JP4232279B2 - Vapor growth equipment - Google Patents

Vapor growth equipment Download PDF

Info

Publication number
JP4232279B2
JP4232279B2 JP19132199A JP19132199A JP4232279B2 JP 4232279 B2 JP4232279 B2 JP 4232279B2 JP 19132199 A JP19132199 A JP 19132199A JP 19132199 A JP19132199 A JP 19132199A JP 4232279 B2 JP4232279 B2 JP 4232279B2
Authority
JP
Japan
Prior art keywords
pressure
gas
heater
chamber
heater chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19132199A
Other languages
Japanese (ja)
Other versions
JP2001019590A (en
Inventor
新一 我妻
直 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP19132199A priority Critical patent/JP4232279B2/en
Publication of JP2001019590A publication Critical patent/JP2001019590A/en
Application granted granted Critical
Publication of JP4232279B2 publication Critical patent/JP4232279B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、気相成長装置に関し、更に詳細には、ウエハ面内均一性の高い、更にはウエハ毎に均一一様な薄膜を気相成長法により基板上に結晶成長させる気相成長装置に関するものである。
【0002】
【従来の技術】
基板上に気相成長法により半導体等の薄膜をエピタキシャル成長させる気相成長装置は、半導体装置の製造過程で多用されている。
特に、半導体レーザ素子等の化合物半導体装置を作製する際には、MOCVD装置を使って、有機金属気相成長法(MOCVD法)により、GaAs系、AlGaAs系、AlGaInP系、GaN系等の化合物半導体層を成膜することが多い。
【0003】
ここで、図4を参照して、従来のMOCVD装置の構成を説明する。図4は従来のMOCVD装置の構成を示す模式的断面図である。
従来のMOCVD装置10は、図4に示すように、石英製等の反応チャンバ12を備え、反応チャンバ12内にウエハWを載置する基板ホルダ14と、基板ホルダ12の下方に加熱ヒータ16とを配置している。
【0004】
基板ホルダ14は、ウエハの直径より大きな直径の円板状の部材であって、基板ホルダ14の下側中心に連結された回転軸18と共に回転軸18の回りに回転する。
反応チャンバ12の一方の側壁には、マスフロー・コントローラ(図示せず)を備えたガス供給管20が接続され、ガス供給管20から反応チャンバ12に原料ガスが所定流量で供給される。また、反応チャンバ12の他方の側壁には排気管22が接続され、反応チャンバ12を所定の圧力に維持するために、排気管22を介して反応チャンバ12から未反応の原料ガス等を真空吸引装置(図示せず)により吸引している。
加熱ヒータ16は、反応チャンバ12内の温度を設定温度に保持するように制御され、これにより基板ホルダ14上のウエハWの温度を所定温度に維持している。
【0005】
ガス供給管20から導入された原料ガスは、ウエハWの上で加熱分解され、ウエハ上でGaAs等の結晶として成長する。未反応の原料ガスは排気管22から排気される。
例えば、MOCVD法によるGaAs膜の成長を例にして説明すると、通常、原料ガスとして、Gaの有機金属化合物である(CH33 Ga(TMGa、トリメチルガリウム)と、Asの水素化合物であるAsH3 (アルシン)が用いられる。TMGaは、Pd膜を拡散させて純化した水素をキャリアガスとして使って、恒温槽中で蒸気圧を制御した状態でガス化される。一方、AsH3 は高濃度水素で適当な濃度に希釈したものが用いられる。キャリアガスとしての水素とTMGaとAsH3 とは、混合され、反応チャンバ12に導入される。反応チャンバ12内に導入された原料ガスは、次第に、層流を形成して、650℃程度に加熱されている結晶基板上に達することにより、
(CH33 Ga+AsH3 → GaAs+3CH4
という反応を進行させ、基板上にGaAsが成長する。
【0006】
【発明が解決しようとする課題】
しかし、上述した従来のMOCVD装置では、成長させた薄膜の膜質及び膜厚のウエハ面内均一性が良好でなく、更には、ウエハ毎の膜質及び膜厚がどうしてもばらつき勝ちで、ウエハ面内均一性が良好で、ウエハ毎にばらつかない均一一様な膜質の薄膜を成膜することが難しかった。
上述の問題点の説明では、MOCVD装置を例にして説明したが、MOCVD装置に限らず、気相成長装置に普遍的な問題であった。
【0007】
そこで、本発明の目的は、膜厚及び膜質のウエハ面内均一性が高く、ウエハ毎にばらつかない均一一様な膜厚及び膜質の薄膜をウエハ上に気相成長法により成長させる気相成長装置を提供することである。
【0008】
【課題を解決するための手段】
本発明者は、成長させた薄膜の膜質及び膜厚がばらつく原因を調べた結果、図5に示すように、ガス供給管20から導入された原料ガスが、加熱ヒータ16と基板ホルダ14との間を流れるために、ウエハの温度、即ち薄膜の成長温度が変動することがわかった。
特に、成長させる薄膜の膜種が変わる、つまり原料ガスの種類、流量が変わると、原料ガスの熱伝導率が変化するため、加熱ヒータからウエハに熱を伝達させる際、加熱対象物であるウエハの実温度が変化することが判った。
そこで、本発明者は、反応チャンバを隔板で上下に分割し、隔板上に基板ホルダを収容した反応室と、熱ヒータを配置するヒータ室とを設け、かつヒータ室に存在する気体の熱伝導率を一定に維持するために、単一種のガスで一定の圧力に維持することを着想し、実験を重ねた末に、本発明を完成するに到った。
【0009】
よって、上記目的を達成するために、上述の知見に基づいて、本発明に係る気相成長装置は、基板が空間を介することなく直に接する基板ホルダと、基板ホルダ上の基板を加熱する加熱ヒータとを内部に有する反応チャンバを備え、基板ホルダ上に載置した基板を加熱しつつ反応チャンバに原料ガスを導入して、気相成長法により基板上に薄膜を結晶成長させる気相成長装置において、反応チャンバを横断する隔板により反応チャンバを上下に区画してなる上部室として形成され、基板ホルダを隔板上に接して収容し、原料ガスを導入して基板上に薄膜を結晶成長させる反応室と、反応室の下に設けられ、基板を加熱する加熱ヒータを配置したヒータ室と、ヒータ室に単一種のガスを導入し、ヒータ室の圧力を所定圧力に維持する圧力調節手段とを備え、ヒータ室をガスが所定の圧力に維持され、かつ充満された状態で、基板が隔板に密着し、該隔板上に接して収容された基板ホルダが、該基板ホルダに直交する回転軸の回りに隔板に摺動して自在に回転することを特徴としている。
【0010】
本発明で、隔板上に接触させるようにして、基板ホルダを配置しているので、従来の気相成長装置のように、原料ガスが基板ホルダ下を流れるようなことは生じない。従って、薄膜の気相成長時、供給する原料ガスの影響を受けることなく、加熱対象物であるウエハを加熱することができる。
また、本発明では、ヒータ室に充満する単一種のガス、例えば窒素ガスが所定の圧力に維持されているので、熱伝導率が一定となり、加熱ヒータの発熱量が一定である限り、加熱ヒータから隔板及び基板ホルダを経てウエハWに伝達される熱量が一定になる。
これにより、加熱対象物であるウエハWの温度(実温度)が所定温度に安定して維持することができる。
【0011】
本発明で、ヒータ室に導入する単一種のガスは、窒素、アルゴン、ヘリウム等の不活性ガス、及び水素ガスである。尚、混合比が一定である限り、混合ガス、例えば窒素ガスとアルゴンとの混合ガスでも良い。尚、ヒータ室に供給する単一種のガスを不活性ガスとすることにより、加熱ヒータの寿命が長くなる。仮に、活性ガスを導入すると、加熱ヒータの熱により分解して加熱ヒータを劣化させるおそれがある。
ヒータ室の圧力には特に制約はないものの、実用的には、例えば大気圧以下であれば数Torrから数百Torrの範囲で良く、大気圧以上の加圧状態でも良い。
隔板には、耐熱性の高い例えば石英板、カーボン板等を使用する。
加熱ヒータは、従来の既知の加熱ヒータであって、例えば電気抵抗線コイルの電気ヒータ、高周波ヒータ等である。
【0012】
本発明に係る気相成長装置は、MOCVD法により基板上に化合物半導体膜を成膜するMOCVD装置に限らず、高温気相中で化学反応を利用して基板上にシリコン、化合物半導体等の単結晶層を成長させる、気相エピタキシャル成長装置全般に適用できる。
【0013】
本発明の好適な実施態様では、圧力調節手段は、
ヒータ室に接続され、ヒータ室に単一種のガスを導入するガス導入管と、
ヒータ室の圧力を計測し、圧力計測値を出力する圧力計と、
ヒータ室に接続された排気管を介して、ヒータ室を排気する気体吸引ポンプと、
ガス導入管に取り付けられ、ヒータ室の圧力を所定圧力に維持するように、圧力計から出力された圧力計測値に基づいてガス導入管を流れるガスの流量をフィードバック制御するマスフロー・コントローラと
を備えている。
【0014】
本発明の別の好適な実施態様では、圧力調節手段は、
マスフロー・コントローラを備えてヒータ室に接続され、ヒータ室に単一種のガスを設定流量で導入するガス導入管と、
ヒータ室の圧力を計測し、圧力計測値を出力する圧力計と、
ヒータ室に接続された排気管を介して、ヒータ室を排気する気体吸引ポンプと、
気体吸引ポンプの上流の排気管に取り付けられ、圧力計から出力された圧力計測値に基づいて排気管を流れる排気ガスの流量をフィードバック制御して、ヒータ室の圧力を所定圧力に維持するように動作する圧力調節弁と、
を備えている。
【0015】
本実施態様で使用する圧力調節弁は、ヒータ室の圧力を所定圧力に維持するように動作する弁である限り、その種類に制約はないが、例えばピエゾ・バルブを使用することができる。
【0016】
本発明の更に別の好適な実施態様では、圧力調節手段は、
ヒータ室の圧力を計測し、圧力計測値を出力する圧力計と、
ヒータ室に接続された排気管を介して、ヒータ室を排気する気体吸引ポンプと、
気体吸引ポンプの上流の排気管に接続され、排気管に単一種のガスを導入するガス導入管と、
ガス導入管に取り付けられ、ヒータ室の圧力を所定圧力に維持するように、圧力計から出力された圧力計測値に基づいてガス導入管を流れるガスの流量をフィードバック制御するマスフロー・コントローラと
を備えている。
【0017】
【発明の実施の形態】
以下に、実施形態例を挙げ、添付図面を参照して、本発明の実施の形態を具体的かつ詳細に説明する。
実施形態例1
本実施形態例は、本発明に係る気相成長装置の実施形態の一例であって、図1は本実施形態例の気相成長装置の構成を示す模式的断面図である。
本実施形態例の気相成長装置30は、MOCVD法によりウエハ上にGaAs系、AlGaAs系、AlGaInP系、GaN系等の化合物半導体膜を成膜するMOCVD装置であって、図4を参照して説明した従来のMOCVD装置10の構成に加えて、反応チャンバ12を上下に分割して設けた反応室及びヒータ室と、ヒータ室に単一種のガスを導入し、ヒータ室の圧力を所定圧力に維持する圧力調節手段とを設けたことを除いて、従来のMOCVD装置10の構成と同じ構成を備えている。
【0018】
反応室32は、反応チャンバ12を横断する石英製の隔板34により反応チャンバ12を上下に区画してなる上部室として形成されていて、ガス供給管20から原料ガスが導入され、排気管22を介して排気されるようになっている。
ウエハWを上面に載置させる基板ホルダ14は、反応室32内の隔板34上に配置されていて、隔板34に摺動して自在に回転する。
ヒータ室36は、反応室32の下に設けられ、ウエハWを加熱する加熱ヒータ16が配置されている。
【0019】
