JP4231605B2 - Part shape sorter - Google Patents

Part shape sorter Download PDF

Info

Publication number
JP4231605B2
JP4231605B2 JP31278399A JP31278399A JP4231605B2 JP 4231605 B2 JP4231605 B2 JP 4231605B2 JP 31278399 A JP31278399 A JP 31278399A JP 31278399 A JP31278399 A JP 31278399A JP 4231605 B2 JP4231605 B2 JP 4231605B2
Authority
JP
Japan
Prior art keywords
sorting
rollers
pair
shape
roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31278399A
Other languages
Japanese (ja)
Other versions
JP2001129486A (en
Inventor
利行 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP31278399A priority Critical patent/JP4231605B2/en
Publication of JP2001129486A publication Critical patent/JP2001129486A/en
Application granted granted Critical
Publication of JP4231605B2 publication Critical patent/JP4231605B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sorting Of Articles (AREA)
  • Combined Means For Separation Of Solids (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は部品形状選別装置に係り、特に簡素な構造を有し、多数の部品の形状を高い選別精度で連続的かつ効率的に選別でき、部品の検査工数を大幅に低減することが可能な部品形状選別装置に関する。
【0002】
【従来の技術】
製品または半製品としての部品の寸法仕上りや形状精度を測定して所定の公差範囲内の部品のみを選別する部品形状選別装置が多くの産業分野で使用されている。
【0003】
例えば、図6は従来の部品形状選別装置1の概略構成例を示す平面図である。この選別装置1は、球状のベアリングボール部品2の外径の適否を判断し、部品2を寸法別に区分選別する方式を採用しており、回転自在に構成された一対の選別ローラr1,r2を、その回転軸L1,L2が非平行となるように配置している。つまり、ローラ間の間隙が部品2の転がり方向(矢印)に向けて徐々に拡大するように一対のローラを配置して構成されている。一対の選別ローラr1,r2の間には、その間隙(隙間)寸法の大きさを変えて、軸方向に3種の選別エリアA1,A2,A3が形成されている。
【0004】
そして複数の部品2が、互いに外側方向に回転する一対の選別ローラr1,r2の一端側(図6において左端側)から連続的に選別ローラr1,r2間に供給され、部品2は選別ローラr1,r2により回転力を付与され、他端側(図6において右端側)に順次送り出される。このとき、図7(a)に示すように欠けが発生していて所定の直径dより小さい直径dを有する部品2aは、選別ローラr1,r2間の隙間寸法が小さい選別エリアA1において隙間を通り抜け下方に落下する。
【0005】
また所定の寸法公差内の直径を有する部品2は選別エリアA2において、ローラ間の隙間を通り抜け下方に落下する。一方、図7(b)に示すように2個のボールが団子状に一体化した粗大な不良部品2bおよび図7(c)に示すようにある方向の直径が過大になった楕円状の不良部品2cは、長軸の回りのみに回転し易く、隙間寸法が小さい選別エリアA1,A2を通過後、隙間寸法が大きい選別エリアA3において、ローラ間の隙間を通り抜け下方に落下する。その結果、多数の部品は、その形状寸法の大小に応じて選別されて、それぞれ個別に回収される。
【0006】
【発明が解決しようとする課題】
しかしながら、上記のような従来の部品形状選別装置においては、一対の選別ローラの回転速度が同一となるように構成されているため、選別ローラ上を転動する部品の回転方向は殆ど一定となり易いため、部品の全ての直径方向における寸法形状を正確に捉えることができない場合もあった。例えば、図7(a)に示すような欠けを生じた部品2aが、正規の直径d方向を回転中心として回転しながら選別ローラ上を転動する場合には、欠けを生じた部分を含む過小な直径d方向の寸法は選別エリアA1では測定されず、規格通りの直径dを有する部品2のみを判定する選別エリアA2において選別され回収されてしまう。したがって、部品の選別精度が低下する問題点があった。
【0007】
さらに、一対の選別ローラの回転軸が非平行となるように配置した従来の選別装置においては、選別ローラ間の隙間(間隙寸法)が連続的に変化するように構成されていたため、各選別エリアの境界が曖昧になり易く部品の選別精度をさらに低下させる原因となっていた。
【0008】
また、一対の選別ローラ等のツール間に極微小のテーパ状の隙間を形成したり、その隙間寸法を高精度に調整する機構が必要であるため、選別装置の構成部品の加工組立精度を極めて高く設定する必要があり、また、隙間の調整機構が複雑化して選別装置の製造コストが極めて高価になるとともに、保守管理や調整作業に高度な技倆が必須となる問題点もあった。
【0009】
本発明は上記問題点を解決するためになされたものであり、簡素な構造を有し、多数の部品の形状を高い選別精度で連続的かつ効率的に選別でき、部品の検査工数を大幅に低減することが可能な部品形状選別装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するために本発明に係る部品形状選別装置は、一対の選別ローラを、その回転軸が相互に平行となるように基台上に回転自在に配置し、少なくとも一方の選別ローラには外径が異なる複数の選別エリアが軸方向に沿って形成され、一対の選別ローラの間隙部の一端に多数の部品を順次供給し、選別ローラの回転力によって各部品を転動させながら間隙部の他端方向に送り出し、各選別エリアにおける一対の選別ローラの外周面の間隙の大小によって各部品の形状を選別するように構成するとともに、上記一対の選別ローラの外周面の周速が相互に異なるように構成し、さらに上記一対の選別ローラの外周面の表面粗さが相互に異なるように構成したことを特徴とする。
【0011】
また、複数の選別エリアは、少なくとも一方の選別ローラの外径を軸方向に段階的に変えて形成するとよい。さらに、一対の選別ローラの回転軸は水平面に対して所定の傾斜角度をもって傾斜するように構成してもよい。また、上記傾斜角度が1〜40度の範囲であることが好ましい。
【0012】
さらに、部品が略球形状の部品であるときに、特に顕著な効果が得られる。また、一対の選別ローラの外周面の表面粗さが相互に異なるように構成することもできる。さらに、一対の選別ローラの少なくとも一方が他方の選別ローラに対して平行移動自在に構成してもよい。
【0013】
本発明において一対の選別ローラは、その回転軸が相互に平行または平行移動自在となるように基台上に配置されているため、非平行である場合と比較して各選別ローラを回転駆動するための減速モータからの動力伝達方式も簡素になる。また、選別ローラ間の隙間も平行であり、隙間を形成するためにローラの外周部を加工する際にも高度な寸法管理は不要となる。
【0014】
また、少なくとも一方の軸方向に形成される複数の選別エリアは、一対の選別ローラ間の隙間(間隙)の大小によって部品の形状を選別する部位である。この選別エリアは少なくとも一方の選別ローラの外径を異ならせることによって形成されるものであるが、各選別エリアにおける隙間は連続的に変化するものではなく、その選別エリア内では一定とし、隣接する選別エリアの隙間とは異なるものである。すなわち、複数の選別エリアは、少なくとも一方の選別ローラの外径を軸方向に段階的に変えて形成することにより、連続的に変化させた従来方式と比較して、隣接する選別エリアの境界が明瞭になり、部品の選別精度を向上させることができる。
【0015】
また、本発明装置が処理の対象とする部品の形状は、特に限定されるものではなく、一対の選別ローラの間で各方向に容易に回転転動する形状の部品であれば、どのような形状の部品にも適用可能である。しかしながら、特にベアリングボールなどの略球形状を有する部品であれば、部品の各方向の寸法を瞬時に測定できるため、選別精度をより向上させることができる。
【0016】
また、一対の選別ローラの外周面の周速が相互に異なるように構成することにより、各選別ローラの外周面と部品との接触部における接触抵抗(摩擦係数)が異なることになり、相対的に接触抵抗が大きいか、または周速が速い選別ローラの回転方向と反対方向の回転力が部品に付与される。この選別ローラによって付与される回転の中心軸は選別ローラの回転軸と平行である一方、部品がローラ上を送り出される際の回転の中心軸は選別ローラの回転軸と直交する方向に延びる。そして送り出される際の回転力と一方の選別ローラから付与される回転力とが複合化されて、部品は一対の選別ローラ上であらゆる方向にスパイラル状に回転転動しながら、ローラの一端側から他端側に転がり移動することができる。したがって、部品の表面が一対の選別ローラによって万遍無く接触されることとなり、部品の各方向における寸法形状が選別の基準となる。したがって、従来装置のように部品が一方向にのみ回転する場合と比較して、部品の選別精度を大幅に向上させることが可能になる。
【0017】
また、一対の選別ローラの回転軸は水平にした場合において、一端側から供給された部品はローラによって回転力を付与されて他端側に転動する。しかしながら、一対の選別ローラの回転軸を水平面に対して所定の傾斜角度をもって、部品投入側から排出側に傾斜させることにより、部品の送り出し速度を高め、部品の選別時間をより短縮することができる。上記選別ローラの回転軸の最適な傾斜角度は、部品の形状,材質,寸法,重量などの条件によって異なるが、1〜40度の範囲が好ましい。この傾斜角度が1度未満の場合には、上記部品の送り出し速度および選別処理効率の改善効果が不十分となる一方、傾斜角度が40度を超えるように過大になると、部品がローラ上を回転せずに自重で滑り落ちる割合が多くなるため、選別操作が困難になる。
【0018】
また、一対の選別ローラの外周面の表面粗さが相互に異なるように構成することにより、表面粗さがより粗い選別ローラの回転方向とは逆方向の回転力を部品に付与することができる。
【0019】
上記構成に係る部品形状選別装置によれば、一対の選別ローラの回転軸が相互に平行となるように配置されているため、非平行である従来例と比較して選別ローラへの動力伝達機構が簡素化され、選別ローラ間の隙間も平行となり高精度な加工処理は必要としない。
【0020】
特に、一対の選別ローラの外周面の周速が相互に異なるように構成されているため、部品の送り出し方向の回転力と、その直角方向の回転力を付与することが可能となり、上記2つの回転力の複合効果により部品はスパイラル状に全ての方向に回転しながら転動する。そのため、部品の各方向の寸法形状が選別の基準となり、部品の選別精度を大幅に向上させることができる。
【0021】
【発明の実施の形態】
次に、本発明の実施形態について添付図面を参照してより具体的に説明する。
【0022】
図1は本発明に係る部品形状選別装置1aの一実施例を示す平面図であり、図2はその側面図である。すなわち、本実施例に係る部品形状選別装置1aは、一対の選別ローラR1,R2を、その回転軸L1,L2が相互に平行または平行移動自在となるように基台3上に回転自在に配置し、一方の選別ローラR1には、図3に示すように外径が異なる3箇所の選別エリアA1,A2,A3が軸方向に沿って形成され、一対の選別ローラR1,R2の間隙部の一端に多数のベアリングボール部品2を順次供給し、選別ローラR1,R2の回転力によって各部品2を転動させながら間隙部の他端方向に送り出し、各選別エリアA1〜A3における一対の選別ローラR1,R2の外周面の間隙の大小によって各部品2の形状を選別するように構成するとともに、図5に示すように、上記一対の選別ローラR1,R2の外周面の周速V1,V2が相互に異なるように構成されている。
