JP4239804B2 - 車両安定化制御装置 - Google Patents

車両安定化制御装置 Download PDF

Info

Publication number
JP4239804B2
JP4239804B2 JP2003404270A JP2003404270A JP4239804B2 JP 4239804 B2 JP4239804 B2 JP 4239804B2 JP 2003404270 A JP2003404270 A JP 2003404270A JP 2003404270 A JP2003404270 A JP 2003404270A JP 4239804 B2 JP4239804 B2 JP 4239804B2
Authority
JP
Japan
Prior art keywords
control
force
vehicle
vehicle body
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003404270A
Other languages
English (en)
Other versions
JP2005162021A (ja
Inventor
博文 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003404270A priority Critical patent/JP4239804B2/ja
Publication of JP2005162021A publication Critical patent/JP2005162021A/ja
Application granted granted Critical
Publication of JP4239804B2 publication Critical patent/JP4239804B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)
  • Regulating Braking Force (AREA)

Description

本発明は、電磁サスペンション装置を備えた車両の制御を行う装置、詳しくは、その車両の走行状態を安定化させる制御を行う装置に関する。
電磁サスペンションは、従来のサスペンションが備える油圧式のショックアブソーバ等に代えて、電磁式モータ等を有する電磁アクチュエータが備えられたサスペンション装置であり、電磁アクチュエータの発生力(減衰力あるいは推進力)により、車体の姿勢を適切な状態に保つ機能を発揮する。電磁サスペンションを装備した車両は、上記発生力を制御することによって車体の姿勢を安定化させることが容易であるといった利点を有することから、車両の走行状態を安定化という点において、大きな期待が持たれている。
一方で、車両の走行状態を安定化させる技術として、下記〔特許文献1〜4〕に記載されたような技術が存在する。〔特許文献1,2〕に記載された技術は、実際の車体の姿勢の状態をフィードバックし、その車体の姿勢が目標の姿勢となるように複数の電磁アクチュエータあるいは油圧式懸架機構(電磁アクチュエータと同様な働きをする。)を制御することによって、車両の走行状態を安定化させる技術であり、また、〔特許文献3,4〕は、いわゆるVSC( Viecle Stability Control)に関する技術、すなわち、車両のヨーレート等を目標ヨーレート等になるようにする制御によって車両の回頭状態を安定化させる技術である。
特開2003−104025号公報 特開平7−172130号公報 特開平4−358955号公報 特開平10−273032号公報
電磁サスペンションを装備した車両に対して、上記〔特許文献1〜4〕に記載の制御を適用することも可能である。しかしながら、いずれかの電磁サスペンションに備えられた電磁アクチュエータが失陥した場合、詳しくは、その電磁アクチュエータの機能が失陥した場合、上記〔特許文献1〜4〕に記載された制御では、アクチュエータの失陥に対する配慮がなされておらず、不十分であると考えられる。具体的に言えば、例えば、電磁アクチュエータが失陥した場合、上記発生力を充分に発生させることができないため、車体の姿勢を充分に安定化させることが困難であり、また、車両の回頭状態を充分に安定化させることが困難なのである。つまり、電磁サスペンションを装備した車両に、上記〔特許文献1〜4〕に記載された制御を適用したとしても、フェールセーフの観点から実用的ではないのである。本発明は、そういった実情に鑑みてなされたものであり、車両の走行状態を安定化させるための実用的な制御装置を得ることを課題としてなされたものである。
上記課題を解決するために、本発明の車両安定化制御装置は、電磁アクチュエータを有するサスペンション装置を車輪ごとに備えた車両に対してその車両の走行状態を安定化させる制御を行う車両安定化制御装置であって、車体の姿勢に関する情報に基づいて前記電磁アクチュエータが発生すべき力を前記電磁アクチュエータごとに決定してその車体の姿勢を安定化させる制御を行う車体姿勢制御部を有し、その車体姿勢制御部が、いずれかの前記サスペンション装置が有する前記電磁アクチュエータが失陥してその電磁アクチュエータが発生させることのできる力が低下した場合に、その電磁アクチュエータの失陥による力の低下に見合う分だけ、他のサスペンション装置が有する電磁アクチュエータが発生すべき力を増大させて、前記車体の姿勢を安定化させる制御を行うように構成されたことを特徴とする。
いずれかの電磁アクチュエータが失陥した状態では、その電磁アクチュエータの発生力が減少するために、車両の走行状態を効果的に安定化させることは難しい。ところが、本発明の車両安定化制御装置によれば、いずれかの電磁アクチュエータが失陥している場合でも、その失陥の影響を考慮して効果的に車両の走行状態を安定化させることができ、実用的な制御装置が実現する。なお、本発明の車両安定化制御装置の各種態様およびそれらの作用および効果については、以下の、〔発明の態様〕の項において詳しく説明する。
発明の態様
以下に、本願において特許請求が可能と認識されている発明(以下、「請求可能発明」という場合がある。)の態様をいくつか例示し、それらについて説明する。各態様は請求項と同様に、項に区分し、各項に番号を付し、必要に応じて他の項の番号を引用する形式で記載する。これは、あくまでも請求可能発明の理解を容易にするためであり、請求可能発明を構成する構成要素の組み合わせを、以下の各項に記載されたものに限定する趣旨ではない。つまり、請求可能発明は、各項に付随する記載,実施例の記載等を参酌して解釈されるべきであり、その解釈に従う限りにおいて、各項の態様にさらに他の構成要素を付加した態様も、また、各項の態様から構成要素を削除した態様も、請求可能発明の一態様となり得るのである。
なお、以下の各項において、(1)項と(2)項とを合わせさらに限定を加えたものが請求項1に相当し、 請求項1の具体的な実施態様に関するものが請求項2に、請求項1または請求項2に(3)項の技術的特徴を付加したものが請求項3に、 請求項1ないし請求項3のいずれかに(4)項の技術的特徴を付加したものが請求項4に、それぞれ相当する。
(1)電磁アクチュエータを有するサスペンション装置を車輪ごとに備えた車両に対してその車両の走行状態を安定化させる制御を行う車両安定化制御装置であって、
いずれかの前記サスペンション装置が有する前記電磁アクチュエータが失陥している場合に、その失陥を前提とした制御を行うことを特徴とする車両安定化制御装置。
車両に設けられた複数の電磁サスペンション装置の各々が正常に作動していれる場合、車両の走行状態が安定する。しかし、断線等が原因して電磁アクチュエータに通電されなくなる等の事象が生じた場合、すなわち、電磁アクチュエータが失陥した状態となった場合には、例えば、適正な発生力を発生させることができなくなる。そのため、そのような、いずれかの電磁アクチュエータが失陥した状態において、いずれの電磁アクチュエータも失陥していない状態を前提とした制御を行うのでは、車両の走行状態、例えば、車体の姿勢,車両の回頭状態等に対して電磁アクチュエータの失陥による影響がそのまま反映され、車両の走行状態を安定化させることが難しい。そこで、本項に記載の態様では、いずれかの電磁アクチュエータが失陥した状態を前提とした制御、すなわち、その失陥による影響を考慮した制御を行うことにより、車両の走行状態を効果的に安定化させるのである。後に具体的に説明するように、失陥した本発明の車両安定化制御装置は、いずれかの電磁アクチュエータが失陥している場合でも、効果的に車両の走行状態を安定化させることができ、実用的な制御装置となる。