本実施形態例では、圧力調節手段は、ヒータ室36に単一種のガス、例えば窒素ガスを導入するためにヒータ室36に接続されたガス導入管38と、ヒータ室36の圧力を計測し、圧力計測値を出力する圧力計40と、ヒータ室36に接続されたヒータ室排気管42を介してヒータ室36を所定流量で排気する真空ポンプ44と、ガス導入管36に取り付けられたマスフロー・コントローラ46とから構成されている。
マスフロー・コントローラ46は、圧力計40から出力された圧力計測値に基づいてガス導入管38を流れるガスの流量を調節し、ヒータ室36の圧力を所定圧力、例えば500Torrにフィードバック制御する。
【0020】
本実施形態例では、隔板34上に接触させるようにして、基板ホルダ14を配置しているので、従来の気相成長装置のように、原料ガスが基板ホルダ14下を流れるようなことは生じない。従って、薄膜の気相成長時、供給する原料ガスの影響を受けることなく、ウエハを加熱することができる。
また、上述した圧力調節手段により、ヒータ室36に充満する窒素ガスが所定の圧力に維持されて、熱伝導率が一定となるので、加熱ヒータ16の発熱量が一定である限り、加熱ヒータ16から隔板34及び基板ホルダ14を経てウエハWに伝達される熱量が一定になる。
よって、加熱対象物であるウエハWの温度(実温度)を所定温度に安定して維持することができる。例えば、MOCVD法により化合物半導体膜を成長させる時、加熱対象物(基板)の実温度が安定し、成長条件の安定化が向上し、更には不純物のドーピングなど温度に影響を受ける条件が安定化する。
【0021】
実施形態例2
本実施形態例は本発明に係る気相成長装置の実施形態の別の例であって、図2は本実施形態例の気相成長装置の構成を示す模式的断面図である。
本実施形態例の気相成長装置50は、実施形態例1と同様にMOCVD装置であって、実施形態例1のMOCVD装置30とはヒータ室36の圧力調節手段の構成が異なることを除いて同じ構成を備えている。
【0022】
本実施形態例では、圧力調節手段は、ヒータ室36に単一種のガス、例えば窒素ガスを設定流量で導入するために、マスフロー・コントローラ52を有してヒータ室36に接続されたガス導入管54と、ヒータ室36の圧力を計測し、圧力計測値を出力する圧力計56と、ヒータ室36に接続されたヒータ室排気管58を介してヒータ室36を所定流量で排気する真空ポンプ60と、真空ポンプ60の上流のヒータ室排気管58に取り付けられ圧力調節弁62とから構成されている。
圧力調節弁62は、圧力計56から出力された圧力計測値に基づいてフィードバク制御によりヒータ室排気管58を流れる排気ガスの流量を調整して、ヒータ室36の圧力を所定圧力、例えば500Torrに制御するように動作する。
圧力調節弁62には、電圧を印加してバルブ内の径を変化させることのできる、例えばピエゾ・バルブ等を使用する。
【0023】
本実施形態例では、実施形態例1と同様に、隔板34上に接触させるようにして、基板ホルダ14を配置しているので、従来の気相成長装置のように、原料ガスが基板ホルダ14下を流れるようなことは生じない。従って、薄膜の気相成長時、供給する原料ガスの影響を受けることなく、加熱対象物であるウエハを加熱することができる。
また、上述した圧力調節手段により、ヒータ室36に充満する窒素ガスが所定の圧力に維持されて、熱伝導率が一定となるので、加熱ヒータ16の発熱量が一定である限り、加熱ヒータ16から隔板34及び基板ホルダ14を経てウエハWに伝達される熱量が一定になる。
よって、実施形態例1と同様に、加熱対象物であるウエハWの温度(実温度)を所定温度に安定して維持することができる。
【0024】
実施形態例3
本実施形態例は本発明に係る気相成長装置の実施形態の更に別の例であって、図3は本実施形態例の気相成長装置の構成を示す模式的断面図である。
本実施形態例の気相成長装置70は、実施形態例1と同様にMOCVD装置であって、実施形態例1のMOCVD装置30とはヒータ室36の圧力調節手段の構成が異なることを除いて同じ構成を備えている。
【0025】
本実施形態例では、圧力調節手段は、ヒータ室36の圧力を計測し、圧力計測値を出力する圧力計72と、ヒータ室36に接続されたヒータ室排気管74を介してヒータ室36を所定流量で排気する真空ポンプ76と、ヒータ室排気管74に単一種のガス、例えば窒素ガスを導入するためにヒータ室排気管74に接続されたガス導入管78と、ガス導入管78に取り付けられたマスフロー・コントローラ80とから構成されている。
マスフロー・コントローラ80は、圧力計72から出力された圧力計測値に基づいてフィードバク制御によりヒータ室排気管74に導入する窒素ガスの流量を調整して、ヒータ室36の圧力を所定圧力、例えば500Torrに制御する。
【0026】
本実施形態例では、実施形態例1と同様に、隔板34上に接触させるようにして、基板ホルダ14を配置しているので、従来の気相成長装置のように、原料ガスが基板ホルダ14下を流れるようなことは生じない。従って、薄膜の気相成長時、供給する原料ガスの影響を受けることなく、加熱対象物であるウエハを加熱することができる。
また、上述した圧力調節手段により、ヒータ室36に充満する窒素ガスが所定の圧力に維持されて、熱伝導率が一定となるので、加熱ヒータ16の発熱量が一定である限り、加熱ヒータ16から隔板34及び基板ホルダ14を経てウエハWに伝達される熱量が一定になる。
よって、実施形態例1と同様に、加熱対象物であるウエハWの温度(実温度)を所定温度に安定して維持することができる。
【0027】
【発明の効果】
本発明によれば、気相成長法により基板上に薄膜を成長させる気相成長装置において、反応室と、反応室の下に設けられ、基板を加熱する加熱ヒータを配置したヒータ室と、ヒータ室に単一種のガスを導入し、ヒータ室の圧力を所定圧力に維持する圧力調節手段とを設ける。
これにより、ヒータ室に充満する単一種のガス、例えば窒素ガスが所定の圧力に維持されて、熱伝導率が一定となるので、加熱ヒータの発熱量が一定である限り、加熱ヒータから隔板及び基板ホルダを経てウエハWに伝達される熱量が一定になり、従って加熱対象物であるウエハWの温度(実温度)を所定温度に安定して維持することができる。
よって、本発明に係る気相成長装置を適用することにより、例えばMOCVD法により化合物半導体膜を成長させる時、加熱対象物(ウエハ)の実温度が安定し、従って成長条件が安定するので、高いウエハ面内均一性で、かつウエハ毎にばらつくことなく、良好な膜質の薄膜を基板上に安定して結晶成長させることができる。
【図面の簡単な説明】
【図1】実施形態例1の気相成長装置の構成を示す模式的断面図である。
【図2】実施形態例2の気相成長装置の構成を示す模式的断面図である。
【図3】実施形態例3の気相成長装置の構成を示す模式的断面図である。
【図4】従来のMOCVD装置の構成を示す模式的断面図である。
【図5】従来のMOCVD装置の反応チャンバ内のガスの流れを示す模式的断面図である。
【符号の説明】
10……従来のMOCVD装置、12……反応チャンバ、14……基板ホルダ、16……加熱ヒータ、18……回転軸、20……ガス供給管、22……排気管、30……実施形態例の気相成長装置、32……反応室、34……隔板、36……ヒータ室、38……ガス導入管、40……圧力計、42……ヒータ室排気管、44……真空ポンプ、46……マスフロー・コントローラ、50……実施形態例2のMOCVD装置、52……マスフロー・コントローラ、54……ガス導入管、56……圧力計、58……ヒータ室排気管、60……真空ポンプ、62……圧力調節弁、70……実施形態例3のMOCVD装置、72……圧力計、74……ヒータ室排気管、76……真空ポンプ、78……ガス導入管、80……マスフロー・コントローラ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vapor phase growth apparatus. More specifically, the present invention relates to a vapor phase growth apparatus for crystal growth on a substrate by vapor phase growth of a thin film having high uniformity within a wafer surface and uniform for each wafer. It is about.
[0002]
[Prior art]
2. Description of the Related Art A vapor phase growth apparatus that epitaxially grows a thin film such as a semiconductor on a substrate by a vapor phase growth method is frequently used in the manufacturing process of a semiconductor device.
In particular, when a compound semiconductor device such as a semiconductor laser element is manufactured, a compound semiconductor such as a GaAs-based, AlGaAs-based, AlGaInP-based, or GaN-based compound is formed by metal organic chemical vapor deposition (MOCVD) using an MOCVD apparatus. Often layers are deposited.
[0003]
Here, the configuration of a conventional MOCVD apparatus will be described with reference to FIG. FIG. 4 is a schematic cross-sectional view showing the configuration of a conventional MOCVD apparatus.
As shown in FIG. 4, the conventional MOCVD apparatus 10 includes a reaction chamber 12 made of quartz or the like, a substrate holder 14 for placing a wafer W in the reaction chamber 12, and a heater 16 below the substrate holder 12. Is arranged.
[0004]
The substrate holder 14 is a disk-shaped member having a diameter larger than the diameter of the wafer, and rotates around the rotation shaft 18 together with the rotation shaft 18 connected to the lower center of the substrate holder 14.
A gas supply pipe 20 equipped with a mass flow controller (not shown) is connected to one side wall of the reaction chamber 12, and a raw material gas is supplied from the gas supply pipe 20 to the reaction chamber 12 at a predetermined flow rate. Further, an exhaust pipe 22 is connected to the other side wall of the reaction chamber 12, and unreacted source gas or the like is sucked from the reaction chamber 12 through the exhaust pipe 22 in order to maintain the reaction chamber 12 at a predetermined pressure. Suction is performed by a device (not shown).