【0023】
また、図2および図4に示すように、一対の選別ローラR1,R2の回転軸L1,L2は水平面に対して所定の傾斜角度θをもって傾斜して構成される。この傾斜角度θは1〜40度の範囲に設定される。
【0024】
さらに、図3に示すように、複数(3箇所)の選別エリアA1〜A3は、一方の選別ローラR1の外径を軸方向に段階的に変えて形成されている。すなわち隣接する選別エリアの境界に所定の段差g1,g2を形成している。一対の選別ローラR1,R2はその両端部においてローラ支持材4を介して基台3上に回転自在に固定されている。各選別ローラR1,R2はベルト車に掛けられたタイミングベルト5を介してそれぞれの無段変速モータ6の出力軸に接続され、各選別ローラR1,R2の回転速度が個別に調整できるように構成されている。
【0025】
また、一対の選別ローラR1,R2に設けられた各選別エリアA1〜A3の下部には、それぞれ過小部品や欠け不良部品を回収する過小部品回収ホッパー7と、適正な寸法形状を有する規格部品を回収する規格部品回収ホッパー8と、寸法が過大な部品を回収する過大部品回収ホッパー9とが対応して付設されている。各回収ホッパー7〜9の排出孔下部には回収容器10a〜10cが配置されている。また、基台3上に配置された選別ローラR1,R2、無段変速モータ6等の防塵対策として、ポリカーボネート(PC)等の透明な樹脂板から成るケーシング11が基台3に被着されている。
【0026】
上記実施例に係る部品形状選別装置1aを使用して部品2としてのベアリングボールの形状を選別する操作は以下の通りである。まず、無段変速モータ(ギアードモータ)6,6の回転速度を調整して、図5に示すように、一対の選別ローラR1,R2を相互に逆方向に外側に回転させるとともに、選別ローラR1の周速V1が選別ローラR2の周速V2よりも大きくなるように調整する。このとき、一対の選別ローラR1,R2の外周面の好適な周速は、部品の重量や代表寸法(外径)等により異なるが、双方のローラ間において数倍、例えば2〜5倍程度の差を生じるような周速に調整することが好ましい。なお、部品に所定の方向の回転力を付与するとともに、部品の円滑な転動を実現するために、一対の選別ローラを共に必ず回転させることが重要である。
【0027】
次に、図1および図2に示すように、部品貯留槽12に貯留した部品2(ベアリングボール)を、選別ローラR1,R2の左端側に連続的に供給する。
【0028】
一対の選別ローラR1,R2間に投入された部品2は、図4に示すように、傾斜した選別ローラR1,R2上を自重で転がり落ちる際に、ローラの軸直角方向を回転軸とする回転力を受けS方向に回転すると同時に、図5に示すように、より速い周速V1で回転する選別ローラR1により、選別ローラR1の回転方向とは逆方向の回転力を受けS方向に回転する。
【0029】
すなわち、図5に示すように、一対の選別R1,R2の周速が異なるため、各選別ローラR1,R2の表面と部品2との接触部での接触抵抗(摩擦係数μ1,μ2)が異なることとなり、相対的に接触抵抗が高く周速が速い方の選別ローラR1と逆方向Sの回転力が付与される。
【0030】
そして、前記、部品が転がり落ちる際の回転力は、一方の選別ローラR1から付与される回転力との複合化により、部品2は、あらゆる方向にスパイラル状に回転転動しながら、他端側に移動する。したがって、部品2の全表面が一対の選別ローラR1,R2によって万遍無く接触されることとなり、部品の各方向における寸法形状が選別基準となり、各部品2はその寸法形状に応じて各選別エリアA1〜A3の隙間から下方に落下し、区分選別される。
【0031】
すなわち、図7(a)に示すような欠けを生じた部品2a、正規の直径dを有する方向の寸法のみならず、欠けを生じた方向の寸法dをも選別の対象とされ、過小な寸法dが検出された位置で、狭い隙間を有する選別エリアA1の隙間を通り、下方に落下する。一方、規定の寸法形状を有する部品2は、所定の公差範囲内の隙間を有する選別エリアA2で選別分離される。一方、図7(b),(c)に示すような粗大な部品2b,2cは、広い隙間を有する選別エリアA3で初めて分離される。選別分離された各部品2,2a〜2cは、それぞれの回収ホッパー7〜9を経て、回収容器10a〜10c内に回収される。
【0032】
上記実施例に係る部品形状選別装置1aによれば、一対の選別ローラR1,R2の回転軸L1,L2が相互に平行または平行移動自在となるように配置されているため、非平行である従来例と比較して選別ローラR1,R2への動力伝達機構が簡素化され、選別ローラR1,R2間の隙間も平行となり、その調整操作も容易であり、かつ隙間を形成するための高精度な加工処理は必要としない。したがって、選別装置を簡素な構成で、しかも安価に製造することができる。
【0033】
特に、一対の選別ローラの外周面の周速V1,V2が相互に異なるように構成されているため、部品2の送り出し方向Sの回転力と、その直角方向Sの回転力とを付与することが可能となり、上記2つの回転力の複合効果により部品2はスパイラル状に全ての方向に回転しながら転動する。そのため、部品2の各方向の寸法形状が選別の基準となり、部品2の選別効率および選別精度を大幅に向上させることができた。
【0034】
なお、本実施例においては、直径が2〜3mmで重量が25〜55mgのSi焼結体から成るベアリングボールを部品2として選別処理にした例で示しているが、平均的に1000個/min以上の選別速度が得られた。また、図6に示すような従来の選別装置を使用して部品の選別行った場合には、各選別エリアの境界部が不明瞭であり、選別処理後に改めて目視検査による不良部品の摘出が必要であったが、本実施例に係る選別装置によって処理した後には、上記不良品の摘出作業は殆ど不要となった。そして、選別ローラの隙間の調整作業等も含め、従来方式と比較すると、本実施例に係る選別装置を使用すると検査工数を60%以上と大幅に低減できるとことが判明した。
【0035】
【発明の効果】
以上説明したように、本発明に係る部品形状選別装置によれば、一対の選別ローラの回転軸が相互に平行となるように配置されているため、非平行である従来例と比較して選別ローラへの動力伝達機構が簡素化され、選別ローラ間の隙間も平行となり高精度な加工処理は必要としない。
【0036】
特に、一対の選別ローラの外周面の周速が相互に異なるように構成されているため、部品の送り出し方向の回転力と、その直角方向の回転力を付与することが可能となり、上記2つの回転力の複合効果により部品はスパイラル状に全ての方向に回転しながら転動する。そのため、部品の各方向の寸法形状が選別の基準となり、部品の選別精度を大幅に向上させることができる。
【図面の簡単な説明】
【図1】本発明に係る部品形状選別装置の一実施例を示す平面図。
【図2】図1に示す部品形状選別装置の側面図。
【図3】図1に示す部品形状選別装置の選別ローラの形状例を示す平面図。
【図4】選別ローラを傾斜させたときの部品の回転方向を示す側面図。
【図5】図3におけるV−V矢視断面図。
【図6】従来の部品形状選別装置の基本構成を示す平面図。
【図7】部品としてのベアリングボールの形状例を示す斜視図であり、(a)は,欠けを生じた不良部品,(b)は2個のボールが一体化した不良部品,(c)は楕円状に形成された不良部品をそれぞれ示す。
【符号の説明】
1,1a 部品形状選別装置
2,2a,2b,2c 部品(ベアリングボール)
3 基台
4 ローラ支持部材
5 タイミングベルト
6 無段変速モータ
7 過小部品回収ホッパー
8 規格部品回収ホッパー
9 過大部品回収ホッパー
10a,10b,10c 回収容器
11 ケーシング
12 部品貯留槽
r1,r2,R1,R2 選別ローラ
L1,L2 ローラ回転軸
A1,A2,A3 選別エリア
H 水平面
V1,V2 ローラ周速
θ 傾斜角度
g1,g2 段差
,S 回転方向
μ1,μ2 摩擦係数
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a part shape sorting apparatus, which has a particularly simple structure, can continuously and efficiently sort a large number of parts with high sorting accuracy, and can greatly reduce the number of parts inspection steps. The present invention relates to a component shape sorting device.
[0002]
[Prior art]
2. Description of the Related Art In many industrial fields, a part shape sorting apparatus that measures the dimensional finish and shape accuracy of a part as a product or a semi-finished product and sorts only parts within a predetermined tolerance range is used.
[0003]
For example, FIG. 6 is a plan view showing a schematic configuration example of a conventional component shape sorting apparatus 1. This sorting device 1 employs a method of judging whether or not the outer diameter of the spherical bearing ball component 2 is appropriate, and sorting and sorting the component 2 according to size. A pair of sorting rollers r1 and r2 configured to be rotatable are provided. The rotation axes L1 and L2 are arranged to be non-parallel. In other words, the pair of rollers are arranged so that the gap between the rollers gradually increases in the rolling direction (arrow) of the component 2. Between the pair of sorting rollers r1 and r2, three kinds of sorting areas A1, A2, and A3 are formed in the axial direction by changing the size of the gap (gap).
[0004]
A plurality of components 2 are continuously supplied between the sorting rollers r1 and r2 from one end side (left end side in FIG. 6) of the pair of sorting rollers r1 and r2 that rotate in the outward direction, and the component 2 is the sorting roller r1. , R2 to which a rotational force is applied and sequentially sent to the other end side (the right end side in FIG. 6). Clearance In this case, part 2a having a predetermined diameter d 1 is smaller than the diameter d 2 missing has occurred as shown in FIG. 7 (a), the sorting roller r1, the gap dimension between r2 is smaller selection area A1 Go through and fall down.