本項に記載の態様では、失陥時の具体的な制御形態が限定されるものではない。具体的には、例えば、後に説明するように、失陥した電磁アクチュエータの発生力を他の電磁アクチュエータで補う形態,制御におけるゲインを変更する態様、車両の走行状態の目標値を変更する形態等、種々の制御形態を採用することができる。
本項に記載の態様において採用されているサスペンション装置において、電磁アクチュエータは、例えば、回転型モータ,直動型モータ等の電磁式モータ(以後、単に「モータ」と称する場合がある)を有し、そのモータを発生力源とするものとすることができる。その電磁アクチュエータは、そのモータを発電機として作動させて車体と車輪とが接近・離間する運動を減衰させる力(減衰力)を発生させることができ、そのモータに給電することによりその運動を減衰させる力あるいはその運動を推進する力(推進力)を発生することができる。その電磁アクチュエータの発生力の種類によって、サスペンション装置を各種の態様のものとすることができる。具体的には、例えば、サスペンション装置を、電磁アクチュエータに推進力を発生させることでアクティブサスペンションとして、減衰力を可変とすることでセミアクティブサスペンション,減衰力を固定することでパッシブサスペンションとして構成することが可能である。
(2)当該車両安定化制御装置が、車体の姿勢に関する情報に基づいて前記電磁アクチュエータに発生すべき力である発生力を前記電磁アクチュエータごとに決定してその車体の姿勢を安定化させる制御を行う車体姿勢制御部を有し、その車体姿勢制御部が、いずれかの前記電磁アクチュエータが失陥している場合に、その電磁アクチュエータの失陥による発生力の減少を補うべく他の前記電磁アクチュエータの発生力を決定して制御を行うようにされた (1)項に記載の車両安定化制御装置。
本項に記載の態様は、車両の走行状態の一種である車体の姿勢の安定化を目的とする態様である。電磁アクチュエータの失陥は、車体の姿勢に直接的な影響を与えるため、本項に記載の態様によれば、その影響によって車体姿勢が不安定となるのを効果的に防止あるいは抑制できる。
本項に記載の態様における車体姿勢制御部は、「車体の姿勢に関する情報」に基づいて車体の姿勢を安定化させる制御を行うものであり、その情報には、例えば、車体のヒーブ情報,ロール情報,ピッチ情報等の情報が含まれる。ヒーブ情報は、ヒーブ量・速度等(車体全体の上下変位量・変位速度等)の情報であり、ロール情報は、ロール量・速度等(車体の左右方向の傾斜量・傾斜する速度等)の情報であり、ピッチ情報は、ピッチ量・速度等(車体の前後方向の傾斜量・傾斜する速度等)の情報である。車体姿勢制御部は、それらの情報のうちの少なくとも1つに基づいて制御を行うものとすることができる。具体的に言えば、例えば、車体の姿勢に関する情報であるピッチ量に基づいて制御を行う場合は、ピッチ量が目標値(例えば、0)になるように電磁アクチュエータの発生力を個々に決定して制御を行うのである。
いずれかの電磁アクチュエータが失陥している場合における上記車体姿勢制御部の制御では、その電磁アクチュエータの発生力が低下した状態、例えば、発生力がほとんど得られない状態,不十分な発生力しか得られない状態等を前提とした制御が行われ、その状態で車体の姿勢を効果的に安定化させることができるように、他の電磁アクチュエータの発生力が決定されるような制御とすることができる。具体的には、例えば、失陥している電磁アクチュエータの発生力の低下分に見合う量だけ、他の電磁アクチュエータの発生力を増加させるといった制御である。言い換えれば、発生力が低下した分を他の電磁アクチュエータに負担させるように電磁アクチュエータの発生力を決定するような制御である。
なお、本項に記載の安定化制御装置は、全ての電磁アクチュエータが正常な場合に、上記車体姿勢制御部による制御が実行されるものであってもよく、また、それ以外の制御が実行されるものであってもよい。例えば、全ての電磁アクチュエータが正常な場合において、電磁アクチュエータを減衰力固定のショックアブソーバとして用いるといった制御、つまり、パッシブな制御がなされるものであってもよいのである。
(3)当該車両安定化制御装置が、前記車体姿勢制御部である第1車体姿勢制御部とは別に、前記サスペンション装置の各々が装備された車体の部分の各々の変位に関する情報に基づいてその各々のサスペンション装置が有する前記電磁アクチュエータの発生力を個々に決定してその車体の姿勢を安定化させる制御を行う第2車体姿勢制御部を有し、いずれの前記電磁アクチュエータも失陥していない場合は、その第2車体姿勢制御部による制御が実行され、いずれかの前記電磁アクチュエータが失陥した場合には、前記第1車体姿勢制御部による制御が実行されるようにされた (2)項に記載の車両安定化制御装置。
本項の態様は、車体の姿勢の安定化させる制御に関して、全ての電磁アクチュエータが正常な場合に、上記車体の姿勢に関する情報に基づく制御による制御以外の制御を行う態様の一例である。本項に記載の態様における第2車体姿勢制御部による制御は、平たく言えば、車体自体に関する情報ではなく、車両における各車輪を懸架する部分の各々に関する情報に基づいて車体の姿勢を安定化させる制御である。車体は複数のサスペンション装置によって分担支持されていることから、1のサスペンション装置が装備された車体の部分の情報に基づいて、そのサスペンション装置の電磁アクチュエータの発生力を決定することによっても、車体の姿勢の安定化が図れる。つまり、前述の車体姿勢制御、すなわち、本項における第1車体姿勢制御部による場合とは、異なる制御理論に基づく車体の姿勢の安定化が図れるのである。しかし、そのような制御においては、いずれかの電磁アクチュエータが失陥した場合に、他の電磁アクチュエータの発生力を適正な値に決定することができない。そこで、本項に記載の態様では、電磁アクチュエータの失陥時においては、第1車体姿勢制御部による制御に切替えて、車体の姿勢の安定化制御を行うのである。なお、本項にいう「車体の部分の変位に関する情報」には、例えば、各サスペンション装置が設けられた車体の部分の上下方向の変位量,その部分の変位速度等の情報や、各サスペンション装置が設けられた車体の部分と車輪との相対変位量,その部分と車輪との相対変位速度等の情報等を採用することが可能である。
(4)当該車両安定化制御装置が、少なくとも操舵角に基づいて決定される車両の目標回頭状態と、車両の実際の回頭状態である実回頭状態との偏差に基づいていずれかの車輪に付与される制動力と駆動力との少なくとも一方を決定して車両の回頭状態を安定化させる制御を行う回頭状態制御部を有し、その回頭状態制御部が、いずれかの前記電磁アクチュエータが失陥している場合に、前記制動力と駆動力との少なくとも一方を決定するためのゲインを、いずれの前記電磁アクチュエータも失陥していない場合よりも大きくして制御を行う (1)項ないし (3)項のいずれかに記載の車両安定化制御装置。
本項に記載の態様は、平たく言えば、電磁サスペンション装置を装備した車両に関するVSC制御、つまり、車両の回頭状態を安定化させる制御に関する一態様である。電磁サスペンションを装備する車両において、いずれかの電磁アクチュエータが失陥した場合には、例えば、車体のロール量が正常時よりも大きくなるといったことが原因して、車両が操舵角等に応じた適切な回頭状態を示さない場合(例えば、オーバステア,アンダーステア等となる場合)がある。そういった場合に、全ての電磁アクチュエータが正常である場合と同様のVSC制御を行うのでは、実際の回頭状態の目標回頭状態からのずれ(以後、単に「回頭状態のずれ」と称する。)を、充分に修正することが難しい場合が多い。本項に記載の態様は、電磁アクチュエータの失陥を前提としており、そのような場合において特に有効な態様である。。本項に記載の態様によれば、制御におけるゲインを大きくすることで、電磁アクチュエータの失陥時においても、良好な車両の回頭状態の安定化が図れることになる。なお、いずれかの電磁アクチュエータが失陥した場合の回頭状態制御部による制御は、直進時においても効果を発揮するが、特に旋回時において車両を安定化させる効果が大きい。