The heater 16 is controlled so as to maintain the temperature in the reaction chamber 12 at a set temperature, thereby maintaining the temperature of the wafer W on the substrate holder 14 at a predetermined temperature.
[0005]
The source gas introduced from the gas supply pipe 20 is thermally decomposed on the wafer W and grows as a crystal such as GaAs on the wafer. Unreacted source gas is exhausted from the exhaust pipe 22.
For example, the growth of a GaAs film by MOCVD will be described as an example. Usually, (CH 3 ) 3 Ga (TMGa, trimethylgallium), which is an organometallic compound of Ga, and AsH, which is a hydrogen compound of As, are used as source gases. 3 (arsine) is used. TMGa is gasified with hydrogen vapor purified by diffusing a Pd film as a carrier gas, with the vapor pressure controlled in a thermostatic chamber. On the other hand, AsH 3 is diluted with high concentration hydrogen to an appropriate concentration. Hydrogen, TMGa, and AsH 3 as carrier gases are mixed and introduced into the reaction chamber 12. The source gas introduced into the reaction chamber 12 gradually forms a laminar flow and reaches the crystal substrate heated to about 650 ° C.
(CH 3 ) 3 Ga + AsH 3 → GaAs + 3CH 4
GaAs grows on the substrate.
[0006]
[Problems to be solved by the invention]
However, in the conventional MOCVD apparatus described above, the film quality and film thickness uniformity of the grown thin film is not good, and the film quality and film thickness for each wafer are apt to vary, and the wafer surface uniformity is inevitable. Therefore, it was difficult to form a thin film having a uniform and uniform film quality that did not vary from wafer to wafer.
In the above description of the problem, the MOCVD apparatus has been described as an example. However, the problem is not limited to the MOCVD apparatus, but is a universal problem in the vapor phase growth apparatus.
[0007]
Accordingly, an object of the present invention is to increase the uniformity of the film thickness and film quality within the wafer surface and to grow a thin film having a uniform and uniform film thickness and film quality that does not vary from wafer to wafer by vapor phase growth on the wafer. It is to provide a phase growth apparatus.
[0008]
[Means for Solving the Problems]
As a result of investigating the cause of the variation in film quality and film thickness of the grown thin film, the present inventor found that the raw material gas introduced from the gas supply pipe 20 was transferred between the heater 16 and the substrate holder 14 as shown in FIG. It was found that the temperature of the wafer, that is, the growth temperature of the thin film fluctuates due to the flow between them.
In particular, when the type of thin film to be grown changes, that is, when the type and flow rate of the source gas changes, the thermal conductivity of the source gas changes. Therefore, when transferring heat from the heater to the wafer, the wafer that is the object to be heated It was found that the actual temperature of changed.
In view of this, the present inventor divided the reaction chamber into upper and lower portions with a partition plate, provided a reaction chamber containing a substrate holder on the partition plate, a heater chamber in which a thermal heater is disposed, and the gas present in the heater chamber. In order to maintain the thermal conductivity constant, the inventors have conceived of maintaining a constant pressure with a single kind of gas, and have completed the present invention after repeated experiments.
[0009]
Therefore, in order to achieve the above object, based on the above knowledge, the vapor phase growth apparatus according to the present invention includes a substrate holder in which the substrate is in direct contact with no space, and heating that heats the substrate on the substrate holder. A vapor phase growth apparatus comprising a reaction chamber having a heater inside, and introducing a source gas into the reaction chamber while heating the substrate placed on the substrate holder, and crystal-growing a thin film on the substrate by vapor phase growth , Formed as an upper chamber formed by dividing the reaction chamber up and down by a partition plate crossing the reaction chamber, containing a substrate holder in contact with the partition plate, introducing a source gas, and growing a thin film on the substrate A reaction chamber, a heater chamber provided under the reaction chamber and provided with a heater for heating the substrate, and a pressure regulator that introduces a single kind of gas into the heater chamber and maintains the pressure in the heater chamber at a predetermined pressure. With the door, and maintained a heater chamber gas at a predetermined pressure, and in filled state, the substrate is in close contact with the diaphragm, the substrate holder accommodated in contact on the partition plate, perpendicular to the substrate holder It is characterized by freely rotating by sliding on a partition plate around a rotating shaft .
[0010]
In the present invention, since the substrate holder is disposed so as to be in contact with the partition plate, the source gas does not flow under the substrate holder as in the conventional vapor phase growth apparatus. Therefore, the wafer as the heating target can be heated without being affected by the supplied raw material gas during the vapor phase growth of the thin film.