[0005]
Further, the part 2 having a diameter within a predetermined dimensional tolerance passes through the gap between the rollers and falls downward in the sorting area A2. On the other hand, as shown in FIG. 7B, a coarse defective part 2b in which two balls are integrated into a dumpling shape and an elliptical defect in which the diameter in one direction is excessive as shown in FIG. 7C. The part 2c is easy to rotate only around the long axis, and after passing through the sorting areas A1 and A2 having a small gap size, passes through the gap between the rollers and falls downward in the sorting area A3 having a large gap size. As a result, a large number of parts are sorted according to the size of the shape and collected individually.
[0006]
[Problems to be solved by the invention]
However, in the conventional part shape sorting apparatus as described above, since the rotation speeds of the pair of sorting rollers are the same, the rotation direction of the parts rolling on the sorting roller is likely to be almost constant. For this reason, there are cases in which it is impossible to accurately capture the dimensional shape of all parts in the diameter direction. For example, parts 2a caused chipping as shown in FIG. 7 (a), when the rolling sorting roller over while rotating the diameter d 1 in the normal direction as the rotation center, includes a portion caused chipping the dimensions of too small a diameter d 2 direction is not measured in selected areas A1, would be sorted in the sorting area A2 determines only part 2 having a diameter d 1 of the street standard recovery. Therefore, there is a problem that the accuracy of selecting parts is lowered.
[0007]
Further, in the conventional sorting apparatus arranged so that the rotation shafts of the pair of sorting rollers are non-parallel, the gap (gap size) between the sorting rollers is configured to continuously change. The boundary of this is apt to be ambiguous, which causes the accuracy of part selection to be further reduced.
[0008]
In addition, since a very small taper-shaped gap is required between tools such as a pair of sorting rollers and a mechanism for adjusting the gap dimension with high accuracy is required, the processing and assembly accuracy of the components of the sorting device is extremely high. It is necessary to set a high value, the gap adjusting mechanism is complicated, and the manufacturing cost of the sorting apparatus becomes very expensive. In addition, there is a problem that a high level of skill is essential for maintenance management and adjustment work.
[0009]
The present invention has been made to solve the above problems, has a simple structure, can continuously and efficiently sort the shape of a large number of parts with high sorting accuracy, and greatly increases the number of parts inspection man-hours. An object of the present invention is to provide a component shape sorting device that can be reduced.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a part shape sorting apparatus according to the present invention includes a pair of sorting rollers that are rotatably arranged on a base so that their rotation axes are parallel to each other, and at least one sorting roller is provided. A plurality of sorting areas having different outer diameters are formed along the axial direction, and a large number of parts are sequentially supplied to one end of a gap between a pair of sorting rollers, and each part is rolled by the rotational force of the sorting roller. The shape of each part is selected according to the size of the gap between the outer circumferential surfaces of the pair of sorting rollers in each sorting area, and the peripheral speeds of the outer circumferential surfaces of the pair of sorting rollers are mutually different. The surface roughness of the outer peripheral surfaces of the pair of sorting rollers is different from each other .
[0011]
In addition, the plurality of sorting areas may be formed by changing the outer diameter of at least one sorting roller stepwise in the axial direction. Furthermore, you may comprise so that the rotating shaft of a pair of selection roller may incline with a predetermined inclination angle with respect to a horizontal surface. The tilt angle is preferably in the range of 1 to 40 degrees.
[0012]
Furthermore, a particularly remarkable effect is obtained when the part is a substantially spherical part. Moreover, it can also comprise so that the surface roughness of the outer peripheral surface of a pair of selection roller may mutually differ. Furthermore, at least one of the pair of sorting rollers may be configured to be movable in parallel with respect to the other sorting roller.
[0013]
In the present invention, the pair of sorting rollers are arranged on the base so that the rotation axes thereof can be moved in parallel or in parallel with each other, and therefore each sorting roller is driven to rotate as compared with the case of non-parallel. Therefore, the power transmission system from the reduction motor is also simplified. Further, the gaps between the sorting rollers are also parallel, so that advanced dimensional management is not required when processing the outer peripheral portion of the rollers to form the gaps.
[0014]