回頭状態制御部の制御対象とされる「回頭状態」は、具体的には、車両のヨーレート,車両のスリップ角,車両の横G等を含む概念である。例えば、ヨーレートを対象とする場合は、「目標回頭状態」として目標ヨーレートを決定し、「実回頭状態」である実ヨーレートが目標ヨーレートに近づくように、制動力,駆動力を決定するような制御とすることが可能である。その場合、目標ヨーレートは、例えば、操舵角(ステアリング操作部材の操作角,転舵車輪の転舵角等を含む概念である)だけに基づいて決定することができるが、操舵角とそれ以外の車両の状態量等(例えば、車体速度等)に基づいて決定することもできる。本項に記載の態様における「ゲイン」は、例えば、目標回頭状態と実回頭状態との偏差に乗じられて制動力等を決定するため係数と考えることができる。電磁アクチュエータの失陥時には、失陥のない場合におけるゲインに設定値を乗じた値とすることが可能である。その場合の設定値は、例えば、予め定められた定数(例えば、1.3等)とされてもよく、また、操舵角,車体速度,ロール量,ロール速度等に応じて変化する値、失陥した電磁アクチュエータが発生すべきで発生力に応じて変化する値等、種々の値とすることができる。また、その設定値は、例えば、全ての車輪に対して一律に設定されてもよく、車輪ごとに個別の規律に基づいて設定されてもよい。設定値を定める規律を車輪ごとに異ならせる場合には、例えば、失陥した電磁アクチュエータを有するサスペンション装置に懸架される車輪についての設定値と、そうでない車輪についての設定値とを異ならせること等ができる。
以下、本発明の一実施例を、図を参照しつつ詳しく説明する。なお、本発明は、決して下記の実施例に限定されるものではなく、下記実施例の他、前記〔発明の態様〕の項に記載された態様を始めとして、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することができる。
1. 車両用安定化装置を備えた車両の概要.
図1に、本発明の一実施例の車両用安定化装置10を備えた車両について、車両の走行状態の安定化に関連の深い部分を模式的に示す。この図において、車両は、4つの車輪12と、それら車輪12を懸架するサスペンション装置14とを備えている。4つの車輪12のうち2つの前輪(FR,FL)が転舵輪であり、2つの後輪(RR,RL)が駆動輪とされている。それら車輪12の各々にはホイールシリンダ16が設けられ、それらホイールシリンダ16にブレーキ液の液圧が伝達されることによって車輪12に制動力が加えられる。
車両には、ステアリングホイール30と、操舵角を取得するためにステアリングホイール30の回転位置を検出する操舵角センサ32とが設けられている。そのステアリングホイール30になされた操作に応じて前輪(FR,FL)の転舵角が変更される。車両には、また、ブレーキペダル34、そのブレーキペダル34の踏み込み操作に応じてブレーキ液を圧送するマスタシリンダ36、およびマスタシリンダ36から圧送されるブレーキ液の液圧を液圧伝達パイプ38を介して各ホイールシリンダ16に分配する制動液圧制御装置50が設けられている。また、マスタシリンダ36には、ブレーキペダル34の踏み込み操作における踏力を検出する踏力センサ52が設けられている。なお、操舵角センサ32,踏力センサ52により取得された操舵角,踏力は、それぞれ図示を省略する信号線を介して車両安定化制御装置10に送信される。
制動液圧制御装置50は、各種の電磁弁,ポンプ,およびそのポンプを駆動するポンプモータ等と、それらを駆動する駆動回路とを有しており、上述のマスタシリンダ36からの液圧によらずに、ブレーキ液を各ホイールシリンダ16に圧送することが可能である。その制動液圧制御装置50は、一般的なABS(アンチロックブレーキシステム)等に用いられるものであり、簡単に説明すれば、制動液圧制御装置50は車両安定化制御装置10と信号線を介して接続されており、車両安定化制御装置10の指令に従い、電磁弁,ポンプモータ等を駆動回路によって駆動することにより、各ホイールシリンダ16に圧送するブレーキ液の液圧を調整する。すなわち、制動液圧制御装置50は、ポンプモータによりポンプを駆動することによりブレーキ液の液圧を高め、自身に配設されたブレーキ液の通路を開閉する複数の電磁弁のうち必要なものの開閉を切換えることにより、各ホイールシリンダ16に供給されるブレーキ液の液圧を増圧,減圧,保持するのである。
車体56には、サスペンション装置14が有する電磁アクチュエータ60(以後、「アクチュエータ60」と略記する。)(図3,図4参照)に駆動電力を供給するアクチュエータ駆動回路62が設けられている。アクチュエータ駆動回路62は、車両安定化制御装置10に信号線を介して接続されており、車両安定化制御装置10の指令に従い各アクチュエータ60に駆動電力を供給する。アクチュエータ駆動回路62から各アクチュエータ60に駆動電力が供給されることにより、車体56と車輪12とを接近・離間させる力である発生力がサスペンション装置14おいて発生する。発生力が、車体56と車輪12とが接近あるいは離間する運動に逆らう向きに発生させられる場合は、その発生力は減衰力として作用する。一方、発生力が、上記運動を推進する向きに発生させられる場合は、その発生力は推進力として作用する。車両安定化制御装置10は、各アクチュエータ60に発生させるべき発生力を決定し、その決定された発生力に応じた駆動電力をアクチュエータ駆動回路62から各アクチュエータ60に供給することにより、各サスペンション装置14において適切な発生力を発生させて車体56の姿勢を安定化させるのである。なお、アクチュエータ駆動回路62は、アクチュエータ失陥検出部64(以後、「失陥検出部64」と略記する。)を有しており、アクチュエータ60の失陥を検出する。そして、アクチュエータ60が失陥した場合には、その旨の信号を車両安定化制御装置10に送信する(図2参照)。
2. 車両安定化制御装置.
図2に車両安定化制御装置10の機能ブロック図を示す。車両安定化制御装置10は、コンピュータを主体とした装置であり、その構成部分がこの図に示すように明確に分かれているわけではないが、車両安定化制御装置10の機能の理解を容易にするためにこのような図とした。車両安定化制御装置10は、車体姿勢制御部100,制動制御部110および状態量演算部114を含んで構成されている。車体姿勢制御部100は、第1車体姿勢制御部120,第2車体姿勢制御部122および姿勢制御変更部124を含んで構成されている。制動制御部110は、ABS制御部130,TRC制御部132,VSC制御部134を含んで構成されている。そのVSC制御部134は、VSC制御における制動力を決定するためのゲインを決定するゲイン決定部136を有している。状態量演算部114は、各種のセンサの検出値に基づいて、制御に必要な姿勢状態,回頭状態等に関するパラメータである車両状態量を演算するものである。なお、車体姿勢制御部100,制動制御部110等の詳細については後述する。
車両安定化制御装置10には、操舵角センサ32,踏力センサ52,車輪速センサ140,ヨーセンサ142,Gセンサ144等が接続されており、車両安定化制御装置10は、それらのセンサが検出した値、あるいはそれら検出値を基に状態量演算部114により取得された車両状態量等に基づいて制御を行う。状態量演算部114は、車輪12ごとに設けられている車輪速センサ140の検出値のうち最大の値を、車体速度と擬制する。Gセンサ144は、図3に示すように、サスペンション装置14の各々が装備された車体56の部分、すなわち車体56におけるサスペンション装置14の上部の各々が取り付けられてサスペンション装置14によって支持される車体の部分(右前,左前,右後,左後)である被支持部150(図3には左前(FL)のみ図示する)の付近に1つずつ配設されており、それら4つのGセンサ144によって、それぞれ車体56の右前,左前,右後,左後の被支持部150の上下方向の加速度である上下加速度が検出される。状態量演算部114は、検出されたそれぞれの上下加速度に基づいて、車体56のヒーブ情報,ロール情報,ピッチ情報を演算することで取得する。
3. サスペンション装置.
図4に、サスペンション装置14において、車体姿勢の安定化に関係の深い部分を示す。サスペンション装置14は、電磁アクチュエータ60,弾性力発生機構156等を含んで構成されており、その弾性力発生機構156が発生させる弾性力によって路面からの衝撃を緩衝しつつ車体56を支えるとともに、アクチュエータ60が発生させる発生力によって、上記衝撃を減衰させ、さらには、車体56の姿勢を安定化させるといった機能を果たす。
アクチュエータ60は、電磁式モータ160(以後、「モータ160」と略記する。),ボールねじ162,およびそれらを保持するハウジング164等を備えている。ハウジング164に固定されたモータ160の駆動軸とボールねじ162とは、ジョイント166によって、互いに同軸的、かつ、相対回転不能に連結されている。ボールねじ162には円板状の鍔部172が設けられており、2つの軸受174がその鍔部172を軸線方向において両側から挟むようにしてボールねじ162を保持することで、ボールねじ162は、軸線回りに回転可能、かつ、軸方向に移動不能とされている。