In the present invention, since a single kind of gas that fills the heater chamber, for example, nitrogen gas, is maintained at a predetermined pressure, as long as the thermal conductivity is constant and the heating value of the heater is constant, the heater is heated. The amount of heat transferred from the wafer to the wafer W through the partition plate and the substrate holder becomes constant.
Thereby, the temperature (actual temperature) of the wafer W that is the heating object can be stably maintained at a predetermined temperature.
[0011]
In the present invention, the single type of gas introduced into the heater chamber is an inert gas such as nitrogen, argon, or helium, and a hydrogen gas. As long as the mixing ratio is constant, a mixed gas, for example, a mixed gas of nitrogen gas and argon may be used. In addition, the lifetime of a heater becomes long by making single type gas supplied to a heater chamber into an inert gas. If an active gas is introduced, it may be decomposed by the heat of the heater and deteriorate the heater.
Although there is no particular restriction on the pressure in the heater chamber, practically, for example, it may be in the range of several Torr to several hundred Torr as long as it is below atmospheric pressure, and it may be in a pressurized state above atmospheric pressure.
As the partition plate, for example, a quartz plate, a carbon plate or the like having high heat resistance is used.
The heater is a conventionally known heater, for example, an electric resistance wire coil electric heater, a high-frequency heater, or the like.
[0012]
The vapor phase growth apparatus according to the present invention is not limited to an MOCVD apparatus that forms a compound semiconductor film on a substrate by MOCVD, but a single layer of silicon, compound semiconductor, or the like on a substrate using a chemical reaction in a high temperature vapor phase. The present invention can be applied to any vapor phase epitaxial growth apparatus for growing a crystal layer.
[0013]
In a preferred embodiment of the present invention, the pressure adjusting means comprises
A gas introduction pipe connected to the heater chamber and introducing a single type of gas into the heater chamber;
A pressure gauge that measures the pressure in the heater chamber and outputs the pressure measurement value;
A gas suction pump for exhausting the heater chamber via an exhaust pipe connected to the heater chamber;
A mass flow controller attached to the gas introduction pipe and feedback-controlling the flow rate of the gas flowing through the gas introduction pipe based on the pressure measurement value output from the pressure gauge so as to maintain the pressure of the heater chamber at a predetermined pressure. ing.
[0014]
In another preferred embodiment of the present invention, the pressure adjusting means is
A gas introduction pipe that is connected to the heater chamber with a mass flow controller and introduces a single type of gas into the heater chamber at a set flow rate;
A pressure gauge that measures the pressure in the heater chamber and outputs the pressure measurement value;
A gas suction pump for exhausting the heater chamber via an exhaust pipe connected to the heater chamber;
It is attached to the exhaust pipe upstream of the gas suction pump, and the flow rate of the exhaust gas flowing through the exhaust pipe is feedback controlled based on the pressure measurement value output from the pressure gauge so that the pressure in the heater chamber is maintained at a predetermined pressure. An operating pressure regulating valve;
It has.
[0015]
As long as the pressure regulating valve used in this embodiment is a valve that operates so as to maintain the pressure of the heater chamber at a predetermined pressure, there is no limitation on the type thereof, but, for example, a piezo valve can be used.
[0016]
In still another preferred embodiment of the present invention, the pressure adjusting means is
A pressure gauge that measures the pressure in the heater chamber and outputs the pressure measurement value;
A gas suction pump for exhausting the heater chamber via an exhaust pipe connected to the heater chamber;
A gas introduction pipe connected to an exhaust pipe upstream of the gas suction pump and introducing a single kind of gas into the exhaust pipe;
A mass flow controller attached to the gas introduction pipe and feedback-controlling the flow rate of the gas flowing through the gas introduction pipe based on the pressure measurement value output from the pressure gauge so as to maintain the pressure of the heater chamber at a predetermined pressure. ing.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described specifically and in detail with reference to the accompanying drawings.
Embodiment 1
This embodiment is an example of an embodiment of a vapor phase growth apparatus according to the present invention, and FIG. 1 is a schematic cross-sectional view showing a configuration of the vapor phase growth apparatus of this embodiment.
The vapor phase growth apparatus 30 of this embodiment is an MOCVD apparatus for forming a compound semiconductor film such as a GaAs-based, AlGaAs-based, AlGaInP-based, or GaN-based film on a wafer by MOCVD, referring to FIG. In addition to the configuration of the conventional MOCVD apparatus 10 described, a reaction chamber and a heater chamber provided by dividing the reaction chamber 12 into upper and lower portions, and a single type of gas are introduced into the heater chamber, and the pressure in the heater chamber is set to a predetermined pressure. It has the same configuration as that of the conventional MOCVD apparatus 10 except that a pressure adjusting means for maintaining is provided.
[0018]
The reaction chamber 32 is formed as an upper chamber formed by dividing the reaction chamber 12 up and down by a quartz partition plate 34 that crosses the reaction chamber 12, and a raw material gas is introduced from the gas supply pipe 20 and the exhaust pipe 22. It is designed to be exhausted through.
The substrate holder 14 on which the wafer W is placed on the upper surface is disposed on the partition plate 34 in the reaction chamber 32 and slides freely on the partition plate 34 and rotates freely.
The heater chamber 36 is provided below the reaction chamber 32, and the heater 16 that heats the wafer W is disposed therein.
[0019]
In this embodiment, the pressure adjusting means measures the pressure in the heater chamber 36, the gas introduction pipe 38 connected to the heater chamber 36 in order to introduce a single kind of gas, for example, nitrogen gas, into the heater chamber 36, A pressure gauge 40 that outputs a pressure measurement value, a vacuum pump 44 that exhausts the heater chamber 36 at a predetermined flow rate via a heater chamber exhaust pipe 42 connected to the heater chamber 36, and a mass flow And a controller 46.
The mass flow controller 46 adjusts the flow rate of the gas flowing through the gas introduction pipe 38 based on the pressure measurement value output from the pressure gauge 40, and feedback-controls the pressure in the heater chamber 36 to a predetermined pressure, for example, 500 Torr.
[0020]
In this embodiment, since the substrate holder 14 is arranged so as to be in contact with the partition plate 34, it is unlikely that the source gas flows under the substrate holder 14 as in the conventional vapor phase growth apparatus. Does not occur. Therefore, the wafer can be heated without being affected by the source gas supplied during vapor phase growth of the thin film.
Further, the nitrogen gas filling the heater chamber 36 is maintained at a predetermined pressure by the pressure adjusting means described above, and the thermal conductivity becomes constant. Therefore, as long as the heating value of the heater 16 is constant, the heater 16 The amount of heat transferred to the wafer W through the partition plate 34 and the substrate holder 14 is constant.
Therefore, the temperature (actual temperature) of the wafer W, which is the heating object, can be stably maintained at a predetermined temperature. For example, when a compound semiconductor film is grown by the MOCVD method, the actual temperature of the object to be heated (substrate) is stabilized, the stability of the growth conditions is improved, and the conditions affected by the temperature, such as impurity doping, are stabilized. To do.
[0021]
Embodiment 2
This embodiment is another example of the embodiment of the vapor phase growth apparatus according to the present invention, and FIG. 2 is a schematic cross-sectional view showing the configuration of the vapor phase growth apparatus of the present embodiment.
The vapor phase growth apparatus 50 of the present embodiment is an MOCVD apparatus similar to the first embodiment, except that the configuration of the pressure adjusting means of the heater chamber 36 is different from the MOCVD apparatus 30 of the first embodiment. It has the same configuration.
[0022]
In the present embodiment, the pressure adjusting means includes a gas introduction pipe having a mass flow controller 52 and connected to the heater chamber 36 in order to introduce a single type of gas, for example, nitrogen gas, into the heater chamber 36 at a set flow rate. 54, a pressure gauge 56 that measures the pressure in the heater chamber 36, and outputs a pressure measurement value, and a vacuum pump 60 that exhausts the heater chamber 36 at a predetermined flow rate through a heater chamber exhaust pipe 58 connected to the heater chamber 36. And a pressure control valve 62 attached to the heater chamber exhaust pipe 58 upstream of the vacuum pump 60.
The pressure control valve 62 adjusts the flow rate of the exhaust gas flowing through the heater chamber exhaust pipe 58 by feedback control based on the pressure measurement value output from the pressure gauge 56, and sets the pressure in the heater chamber 36 to a predetermined pressure, for example, 500 Torr. Operate to control.
As the pressure control valve 62, for example, a piezo valve or the like that can change the diameter of the valve by applying a voltage is used.
[0023]
In the present embodiment example, since the substrate holder 14 is arranged so as to be in contact with the partition plate 34 as in the first embodiment example, the source gas is supplied to the substrate holder as in the conventional vapor phase growth apparatus. 14 does not flow below. Therefore, the wafer as the heating target can be heated without being affected by the supplied raw material gas during the vapor phase growth of the thin film.
Further, the nitrogen gas filling the heater chamber 36 is maintained at a predetermined pressure by the pressure adjusting means described above, and the thermal conductivity becomes constant. Therefore, as long as the heating value of the heater 16 is constant, the heater 16 The amount of heat transferred to the wafer W through the partition plate 34 and the substrate holder 14 is constant.
Therefore, similarly to the first embodiment, the temperature (actual temperature) of the wafer W that is the heating target can be stably maintained at a predetermined temperature.