In addition, the plurality of sorting areas formed in at least one of the axial directions is a part that sorts the shape of the component based on the size of the gap (gap) between the pair of sorting rollers. This sorting area is formed by making the outer diameter of at least one sorting roller different, but the gap in each sorting area does not change continuously, and is constant within that sorting area and adjacent to it. It is different from the gap in the sorting area. That is, the plurality of sorting areas are formed by changing the outer diameter of at least one of the sorting rollers stepwise in the axial direction, so that the boundary between adjacent sorting areas is smaller than that in the conventional method that is continuously changed. It becomes clear and the sorting accuracy of parts can be improved.
[0015]
In addition, the shape of the component to be processed by the device of the present invention is not particularly limited, and any shape can be used as long as it is easily rotated and rolled in each direction between a pair of sorting rollers. It can also be applied to shaped parts. However, particularly in the case of a part having a substantially spherical shape such as a bearing ball, the dimension in each direction of the part can be measured instantaneously, so that the sorting accuracy can be further improved.
[0016]
In addition, by configuring the peripheral speeds of the outer peripheral surfaces of the pair of sorting rollers to be different from each other, the contact resistance (friction coefficient) at the contact portion between the outer peripheral surface of each sorting roller and the component is different, and the relative In addition, a rotational force in a direction opposite to the rotation direction of the sorting roller having a large contact resistance or a high peripheral speed is applied to the component. The center axis of rotation imparted by the sorting roller is parallel to the axis of rotation of the sorting roller, while the center axis of rotation when the component is fed on the roller extends in a direction perpendicular to the axis of rotation of the sorting roller. Then, the rotational force at the time of delivery and the rotational force applied from one sorting roller are combined, and the components rotate and roll in a spiral shape in all directions on the pair of sorting rollers, from one end side of the roller It can roll and move to the other end side. Therefore, the surface of the part is uniformly contacted by the pair of sorting rollers, and the dimension shape in each direction of the part becomes a reference for sorting. Therefore, compared with the case where the component rotates only in one direction as in the conventional apparatus, it is possible to greatly improve the component selection accuracy.
[0017]
Further, when the rotation shafts of the pair of sorting rollers are horizontal, the components supplied from one end side are applied with a rotational force by the roller and roll to the other end side. However, by tilting the rotation shafts of the pair of sorting rollers from the component loading side to the discharging side with a predetermined tilt angle with respect to the horizontal plane, the component feeding speed can be increased and the component sorting time can be further shortened. . The optimum inclination angle of the rotating shaft of the sorting roller varies depending on conditions such as the shape, material, size, and weight of the part, but is preferably in the range of 1 to 40 degrees. If the tilt angle is less than 1 degree, the effect of improving the parts feeding speed and sorting efficiency becomes insufficient. On the other hand, if the tilt angle exceeds 40 degrees, the part rotates on the roller. Since the ratio of sliding down by its own weight increases, the sorting operation becomes difficult.
[0018]
Further, by configuring the outer peripheral surfaces of the pair of sorting rollers to have different surface roughnesses, a rotational force in the direction opposite to the rotation direction of the sorting roller having a rougher surface roughness can be applied to the component. .
[0019]
According to the part shape sorting apparatus according to the above configuration, since the rotation shafts of the pair of sorting rollers are arranged so as to be parallel to each other, the power transmission mechanism to the sorting roller as compared with the non-parallel conventional example Is simplified, and the gaps between the sorting rollers are parallel, so that high-precision processing is not required.
[0020]
In particular, since the peripheral speeds of the outer peripheral surfaces of the pair of sorting rollers are configured to be different from each other, it is possible to apply the rotational force in the part feeding direction and the rotational force in the direction perpendicular thereto. Due to the combined effect of rotational force, the part rolls in a spiral shape while rotating in all directions. Therefore, the dimensional shape in each direction of the component serves as a reference for selection, and the accuracy of component selection can be greatly improved.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described more specifically with reference to the accompanying drawings.
[0022]