アクチュエータ60は、また、インナチューブ180およびアウタチューブ182を備えている。インナチューブ180は、アウタチューブ182の内側の穴に軸方向に相対移動可能に嵌入させられるとともに、自身の上部に設けられたフランジ部においてハウジング164の下端部に固定されている。アウタチューブ182の内壁面にはボールナット186がアウタチューブ182と相対回転不能、かつ、軸方向に相対移動不可能に固定されており、そのボールナット186はベアリングボールを介してボールねじ162と螺合させられている。そのような構造により、ボールねじ162の回転運動がボールナット186の軸方向の直線運動に変換され、逆に、ボールナット186の上記直線運動もボールねじ162の回転運動に変換される。ボールねじ162が回転させられてボールナット186が軸方向に移動させられることにより、ボールナット186が固定されたアウタチューブ182が軸方向に移動させられることになる。なお、インナチューブ180はハウジング164を介して車体に固定され、アウタチューブ182は図示しないロアアームに回動可能、かつ、軸線回りに回転不能に連結されている。そのため、インナチューブ180とアウタチューブ182とが互いに相対回転不能とされているのである。
弾性力発生機構156は、弾性部材たるコイルスプリング190(以後、スプリング190と略称する。)と、そのスプリング190を挟むように支持する上部支持部材192および下部支持部材194とを備えている。上部支持部材192は、アクチュエータ60のハウジング164に固定して設けられており、上述の車体56における被支持部150に固定して取付られている。また、下部支持部材194は、アウタチューブ182の上部に固定されている。このような構造により、アウタチューブ182とインナチューブ180とが軸方向において相対移動することで、上部支持部材192と下部支持部材194との離間距離が変化してスプリング190が伸縮させられることになり、弾性力発生機構156は、そのスプリング190の伸縮の度合いに応じた弾性力を発生させる。
4. 失陥の検出と車両安定化制御の切換.
本実施例においては、車両の走行状態を安定化させるために、車体姿勢制御部100による車体姿勢制御と、制動制御部110による制動制御とが行われる。全てのサスペンション装置14が有するアクチュエータ60が正常に機能する場合(以後、単に「アクチュエータ正常時」と表現する。)には、通常の制御が行われる。前述した失陥検出部64は、各アクチュエータ60の電流を検出しており、いずれかのアクチュエータ60に電圧を加えているにもかかわらず電流が流れない場合等に、そのアクチュエータ60の失陥を検出する。いずれかのアクチュエータ60の失陥が検出された場合、すなわち、いずれかのアクチュエータ60が失陥した場合(以後、単に「アクチュエータ失陥時」と表現する。)には、アクチュエータ失陥信号(以後、「失陥信号」と略記する。)が、失陥検出部64から車両安定化制御装置10に送信される。その失陥信号には失陥したアクチュエータ60の配置情報(FR,FL,RR,RLのいずれが失陥したかに関する情報)が含まれている。車両安定化制御装置10が失陥信号を受信すると、姿勢制御部100および制動制御部110によるそれぞれの制御が、全てのアクチュエータ60が正常な状態を前提とした制御から、いずれかのアクチュエータ60が失陥した状態を前提とした制御に切り換えられる。なお、アクチュエータ60の失陥は、車両のインストゥルメントパネルに設けられたサスペンション装置14の故障を示すインジケータランプが点灯すること等によって運転者に報知される。なお、本実施例においては、失陥したアクチュエータ60を備えるサスペンション装置14は、減衰力および推進力を発生できなくなることとする。
5. 車体姿勢制御.
車体姿勢制御部100によるフィードバック制御である車体姿勢制御について説明する。なお、説明を単純化するために車体56の重心は各車輪12から等距離にあるものとし、前輪のホイールトレッドと後輪のホイールトレッドとが等しいものとする。姿勢制御変更部124は、第1姿勢制御部120と第2姿勢制御部122とのいずれが制御主体となるかを管理するとともに、必要に応じて制御主体を変更する機能を果たしている。本実施例では、アクチュエータ正常時には、第2車体姿勢制御部122にアクチュエータ正常時を前提とする第2車体姿勢制御(以後、「正常時第2姿勢制御」と称する。)を行わせ、一方、アクチュエータ失陥時には、車体姿勢制御部100が行う車体姿勢制御を、上記正常時第2姿勢制御から第1車体姿勢制御部120によるアクチュエータ失陥時を前提とした第1車体姿勢制御(以後、「失陥時第1姿勢制御」と称する。)に変更する。
5.1. 正常時第1姿勢制御.
第1車体姿勢制御部120による制御について説明する。第1車体姿勢制御部120は、車体56のヒーブ量,ピッチ量,ロール量が、それぞれ設定された目標値(例えば0)になるように各サスペンション装置14の電磁アクチュエータ60の発生力を決定する。車体56の姿勢に関する情報(以下、「姿勢情報」と略す場合がある)である実際の車体56のヒーブ量Xh,ピッチ量Xp,ロール量Xr等の実姿勢状態量(車両状態量の一種である)は、状態量演算部114により、4つのGセンサ144の検出値に基づいて取得される。車両の静止状態における車体の各被支持部150の高さ位置が基準の高さ位置X0とされ、各Gセンサ144の検出値である上下加速度がそれぞれ積分されてその基準の高さ位置X0からの上下方向の変位量である上下変位量が演算される。車体56の各被支持部150(FR,FL,RR,RL)の基準の高さ位置からの上下変位量をそれぞれXFR,XFL,XRR,XRL(図1参照)とすれば、次の式により上記3つの量が演算される。なお、Lh,Ltは、それぞれ車両のホイールベース、ホイールトレッドを表す。
[ヒーブ量]Xh=(XFR+XFL+XRR+XRL)/4 ・・・(1)
[ピッチ量]Xp=(XFR+XFL−XRR−XRL)/(2Lh) ・・・(2)
[ロール量]Xr=(XFR−XFL+XRR−XRL)/(2Lt) ・・・(3)
第1車体姿勢制御においては、車体56の姿勢を目標となる姿勢にするために各アクチュエータ60に発生させる発生力である姿勢制御力(アクチュエータ別制御力)が決定され、それらアクチュエータ別制御力を各アクチュエータ60に発生させる制御が行われるが、アクチュエータ別制御力の決定に先立ち、第1車体姿勢制御部120において、上記姿勢情報に基づいてアクチュエータ別制御力の決定の基準となる基準制御力が求められる。その基準制御力には、それぞれヒーブ量,ピッチ量,ロール量をコントロールするための基準制御力成分であるヒーブ基準制御力Fh,ピッチ基準制御力Fp,ロール基準制御力Frが含まれ、それらが第1車体姿勢制御部120が行う演算により求められるのである。その際には、次の式に示すように、定められたゲインKh,Kp,Krが、上記姿勢状態量の目標値Xh1,Xp1,Xr1の各々と、上記Xh,Xp,Xrの各々との偏差である姿勢状態量偏差ΔXh,ΔXp,ΔXrに乗じられる。
[ヒーブ制御力]Fh=Kh・ΔXh ・・・(4)
[ピッチ制御力]Fp=Kp・ΔXp ・・・(5)
[ロール制御力]Fr=Kr・ΔXr ・・・(6)
次いで、求められた上記基準制御力に基づいて、各アクチュエータ60のアクチュエータ別制御力A(各車輪に対しては、図5に示すように添え字を付してAFR,AFL,ARR,ARLで表す)が決定される。アクチュエータ別制御力Aは、それぞれ、ヒーブ量,ピッチ量をコントロールするための制御力成分であるアクチュエータ別ヒーブ制御力Ah,アクチュエータ別ピッチ制御力Ap,アクチュエータ別ロール制御力Arを和して求められるのであり、まず、それらが決定される。なお、アクチュエータ別ピッチ制御力Ap,アクチュエータ別ロール制御力Arは、各サスペンション装置14の配設位置によって発生させる向きが異なるため、Ap,Arの決定にあたっては、発生させる向きも決定される。具体的に言えば、Apは、前輪側のサスペンション装置14と後輪側のサスペンション装置14とで向きが異なり、Arは、左輪側のサスペンション装置14と右輪側のサスペンション装置14とで向きが異なる。なお、向きの相違は、符号を代えて示すこととする。アクチュエータ正常時における各アクチュエータ別の制御力成分は、それぞれ次の式に示すように決定される。
[アクチュエータ別ヒーブ制御力]AhFR=AhFL=AhRR=AhRL=−Fh ・・・(7)
[アクチュエータ別ピッチ制御力]ApFR=ApFL=−Fp,ApRR=ApRL=+Fp ・・・(8)
[アクチュエータ別ロール制御力]ArFR=ArRR=−Fr,ArFL=ArRL=+Fr ・・・(9)
先に説明したように、アクチュエータ別制御力は、
[アクチュエータ別制御力]A=Ah+Ap+Ar ・・・(10)
で表されるものであり、上記式7,8,9におけるアクチュエータ別制御力成分Ah,Ap,Arをアクチュエータ60の各々について合計すれば、「アクチュエータ正常時」における各アクチュエータ60のアクチュエータ別制御力が求められる。
[アクチュエータ別制御力FR]AFR=AhFR+ApFR+ArFR=−Fh−Fp−Fr ・・・(11)
[アクチュエータ別制御力FL]AFL=AhFL+ApFL+ArFL=−Fh−Fp+Fr ・・・(12)
[アクチュエータ別制御力RR]ARR=AhRR+ApRR+ArRR=−Fh+Fp−Fr ・・・(13)
[アクチュエータ別制御力RL]ARL=AhRL+ApRL+ArRL=−Fh+Fp+Fr ・・・(14)
以上のようにして各サスペンション装置14のアクチュエータ60の発生力を決定する制御が、「正常時第1姿勢制御」である。
5.2. 失陥時第1姿勢制御.
第1車体姿勢制御部120は、「アクチュエータ正常時」および「アクチュエータ失陥時」のいずれの場合においても式1〜6の演算を行う。しかし、「アクチュエータ失陥時」には、「失陥時第1姿勢制御」を行うため、式7以降の演算方法が異なるのである。失陥時第1姿勢制御の一例として、右前輪(FR)に位置するサスペンション装置14のアクチュエータ60が失陥した場合を例にして説明する。
アクチュエータ別の制御力成分は、それぞれ次の式に示すように決定される。その際、ヒーブ制御力Ahについては、失陥したアクチュエータ60の低下分を、他の3つのアクチュエータ60に均等に分担させる。また、ピッチ制御力Apについては、失陥したアクチュエータ60の低下分を、前後方向において同じ側にあるサスペンション装置14のアクチュエータ60に分担させ、ロール制御力Arについては、失陥したアクチュエータ60の低下分を、左右方向において同じ側にあるサスペンション装置14のアクチュエータ60に分担させる。なお、サスペンション装置14の失陥したアクチュエータ60の発生力(AFR)は0として表示する。
[アクチュエータ別ヒーブ制御力](AFR=0),AFL=ARR=ARL=−4/3Fh ・・・(7')
[アクチュエータ別ピッチ制御力](AFR=0),AFL=−2Fp,ARR=ARL=+Fp ・・・(8')
[アクチュエータ別ロール制御力](AFR=0),ARR=−2Fr,AFL=ARL=+Fr ・・・(9')
次いで、「正常時第1姿勢制御」の場合と同様(式10参照)、式7’,8’,9’における上記アクチュエータ別の制御力成分Ah,Ap,Arをアクチュエータ60の各々について合計し、「アクチュエータ失陥時」における各アクチュエータ60の発生力が求められる。
[アクチュエータ別制御力FR](AFR=0) ・・・(11')
[アクチュエータ別制御力FL]AFL=−4/3Fh−2Fp+Fr ・・・(12')
[アクチュエータ別制御力RR]ARR=−4/3Fh+Fp−2Fr ・・・(13')
[アクチュエータ別制御力RL]ARL=−4/3Fh+Fp+Fr ・・・(14')
以上のようにして各サスペンション装置14のアクチュエータ60の発生力を決定する制御が、「失陥時第1姿勢制御」である。なお、上記説明は、右前輪(FR)に位置するサスペンション装置14のアクチュエータ60が失陥した場合の説明であるが、他の車輪のサスペンション装置14のアクチュエータ60が失陥した場合には、そのサスペンション装置14の配設されている位置に応じて、その失陥したアクチュエータ60の発生力の低下分を補うように失陥していないアクチュエータ60の発生力が決定される。明細書が冗長となるの避けるべく、その場合の説明は省略する。
5.3. 正常時第2姿勢制御.
第2車体姿勢制御部122によって行われる「正常時第2姿勢制御」について説明する。正常時第2姿勢制御は、第1車体姿勢制御部120によって行われる制御とは異なり、状態量演算部114によって演算された車体の各被支持部150の上下変位量および上下方向の変位の速度である上下変位速度(各Gセンサ144により検出された上下加速度がを積分して求められる)に基づいて、車体姿勢制御を行う。正常時第2姿勢制御においては、各サスペンション装置14のアクチュエータ60の発生力であるアクチュエータ別制御力Aは、各アクチュエータ60ごとに、各被支持部150の上下変位量の目標値X1FR,X1FL,X1RR,X1RL(例えばX0)と上下変位量XFR,XFL,XRR,XRLとの偏差である上下変位量偏差ΔXFR,ΔXFL,ΔXRR,ΔXRL、および上下変位速度VFR,VFL,VRR,VRLに基づいて、次式に従って決定される。Ka,Kbは、それらに乗じられるゲインである。
[アクチュエータ別制御力FR]AFR=Ka・ΔXFR+Kb・VFR ・・・(15)
[アクチュエータ別制御力FL]AFL=Ka・ΔXFL+Kb・VFL ・・・(16)
[アクチュエータ別制御力RR]ARR=Ka・ΔXRR+Kb・VRR ・・・(17)
[アクチュエータ別制御力RL]ARL=Ka・ΔXRL+Kb・VRL ・・・(18)
この正常時第2姿勢制御によれば、車体56の各部分(FR,FL,RR,RL)において、個別に上下変位量が小さくなるように各アクチュエータ60の制御力が決定される。この制御においても、車体56の各被支持部150の上下変位量が小さくされ、結果的に、車体全体としてヒーブ量,ピッチ量,ロール量が小さくなり、車体56の姿勢が安定化されるのである。
6. 制動制御.
制動制御部110によるフィードバック制御である制動制御について説明する。制動制御部110は、車両の走行状態を安定化させるために、ABS制御部130によるABS制御,TRC制御部132によるTRC制御,およびVSC制御部134によるVSC制御(回頭状態制御の一種である。)を行う。ABS制御およびTRC制御は、それぞれ制動時,加速時において車輪がスリップしないように制動力を制御するもので、一般的な制御であるため説明を省略する。同様にVSC制御も、車両の回頭状態を安定化させるために、車両のヨーレートが目標となる目標ヨーレートに近づくように各車輪12の制動力を制御する一般的な制御である。しかしながら、「アクチュエータ失陥時」には、車体56の姿勢が不安定になりやすく車両の回頭状態が変化しやすいため、本実施例において、「アクチュエータ失陥時」を前提としたVSC制御を行う。
「アクチュエータ正常時」を前提としたVSC制御である「正常時VSC制御」について簡単に説明する。本実施例では、回頭状態を示すパラメータとしてヨーレートを採用しており、VSC制御部134により、ヨーセンサ142の検出値に基づいて、車両の実際のヨーレートである実ヨーレートγが取得される。一方、目標となる目標ヨーレートγtが、操舵角センサ32により検出された操舵角および状態量取得部114により擬制された車体速度に基づいて、VSC制御部134において記憶されている目標ヨーレートγtを決定されるマップデータから取得される。実ヨーレートγから目標ヨーレートγtを引いてヨーレート偏差Δγが求められる。そのヨーレート偏差Δγに各車輪12ごとに設定されたゲインKFR,KFL,KRR,KRLが乗じられて、次式のように各車輪12を制動する制動力Bが決定される。それらゲインKFR等は、ゲイン決定部136により決定される。ちなみに、「アクチュエータ正常時」の制御に用いられるゲインKFR等は予め記憶されている値である。
[制動力FR]BFR=KFR・Δγ ・・・(19)
[制動力FL]BFL=KFL・Δγ ・・・(20)
[制動力RR]BRR=KRR・Δγ ・・・(21)
[制動力RL]BRL=KRL・Δγ ・・・(22)
各車輪12の制動力が決定されると、Δγの符号により、左側の車輪12と右側の車輪12との一方のみに制動力Bが加えられるようにされる。詳しく言えば、左回りのヨーレートが正の値とされており、Δγ<0の場合は、左側の車輪12(FL,RL)だけに制動力BFL,BRLが加えられ、右側の車輪12(FR,RR)には制動力は加えないないようにされ、逆に、Δγ>0の場合は、右側の車輪12(FR,RR)だけに制動力BFR,BRRが加えられ、左側の車輪12(FL,RL)には制動力は加えられないようにされる。例えば、図6に示すような左旋回状態において、実ヨーレートγと目標ヨーレートγtとが比較され、仮に実ヨーレートγが目標ヨーレートγtより大きくなる状態では、Δγの符号が負になり、それの状態を修正するために、右側の車輪12(FR,RR)に制動力が加えられるのである。
以上の説明のように、VSC制御は、左右の車輪12の制動力差により、車両をヨー方向に回転させる力を発生させるものである。なお、車輪12に制動力が加えられていた場合は、いずれかの車輪12の制動力が先に決定された制動力Bの分だけ増加させられる。また、ABS制御により、車輪12のスリップが制御されているため、車輪12がグリップを失わない範囲でしか制動力を増加させることができない場合がある。そういった場合には、制動力を増加させるべき車輪とは左右方向において反対側の車輪12の制動力が上記制動力Bの分だけ減少させられる等の処理が行われる。
「アクチュエータ失陥時」を前提とした制御である「失陥時VSC制御」について説明する。アクチュエータ60が失陥したサスペンション装置14は、スプリング190以外に、車体56のロールを抑制するための力を発生させることができず、「アクチュエータ正常時」よりも車体56のロール量が大きくなる。そのため、「アクチュエータ失陥時」には、「アクチュエータ正常時」よりもオーバーステア傾向が強くなる場合が多いのである。その場合に、「正常時VSC制御」を行ったのでは、回頭状態の修正が十分でなかったり、修正に時間がかかったりする状況に陥る。そこで、ゲイン決定部136は、「アクチュエータ失陥時」おいて、そのような状況を解消すべく、「アクチュエータ失陥時」のゲインであるゲインKfFR,KfFL,KfRR,KfRLを決定するのである。それらゲインKfFR等の決定は、「正常時VSC制御」におけるゲインKFR等に設定値C(例えば1.3といった1より大きな値である)を乗じることによって演算される。ゲインKfFR等を大きくすることにより、ヨーレート偏差Δγに対する制動力Bの値が大きくされ、「アクチュエータ正常時」よりも大きな力で車両の回頭状態を変化させることができることになる。そのため、アクチュエータ60の失陥に起因して回頭状態が不安定になるという現象を、効果的に抑制することあるいは打ち消すことができるのである。具体的に示せば、各車輪12に加えられる制動力Bは、次の式によって求められる。
[制動力FR]BFR=KfFR・Δγ,(KfFR=KFR・C) ・・・(23)
[制動力FL]BFL=KfFL・Δγ,(KfFL=KFL・C) ・・・(24)
[制動力RR]BRR=KfRR・Δγ,(KfRR=KRR・C) ・・・(25)
[制動力RL]BRL=KfRL・Δγ,(KfRL=KRL・C) ・・・(26)
7. その他の態様.
上記実施例において、第1車体姿勢制御部120によるアクチュエータ正常時あるいは失陥時の第1姿勢制御は、前述のGセンサ144が配設された車体56の被支持部150の上下方向の変位量に基づいて行われていたが、車体56と各車輪12の各々との相対距離を検出するストロークセンサを設けて、その検出された相対距離、相対距離の変化速度等に基づいて行うこともできる。また、第1車体姿勢制御部120による第1姿勢制御は、被支持部150の上下方向の変位量に基づいて取得されるヒーブ量,ピッチ量およびロール量に基づいて行われたが、それらヒーブ量,ピッチ量およびロール量の設定時間当たりの変化量、すなわちヒーブ速度,ピッチ速度およびロール速度(これらも姿勢状態量の一種である)に基づいて制御することもできる。それらヒーブ速度,ピッチ速度およびロール速度のそれぞれについて設定されたゲインを乗じて電磁アクチュエータ60に発生させる制御力を演算することができる。また、ここまでに挙げた第1車体姿勢制御では、複数の姿勢状態量に基づく制御を行っているが、ロール量だけに基づいて制御するといった具合に、1つの姿勢状態量に基づく第1車体姿勢制御を行うこともできる。つまり、第1車体姿勢制御は、少なくとも1つの姿勢状態量に基づく制御とすることができるのである。
また、第1姿勢制御において、ピッチ量やロール量の目標値が一定とされていたが、ピッチ量やロール量の目標値を、演算により、制動中,旋回中の車体の姿勢変化等に合わせて変化させてもよい。例えば、旋回中であれば、検出された操舵角,車体速度等から任意に定められた規律に従って適切なロール量を演算し、そのロール量を目標値とすることができる。
第2車体姿勢制御部122による制御も、同様に、上記ストロークセンサの検出値に基づいて取得される相対距離,相対距離変化速度等に基づいて行うことができる。
上記実施例において、姿勢制御変更部124が、「アクチュエータ正常時」には第2車体姿勢制御部122による制御を行うように制御を変更するようにされていたが、第1車体姿勢制御部120に「アクチュエータ正常時」には「正常時第1姿勢制御」を行わせ、「アクチュエータ失陥時」には上記失陥時第1姿勢制御を行わせるようにすることもできる。
上記実施例において、アクチュエータ60の失陥は、失陥検出部64により、アクチュエータ60に電流が流れているか否かで検出されたが、車両安定化制御装置10にアクチュエータ失陥判定部を設けて、車体56の被支持部150の上下変位量,上下変位速度,上下変位加速度等に基づいてもアクチュエータ60の失陥を判定することもできる。アクチュエータ60が失陥すると、車体56と各車輪12との相対距離の変位を抑制すべき際に抑制できず、特にアクチュエータ60が失陥したサスペンション装置14においては、他の正常なサスペンション装置14と比較して上記上下変位量等が、予測される上下変位量等とのずれが大きくなるといった現象が現れる。その現象を検知することであっ苦衷エータ60の失陥を検出するのである。また、車体56と各車輪12との相対距離センサを車両に設け、相対距離,相対距離変化速度,相対距離変化加速度等に基づいて、いずれかのアクチュエータ60が失陥したか否かを判定することもできる。
上記実施例においては、失陥したアクチュエータ60は発生力を発生することができないものとして、失陥時の制御を説明したが、アクチュエータ60が失陥時においても何某かの発生力を発生させる場合に、失陥時の発生力の低下量に応じた制御を行うこともできる。また、例えば、いずれかのアクチュエータ60に駆動電力を供給できない等の理由により推進力を発生できないが、そのアクチュエータ60の発電機としての機能が失陥しておらず減衰力だけは発生できる状態である場合には、その状態を前提として制御することもできる。
上記実施例のVSC制御において、実際のヨーレートを目標ヨーレートに近づけるために、左右いずれかの前後車輪12の制動力が増加されたが、車両の状態によって、前後いずれかの車輪12にのみ制動力を加えるような制御を行うこともできる。例えば、旋回中であれば、オーバーステア傾向を修正するために旋回外輪側の前輪の制動力を増加させるといった制御である。上記実施例において、VSC制御は、車両の回頭状態を示すパラメータとしてヨーレートを採用し、そのヨーレートに基づいて行われていたが、他のパラメータ、例えば、スピン度Svに基づいて車両の回頭状態が適正であるかどうかを判定し、適正でない場合にその回頭状態を修正してもよい。スピン度Svは、車両のスリップ角β,スリップ角βの変化率dβ/dtにそれぞれ定数を乗じて加えた値である。車両に横方向加速度センサを設ける等して横方向加速度Gyを検出し、その検出値に基づいてスピン度Svを求める場合は、次式に従って算出すればよい。なお、次式においてVは車体速度である。
dβ/dt=(Gy/V)−γ ・・・(27)
β=∫{(Gy/V)−γ}dt ・・・(28)
Sv=k1・β+k2・dβ/dt ・・・(29)
本発明の実施例である車両用安定化制御装置を備えた車両の構成を模式的に示す図である。 車両用安定化制御装置の機能を示すブロック図である。 車体,電磁サスペンションおよび車輪の相互位置関係を模式的に示す側面図である。 車両に設けられた電磁サスペンションの一部を示す断面図である。 車両における電磁サスペンションの配置を模式的に示す平面図である。 旋回中の車両を模式的に示す平面図である。
符号の説明
10:車両用安定化装置 12:車輪 14:サスペンション装置 16:ホイールシリンダ 30:ステアリングホイール 32:操舵角センサ 34:ブレーキペダル 36:マスタシリンダ 38:液圧伝達パイプ 50:制動液圧制御装置 52:踏力センサ 56:車体 60:電磁アクチュエータ 62:アクチュエータ駆動回路 64:失陥検出部 100:車体姿勢制御部 110:制動制御部 120:第1車体姿勢制御部 122:第2車体姿勢制御部 124:姿勢制御変更部 130:ABS制御部 132:TRC制御部 134:VSC制御部 136:ゲイン決定部 140:車輪速センサ 142:ヨーセンサ 144:Gセンサ 150:被支持部 156:弾性力発生機構 160:電磁式モータ 162:ボールねじ 164:ハウジング 166:ジョイント 172:鍔部 174:軸受 180:インナチューブ 182:アウタチューブ 186:ボールナット 190:コイルスプリング 192:上部支持部材 194:下部支持部材

Claims (4)

  1. 電磁アクチュエータを有するサスペンション装置を車輪ごとに備えた車両に対してその車両の走行状態を安定化させる制御を行う車両安定化制御装置であって、
    車体の姿勢に関する情報に基づいて前記電磁アクチュエータが発生すべき力を前記電磁アクチュエータごとに決定してその車体の姿勢を安定化させる制御を行う車体姿勢制御部を有し、
    その車体姿勢制御部が、いずれかの前記サスペンション装置が有する前記電磁アクチュエータが失陥してその電磁アクチュエータが発生させることのできる力が低下した場合に、その電磁アクチュエータの失陥による力の低下に見合う分だけ、他のサスペンション装置が有する電磁アクチュエータが発生すべき力を増大させて、前記車体の姿勢を安定化させる制御を行うように構成された車両安定化制御装置。
  2. 当該車両安定化装置の制御の対象となる車両が、前後左右の4つの車輪に対応して、前記サスペンション装置を4つ備えており、
    前記車体姿勢制御部が、
    前記車体の姿勢に関する情報としてのヒーブ量,ロール量およびピッチ量に基づき、それぞれの電磁アクチュエータが発生すべき力の成分として、それぞれの電磁アクチュエータのヒーブ制御力,ロール制御力およびピッチ制御力を決定して、前記車体の姿勢を安定化させる制御を実行可能に構成されており、
    いずれかの前記サスペンション装置が有する前記電磁アクチュエータが失陥してその電磁アクチュエータが発生させることのできる力が低下した場合に、(A) その失陥している電磁アクチュエータのヒーブ制御力の低下分を、他の3つのサスペンション装置の各々の電磁アクチュエータに均等に分担させ、(B) その失陥している電磁アクチュエータのロール制御力の低下分を、左右において同じ側にある前記サスペンション装置の電磁アクチュエータに分担させ、かつ、(C) その失陥している電磁アクチュエータのピッチ制御力の低下分を、前後において同じ側にある前記サスペンション装置の電磁アクチュエータに分担させて、前記車体の姿勢を安定化させる制御を行うように構成された請求項1に記載の車両安定化制御装置。
  3. 当該車両安定化制御装置が、前記車体姿勢制御部である第1車体姿勢制御部とは別に、前記サスペンション装置の各々が装備された車体の部分の各々の変位に関する情報に基づいてその各々のサスペンション装置が有する前記電磁アクチュエータが発生すべき力を個々に決定してその車体の姿勢を安定化させる制御を行う第2車体姿勢制御部を有し、いずれの前記電磁アクチュエータも失陥していない場合は、その第2車体姿勢制御部による制御が実行され、いずれかの前記電磁アクチュエータが失陥した場合には、前記第1車体姿勢制御部による制御が実行されるようにされた請求項1または請求項2に記載の車両安定化制御装置。
  4. 当該車両安定化制御装置が、少なくとも操舵角に基づいて決定される車両の目標回頭状態と、車両の実際の回頭状態である実回頭状態との偏差に基づいていずれかの車輪に付与される制動力と駆動力との少なくとも一方を決定して車両の回頭状態を安定化させる制御を行う回頭状態制御部を有し、その回頭状態制御部が、いずれかの前記電磁アクチュエータが失陥している場合に、前記制動力と駆動力との少なくとも一方を決定するためのゲインを、いずれの前記電磁アクチュエータも失陥していない場合よりも大きくして制御を行う請求項1ないし3のいずれかに記載の車両安定化制御装置。
JP2003404270A 2003-12-03 2003-12-03 車両安定化制御装置 Expired - Fee Related JP4239804B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003404270A JP4239804B2 (ja) 2003-12-03 2003-12-03 車両安定化制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003404270A JP4239804B2 (ja) 2003-12-03 2003-12-03 車両安定化制御装置

Publications (2)

Publication Number Publication Date
JP2005162021A JP2005162021A (ja) 2005-06-23
JP4239804B2 true JP4239804B2 (ja) 2009-03-18

Family

ID=34727296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003404270A Expired - Fee Related JP4239804B2 (ja) 2003-12-03 2003-12-03 車両安定化制御装置

Country Status (1)

Country Link
JP (1) JP4239804B2 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8103408B2 (en) 2005-10-26 2012-01-24 Toyota Jidosha Kabushiki Kaisha Suspension system for vehicle
JP2007168694A (ja) * 2005-12-26 2007-07-05 Toyota Motor Corp 車輌の走行制御装置
JP4858756B2 (ja) * 2006-01-31 2012-01-18 日立オートモティブシステムズ株式会社 ブレーキ制御装置
JP4680788B2 (ja) * 2006-02-03 2011-05-11 トヨタ自動車株式会社 サスペンション装置
JP2007246058A (ja) * 2006-03-20 2007-09-27 Honda Motor Co Ltd 自動車の操縦性制御装置
JP4826758B2 (ja) * 2006-05-10 2011-11-30 トヨタ自動車株式会社 サスペンションシステム
JP4693055B2 (ja) * 2006-05-30 2011-06-01 トヨタ自動車株式会社 車両用サスペンションシステム
JP4888078B2 (ja) * 2006-11-20 2012-02-29 トヨタ自動車株式会社 車両用サスペンションシステム
JP2008162333A (ja) * 2006-12-27 2008-07-17 Toyota Motor Corp 車両用サスペンションシステム
JP4386101B2 (ja) 2007-06-27 2009-12-16 トヨタ自動車株式会社 車両用サスペンションシステム
JP5115624B2 (ja) * 2008-12-01 2013-01-09 トヨタ自動車株式会社 電磁サスペンションシステム
JP5316224B2 (ja) * 2009-05-27 2013-10-16 トヨタ自動車株式会社 減衰力制御装置
WO2013100122A1 (ja) * 2011-12-28 2013-07-04 日産自動車株式会社 車両の制御装置
EP3445622A4 (en) * 2016-04-22 2020-01-22 Clearmotion, Inc. METHOD AND DEVICE FOR STRAIGHT CONTROL, AND A FAST-RESPONDING VEHICLE

Also Published As

Publication number Publication date
JP2005162021A (ja) 2005-06-23

Similar Documents

Publication Publication Date Title
JP5809474B2 (ja) 車体姿勢制御装置
JP4735345B2 (ja) 車体姿勢制御装置
JP4239804B2 (ja) 車両安定化制御装置
US7480547B2 (en) Attitude sensing system for an automotive vehicle relative to the road
JP4821490B2 (ja) 車両の直進制動時の運転制御装置及び運転制御方法
JP6286091B1 (ja) 車両状態推定装置、制御装置、サスペンション制御装置、及びサスペンション装置。
GB2382336A (en) Vehicle yaw stability control
JP2005256636A (ja) 車両安定化制御システム
JP2008137438A (ja) キャンバ角制御装置、自動車及びキャンバ角制御方法
US20170106755A1 (en) Vehicle control apparatus
JP6360246B1 (ja) 車両状態推定装置、制御装置、サスペンション制御装置、サスペンション装置、ステアリング制御装置、及びステアリング装置
JP6285591B1 (ja) サスペンション制御装置、および、サスペンション装置
WO2018173303A1 (ja) 制御装置、および、サスペンション装置
WO2022181468A1 (ja) 車両運動制御装置、車両運動制御システムおよび車両
JP4788675B2 (ja) 車両用サスペンションシステム
JP4821766B2 (ja) 車両用サスペンションシステム
WO2020003549A1 (ja) ステアリング制御装置及びステアリング装置
JP2019166904A (ja) 車両状態推定装置、制御装置、サスペンション制御装置、サスペンション装置、ステアリング制御装置、及びステアリング装置
JPH1191329A (ja) 接地荷重制御装置
JP3814057B2 (ja) 接地荷重制御装置
JP2021119063A (ja) サスペンション制御装置及びサスペンション装置
JPH1134628A (ja) 接地荷重制御装置
JP3863969B2 (ja) 接地荷重制御装置
JPH1148736A (ja) 接地荷重制御装置
JP6970043B2 (ja) 車両安定制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees