン酸、フェノールスルフォン酸、又は硫酸からなるベース酸で満たされた副反応槽を設け、
前記主めっき槽と前記陽極室の間にめっき液の循環回路を形成し、前記主めっき槽の反応により起こる錫イオン濃度の減少を補償し、
前記主めっき槽は1又は2以上の単位主めっき槽からなって、前記副反応槽は1又は2以上の単位副反応槽からなって、前記単位主めっき槽の電気量の合計と、前記単位副反応槽の電気量の合計とを合致させ、
前記単位副反応槽は2以上あって、それぞれの前記単位副反応槽は電流密度によって水素イオンの通過度合いがそれぞれ異なるイオン交換膜からなる前記隔膜を備え、前記各単位副反応槽に流す電流密度を変えると共にそのオンオフ通電時間を制御して、前記主めっき槽の錫イオン濃度及び水素イオン濃度を一定に保つことを特徴とする不溶性陽極を使用する錫めっき方法。
In tin-plated method using an insoluble anode plating object as a cathode, in addition to the main plating bath, tin ions passed through the hydrogen ion has an anode chamber and a cathode chamber which are partitioned by the diaphragm not be passing, moreover the anode The chamber is provided with a soluble tin anode, the cathode chamber is provided with a side reaction tank filled with a base acid consisting of methanesulfonic acid, phenolsulfonic acid or sulfuric acid which does not contain metal ions,
Forming a circulation circuit of a plating solution between the main plating tank and the anode chamber to compensate for a decrease in tin ion concentration caused by the reaction of the main plating tank ,
The main plating tank is composed of one or more unit main plating tanks, the sub-reaction tank is composed of one or two or more unit sub-reaction tanks, and the total amount of electricity of the unit main plating tank and the unit Match the total amount of electricity in the side reaction tank,
There are two or more unit subreaction tanks, and each of the unit subreaction tanks is provided with the diaphragm made of an ion exchange membrane in which the degree of passage of hydrogen ions varies depending on the current density, and the current density that flows to each unit subreaction tank The tin plating method using an insoluble anode is characterized in that the tin ion concentration and the hydrogen ion concentration in the main plating tank are kept constant by changing the ON / OFF energization time .
請求項1記載の不溶性陽極を使用する錫めっき方法において、新たにベース酸を貯留する貯留槽を設け、該貯留槽と前記陰極室とをベース酸循環回路で連結して、前記陰極室のベース酸の濃度を一定範囲に保持することを特徴とする不溶性陽極を使用する錫めっき方法。 The tin plating method using the insoluble anode according to claim 1, wherein a storage tank for newly storing a base acid is provided, and the storage tank and the cathode chamber are connected by a base acid circulation circuit, whereby the base of the cathode chamber is provided. A tin plating method using an insoluble anode, wherein the acid concentration is maintained within a certain range.
JP2003362408A 2003-10-22 2003-10-22 Tin plating method using insoluble anode Expired - Lifetime JP4242248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003362408A JP4242248B2 (en) 2003-10-22 2003-10-22 Tin plating method using insoluble anode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003362408A JP4242248B2 (en) 2003-10-22 2003-10-22 Tin plating method using insoluble anode

Publications (2)

Publication Number Publication Date
JP2005126753A JP2005126753A (en) 2005-05-19
JP4242248B2 true JP4242248B2 (en) 2009-03-25

Family

ID=34642078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003362408A Expired - Lifetime JP4242248B2 (en) 2003-10-22 2003-10-22 Tin plating method using insoluble anode

Country Status (1)

Country Link
JP (1) JP4242248B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100928666B1 (en) * 2009-02-17 2009-11-27 주식회사 한스머신 Wafer defect analyzing device and ion abstraction device for the same and analyzing method using the same
KR101346021B1 (en) * 2011-12-09 2013-12-31 주식회사 엠에스씨 Method for producing Sn-Ag alloy plating solution and the Plating solution thereby
JP6084112B2 (en) * 2013-05-09 2017-02-22 株式会社荏原製作所 Sn alloy plating apparatus and Sn alloy plating method
US10011919B2 (en) * 2015-05-29 2018-07-03 Lam Research Corporation Electrolyte delivery and generation equipment

Also Published As

Publication number Publication date
JP2005126753A (en) 2005-05-19

Similar Documents

Publication Publication Date Title
US5162079A (en) Process and apparatus for control of electroplating bath composition
RU2302481C2 (en) Electrolysis cell for compensation for concentration of metal ions in electrodeposition processes
US20160024683A1 (en) Apparatus and method for electrolytic deposition of metal layers on workpieces
US6852209B2 (en) Insoluble electrode for electrochemical operations on substrates
US6899803B2 (en) Method and device for the regulation of the concentration of metal ions in an electrolyte and use thereof
JP4242248B2 (en) Tin plating method using insoluble anode
US5705048A (en) Apparatus and a process for regenerating a CUCl2 etchant
JP5669995B1 (en) Method and apparatus for processing Au-containing iodine-based etching solution
WO2019026578A1 (en) Positive electrode for electrolytic copper plating and electrolytic copper plating apparatus using same
KR100558129B1 (en) Method and apparatus for regulating the concentration of substances in electrolytes
JP5592770B2 (en) Electric tin plating method
JP2009185383A (en) Feed mechanism for copper plating solution, copper plating apparatus using the same, and copper film-forming method
CN117396638A (en) Device and method for coating a component or a semifinished product with a chromium layer
JP2006070358A (en) Method of electric tinning
KR20090043146A (en) Apparatus and method of removing impurities in electroless tinning solution
JPH0673393B2 (en) Copper plating method for printed circuit boards
JPH06158397A (en) Method for electroplating metal
JPH0242911B2 (en)
JPH05302199A (en) Method for controlling composition of copper plating bath in copper plating using insoluble anode
JP4615159B2 (en) Alloy plating method
EP3914757B1 (en) Method for electrolytic zinc-nickel alloy deposition using a membrane anode system
JP2010065255A (en) Alloy plating method and alloy plating apparatus
JPS5925991A (en) Reducing method of metallic ions
JP2022543601A (en) Metal recovery from lead-containing electrolytes
JPS5893899A (en) Controlling method for electroplating bath

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4242248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term