FIG. 1 is a plan view showing an embodiment of a component shape sorting apparatus 1a according to the present invention, and FIG. 2 is a side view thereof. That is, in the component shape sorting device 1a according to the present embodiment, the pair of sorting rollers R1 and R2 are rotatably arranged on the base 3 so that the rotation axes L1 and L2 thereof are parallel or parallel to each other. As shown in FIG. 3, three sorting areas A1, A2, and A3 having different outer diameters are formed along the axial direction on one sorting roller R1, and the gap between the pair of sorting rollers R1 and R2 is formed. A large number of bearing ball parts 2 are sequentially supplied to one end, and each part 2 is rolled by the rotational force of the sorting rollers R1 and R2, and sent to the other end direction of the gap portion, and a pair of sorting rollers in each sorting area A1 to A3. The shape of each component 2 is selected based on the size of the gap between the outer peripheral surfaces of R1 and R2, and as shown in FIG. 5, the peripheral speeds V1 and V2 of the outer peripheral surfaces of the pair of sorting rollers R1 and R2 are as follows. Mutual It is configured to be.
[0023]
As shown in FIGS. 2 and 4, the rotation axes L1 and L2 of the pair of sorting rollers R1 and R2 are inclined with a predetermined inclination angle θ with respect to the horizontal plane. This inclination angle θ is set in the range of 1 to 40 degrees.
[0024]
Furthermore, as shown in FIG. 3, the plurality (three places) of the selection areas A1 to A3 are formed by changing the outer diameter of one of the selection rollers R1 stepwise in the axial direction. That is, predetermined steps g1 and g2 are formed at the boundary between adjacent sorting areas. A pair of sorting rollers R1 and R2 are rotatably fixed on the base 3 via roller support members 4 at both ends thereof. Each sorting roller R1, R2 is connected to the output shaft of each continuously variable transmission motor 6 via a timing belt 5 hung on the belt wheel, and the rotational speed of each sorting roller R1, R2 can be individually adjusted. Has been.
[0025]
In addition, under the respective sorting areas A1 to A3 provided on the pair of sorting rollers R1 and R2, there are an undersized parts collection hopper 7 for collecting undersized parts and chipped defective parts, and standard parts having appropriate dimensions and shapes. A standard part recovery hopper 8 to be recovered and an excessive part recovery hopper 9 to recover an excessively large part are attached correspondingly. Recovery containers 10a to 10c are arranged below the discharge holes of the recovery hoppers 7 to 9, respectively. A casing 11 made of a transparent resin plate such as polycarbonate (PC) is attached to the base 3 as a dust-proof measure for the sorting rollers R1 and R2 and the continuously variable transmission motor 6 arranged on the base 3. Yes.
[0026]
The operation of selecting the shape of the bearing ball as the component 2 using the component shape selecting apparatus 1a according to the above embodiment is as follows. First, the rotational speeds of the continuously variable transmission motors (geared motors) 6 and 6 are adjusted to rotate the pair of sorting rollers R1 and R2 outward in the opposite directions as shown in FIG. The peripheral speed V1 is adjusted to be larger than the peripheral speed V2 of the sorting roller R2. At this time, a suitable peripheral speed of the outer peripheral surface of the pair of sorting rollers R1 and R2 varies depending on the weight of the component, the representative dimension (outer diameter), etc., but is several times, for example, about 2 to 5 times between both rollers. It is preferable to adjust the peripheral speed so as to cause a difference. Note that it is important to rotate the pair of sorting rollers together in order to apply a rotational force in a predetermined direction to the component and realize smooth rolling of the component.
[0027]
Next, as shown in FIGS. 1 and 2, the component 2 (bearing ball) stored in the component storage tank 12 is continuously supplied to the left end side of the sorting rollers R1 and R2.
[0028]
As shown in FIG. 4, when the component 2 put between the pair of sorting rollers R1 and R2 rolls down on the inclined sorting rollers R1 and R2 by its own weight, the rotation is performed in the direction perpendicular to the axis of the roller. at the same time rotates in receiving a force S 2 direction, as shown in FIG. 5, the sorting roller R1 which rotates at a faster circumferential speed V1, the rotational force of a direction opposite to the rotating direction of the sorting roller R1 receives S in one direction Rotate.
[0029]
That is, as shown in FIG. 5, since the peripheral speeds of the pair of sorting R1 and R2 are different, the contact resistance (friction coefficient μ1, μ2) at the contact portion between the surface of each sorting roller R1, R2 and the part 2 is different. becomes possible, the rotational force relatively the contact resistance is high circumferential speed and faster sorting roller R1 reverse S 1 is being applied.
[0030]
The rotational force when the component rolls down is combined with the rotational force applied from one sorting roller R1, so that the component 2 rotates and rolls in any direction in a spiral shape, Move to. Accordingly, the entire surface of the part 2 is uniformly contacted by the pair of sorting rollers R1 and R2, and the dimension shape in each direction of the part serves as a sorting reference, and each part 2 has each sorting area according to the dimension shape. It falls downward from the gap between A1 and A3 and is sorted.
[0031]
That is, not only the dimension 2 in the direction having the normal diameter d 1 but also the dimension d 2 in the direction in which the chip has occurred as shown in FIG. at a position where the dimension d 2 is detected that passes through the gap between the screening area A1 having a narrow gap, it drops downward. On the other hand, the part 2 having a prescribed size and shape is separated and separated in a sorting area A2 having a gap within a predetermined tolerance range. On the other hand, coarse parts 2b and 2c as shown in FIGS. 7B and 7C are separated for the first time in a sorting area A3 having a wide gap. The separated parts 2 and 2a to 2c are collected into the collection containers 10a to 10c via the respective collection hoppers 7 to 9.
[0032]
According to the component shape sorting device 1a according to the above-described embodiment, the rotation axes L1 and L2 of the pair of sorting rollers R1 and R2 are arranged so as to be parallel or parallel to each other. Compared to the example, the power transmission mechanism to the sorting rollers R1, R2 is simplified, the gap between the sorting rollers R1, R2 is also parallel, the adjustment operation is easy, and high accuracy for forming the gap No processing is required. Therefore, the sorting apparatus can be manufactured with a simple configuration and at a low cost.
[0033]
In particular, the application because the peripheral speed of the outer peripheral surface of the pair of sorting rollers V1, V2 are configured differently from each other, and the rotational force in the direction S 2 feeding of the component 2, and a rotational force of the perpendicular S 1 The component 2 rolls while rotating in all directions in a spiral shape by the combined effect of the two rotational forces. Therefore, the size and shape of each direction of the component 2 became the reference for selection, and the selection efficiency and the selection accuracy of the component 2 could be greatly improved.
[0034]
In the present embodiment, a bearing ball made of a Si 3 N 4 sintered body having a diameter of 2 to 3 mm and a weight of 25 to 55 mg is shown as a part 2 as an example. A sorting speed of at least pieces / min was obtained. In addition, when parts are sorted using a conventional sorting apparatus as shown in FIG. 6, the boundary of each sorting area is unclear, and it is necessary to extract defective parts by visual inspection again after the sorting process. However, after the processing by the sorting apparatus according to the present embodiment, the above-described defective product extraction work is almost unnecessary. Then, it was found that the inspection man-hour can be greatly reduced to 60% or more when the sorting apparatus according to the present embodiment is used as compared with the conventional method including the adjustment work of the gap between the sorting rollers.
[0035]
【The invention's effect】
As described above, according to the component shape sorting apparatus according to the present invention, the rotation axes of the pair of sorting rollers are arranged so as to be parallel to each other. The power transmission mechanism to the rollers is simplified, and the gap between the sorting rollers is parallel, so that high-precision processing is not required.
[0036]
In particular, since the peripheral speeds of the outer peripheral surfaces of the pair of sorting rollers are configured to be different from each other, it is possible to apply the rotational force in the part feeding direction and the rotational force in the direction perpendicular thereto. Due to the combined effect of rotational force, the part rolls in a spiral shape while rotating in all directions. Therefore, the dimensional shape in each direction of the component serves as a reference for selection, and the accuracy of component selection can be greatly improved.
[Brief description of the drawings]
FIG. 1 is a plan view showing an embodiment of a component shape sorting apparatus according to the present invention.
FIG. 2 is a side view of the component shape sorting apparatus shown in FIG.
3 is a plan view showing an example of the shape of a sorting roller of the component shape sorting apparatus shown in FIG. 1. FIG.
FIG. 4 is a side view showing the rotation direction of a component when the sorting roller is tilted.
5 is a cross-sectional view taken along line VV in FIG.
FIG. 6 is a plan view showing a basic configuration of a conventional component shape sorting apparatus.
7A and 7B are perspective views showing examples of the shape of a bearing ball as a part, where FIG. 7A is a defective part in which chipping occurs, FIG. 7B is a defective part in which two balls are integrated, and FIG. Each of the defective parts formed in an elliptical shape is shown.
[Explanation of symbols]
1, 1a Parts shape sorting device 2, 2a, 2b, 2c Parts (bearing balls)
3 base 4 roller support member 5 timing belt 6 continuously variable transmission motor 7 undersized parts collection hopper 8 standard parts collection hopper 9 oversized parts collection hoppers 10a, 10b, 10c collection container 11 casing 12 parts storage tanks r1, r2, R1, R2 sorting roller L1, L2 roller rotation axis A1, A2, A3 sorting area H horizontal plane V1, V2 roller circumferential speed θ tilt angle g1, g2 step S 1, S 2 rotation direction .mu.1, .mu.2 friction coefficient