[0024]
Embodiment 3
This embodiment is still another example of the embodiment of the vapor phase growth apparatus according to the present invention, and FIG. 3 is a schematic cross-sectional view showing the configuration of the vapor phase growth apparatus of the present embodiment.
The vapor phase growth apparatus 70 of the present embodiment is an MOCVD apparatus similar to the first embodiment, except that the configuration of the pressure adjusting means of the heater chamber 36 is different from the MOCVD apparatus 30 of the first embodiment. It has the same configuration.
[0025]
In the present embodiment, the pressure adjusting means measures the pressure in the heater chamber 36 and outputs the pressure measurement value to the heater chamber 36 via a heater chamber exhaust pipe 74 connected to the heater chamber 36. A vacuum pump 76 for exhausting at a predetermined flow rate, a gas introduction pipe 78 connected to the heater chamber exhaust pipe 74 for introducing a single kind of gas, for example, nitrogen gas, into the heater chamber exhaust pipe 74, and a gas introduction pipe 78 are attached. The mass flow controller 80 is configured.
The mass flow controller 80 adjusts the flow rate of nitrogen gas introduced into the heater chamber exhaust pipe 74 by feedback control based on the pressure measurement value output from the pressure gauge 72, and sets the pressure in the heater chamber 36 to a predetermined pressure, for example, Control to 500 Torr.
[0026]
In the present embodiment example, since the substrate holder 14 is arranged so as to be in contact with the partition plate 34 as in the first embodiment example, the source gas is supplied to the substrate holder as in the conventional vapor phase growth apparatus. 14 does not flow below. Therefore, the wafer as the heating target can be heated without being affected by the supplied raw material gas during the vapor phase growth of the thin film.
Further, the nitrogen gas filling the heater chamber 36 is maintained at a predetermined pressure by the pressure adjusting means described above, and the thermal conductivity becomes constant. Therefore, as long as the heating value of the heater 16 is constant, the heater 16 The amount of heat transferred to the wafer W through the partition plate 34 and the substrate holder 14 is constant.
Therefore, similarly to the first embodiment, the temperature (actual temperature) of the wafer W that is the heating target can be stably maintained at a predetermined temperature.
[0027]
【The invention's effect】
According to the present invention, in a vapor phase growth apparatus that grows a thin film on a substrate by a vapor phase growth method, a reaction chamber, a heater chamber provided under the reaction chamber and provided with a heater for heating the substrate, and a heater Pressure adjusting means for introducing a single kind of gas into the chamber and maintaining the pressure in the heater chamber at a predetermined pressure is provided.
As a result, a single kind of gas that fills the heater chamber, for example, nitrogen gas, is maintained at a predetermined pressure and the thermal conductivity becomes constant. Therefore, as long as the heating value of the heater is constant, the heater is separated from the separator. In addition, the amount of heat transferred to the wafer W through the substrate holder becomes constant, so that the temperature (actual temperature) of the wafer W that is the object to be heated can be stably maintained at a predetermined temperature.
Therefore, by applying the vapor phase growth apparatus according to the present invention, for example, when growing a compound semiconductor film by MOCVD method, the actual temperature of the object to be heated (wafer) is stabilized, and thus the growth conditions are stabilized, so that the growth condition is high. A thin film with good film quality can be stably grown on a substrate with uniformity within the wafer surface and without variation from wafer to wafer.
[Brief description of the drawings]
1 is a schematic cross-sectional view showing a configuration of a vapor phase growth apparatus according to Embodiment 1;
2 is a schematic cross-sectional view showing a configuration of a vapor phase growth apparatus according to Embodiment 2. FIG.
3 is a schematic cross-sectional view showing a configuration of a vapor phase growth apparatus according to Embodiment 3; FIG.
FIG. 4 is a schematic cross-sectional view showing a configuration of a conventional MOCVD apparatus.
FIG. 5 is a schematic cross-sectional view showing a gas flow in a reaction chamber of a conventional MOCVD apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Conventional MOCVD apparatus, 12 ... Reaction chamber, 14 ... Substrate holder, 16 ... Heater, 18 ... Rotary shaft, 20 ... Gas supply pipe, 22 ... Exhaust pipe, 30 ... Embodiment Example vapor phase growth apparatus, 32 ... reaction chamber, 34 ... partition plate, 36 ... heater chamber, 38 ... gas introduction pipe, 40 ... pressure gauge, 42 ... heater chamber exhaust pipe, 44 ... vacuum Pump, 46... Mass flow controller, 50... MOCVD apparatus according to Embodiment 2, 52... Mass flow controller, 54... Gas introduction pipe, 56 ... Pressure gauge, 58. DESCRIPTION OF SYMBOLS ... Vacuum pump, 62 ... Pressure control valve, 70 ... MOCVD apparatus of Embodiment 3 72 ... Pressure gauge, 74 ... Heater chamber exhaust pipe, 76 ... Vacuum pump, 78 ... Gas introduction pipe, 80 ...... Mass flow controller.

