JPH06158397A - Method for electroplating metal - Google Patents

Method for electroplating metal

Info

Publication number
JPH06158397A
JPH06158397A JP33234092A JP33234092A JPH06158397A JP H06158397 A JPH06158397 A JP H06158397A JP 33234092 A JP33234092 A JP 33234092A JP 33234092 A JP33234092 A JP 33234092A JP H06158397 A JPH06158397 A JP H06158397A
Authority
JP
Japan
Prior art keywords
metal
tank
plating
anode
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP33234092A
Other languages
Japanese (ja)
Inventor
Yoshio Sugaya
良雄 菅家
Yukio Matsumura
幸夫 松村
Haruhisa Miyake
晴久 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP33234092A priority Critical patent/JPH06158397A/en
Publication of JPH06158397A publication Critical patent/JPH06158397A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/16Regeneration of process solutions
    • C25D21/22Regeneration of process solutions by ion-exchange

Abstract

PURPOSE:To perform the dissolving of metal and the formation of acid in a good balance by installing a metal dissolving tank and a plating tank separately, using an anion exchange membrane in each tank and circulating the acid formed in the dissolving tank though the tanks. CONSTITUTION:In a metal dissolving tank 1, the region between an anode 11 consisting of soluble metal and an insoluble cathode 12 is divided by an anion exchange membrane 13 to form an anodic chamber 14 and a cathodic chamber 15. On the other hand, in a plating tank 2, the region between an insoluble anode 21 and a cathode 22 to be plated by an anion exchange membrane 23 to form an anodic chamber 24 and a cathodic chamber 25. In this constitution, the anodic chamber 14 of the metal dissolving tank 1 and the cathodic chamber 25 of the plating tank 2 are connected by a plating liquid circulating circuit 4 through a plating liquid tank 3. And the cathodic chamber 15 of the metal dissolving tank 1 and the anodic chamber 29 of the plating tank 2 are connected by an acidic liquid circulating circuit 6 though an acidic water solution tank 5. Consequently, acid is circulated to perform the dissolving and plating of metal without taking out the acid formed in the metal dissolving tank 1 to outside the system to dissolve metal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属の電気メッキ方法
に関する。
FIELD OF THE INVENTION The present invention relates to a method for electroplating metal.

【0002】[0002]

【従来の技術】従来、金属の電気メッキのシステムとし
ては、無隔膜法として陽極に可溶性陽極または不溶性陽
極が使用されており、可溶性陽極の場合はメッキ浴の陰
極側で消耗する金属イオンが陽極側で溶解補充される利
点があるものの、二種以上の金属イオンからなる合金メ
ッキでは複数個の異なる金属陽極を設置する必要があ
る。このため、メッキ浴中の金属イオンのバランスがき
わめて難しいことと、可溶性陽極である金属の溶解によ
り電極間距離が変動し、また、消耗した陽極を新しい陽
極に交換するとともに電極間距離の調整をする必要があ
り、メッキラインの管理上、不都合な欠点を有してい
る。
2. Description of the Related Art Conventionally, as a metal electroplating system, a soluble anode or an insoluble anode has been used as an anode in a diaphragmless method. In the case of a soluble anode, metal ions consumed on the cathode side of a plating bath are anodes. Although it has the advantage of being dissolved and replenished on the side, it is necessary to install a plurality of different metal anodes in alloy plating composed of two or more kinds of metal ions. For this reason, it is extremely difficult to balance the metal ions in the plating bath, and the distance between the electrodes changes due to the dissolution of the metal that is the soluble anode.Also, it is necessary to replace the exhausted anode with a new anode and adjust the distance between the electrodes. Therefore, there is an inconvenient drawback in controlling the plating line.

【0003】一方、不溶性陽極の場合は、上記の欠点は
解消されるが、金属イオンの消耗に伴い過剰の陰イオン
は陰極で発生するH+ により酸として蓄積し、被メッキ
物である鋼板から溶出したFe2+が陽極で酸化されFe
3+を生成する。これらの酸およびFe3+のメッキ液中へ
の蓄積によりメッキ特性が劣化する欠点がある。
On the other hand, in the case of an insoluble anode, the above-mentioned drawbacks are solved, but as the metal ions are consumed, excess anions are accumulated as an acid by H + generated at the cathode, so that the steel plate to be plated has The eluted Fe 2+ is oxidized at the anode and Fe
Generates 3+ . The accumulation of these acids and Fe 3+ in the plating solution has a drawback that the plating characteristics are deteriorated.

【0004】かかる欠点の改善を目的に不溶性陽極を用
いて電気メッキを行うにあたり、陰極と不溶性陽極間を
陰イオン交換膜で区画し、金属イオンの消耗による過剰
の陰イオンを区画された陽極室に除去するとともに陰極
側メッキ液に溶出するFe2+を陽極液中に漏洩するのを
防止することが特公昭51−2900号公報に提案され
ている。この方法では陽極室で生成した酸の有効利用法
として、酸を系外に抜き出し、金属を溶解してメッキ液
の補充として利用することが示されている。
In carrying out electroplating using an insoluble anode for the purpose of improving such drawbacks, the cathode and the insoluble anode are partitioned by an anion exchange membrane, and an excess of anions due to consumption of metal ions is partitioned in the anode chamber. Japanese Patent Publication No. 51-2900 proposes that Fe 2+, which is eluted in the cathode side plating solution, is prevented from leaking into the anolyte solution while being removed. In this method, as an effective use method of the acid generated in the anode chamber, it is shown that the acid is extracted out of the system and the metal is dissolved and used as a supplement of the plating solution.

【0005】一方、特開昭58−93887号公報に
は、硫酸浴Fe系電気メッキ方法が示され、陽極で生成
する酸を全量溶解に使用することが困難なことから、生
成した酸の一部を系外へ抜き出し、金属の溶解に使用
し、残りの酸液を中和して、塩として回収する方法が示
されている。また、特開昭58−93888号公報には
陽極で生成した酸を使用して金属の溶解性を高めるた
め、金属粉または金属粒子を充填した溶解槽を用いて溶
解することが提案されているが、何れも生成した酸を一
旦系外に抜き出して金属を溶解するいわゆる化学溶解法
が採用されており、操作も煩雑であり、必ずしも効率的
でない。
On the other hand, Japanese Unexamined Patent Publication No. 58-93887 discloses a sulfuric acid bath Fe-based electroplating method, and since it is difficult to use the entire amount of the acid generated at the anode for dissolving, the acid generated is A method is shown in which a part is taken out of the system, used to dissolve a metal, the remaining acid solution is neutralized, and recovered as a salt. Further, JP-A-58-93888 proposes to use an acid generated at the anode to enhance the solubility of the metal, and to dissolve the metal in a dissolution tank filled with metal powder or particles. However, in all cases, a so-called chemical dissolution method is employed in which the generated acid is once taken out of the system to dissolve the metal, and the operation is complicated and not always efficient.

【0006】一方、金属メッキ浴で消耗する金属を補給
する方法には、溶解性の大きな金属塩を別途溶解して使
用する方法と、電極として用いる金属を溶解する方法が
ある。溶解性の大きな金属塩を別途溶解して使用する場
合、溶解設備は簡易なものであるが、金属あたりの単価
が高い欠点がある。この欠点を改善する目的で、安価な
金属を効率よく溶解させる方法が検討された。例えば、
溶解しやすい形状にした金属を使用したり、溶解する酸
濃度を上げたり、温度を上げたり、液の循環速度を上げ
たりして溶解を促進する方法、或いは、電気エネルギー
を利用し、陽極に溶解すべき金属を用いて通電して溶解
する電解溶解方法が提案されている。
On the other hand, as a method of replenishing the metal that is consumed in the metal plating bath, there are a method of separately dissolving a metal salt having high solubility and a method of dissolving the metal used as an electrode. When a metal salt having a large solubility is separately dissolved and used, the dissolution equipment is simple, but there is a drawback that the unit price per metal is high. For the purpose of remedying this drawback, a method for efficiently dissolving an inexpensive metal was investigated. For example,
Use a metal that has a shape that is easy to dissolve, increase the concentration of the acid to be dissolved, raise the temperature, increase the circulation speed of the liquid, or accelerate the dissolution, or use electric energy to make the anode An electrolytic melting method has been proposed in which a metal to be melted is used to apply electric current to melt the metal.

【0007】これらの既知の方法のうち、電気を使用し
ない方法は必ずしも効率的でなく、一方、電解溶解の場
合も陰極上への金属の析出を伴ない、また、これを防止
するためには極めて水素過電圧の小さい特殊な陰極を使
用せねばならず、必ずしも有利な方法ではなかった。金
属イオンの陰極での電析を防止するため、陰/陽極間に
隔離膜を設置することも検討されている。しかしながら
陽イオン交換膜では溶解した金属イオンが膜を透過する
ため電析防止効果はあまり高くなく、陰極液の流速を極
めて高速にするか、過電圧の小さな陰極を併用せねばな
らない等の欠点がある。
Among these known methods, the method which does not use electricity is not always efficient, while the electrolytic dissolution is accompanied by the deposition of metal on the cathode, and in order to prevent this. A special cathode with a very low hydrogen overvoltage has to be used, which is not always an advantageous method. In order to prevent the electrodeposition of metal ions at the cathode, it is also considered to install a separator film between the cathode and the cathode. However, in cation exchange membranes, dissolved metal ions permeate the membrane, so the effect of preventing electrodeposition is not very high, and there are drawbacks such that the flow velocity of the catholyte must be extremely high or that a cathode with a small overvoltage must be used in combination. .

【0008】一方、陰イオン交換膜を用いる方法では、
金属イオンの透過が防止できるが、電解溶解槽の陽極液
は金属イオンの溶出に伴ない陰極側から陰イオンが補給
される結果、金属溶解液の陰イオン濃度が増加し、メッ
キ用液組成が変化する欠点を有している。
On the other hand, in the method using the anion exchange membrane,
Although it is possible to prevent the permeation of metal ions, the anolyte in the electrolytic solution tank is supplemented with anions from the cathode side as the metal ions are eluted, resulting in an increase in the anion concentration of the metal solution and a plating solution composition. It has varying drawbacks.

【0009】[0009]

【発明が解決しようとする課題】本発明は、電気メッキ
用電解槽における従来技術が有する諸欠点を解決するこ
とを目的としてなされたもので、金属の溶解槽とメッキ
槽とを別の槽にし、夫々の槽に陰イオン交換膜を用い、
これら2つの槽間に、溶解槽で生成した酸を循環するこ
とにより前記目的を達成した。
SUMMARY OF THE INVENTION The present invention has been made for the purpose of solving various drawbacks of the prior art in electroplating electrolytic baths, and uses a metal melting bath and a plating bath as separate baths. , Using anion exchange membrane in each tank,
The above object was achieved by circulating the acid produced in the dissolution tank between these two tanks.

【0010】[0010]

【課題を解決するための手段】かくして本発明は、陰−
陽極間を陰イオン交換膜によって区画した金属溶解槽と
メッキ槽からなり、金属溶解槽は可溶性金属からなる陽
極と不溶性陰極とを有し、金属溶解槽の陽極室にはメッ
キ液を、陰極室には酸を夫々導入し、一方メッキ槽は不
溶性陽極と被メッキ陰極を有し、メッキ槽の陽極室には
酸を、陰極室にはメッキ液を夫々導入して通電し、金属
溶解槽の陽極室で溶解した金属を含むメッキ液を、メッ
キ槽の陰極室に導入して被メッキ陰極をメッキし、他
方、金属溶解槽の陰極室の酸を、メッキ槽の陽極室に導
入して循環しつつ電解することを特徴とする金属の電気
メッキ方法である。
The present invention thus provides
It consists of a metal dissolving tank in which the anodes are partitioned by an anion exchange membrane and a plating tank, and the metal dissolving tank has an anode made of a soluble metal and an insoluble cathode. Acid is introduced into the plating tank, while the plating tank has an insoluble anode and a cathode to be plated. An acid is introduced into the anode chamber of the plating tank, and a plating solution is introduced into the cathode chamber to energize the metal tank. The plating solution containing the metal dissolved in the anode chamber is introduced into the cathode chamber of the plating tank to plate the cathode to be plated, while the acid in the cathode chamber of the metal dissolving tank is introduced into the anode chamber of the plating tank and circulated. It is a method of electroplating a metal, which is characterized in that electrolysis is performed while performing.

【0011】即ち本発明は陰イオン交換膜を隔膜として
使用することにより、無隔膜メッキ法のようなメッキ液
の酸およびFe2+の蓄積を防止するとともに、陰イオン
交換膜を用いたメッキ法でも生成する酸を系外に取り出
して直接金属と接触させて溶解する欠点、例えば、溶解
速度が遅い点、生成する酸中に存在するFe3+の悪影響
がある点を防止し、金属溶解槽に陰イオン交換膜を使用
し金属が溶解することによる陰イオンの補充を、メッキ
工程から生成された酸中の陰イオンによってまかなうこ
とに特徴がある。
That is, according to the present invention, by using an anion exchange membrane as a diaphragm, it is possible to prevent the acid and Fe 2+ from being accumulated in the plating solution as in the diaphragmless plating method, and to use the anion exchange membrane in the plating method. However, it is possible to prevent the disadvantage that the generated acid is taken out of the system and directly contacted with the metal to be dissolved, for example, the dissolution rate is slow, and the adverse effect of Fe 3+ present in the generated acid is exerted. It is characterized in that an anion exchange membrane is used to supplement the anion by dissolving the metal by the anion in the acid generated from the plating process.

【0012】以下、本発明を実施する一例について説明
する。図1は本発明を実施するための金属溶解槽とメッ
キ槽の概略図である。
An example for carrying out the present invention will be described below. FIG. 1 is a schematic view of a metal melting bath and a plating bath for carrying out the present invention.

【0013】金属溶解槽1は可溶性金属からなる陽極1
1、陰極12間を陰イオン交換膜13によって区画され
た陽極室14と陰極室15を有する。メッキ槽2は陽極
21、被メッキ陰極22間を陰イオン交換膜23によっ
て区画された陽極室24と陰極室25を有する。
The metal melting tank 1 is an anode 1 made of a soluble metal.
1 has an anode chamber 14 and a cathode chamber 15 in which the cathode 12 is partitioned by an anion exchange membrane 13. The plating tank 2 has an anode chamber 24 and a cathode chamber 25 in which an anode 21 and a cathode 22 to be plated are partitioned by an anion exchange membrane 23.

【0014】金属溶解槽1の陽極室14とメッキ槽2の
陰極室25はメッキ液タンク3を介してメッキ液循環回
路4で連結されている。また金属溶解槽1の陰極室15
とメッキ槽2の陽極室24は、酸水溶液タンク5を介し
て酸液循環回路6で連結されている。
The anode chamber 14 of the metal melting tank 1 and the cathode chamber 25 of the plating tank 2 are connected to each other by the plating solution circulation circuit 4 via the plating solution tank 3. Also, the cathode chamber 15 of the metal melting tank 1
The anode chamber 24 of the plating tank 2 is connected to the acid solution circulation circuit 6 via the acid solution tank 5.

【0015】金属溶解槽1の可溶性金属からなる陽極1
1は、メッキ槽2の被メッキ陰極にメッキされる金属で
あり、亜鉛、ニッケル、マンガン、コバルト、クロム、
鉄、または銅などが使用されるが、これらを二種以上用
いた合金でもよい。
Anode 1 made of a soluble metal in the metal melting tank 1
1 is a metal to be plated on the cathode to be plated in the plating tank 2, such as zinc, nickel, manganese, cobalt, chromium,
Iron, copper, or the like is used, but an alloy using two or more of these may be used.

【0016】陰極12は通電により水素が発生するた
め、省エネルギーの観点から、好ましくは水素過電圧の
小さい電極が使用されるが、本発明の場合、陰極室15
には酸のみが存在し、金属イオンは事実上存在しないの
で金属の電析は起らず、したがって、無隔膜電解溶解法
の如く、それほど小さい水素過電圧陰極は要求されな
い。本発明で使用される陰極12としては鉄、ニッケ
ル、ステンレス、炭素などの他、ラネーニッケル、白金
または白金メッキチタンなどが使用される。
Since hydrogen is generated by energizing the cathode 12, an electrode having a small hydrogen overvoltage is preferably used from the viewpoint of energy saving. In the present invention, however, the cathode chamber 15 is used.
Since only an acid is present and metal ions are virtually absent, no metal electrodeposition occurs, so that a hydrogen overvoltage cathode which is not so small as in the diaphragmless electrolytic dissolution method is not required. As the cathode 12 used in the present invention, in addition to iron, nickel, stainless steel, carbon, etc., Raney nickel, platinum, platinum-plated titanium, etc. are used.

【0017】メッキ槽2の陽極21としては、耐久性に
優れ、安価な不溶性陽極が好ましく、例えば、鉛、鉛と
銀および/またはアンチモンとの合金、または白金の
他、チタニウム、ニオブ、タンタルなどの金属表面をイ
リジウム、パラジウムなどの白金族金属の酸化物で被覆
するかまたは金属メッキしたものが挙げられる。
The anode 21 of the plating bath 2 is preferably an insoluble anode which is excellent in durability and inexpensive, and examples thereof include lead, an alloy of lead and silver and / or antimony, platinum, titanium, niobium, tantalum, etc. The metal surface of (1) is coated with an oxide of a platinum group metal such as iridium or palladium, or metal-plated.

【0018】陰イオン交換膜13および23は一般に入
手できる陰イオン交換膜であれば何ら支障なく使用で
き、陰イオン交換膜13および23は同一でも異なる陰
イオン交換膜でも使用し得る。
The anion exchange membranes 13 and 23 can be used without any problem as long as they are commonly available anion exchange membranes, and the anion exchange membranes 13 and 23 can be the same or different anion exchange membranes.

【0019】酸水溶液タンク5は、硫酸、塩酸、リン
酸、または有機酸が好ましく、これら酸水溶液には電導
度を高めるための中性塩、好ましくは使用する酸塩を添
加できる。酸濃度は通常0.1〜4.0N、特には1.
0〜1.5Nが好ましい。酸水溶液タンク5には、濃度
調整機構8により水または酸を添加できる。
The acid aqueous solution tank 5 is preferably sulfuric acid, hydrochloric acid, phosphoric acid, or an organic acid. To these aqueous acid solutions, a neutral salt for enhancing the electric conductivity, preferably an acid salt to be used can be added. The acid concentration is usually 0.1 to 4.0 N, especially 1.
0-1.5N is preferable. Water or acid can be added to the acid aqueous solution tank 5 by the concentration adjusting mechanism 8.

【0020】一方、メッキ液循環回路4には、金属溶解
槽1で溶解される金属イオンの他、メッキに使用される
金属の補給のため、別の溶解設備7を追加することがで
きる。別の溶解設備7は金属溶解槽1と同様な電解溶解
槽も使用されるが、溶解性のよい金属または補助的な金
属の溶解を行う場合には、単なる酸による化学的な溶解
槽でも差し支えない。
On the other hand, in the plating liquid circulation circuit 4, in addition to the metal ions dissolved in the metal dissolution tank 1, another melting equipment 7 can be added for replenishing the metal used for plating. As another melting equipment 7, an electrolytic melting tank similar to the metal melting tank 1 is used, but in the case of melting a highly soluble metal or an auxiliary metal, it may be a chemical melting tank using only an acid. Absent.

【0021】かくして金属溶解槽1およびメッキ槽2
は、陽極室14および陰極室25にはメッキ液、陰極室
15および陽極室24には酸水溶液が供給されて、通電
される。メッキ槽2は40〜200A/dm2 、好まし
くは50〜150A/dm2 で電気メッキされる。金属
溶解槽1はメッキ組成およびメッキ槽2との通電面積比
により変わるが、1〜200A/dm2 、好ましくは、
2〜150A/dm2 にて通電され、通電量を、金属溶
解槽1の通電量とメッキ組成によって決定することが、
メッキ液中の金属イオン濃度の安定化に重要である。
Thus, the metal melting tank 1 and the plating tank 2
A plating solution is supplied to the anode chamber 14 and the cathode chamber 25, and an acid aqueous solution is supplied to the cathode chamber 15 and the anode chamber 24 to be energized. The plating bath 2 is electroplated at 40 to 200 A / dm 2 , preferably 50 to 150 A / dm 2 . The metal dissolution bath 1 varies depending on the plating composition and the current-carrying area ratio with the plating bath 2, but is 1 to 200 A / dm 2 , preferably,
It is energized at 2 to 150 A / dm 2 , and the energization amount is determined by the energization amount of the metal melting tank 1 and the plating composition,
It is important for stabilizing the metal ion concentration in the plating solution.

【0022】かくして金属溶解槽1で溶解した金属イオ
ンは、メッキ槽2でメッキされ消耗し、金属濃度が減少
したメッキ液は再び金属溶解槽1に循環され、メッキ液
中の金属イオンは一定となる。一方メッキ槽2の陽極室
24で生成した酸は金属溶解槽1の陰極室15におい
て、陰イオンは陽極室へ移動し、H+ は陰極で放電する
ことで消費され、陰極液中の酸濃度は一定となる。な
お、使用する陰イオン交換膜13および23はその性能
にもよるが、陰極液中にメッキ液中の金属イオンが電気
メッキ管理上許容できない量漏洩する場合には、メッキ
液循環回路4に金属イオン除去機構9を設け、例えば、
キレート樹脂塔等を設置して除去できる。
Thus, the metal ions dissolved in the metal dissolving tank 1 are plated and consumed in the plating tank 2, and the plating solution having a reduced metal concentration is circulated again in the metal dissolving tank 1 so that the metal ions in the plating solution are constant. Become. On the other hand, the acid generated in the anode chamber 24 of the plating tank 2 is consumed in the cathode chamber 15 of the metal dissolving tank 1 by moving the anions to the anode chamber and discharging H + at the cathode. Is constant. Although the anion exchange membranes 13 and 23 used depend on their performance, when the metal ions in the plating solution leak into the catholyte solution in an unacceptable amount due to electroplating control, the plating solution circulation circuit 4 is provided with a metal. An ion removing mechanism 9 is provided, and for example,
It can be removed by installing a chelate resin tower.

【0023】[0023]

【実施例】以下に本発明について実施例を示すが、本発
明はこれに限定されるものではない。
EXAMPLES Examples of the present invention will be shown below, but the present invention is not limited thereto.

【0024】[実施例1]図1に示す装置を用いてNi
メッキを行った。金属溶解槽1の可溶性金属からなる陽
極11としては、5〜15mmφの球状の金属Niチッ
プを用い、これをプラスチック製の網状のカゴに入れ、
NiチップとTi棒を接触させた。陰極12はNi板と
した。メッキ槽2の陽極21はチタンに白金メッキした
不溶性陽極を用い、被メッキ陰極22は鉄板とした。
Example 1 Using the apparatus shown in FIG. 1, Ni was used.
It was plated. As the anode 11 made of the soluble metal in the metal melting tank 1, a spherical metal Ni chip having a diameter of 5 to 15 mm was used, which was put in a plastic net-like basket,
The Ni tip and the Ti rod were brought into contact with each other. The cathode 12 was a Ni plate. An insoluble anode formed by plating platinum on titanium was used as the anode 21 of the plating tank 2, and an iron plate was used as the cathode 22 to be plated.

【0025】メッキ液組成として、NiSO4 180g
/l、Na2 SO4 40g/l、H2 SO4 30g/
l、pH≒1、温度60℃、両槽の陰イオン交換膜には
旭硝子社製セレミオンAAVを用い、酸水溶液にはH2
SO4 100g/lを使用し、50A/dm2 にて連続
メッキを行った。なお、陰イイオン交換膜の特性として
+ の輸率は25%であり、SO4 2- の輸率は75%で
あった。また、Niメッキの電流効率は70%であっ
た。
As a plating solution composition, NiSO 4 180 g
/ L, Na 2 SO 4 40 g / l, H 2 SO 4 30 g /
1, pH ≈ 1, temperature 60 ° C., Asaion Glass Selemion AAV is used for both tank anion exchange membranes, and H 2 is used for the acid aqueous solution.
SO 4 100 g / l was used and continuous plating was performed at 50 A / dm 2 . As a characteristic of the anion-ion exchange membrane, the transport number of H + was 25% and the transport number of SO 4 2− was 75%. The current efficiency of Ni plating was 70%.

【0026】その結果、メッキ槽2の陽極室24には通
電電気量の75%に相当するH2 SO4 が生成されると
同時に、陰極室25においては通電電気量の70%に相
当するSO4 2- が遊離する(NiSO4 +2e→Ni0
+SO4 2- )。通電電気量の75%に相当するH2 SO
4 の減少(陽極室への移動)を生じるため、結果的には
通電電気量の5%に相当するH2 SO4 および70%に
相当するNi2+が損失した。
As a result, H 2 SO 4, which corresponds to 75% of the amount of electricity supplied, is generated in the anode chamber 24 of the plating tank 2 and, at the same time, SO 2 which corresponds to 70% of the amount of electricity supplied to the cathode chamber 25. 4 2- is released (NiSO 4 + 2e → Ni 0
+ SO 4 2- ). H 2 SO equivalent to 75% of the electricity supplied
Since a decrease of 4 (movement to the anode chamber) occurs, H 2 SO 4 corresponding to 5% and 70% of Ni 2+ corresponding to the amount of electricity passed are eventually lost.

【0027】メッキ槽2の陽極液(酸水溶液)および陰
極液(メッキ液)はそれぞれ金属溶解槽1に導き、メッ
キ液中のNiSO4 濃度が180g/lを維持するよう
に通電電気量を調整しNiを溶解した。
The anolyte solution (acid aqueous solution) and the catholyte solution (plating solution) in the plating tank 2 are introduced into the metal dissolving tank 1, and the amount of electricity supplied is adjusted so that the NiSO 4 concentration in the plating solution is maintained at 180 g / l. Then, Ni was melted.

【0028】その結果、金属溶解槽1の陰極室15にお
いては、通電電気量の75%に相当するH2 SO4 が損
失した。また、陽極室14においては通電電気量の75
%に相当するH2 SO4 の生成(陰極室からの移動)と
通電電気量の90%に相当するNiの溶解によるH2
4 の消費を生じ、結果的には通電電気量の15%に相
当するH2 SO4 の減少および90%に相当するNi2+
の生成を生じた。また、その時の金属溶解槽1の通電電
気量は、メッキ槽2の約78%であった。
As a result, in the cathode chamber 15 of the metal melting tank 1, H 2 SO 4 corresponding to 75% of the amount of electricity supplied was lost. In addition, in the anode chamber 14, the amount of electricity supplied is 75
% Of H 2 SO 4 (moving from the cathode chamber) and H 2 S by melting of Ni corresponding to 90% of the electricity flow
O 4 is consumed, resulting in a decrease in H 2 SO 4 equivalent to 15% of the amount of electricity supplied and Ni 2+ equivalent to 90%.
Resulted in the formation of The amount of electricity supplied to the metal melting tank 1 at that time was about 78% of that of the plating tank 2.

【0029】メッキ液中のNi濃度については常に安定
した濃度組成であり、またメッキ液中H2 SO4 濃度
も、酸水溶液に過移動したH2 SO4 をメッキ液中に戻
すことにより、安定した濃度組成が得られる。そのた
め、100時間の連続メッキによっても、常に均一なメ
ッキ被膜が得られた。
The Ni concentration in the plating solution is always a stable concentration composition, and the H 2 SO 4 concentration in the plating solution is stable by returning H 2 SO 4 that has moved excessively to the acid aqueous solution into the plating solution. The obtained concentration composition is obtained. Therefore, a uniform plating film was always obtained even after continuous plating for 100 hours.

【0030】[実施例2]図1に示す装置を用いて、C
uメッキを行った。金属溶解槽1の可溶性金属からなる
陽極11としては銅線を用い、陰極12は銅板とした。
メッキ槽2の陽極21はチタンに白金メッキした不溶性
陽極を用い、被メッキ陰極22は鉄板とした。
Example 2 Using the device shown in FIG. 1, C
u plating was performed. A copper wire was used as the anode 11 made of a soluble metal in the metal melting tank 1, and a cathode 12 was a copper plate.
An insoluble anode formed by plating platinum on titanium was used as the anode 21 of the plating tank 2, and an iron plate was used as the cathode 22 to be plated.

【0031】メッキ液組成としてCuSO4 200g/
l、H2 SO4 50g/l、温度60℃、両槽の陰イオ
ン交換膜には旭硝子社製セレミオンAAVを用い、酸水
溶液にはH2 SO4 120g/lを使用し、50A/d
2 にて連続メッキを行った。なお、陰イオン交換膜の
特性としてH+ の輸率は25%であり、SO4 2- の輸率
は75%であった。また、Cuメッキの電流効率は68
%であった。
CuSO 4 200 g / as plating solution composition
l, H 2 SO 4 50 g / l, temperature 60 ° C., Asaion Glass Selemion AAV is used for the anion exchange membranes of both tanks, and H 2 SO 4 120 g / l is used for the acid aqueous solution, and 50 A / d
Continuous plating was performed at m 2 . As the characteristics of the anion exchange membrane, the transport number of H + was 25% and the transport number of SO 4 2− was 75%. The current efficiency of Cu plating is 68.
%Met.

【0032】その結果、メッキ槽2の陽極室24には通
電電気量の75%に相当するH2 SO4 が生成されると
同時に、陰極室25においては通電電気量の68%に相
当するSO4 2- が遊離する。通電電気量の75%に相当
するH2 SO4 の減少(陽極室への移動)を生じるた
め、結果的には通電電気量の7%に相当するH2 SO4
および68%に相当するCu2+が損失した。
As a result, H 2 SO 4 corresponding to 75% of the energized electricity amount is generated in the anode chamber 24 of the plating tank 2, and at the same time, SO 2 corresponding to 68% of the energized electricity amount is generated in the cathode chamber 25. 4 2- is released. Since H 2 SO 4 equivalent to 75% of the energized electricity is reduced (moved to the anode chamber), H 2 SO 4 equivalent to 7% of the energized electricity is consequently produced.
And Cu 2+ corresponding to 68% was lost.

【0033】メッキ槽2の陽極液(酸水溶液)および陰
極液(メッキ液)はそれぞれ金属溶解槽1に導き、メッ
キ液中のCuSO4 濃度が200g/lを維持するよう
に通電電気量を調整しCuを溶解した。
The anolyte solution (acid aqueous solution) and the catholyte solution (plating solution) in the plating tank 2 are introduced into the metal dissolving tank 1, and the amount of electricity supplied is adjusted so that the CuSO 4 concentration in the plating solution is maintained at 200 g / l. Then Cu was dissolved.

【0034】その結果、金属溶解槽1の陰極室15にお
いては、通電電気量の75%に相当するH2 SO4 が損
失した。また、陽極室14においては通電電気量の75
%に相当するH2 SO4 の生成(陰極室からの移動)と
通電電気量の90%に相当するCuの溶解によるH2
4 の消費を生じ、結果的には通電電気量の15%に相
当するH2 SO4 の減少および90%に相当するCu2+
の生成を生じた。また、その時の金属溶解槽1の通電電
気量はメッキ槽2の約76%であった。
As a result, in the cathode chamber 15 of the metal melting tank 1, H 2 SO 4 corresponding to 75% of the amount of electricity passed was lost. In addition, in the anode chamber 14, the amount of electricity supplied is 75
% Of H 2 SO 4 (moving from the cathode chamber) and H 2 S by melting of Cu corresponding to 90% of the electricity supplied
O 4 is consumed, resulting in a decrease in H 2 SO 4 equivalent to 15% of the amount of electricity supplied and Cu 2+ equivalent to 90%.
Resulted in the formation of The amount of electricity supplied to the metal melting tank 1 at that time was about 76% of that of the plating tank 2.

【0035】メッキ液中のCu2+濃度については常に安
定した濃度組成であり、またメッキ液中H2 SO4 濃度
も、酸水溶液に過移動したH2 SO4 をメッキ液中に戻
すことにより、安定した濃度組成が得られた。そのた
め、100時間の連続メッキによっても、常に均一なメ
ッキ皮膜が得られた。
The Cu 2+ concentration in the plating solution is always a stable concentration composition, and the H 2 SO 4 concentration in the plating solution can also be adjusted by returning H 2 SO 4 excessively transferred to the acid aqueous solution to the plating solution. A stable concentration composition was obtained. Therefore, a uniform plating film was always obtained even after continuous plating for 100 hours.

【0036】[実施例3]図1に示す装置を利用してN
i−Co合金メッキを行った。金属溶解槽1については
Ni溶解槽とCo溶解槽の2基とし、可溶性金属からな
る陽極11としてはそれぞれ実施例1と同様に球状Ni
チップならびに板状Coチップを用い、陰極12はいず
れもNi板とした。メッキ槽2の陽極はチタンに白金メ
ッキした不溶性陽極を用い、被メッキ陰極22は鉄板と
した。両金属溶解槽およびメッキ槽の陰イオン交換膜に
は旭硝子社製セレミオンAAVを用いた。
[Embodiment 3] N using the apparatus shown in FIG.
i-Co alloy plating was performed. The metal melting tank 1 has two Ni melting tanks and a Co melting tank, and the anode 11 made of a soluble metal has the same spherical Ni as in the first embodiment.
A chip and a plate-like Co chip were used, and the cathode 12 was a Ni plate. An insoluble anode obtained by plating titanium with platinum was used as the anode of the plating tank 2, and an iron plate was used as the cathode 22 to be plated. As anion exchange membranes for both metal dissolving tanks and plating tanks, Selemion AAV manufactured by Asahi Glass Co., Ltd. was used.

【0037】メッキ液としてはNiSO4 180g/
l、Na2 SO4 40g/l、CoSO4 30g/l、
2 SO4 30g/lの組成液を用い、メッキ槽2の陰
極室からNi溶解槽の陽極室を通り、Co溶解槽の陽極
室を経てメッキ槽2の陰極室に戻る循環経路とした。
The plating solution used was NiSO 4 180 g /
1, Na 2 SO 4 40 g / l, CoSO 4 30 g / l,
Using a composition liquid of H 2 SO 4 of 30 g / l, a circulation path was formed from the cathode chamber of the plating tank 2 through the anode chamber of the Ni melting tank, the anode chamber of the Co melting tank, and the cathode chamber of the plating tank 2.

【0038】また、酸水溶液としては、H2 SO4 10
0g/lを用い、メッキ槽2の陽極室から、Ni溶解槽
の陽極室を通り、Co溶解槽の陽極室を経て、メッキ槽
2の陽極室に戻る循環経路とし、温度60℃、メッキ槽
2の電流密度を50A/dm2 にて連続メッキを行っ
た。
As the acid aqueous solution, H 2 SO 4 10
Using 0 g / l as a circulation path from the anode chamber of the plating tank 2 through the anode chamber of the Ni melting tank, the anode chamber of the Co melting tank, and back to the anode chamber of the plating tank 2, the temperature of 60 ° C., the plating tank Continuous plating was performed at a current density of 2 of 50 A / dm 2 .

【0039】その結果、メッキ槽2の陽極室24におい
ては、通電電気量の75%に相当するH2 SO4 が生成
し、陰極室25においては通電電気量の60%に相当す
るNi2+の減少と10%に相当するCo2+の減少、なら
びに、5%に相当するSO4 2- の減少を生じた。メッキ
槽2の陽極液(酸水溶液)および陰極液(メッキ液)は
それぞれNi溶解槽に導き、メッキ液中のNiSO4
濃度が180g/lを維持するように通電電気量を調整
しNiを溶解した。
As a result, in the anode chamber 24 of the plating tank 2, H 2 SO 4 corresponding to 75% of the energized electricity is produced, and in the cathode chamber 25, Ni 2+ equivalent to 60% of the energized electricity is produced. And a decrease in Co 2+ corresponding to 10%, and a decrease in SO 4 2− corresponding to 5%. The anolyte solution (acid solution) and the catholyte solution (plating solution) in the plating tank 2 are introduced into a Ni dissolving tank, and the energization amount is adjusted so that the concentration of NiSO 4 in the plating solution is maintained at 180 g / l. Dissolved.

【0040】その結果、Ni溶解槽の陰極室において
は、通電電気量の75%に相当するSO4 2- の減少を生
じた。また、Ni溶解槽の陽極室においては、通電電気
量の90%に相当するNi2+の増加と、15%に相当す
るSO4 2- の減少を生じた。また、その時のNi溶解槽
の通電電気量は、メッキ槽2の約67%であり、電流密
度は10A/dm2 であった。
As a result, in the cathode chamber of the Ni melting tank, SO 4 2- was reduced corresponding to 75% of the amount of electricity supplied. Further, in the anode chamber of the Ni melting tank, there was an increase in Ni 2+ corresponding to 90% of the amount of electricity supplied and a decrease in SO 4 2− corresponding to 15%. The amount of electricity supplied to the Ni melting bath at that time was about 67% of that of the plating bath 2, and the current density was 10 A / dm 2 .

【0041】一方、Ni溶解槽の陽極液(メッキ液)お
よび陰極液(酸水溶液)はそれぞれCo溶解槽に導き、
メッキ液中のCoSO4 濃度が30g/lを維持するよ
うに通電電気量を調整しCoを溶解した。
On the other hand, the anolyte solution (plating solution) and the catholyte solution (aqueous acid solution) in the Ni dissolving tank were introduced into the Co dissolving tank,
The amount of electricity supplied was adjusted so that the CoSO 4 concentration in the plating solution was maintained at 30 g / l, and Co was dissolved.

【0042】その結果、Co溶解槽の陰極室において
は、通電電気量の75%に相当するSO4 2- の減少を生
じた。また、Co溶解槽の陽極室においては、通電電気
量の90%に相当するCo2+の増加と15%に相当する
SO4 2- の減少を生じた。また、その時のCo溶解槽の
通電電気量はメッキ槽の約11%であり、電流密度は3
0A/dm2 であった。
As a result, in the cathode chamber of the Co melting tank, SO 4 2- was reduced corresponding to 75% of the amount of electricity supplied. Further, in the anode chamber of the Co melting tank, an increase in Co 2+ corresponding to 90% of the amount of electricity supplied and a decrease in SO 4 2− corresponding to 15% occurred. At that time, the amount of electricity supplied to the Co melting bath was about 11% of that of the plating bath, and the current density was 3%.
It was 0 A / dm 2 .

【0043】メッキ液中のNiおよびCo濃度について
は常に安定した濃度組成であり、またメッキ液中硫酸濃
度も、酸水溶液に過移動した硫酸をメッキ液中に戻すこ
とにより、安定した濃度組成が得られた。そのため、3
00時間の連続メッキによっても、常に均一なメッキ皮
膜が得られた。
The concentration of Ni and Co in the plating solution is always stable, and the concentration of sulfuric acid in the plating solution is also stable by returning the sulfuric acid that has moved excessively to the acid aqueous solution into the plating solution. Was obtained. Therefore, 3
Even after continuous plating for 00 hours, a uniform plating film was always obtained.

【0044】[0044]

【発明の効果】本発明は、金属溶解槽とメッキ槽を用
い、夫々陰イオン交換膜によって陰−陽極室に仕切り、
金属溶解槽で生成した酸を系外に取り出して金属の溶解
に供することなく、これをメッキ槽に循環することによ
り、金属の溶解と酸の生成とをバランスよく行い得る。
INDUSTRIAL APPLICABILITY The present invention uses a metal dissolution bath and a plating bath, and partitions each into an anion-anode chamber by an anion exchange membrane,
By circulating the acid generated in the metal dissolving tank to the plating tank without taking it out of the system to dissolve the metal, it is possible to balance the dissolution of the metal and the generation of the acid.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施態様を説明する工程図。FIG. 1 is a process diagram illustrating an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:金属溶解槽 2:メッキ槽 3:メッキ液タンク 4:メッキ液循環回路 5:酸水溶液タンク 6:酸液循環回路 7:溶解設備 8:濃度調整機構 9:金属イオン除去機構 11:可溶性金属からなる陽極 12:金属溶解槽の陰極 13:陰イオン交換膜 14:金属溶解槽の陽極室 15:金属溶解槽の陰極室 21:メッキ槽の陽極 22:被メッキ陰極 23:陰イオン交換膜 24:メッキ槽の陽極室 25:メッキ槽の極極室 1: Metal dissolution tank 2: Plating tank 3: Plating solution tank 4: Plating solution circulation circuit 5: Acid solution circulation tank 6: Acid solution circulation circuit 7: Dissolution equipment 8: Concentration adjustment mechanism 9: Metal ion removal mechanism 11: Soluble metal Anode consisting of: 12: cathode of metal dissolution tank 13: anion exchange membrane 14: anode chamber of metal dissolution tank 15: cathode chamber of metal dissolution tank 21: anode of plating tank 22: cathode to be plated 23: anion exchange membrane 24 : Anode chamber of plating tank 25: Electrode chamber of plating tank

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】陰−陽極間を陰イオン交換膜によって区画
した金属溶解槽とメッキ槽からなり、金属溶解槽は可溶
性金属からなる陽極と、不溶性陰極とを有し、金属溶解
槽の陽極室にはメッキ液を、陰極室には酸を夫々導入
し、一方メッキ槽は不溶性陽極と被メッキ陰極とを有
し、メッキ槽の陽極室には酸を、陰極室にはメッキ液を
夫々導入して通電し、金属溶解槽の陽極室で溶解した金
属を含むメッキ液を、メッキ槽の陰極室に導入して被メ
ッキ陰極をメッキし、他方、金属溶解槽の陰極室の酸を
メッキ槽の陽極室に導入して循環しつつ電解することを
特徴とする金属の電気メッキ方法。
1. A metal dissolving tank having an anion exchange membrane defined between an anion and an anode, and a plating tank. The metal dissolving tank has an anode made of a soluble metal and an insoluble cathode. , A plating solution is introduced into the cathode chamber, and an acid is introduced into the cathode chamber, while the plating tank has an insoluble anode and a cathode to be plated, and the acid is introduced into the anode chamber of the plating tank and the plating solution is introduced into the cathode chamber. Then, the plating solution containing the metal dissolved in the anode chamber of the metal dissolving tank is introduced into the cathode chamber of the plating tank to plate the cathode to be plated, while the acid in the cathode chamber of the metal dissolving tank is plated. A method for electroplating a metal, which comprises introducing into the anode chamber and electrolyzing while circulating.
JP33234092A 1992-11-18 1992-11-18 Method for electroplating metal Withdrawn JPH06158397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33234092A JPH06158397A (en) 1992-11-18 1992-11-18 Method for electroplating metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33234092A JPH06158397A (en) 1992-11-18 1992-11-18 Method for electroplating metal

Publications (1)

Publication Number Publication Date
JPH06158397A true JPH06158397A (en) 1994-06-07

Family

ID=18253874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33234092A Withdrawn JPH06158397A (en) 1992-11-18 1992-11-18 Method for electroplating metal

Country Status (1)

Country Link
JP (1) JPH06158397A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092604A3 (en) * 2000-05-31 2002-04-25 De Nora Elettrodi Spa Electrolysis cell for restoring the concentration of metal ions in processes of electroplating
JP2005139474A (en) * 2003-11-04 2005-06-02 Ishihara Chem Co Ltd Tin alloy electroplating method
JP2006199994A (en) * 2005-01-19 2006-08-03 Ishihara Chem Co Ltd Electrolytic copper plating bath and copper plating method
FR2918673A1 (en) * 2007-07-12 2009-01-16 Siemens Vai Metals Tech Sas INSTALLATION AND METHOD FOR ELECTROLYTICALLY SHAPING STEEL BANDS
KR20140077112A (en) * 2012-12-13 2014-06-23 가부시키가이샤 에바라 세이사꾸쇼 Sn alloy plating apparatus and method
US9303329B2 (en) 2013-11-11 2016-04-05 Tel Nexx, Inc. Electrochemical deposition apparatus with remote catholyte fluid management

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092604A3 (en) * 2000-05-31 2002-04-25 De Nora Elettrodi Spa Electrolysis cell for restoring the concentration of metal ions in processes of electroplating
JP2005139474A (en) * 2003-11-04 2005-06-02 Ishihara Chem Co Ltd Tin alloy electroplating method
JP2006199994A (en) * 2005-01-19 2006-08-03 Ishihara Chem Co Ltd Electrolytic copper plating bath and copper plating method
JP4704761B2 (en) * 2005-01-19 2011-06-22 石原薬品株式会社 Electro copper plating bath and copper plating method
FR2918673A1 (en) * 2007-07-12 2009-01-16 Siemens Vai Metals Tech Sas INSTALLATION AND METHOD FOR ELECTROLYTICALLY SHAPING STEEL BANDS
WO2009016291A2 (en) * 2007-07-12 2009-02-05 Siemens Vai Metals Technologies Sas Unit and method for the electrolytic tinning of steel bands
WO2009016291A3 (en) * 2007-07-12 2009-12-17 Siemens Vai Metals Technologies Sas Unit and method for the electrolytic tinning of steel bands
KR20140077112A (en) * 2012-12-13 2014-06-23 가부시키가이샤 에바라 세이사꾸쇼 Sn alloy plating apparatus and method
US9303329B2 (en) 2013-11-11 2016-04-05 Tel Nexx, Inc. Electrochemical deposition apparatus with remote catholyte fluid management

Similar Documents

Publication Publication Date Title
US4778572A (en) Process for electroplating metals
US20160024683A1 (en) Apparatus and method for electrolytic deposition of metal layers on workpieces
JP3131648B2 (en) Copper plating method using non-cyanating bath
US2541721A (en) Process for replenishing nickel plating electrolyte
US4906340A (en) Process for electroplating metals
JP2710532B2 (en) Method for synthesizing palladium amine hydroxide compound
JPH10121297A (en) Electrolytic copper plating device using insoluble anode and copper plating method employing the device
US4832812A (en) Apparatus for electroplating metals
US4250004A (en) Process for the preparation of low overvoltage electrodes
JPH06158397A (en) Method for electroplating metal
JPH05171499A (en) Method and device for electroplating with tin or tin-lead alloy using insoluble anode
USRE34191E (en) Process for electroplating metals
JPS585997B2 (en) electroforming equipment
WO2001092604A2 (en) Electrolysis cell for restoring the concentration of metal ions in processes of electroplating
EP4077771A1 (en) Method and system for depositing a zinc-nickel alloy on a substrate
JP3104704B1 (en) Continuous plating method of Ni-W alloy
JPS6141799A (en) Method for supplying tin ion to electrolytic tinning bath
JP4517177B2 (en) Treatment method of electroless nickel plating solution
JP2006213956A (en) Fe-W ALLOY ELECTROPLATING DEVICE USING CATION EXCHANGE MEMBRANE, CONTINUOUS PLATING METHOD USING THE DEVICE AND COATING FILM
WO1995023880A1 (en) Treatement of electrolyte solutions
Murase et al. Measurement of pH in the vicinity of a cathode during the chloride electrowinning of nickel
JPS6376884A (en) Method for regenerating chromate treatment liquid
JPH0242911B2 (en)
JP6969688B2 (en) Electroplating bath, manufacturing method of electroplating products, and electroplating equipment
JPH0674520B2 (en) Ni-W alloy continuous plating electrolytic bath replenisher

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000201