Claims (7)

一対の選別ローラを、その回転軸が相互に平行となるように基台上に回転自在に配置し、少なくとも一方の選別ローラには外径が異なる複数の選別エリアが軸方向に沿って形成され、一対の選別ローラの間隙部の一端に多数の部品を順次供給し、選別ローラの回転力によって各部品を転動させながら間隙部の他端方向に送り出し、各選別エリアにおける一対の選別ローラの外周面の間隙の大小によって各部品の形状を選別するように構成するとともに、上記一対の選別ローラの外周面の周速が相互に異なるように構成し、さらに上記一対の選別ローラの外周面の表面粗さが相互に異なるように構成したことを特徴とする部品形状選別装置。A pair of sorting rollers are rotatably arranged on the base so that their rotation axes are parallel to each other, and at least one sorting roller is formed with a plurality of sorting areas having different outer diameters along the axial direction. A large number of parts are sequentially supplied to one end of the gap between the pair of sorting rollers, and each part is rotated by the rotational force of the sorting roller and sent out toward the other end of the gap. The shape of each part is selected according to the size of the gap between the outer peripheral surfaces, the peripheral speeds of the outer peripheral surfaces of the pair of sorting rollers are different from each other, and the outer peripheral surfaces of the pair of selecting rollers are further different . A component shape sorting device characterized in that the surface roughness is different from each other . 複数の選別エリアは、少なくとも一方の選別ローラの外径を軸方向に段階的に変えて形成されていることを特徴とする請求項1記載の部品形状選別装置。  2. The component shape sorting apparatus according to claim 1, wherein the plurality of sorting areas are formed by changing the outer diameter of at least one of the sorting rollers stepwise in the axial direction. 一対の選別ローラの回転軸は水平面に対して所定の傾斜角度をもって傾斜していることを特徴とする請求項1記載の部品形状選別装置。  2. The component shape sorting apparatus according to claim 1, wherein the rotation shafts of the pair of sorting rollers are inclined at a predetermined inclination angle with respect to a horizontal plane. 傾斜角度が1〜40度の範囲であることを特徴とする請求項3記載の部品形状選別装置。  4. The component shape sorting apparatus according to claim 3, wherein the inclination angle is in the range of 1 to 40 degrees. 部品が略球形状の部品であることを特徴とする請求項1記載の部品形状選別装置。  2. The part shape sorting apparatus according to claim 1, wherein the part is a substantially spherical part. 上記略球形状の部品がベアリングボールであることを特徴とする請求項5記載の部品形状選別装置。6. The part shape sorting apparatus according to claim 5, wherein the substantially spherical part is a bearing ball. 一対の選別ローラの少なくとも一方が他方の選別ローラに対して平行移動自在に構成したことを特徴とする請求項1記載の部品形状選別装置。  2. The part shape sorting apparatus according to claim 1, wherein at least one of the pair of sorting rollers is configured to be movable in parallel with respect to the other sorting roller.
JP31278399A 1999-11-02 1999-11-02 Part shape sorter Expired - Lifetime JP4231605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31278399A JP4231605B2 (en) 1999-11-02 1999-11-02 Part shape sorter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31278399A JP4231605B2 (en) 1999-11-02 1999-11-02 Part shape sorter

Publications (2)

Publication Number Publication Date
JP2001129486A JP2001129486A (en) 2001-05-15
JP4231605B2 true JP4231605B2 (en) 2009-03-04

Family

ID=18033359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31278399A Expired - Lifetime JP4231605B2 (en) 1999-11-02 1999-11-02 Part shape sorter

Country Status (1)

Country Link
JP (1) JP4231605B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10249573A1 (en) * 2002-10-24 2004-05-13 Robert Bosch Gmbh Device for separating faulty components from good components comprises two parallel counter-rotating rolls with a gap between them dimensioned so that only good components can pass through it
JP5406543B2 (en) * 2009-01-29 2014-02-05 株式会社神戸製鋼所 Raw pellet sieving method with roller screen
CN102218402B (en) * 2011-04-21 2013-04-03 东南大学 Device for automatically sorting diameters of ball bearings
CN103041990B (en) * 2013-01-24 2015-07-08 五莲大地精工钢球有限公司 Steel ball sorting machine
CN105188964B (en) * 2013-11-08 2017-10-03 Ykk株式会社 Classifier
CN104117422B (en) * 2014-08-09 2016-09-14 宁国东方碾磨材料股份有限公司 A kind of quantitative pulping apparatus of steel ball
CN109675882B (en) * 2018-12-29 2022-04-01 宁波科尼管洁净科技有限公司 Pipe cleaning ball circulating device and working method thereof
CN110293069A (en) * 2019-08-07 2019-10-01 芜湖市宇恒特种钢球有限公司 High-accuracy abrasion-proof steel ball high throughput screening devices and its operating method
CN116851338B (en) * 2023-09-04 2023-11-17 浩宸建设科技有限公司 Stone washing and mud removing device for highway engineering construction
CN117900133B (en) * 2024-03-19 2024-05-14 山东金池重工股份有限公司 Screening device for grinding steel ball production

Also Published As

Publication number Publication date
JP2001129486A (en) 2001-05-15

Similar Documents

Publication Publication Date Title
JP4231605B2 (en) Part shape sorter
CN107737730B (en) Automatic sorting device for steel balls
US5901854A (en) Object sorting and conveying apparatus
CN100569388C (en) Fruit delivering sorting integrated apparatus
US20020135756A1 (en) Inspection apparatus for surfaces of spheres
CN100525935C (en) Lever-type fruit sorting unloader
US2778497A (en) Ball sorter
JP2001296248A (en) Appearance inspection apparatus for spherical body
CN212707555U (en) Magnetic separation iron removing equipment for hazardous waste plastic fragments
US6860392B2 (en) Device for concentrating metallic coins produced from shredder operations
JPH02503651A (en) Method and device for sorting circular objects
CN108890516B (en) Grinding disc, equipment and method for finishing rolling surface of convex cylindrical roller
KR102077964B1 (en) Ceramic ball sorting device capable of large capacity sorting AND Ceramic ball sorting METHOD USING THE SAME
JP2002326056A (en) Sorting method for rolling element and rolling element- sorting device used in the method
CN1072544C (en) Lapping machine
JPS62247873A (en) Spherical-body selector
WO2007017904A3 (en) Orientation unit for a fruit sorting and grading machine
NL8402277A (en) METHOD AND APPARATUS FOR MANUFACTURING PARISIAN POTATOES
CN206824199U (en) A kind of spiral ball selector
CN218014221U (en) Conveying and unfolding device for bearing steel ball detection
CN214638315U (en) Bearing inner race check out test set
JP4006684B2 (en) Abnormal ball sorting device
JPS594785Y2 (en) Head diameter sorting mechanism in automatic bar sorting machine with heads
CN219384103U (en) Bearing unloader
CN214011124U (en) Steel ball eddy current testing machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081208

R151 Written notification of patent or utility model registration

Ref document number: 4231605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

EXPY Cancellation because of completion of term