Claims (4)

基板が空間を介することなく直に接する基板ホルダと、基板ホルダ上の基板を加熱する加熱ヒータとを内部に有する反応チャンバを備え、基板ホルダ上に載置した基板を加熱しつつ反応チャンバに原料ガスを導入して、気相成長法により基板上に薄膜を結晶成長させる気相成長装置において、反応チャンバを横断する隔板により反応チャンバを上下に区画してなる上部室として形成され、基板ホルダを隔板上に接して収容し、原料ガスを導入して基板上に薄膜を結晶成長させる反応室と、反応室の下に設けられ、基板を加熱する加熱ヒータを配置したヒータ室と、ヒータ室に単一種のガスを導入し、ヒータ室の圧力を所定圧力に維持する圧力調節手段とを備え、前記ヒータ室を前記ガスが所定の圧力に維持され、かつ充満された状態で、前記基板が前記隔板に密着し、前記隔板上に接して収容された前記基板ホルダが、前記基板ホルダに直交する回転軸の回りに前記隔板に摺動して自在に回転することを特徴とする気相成長装置。A reaction chamber having a substrate holder in which the substrate is in direct contact with no space and a heater for heating the substrate on the substrate holder is provided, and a raw material is supplied to the reaction chamber while heating the substrate placed on the substrate holder. In a vapor phase growth apparatus for introducing a gas and crystal-growing a thin film on a substrate by a vapor phase growth method, the substrate holder is formed as an upper chamber formed by dividing a reaction chamber vertically by a partition plate that crosses the reaction chamber. A reaction chamber in which a thin film is grown on the substrate by introducing a raw material gas, a heater chamber provided under the reaction chamber and provided with a heater for heating the substrate, and a heater introducing a single type of gas to the chamber, and a pressure regulating means for maintaining the pressure in the heater chamber at a predetermined pressure, the heater chamber wherein the gas is maintained at a predetermined pressure, and in filled state, the Characterized in that the plate is in close contact with the diaphragm, the substrate holder housed in contact on the diaphragm is free to rotate and slide in the diaphragm around the rotation axis perpendicular to the substrate holder Vapor phase growth apparatus. 圧力調節手段は、ヒータ室に接続され、ヒータ室に単一種のガスを導入するガス導入管と、ヒータ室の圧力を計測し、圧力計測値を出力する圧力計と、ヒータ室に接続された排気管を介して、ヒータ室を排気する気体吸引ポンプと、ガス導入管に取り付けられ、ヒータ室の圧力を所定圧力に維持するように、圧力計から出力された圧力計測値に基づいてガス導入管を流れるガスの流量をフィードバック制御するマスフロー・コントローラとを備えていることを特徴とする請求項1に記載の気相成長装置。  The pressure adjusting means is connected to the heater chamber, connected to the heater chamber, a gas introduction pipe for introducing a single kind of gas into the heater chamber, a pressure gauge for measuring the pressure in the heater chamber and outputting a pressure measurement value, and the heater chamber A gas suction pump that exhausts the heater chamber through the exhaust pipe and a gas inlet that is attached to the gas introduction pipe and that is based on the pressure measurement value output from the pressure gauge so as to maintain the pressure in the heater chamber at a predetermined pressure. The vapor phase growth apparatus according to claim 1, further comprising a mass flow controller that feedback-controls a flow rate of the gas flowing through the pipe. 圧力調節手段は、マスフロー・コントローラを備えてヒータ室に接続され、ヒータ室に単一種のガスを設定流量で導入するガス導入管と、ヒータ室の圧力を計測し、圧力計測値を出力する圧力計と、ヒータ室に接続された排気管を介して、ヒータ室を排気する気体吸引ポンプと、気体吸引ポンプの上流の排気管に取り付けられ、圧力計から出力された圧力計測値に基づいて排気管を流れる排気ガスの流量をフィードバック制御して、ヒータ室の圧力を所定圧力に維持するように動作する圧力調節弁と、を備えていることを特徴とする請求項1に記載の気相成長装置。  The pressure adjusting means includes a mass flow controller and is connected to the heater chamber. The gas introduction pipe introduces a single type of gas into the heater chamber at a set flow rate, and the pressure for measuring the pressure in the heater chamber and outputting the pressure measurement value. A gas suction pump for exhausting the heater chamber through an exhaust pipe connected to the heater chamber and an exhaust pipe upstream of the gas suction pump and exhausted based on the pressure measurement value output from the pressure gauge 2. The vapor phase growth according to claim 1, further comprising: a pressure control valve that operates so as to maintain a pressure of the heater chamber at a predetermined pressure by feedback controlling a flow rate of the exhaust gas flowing through the pipe. apparatus. 圧力調節手段は、ヒータ室の圧力を計測し、圧力計測値を出力する圧力計と、ヒータ室に接続された排気管を介して、ヒータ室を排気する気体吸引ポンプと、気体吸引ポンプの上流の排気管に接続され、排気管に単一種のガスを導入するガス導入管と、ガス導入管に取り付けられ、ヒータ室の圧力を所定圧力に維持するように、圧力計から出力された圧力計測値に基づいてガス導入管を流れるガスの流量をフィードバック制御するマスフロー・コントローラとを備えていることを特徴とする請求項1に記載の気相成長装置。  The pressure adjusting means measures the pressure in the heater chamber and outputs a pressure measurement value, a gas suction pump for exhausting the heater chamber via an exhaust pipe connected to the heater chamber, and an upstream of the gas suction pump A gas introduction pipe that is connected to the exhaust pipe and introduces a single type of gas into the exhaust pipe, and a pressure measurement output from the pressure gauge so as to maintain the pressure in the heater chamber at a predetermined pressure. The vapor phase growth apparatus according to claim 1, further comprising a mass flow controller that feedback-controls a flow rate of the gas flowing through the gas introduction pipe based on the value.
JP19132199A 1999-07-06 1999-07-06 Vapor growth equipment Expired - Fee Related JP4232279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19132199A JP4232279B2 (en) 1999-07-06 1999-07-06 Vapor growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19132199A JP4232279B2 (en) 1999-07-06 1999-07-06 Vapor growth equipment

Publications (2)

Publication Number Publication Date
JP2001019590A JP2001019590A (en) 2001-01-23
JP4232279B2 true JP4232279B2 (en) 2009-03-04

Family

ID=16272620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19132199A Expired - Fee Related JP4232279B2 (en) 1999-07-06 1999-07-06 Vapor growth equipment

Country Status (1)

Country Link
JP (1) JP4232279B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110777365A (en) * 2019-11-13 2020-02-11 江苏实为半导体科技有限公司 MOCVD (Metal organic chemical vapor deposition) heater source and operation method thereof
CN112593286A (en) * 2020-11-26 2021-04-02 山东大学 Novel hydride vapor phase epitaxy pressure control system and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521867Y2 (en) * 1987-07-29 1993-06-04
JP2567309B2 (en) * 1991-06-28 1996-12-25 日本電信電話株式会社 Metalorganic vapor phase growth equipment
US5562947A (en) * 1994-11-09 1996-10-08 Sony Corporation Method and apparatus for isolating a susceptor heating element from a chemical vapor deposition environment
JPH10158100A (en) * 1996-11-29 1998-06-16 Furukawa Electric Co Ltd:The Vapor growth device

Also Published As

Publication number Publication date
JP2001019590A (en) 2001-01-23

Similar Documents

Publication Publication Date Title
US5421288A (en) Process for growing silicon epitaxial layer
US8133322B2 (en) Apparatus for inverted multi-wafer MOCVD fabrication
US7253084B2 (en) Deposition from liquid sources
US9177799B2 (en) Semiconductor device manufacturing method and substrate manufacturing method of forming silicon carbide films on the substrate
US8328943B2 (en) Film forming apparatus and method
US6830618B2 (en) Manufacturing method for producing silicon carbide crystal using source gases and apparatus for the same
US8440270B2 (en) Film deposition apparatus and method
JP2002158175A (en) Chemical vapor deposition system and method for growing semiconductor film
JP3991393B2 (en) Compound semiconductor manufacturing equipment
JP4232279B2 (en) Vapor growth equipment
EP0386190B1 (en) Elemental mercury source for metal-organic chemical vapor deposition
JPS6256233B2 (en)
US5306660A (en) Technique for doping mercury cadmium telluride MOCVD grown crystalline materials using free radical transport of elemental indium and apparatus therefor
JPH0212814A (en) Crystal growth method of compound semiconductor
JP4341457B2 (en) Microwave plasma CVD apparatus and method for growing diamond film
JP2012059784A (en) Apparatus for producing semiconductor thin film and method of producing nitride semiconductor
KR200412993Y1 (en) Apparatus for growing single crystal
JPH04162418A (en) Chemical vapor growth method
JP2793239B2 (en) Method for manufacturing compound semiconductor thin film
JP2022109716A (en) Manufacturing method and manufacturing device for binary compound semiconductor
JP3637505B2 (en) N-type semiconductor thin film manufacturing method and thin film thermistor manufacturing method
JPH03280419A (en) Method for formation of compound semiconductor thin film
JPS63164424A (en) Vapor growth method
JPH06104195A (en) Impurity diffusing method for iii-v compound semiconductor
JPH0822958A (en) Method and equipment for supplying material gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060111

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees