JP7016622B2 - Membrane separation activated sludge treatment equipment and membrane separation activated sludge treatment method - Google Patents

Membrane separation activated sludge treatment equipment and membrane separation activated sludge treatment method Download PDF

Info

Publication number
JP7016622B2
JP7016622B2 JP2017089621A JP2017089621A JP7016622B2 JP 7016622 B2 JP7016622 B2 JP 7016622B2 JP 2017089621 A JP2017089621 A JP 2017089621A JP 2017089621 A JP2017089621 A JP 2017089621A JP 7016622 B2 JP7016622 B2 JP 7016622B2
Authority
JP
Japan
Prior art keywords
membrane separation
circulating water
dissolved oxygen
sludge treatment
activated sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017089621A
Other languages
Japanese (ja)
Other versions
JP2018187539A (en
Inventor
克輝 木村
進 石田
亮 張
輝美 円谷
太郎 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Maezawa Industries Inc
Original Assignee
Hokkaido University NUC
Maezawa Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Maezawa Industries Inc filed Critical Hokkaido University NUC
Priority to JP2017089621A priority Critical patent/JP7016622B2/en
Priority to PCT/JP2017/045050 priority patent/WO2018198422A1/en
Publication of JP2018187539A publication Critical patent/JP2018187539A/en
Application granted granted Critical
Publication of JP7016622B2 publication Critical patent/JP7016622B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Description

本発明は、膜分離とともに窒素除去を効率的に行うことができ、流入下水量の負荷変動に対し適用性の高い膜分離活性汚泥処理装置及び方法に関する。 The present invention relates to a membrane separation activated sludge treatment apparatus and method capable of efficiently removing nitrogen together with membrane separation and having high applicability to load fluctuations in the amount of inflowing sewage.

従来から、窒素やリンといった栄養塩を含む下廃水を処理するにあたっては、汚水を反応槽に導入し活性汚泥と共に曝気・攪拌して生物処理を行う活性汚泥法が用いられている。特に近年は、この活性汚泥法によって処理された処理水から固形物を含まない清澄な処理水を得るため、反応槽内に膜分離装置を浸漬させ、処理水を膜分離して排出する膜分離活性汚泥法(Membrane Bioreactor(MBR)法)が多用されている。 Conventionally, when treating sewage containing nutrients such as nitrogen and phosphorus, an activated sludge method has been used in which sewage is introduced into a reaction tank and aerated and agitated together with activated sludge for biological treatment. Particularly in recent years, in order to obtain clear treated water containing no solid matter from the treated water treated by this active sludge method, a membrane separation device is immersed in a reaction vessel, and the treated water is separated and discharged. The active sludge method (Membrane Bioreactor (MBR) method) is often used.

このような浸漬型の膜分離装置では、膜表面に汚泥が付着してファウリング(膜の目詰まり)が発生するのを防止するために、下部の散気管から空気を吹き込む必要があり、通常はほぼ連続的に散気を行っている。活性汚泥法においては、このような好気状態下では硝化細菌の作用により硝化が進行するが、一方で脱窒細菌による脱窒処理を行うためには槽内を無酸素状態にする必要がある。したがって、膜分離活性汚泥法においては、膜ろ過時の膜面洗浄と硝化処理のための散気の確保と、脱窒処理のための無酸素状態の確保の両立が必要であるが、これを実現する技術として、単一の反応槽内で好気処理(硝化処理)と無酸素処理(脱窒処理)を進行させる膜分離活性汚泥装置および方法が提案されている(特許文献1)。 In such an immersion type membrane separation device, it is necessary to blow air from the lower air diffuser tube in order to prevent sludge from adhering to the membrane surface and causing fouling (clogging of the membrane), which is usually the case. Is diverging almost continuously. In the activated sludge method, nitrification progresses due to the action of nitrifying bacteria under such aerobic conditions, but on the other hand, in order to perform denitrification treatment by denitrifying bacteria, it is necessary to make the inside of the tank anoxic. .. Therefore, in the membrane separation activated sludge method, it is necessary to secure both the membrane surface cleaning and nitrification treatment of air diffuser during membrane filtration and the anoxic state for denitrification treatment. As a technique to be realized, a membrane separation activated sludge device and a method for advancing aerobic treatment (nitrification treatment) and anoxic treatment (denitrification treatment) in a single reaction vessel have been proposed (Patent Document 1).

この特許文献1で提案された装置は、本願の図1に示すように、好気性処理および無酸素処理を行う単一の反応槽1と、その反応槽の内部に配置された浸漬膜分離ユニット2と、曝気手段4とを有する装置であって、反応槽1は、底部が反応槽の底面から離間して設けられた仕切板7によって複数個の区画に分割され、その複数個の区画のうちの少なくとも一つの区画を、浸漬膜分離ユニット2および曝気手段4が配置された好気区画とし、残りの区画を、好気状態から無酸素状態に、また、無酸素状態から好気状態に切り換えるための区画とし、かつ、反応槽内の液位が仕切板上端よりも高い状態と低い状態とに切り換えるための液位制御手段又は仕切板の高さ制御手段が設けられた、仕切板挿入型の膜分離活性汚泥処理装置(Baffled Membrane Bioreactor(B-MBR法))である。 As shown in FIG. 1 of the present application, the apparatus proposed in Patent Document 1 includes a single reaction tank 1 that performs aerobic treatment and anoxic treatment, and an immersion membrane separation unit arranged inside the reaction tank. A device having 2 and an aeration means 4, the reaction tank 1 is divided into a plurality of compartments by a partition plate 7 having a bottom portion separated from the bottom surface of the reaction tank, and the plurality of compartments are divided into a plurality of compartments. At least one of these compartments is an aerobic compartment in which the immersion membrane separation unit 2 and the aeration means 4 are arranged, and the remaining compartments are changed from an aerobic state to an anoxic state and from an anoxic state to an aerobic state. A partition plate insertion provided as a partition for switching and a liquid level control means or a partition plate height control means for switching between a state in which the liquid level in the reaction tank is higher than the upper end of the partition plate and a state in which the liquid level is lower than the upper end of the partition plate. This is a type membrane separation active sludge treatment device (Baffled Membrane Bioreactor (B-MBR method)).

特許文献1の方法では、反応槽1内の液位が低水位(LWL:Low Water Level)になると原水ポンプ8がONとなり、液位が高水位(HWL:High Water Level)になると原水ポンプ8がOFFとなるよう設定して液位を変化させることにより、液位が仕切板より高い状態と、液位が仕切板より低い状態とが交互に作り出される(図1)。ここで、液位が仕切板より高い状態では、散気管4からのエアで槽全体に及ぶ循環流(膜ユニット収容区画から、仕切板7の上を越えてその他の区画に入り、該その他の区画内を下降し、仕切板7よりも下の領域を介して膜ユニット収容区画に戻る循環流)が形成される(図2)。このような循環流の形成により、膜分離ユニット収容区画において硝化処理により得られた硝酸態窒素を多く含む汚泥がその他の区画に移行し、仕切板7の内外で好気処理(硝化処理)が進行する(この時間帯を「硝化促進運転時間帯」という)。一方、液位が仕切板より低い状態では、膜分離ユニット収容区画とその他の区画の間で液の流通が分断され、その結果、該その他の区画では無酸素状態となり、無酸素処理(脱窒処理)が進行する(この時間帯を「脱窒促進運転時間帯」という)。このように、特許文献1の方法は、液位が仕切板より高い状態と低い状態とを交互に作り出すことにより、硝化促進運転時間帯と脱窒促進運転時間帯とを繰り返す方法である。 In the method of Patent Document 1, the raw water pump 8 is turned on when the liquid level in the reaction tank 1 becomes a low water level (LWL: Low Water Level), and the raw water pump 8 turns on when the liquid level becomes a high water level (HWL: High Water Level). By changing the liquid level by setting to OFF, a state where the liquid level is higher than the partition plate and a state where the liquid level is lower than the partition plate are alternately created (FIG. 1). Here, when the liquid level is higher than the partition plate, the air from the air diffuser 4 enters the other compartments through the circulating flow (from the membrane unit accommodating compartment, over the partition plate 7), and the other compartments. A circulating flow that descends within the compartment and returns to the membrane unit containment compartment via the region below the partition plate 7) is formed (FIG. 2). Due to the formation of such a circulating flow, sludge containing a large amount of nitrate nitrogen obtained by the nitrification treatment in the membrane separation unit accommodating compartment is transferred to other compartments, and aerobic treatment (nitrification treatment) is performed inside and outside the partition plate 7. Progress (this time zone is called "nitrification promotion operation time zone"). On the other hand, when the liquid level is lower than the partition plate, the flow of the liquid is divided between the membrane separation unit accommodating compartment and the other compartments, and as a result, the other compartments become anoxic and anoxic treatment (denitrification). Processing) progresses (this time zone is called "denitrification promotion operation time zone"). As described above, the method of Patent Document 1 is a method of repeating a nitrification promotion operation time zone and a denitrification promotion operation time zone by alternately creating a state in which the liquid level is higher and a state in which the liquid level is lower than that of the partition plate.

また、特許文献2には、ディッチ(無終端水路)内に循環水流発生手段と酸素供給手段(曝気装置)を設置し、好気性水域と無酸素水域とを形成したオキシデーションディッチ法(以下、「OD法」ともいう)において、好気性水域の上流側と下流側にそれぞれ溶存酸素計(DO計)を設け、上流側溶存酸素計の測定値に基づいて酸素供給手段による酸素供給量を調節し、下流側溶存酸素計の測定値に基づいて循環水流発生手段による循環水の流速を調節する装置及び方法が開示されている。 Further, in Patent Document 2, an oxidation ditch method (hereinafter referred to as an oxygen-free water area) in which a circulating water flow generating means and an oxygen supply means (exposure device) are installed in a ditch (non-terminal water channel) to form an aerobic water area and an oxygen-free water area. In the "OD method"), dissolved oxygen meters (DO meters) are provided on the upstream side and downstream side of the aerobic water area, respectively, and the amount of oxygen supplied by the oxygen supply means is adjusted based on the measured values of the upstream dissolved oxygen meter. Further, an apparatus and a method for adjusting the flow velocity of circulating water by a circulating water flow generating means based on the measured value of the downstream dissolved oxygen meter are disclosed.

特開2004-261711号公報Japanese Unexamined Patent Publication No. 2004-261711 特開2005-52804号公報Japanese Unexamined Patent Publication No. 2005-52004

しかしながら、特許文献1に記載された方法では、窒素除去効率を更に向上させることが望まれていた。また、特許文献1の方法では、液位が仕切板より高い状態と低い状態とを交互に作り出すことにより、硝化促進運転時間帯と脱窒促進運転時間帯を切り替えていたため、各運転時間帯の切り替えに長時間を要していた。 However, in the method described in Patent Document 1, it has been desired to further improve the nitrogen removal efficiency. Further, in the method of Patent Document 1, the nitrification promotion operation time zone and the denitrification promotion operation time zone are switched by alternately creating a state in which the liquid level is higher and a state in which the liquid level is lower than that of the partition plate. It took a long time to switch.

また、下水処理においては、流入下水量の日間変動(流入排水量や汚濁物質の濃度変動)が大きく、一般に、大規模処理装置では日間平均値の0.5~1.5倍程度の変動があり、小規模処理装置では0.2~3倍程度の変動がある。このような日間の負荷変動に対し、特許文献1の方法では、効率的な硝化及び脱窒反応を行うことは困難であった。また、流入下水量の日間変動を小さくするためには、大容量の流量調整槽を設ける必要があった。 In addition, in sewage treatment, daily fluctuations in the amount of inflow and sewage (variations in the amount of inflow and sewage and the concentration of pollutants) are large, and in general, large-scale treatment equipment has fluctuations of about 0.5 to 1.5 times the daily average value. In small-scale processing equipment, there is a fluctuation of about 0.2 to 3 times. With respect to such daily load fluctuations, it has been difficult to carry out an efficient nitrification and denitrification reaction by the method of Patent Document 1. Further, in order to reduce the daily fluctuation of the inflow sewage amount, it was necessary to provide a large-capacity flow rate adjusting tank.

更に、特許文献2に開示されたOD法は、固液分離を最終沈殿池で行う重力式沈降分離法であり、固液分離を容易にするため、MLSS(Mixed Liquor Suspended Solid)濃度は2000~4000mg/L程度と低い範囲に管理される。そのため、OD法では、ディッチ内での処理時間(HRT)が12時間程度と長くなり、最終沈殿池でも6時間程度が必要となる。また、OD法では、大きな施設容量が必要となり広大な設置スペースが必要となるため、小規模下水処理場向けには採用されてきたが、コンパクトな施設が求められる中大規模の下水処理場や工場排水処理では採用し難いという問題があった。 Further, the OD method disclosed in Patent Document 2 is a gravity-type sedimentation separation method in which solid-liquid separation is performed in a final sedimentation basin, and in order to facilitate solid-liquid separation, the MLSS (Mixed Liquor Suspended Solid) concentration is 2000 to 2000. It is controlled in a low range of about 4000 mg / L. Therefore, in the OD method, the processing time (HRT) in the ditch is as long as about 12 hours, and about 6 hours is required even in the final settling basin. In addition, the OD method requires a large facility capacity and a large installation space, so it has been adopted for small-scale sewage treatment plants, but medium- and large-scale sewage treatment plants that require compact facilities and There was a problem that it was difficult to adopt in factory sewage treatment.

本発明は、上記従来の課題に鑑み、窒素除去効率を更に向上させ、流入下水量の日間の負荷変動に対しても高い適用性を示し、更には、反応槽内の処理時間(HRT)を大幅に短縮し、中大規模の下水処理場や工場排水処理でも採用可能な膜分離活性汚泥装置及び方法を提供することを目的とする。 In view of the above-mentioned conventional problems, the present invention further improves the nitrogen removal efficiency, shows high applicability to the daily load fluctuation of the inflow sewage amount, and further reduces the treatment time (HRT) in the reaction vessel. The purpose is to provide a membrane separation activated sludge device and method that can be significantly shortened and can be used in medium- and large-scale sewage treatment plants and factory wastewater treatment.

本願発明者らは、従来の仕切板挿入型の膜分離活性汚泥処理法において窒素除去効率が十分でない原因について鋭意研究した。その結果、液位が仕切板より低い状態(脱窒促進運転時間帯)では、仕切板内外で液の流通が分断され、膜分離ユニットが配置されていない区画では循環流が発生しないために、脱窒反応に関与する、原水、硝化液(硝化処理後の硝酸性窒素を含む液)及び脱窒細菌の混合が十分に行われず、その結果として効率的な脱窒反応が進行しにくくなることを見出した。 The inventors of the present application have diligently studied the cause of insufficient nitrogen removal efficiency in the conventional partition plate insertion type membrane separation activated sludge treatment method. As a result, when the liquid level is lower than that of the partition plate (denitrification promotion operation time zone), the flow of the liquid is divided inside and outside the partition plate, and no circulating flow is generated in the section where the membrane separation unit is not arranged. Raw water, nitrifying solution (liquid containing nitrifying nitrogen after nitrification treatment) and denitrifying bacteria involved in the denitrification reaction are not sufficiently mixed, and as a result, efficient denitrification reaction is difficult to proceed. I found.

そして、反応槽内に循環水量調節装置を設けると共に、膜分離ユニット収容区画に第1の溶存酸素計を設け、その他の区画に第2の溶存酸素計を設けた膜分離活性汚泥処理装置を用いることにより、その他の区画において、脱窒反応に必要な上記の十分な混合を達成し、且つ、脱窒の障害となる溶存酸素(DO)を低いレベルに維持することができ、その結果、窒素除去効率が向上することに想到した。また、このような膜分離活性汚泥処理装置を用いることにより、流入下水量の負荷変動に対しても適応可能であり、OD法に比べて、反応槽内の処理時間(HRT)を大幅に短縮でき、コンパクトな活性汚泥処理装置となることに想到し、本発明を完成した。 Then, a membrane separation active sludge treatment apparatus is used in which a circulating water amount adjusting device is provided in the reaction vessel, a first dissolved oxygen meter is provided in the membrane separation unit accommodating section, and a second dissolved oxygen meter is provided in the other sections. This allows the other compartments to achieve the above-mentioned sufficient mixing required for the denitrification reaction and to maintain low levels of dissolved oxygen (DO) that interferes with denitrification, resulting in nitrogen. I came up with the idea of improving the removal efficiency. Further, by using such a membrane separation activated sludge treatment device, it is possible to adapt to the load fluctuation of the inflow sewage amount, and the treatment time (HRT) in the reaction tank is significantly shortened as compared with the OD method. The present invention was completed with the idea of becoming a compact activated sludge treatment device.

すなわち本発明は、以下の(1)~(6)に関する。
(1)好気性処理および無酸素処理を行う単一の反応槽と、その反応槽の内部に配置された浸漬膜分離ユニットと、曝気手段とを有する膜分離活性汚泥処理装置であって、反応槽は、底部が反応槽の底面から離間して設けられた仕切板によって複数個の区画に分割され、その複数個の区画のうちの少なくとも一つの区画を、浸漬膜分離ユニットおよび曝気手段が配置された好気区画とし、その他の区画内で無酸素処理を行う膜分離活性汚泥処理装置において、循環水量調節装置を設けると共に、前記好気区画に第1の溶存酸素計を設け、前記その他の区画に第2の溶存酸素計を設け、前記循環水量調節装置が、循環水量調節板と調節板移動手段を備えたスイング式循環水量調節装置、又は開口部を有するスライド板を備えた循環水量調節装置であり、第2の溶存酸素計により測定した溶存酸素濃度が予め設定した目標値となるよう、前記循環水量調節板又はスライド板の開度を調節して循環水量を制御する手段を設けたことを特徴とする膜分離活性汚泥処理装置。
That is, the present invention relates to the following (1) to (6).
(1) A membrane separation active sludge treatment apparatus having a single reaction vessel for performing aerobic treatment and oxygen-free treatment, an immersion membrane separation unit arranged inside the reaction vessel, and an aeration means, and reacts. The tank is divided into a plurality of compartments by a partition plate having a bottom portion separated from the bottom surface of the reaction tank, and at least one of the plurality of compartments is provided with an immersion membrane separation unit and an aeration means. In the membrane-separated active sludge treatment apparatus that performs anoxic treatment in the aerobic compartment, a circulating water volume control device is provided, and a first dissolved oxygen meter is provided in the aerobic compartment, and the other A second dissolved oxygen meter is provided in the compartment, and the circulating water amount adjusting device is a swing type circulating water amount adjusting device provided with a circulating water amount adjusting plate and an adjusting plate moving means, or a circulating water amount adjusting device having a slide plate having an opening. It is an apparatus, and a means for controlling the circulating water amount by adjusting the opening degree of the circulating water amount adjusting plate or the slide plate is provided so that the dissolved oxygen concentration measured by the second dissolved oxygen meter becomes a preset target value. Membrane separation active sludge treatment equipment characterized by this.

(2)前記好気区画内に補助曝気手段を更に設け、第1の溶存酸素計により測定した溶存酸素濃度が予め設定した目標値となるよう、前記補助曝気手段による曝気量を制御する手段を設けた、(1)に記載の膜分離活性汚泥処理装置。
(3)前記スイング式循環水量調節装置は仕切板の上部に設けられ、前記循環水量調節板は長手方向の一辺が固定部材に固定され、前記循環水量調節板の開度は前記調節板移動手段が循環水量調節板を移動させることにより調節される、(1)又は(2)に記載の膜分離活性汚泥処理装置
(4)前記スライド板を備えた循環水量調節装置は開口部を有する仕切板の上端に設けられ、前記スライド板の開度はスライド板の開口部と仕切板の開口部の重なりを調節することにより調節される、(1)又は(2)に記載の膜分離活性汚泥処理装置
(2) A means for further providing an auxiliary aeration means in the aerobic compartment and controlling the amount of aeration by the auxiliary aeration means so that the dissolved oxygen concentration measured by the first dissolved oxygen meter becomes a preset target value. The membrane separation activated sludge treatment apparatus according to (1) provided .
(3) The swing-type circulating water amount adjusting device is provided on the upper part of the partition plate, one side of the circulating water amount adjusting plate is fixed to a fixing member in the longitudinal direction, and the opening degree of the circulating water amount adjusting plate is the adjusting plate moving means. The membrane separation activated sludge treatment apparatus according to (1) or (2), wherein the sludge is adjusted by moving the circulating water amount adjusting plate .
(4) The circulating water amount adjusting device provided with the slide plate is provided at the upper end of the partition plate having an opening, and the opening degree of the slide plate adjusts the overlap between the opening portion of the slide plate and the opening portion of the partition plate. The membrane separation active sludge treatment apparatus according to (1) or (2), which is regulated by .

(5)反応槽に供給される原水の負荷状況に応じて予め設定した第1の溶存酸素計及び第2の溶存酸素計の目標値となるよう制御する手段を設けた、(1)~(4)のいずれかに記載の膜分離活性汚泥処理装置。
(6)浸漬膜分離ユニットを配置した単一の反応槽内で好気性処理および無酸素処理を行う膜分離活性汚泥処理方法であって、浸漬膜分離ユニットの周囲を底部が反応槽の底面から離間して設けられた仕切板で区画し、浸漬膜分離ユニットの下方から曝気を行うことにより、浸漬膜分離ユニットが配置された区画内を好気状態に維持しつつ、その他の区画内で無酸素処理を行う膜分離活性汚泥処理方法において、(1)~(5)のいずれかに記載の膜分離活性汚泥処理装置を使用し、前記浸漬膜分離ユニットが配置された区画の溶存酸素濃度と、前記その他の区画の溶存酸素濃度をそれぞれ測定し、前記その他の区画の溶存酸素濃度の測定値が予め設定した目標値となるよう循環水の流速を制御することを特徴とする膜分離活性汚泥処理方法。

(5) A means for controlling the target values of the first dissolved oxygen meter and the second dissolved oxygen meter set in advance according to the load condition of the raw water supplied to the reaction tank is provided, (1) to (1). The membrane separation activated sludge treatment apparatus according to any one of 4) .
(6) This is a membrane separation activated sludge treatment method in which aerobic treatment and anoxic treatment are performed in a single reaction tank in which the immersion membrane separation unit is arranged, and the bottom is from the bottom of the reaction tank around the immersion membrane separation unit. By partitioning with a partition plate provided at a distance and aerating from below the immersion membrane separation unit, the inside of the compartment where the immersion membrane separation unit is placed is maintained in an aerobic state, and there is no in the other compartments. In the membrane separation activated sludge treatment method for performing oxygen treatment, the membrane separation activated sludge treatment apparatus according to any one of (1) to (5) is used, and the dissolved oxygen concentration in the section in which the immersion membrane separation unit is arranged is used. , The membrane-separated activated sludge, which measures the dissolved oxygen concentration of the other compartments and controls the flow velocity of the circulating water so that the measured value of the dissolved oxygen concentration of the other compartments becomes a preset target value. Processing method.

なお、本明細書において「無酸素状態」とは、完全な無酸素状態のみを意味するものではなく、脱窒菌の作用により硝酸態窒素を窒素分子に還元できる程度に酸素濃度が低い状態をも包含する意味で用いる。 In the present specification, the "anoxic state" does not mean only a completely anoxic state, but also a state in which the oxygen concentration is low enough to reduce nitrate nitrogen to nitrogen molecules by the action of denitrifying bacteria. Used in the sense of inclusion.

本発明によれば、膜分離ユニットが配置されていない区画において、効率的に脱窒反応を進行させることができるため、有機性汚水からの窒素除去効率を向上させることができる。また、流入下水量の負荷変動に対しても適用でき、効率的な硝化及び脱窒反応を行うことができる。更には、反応槽内の処理時間(HRT)を大幅に短縮することができ、コンパクトで効率的な膜分離活性汚泥処理が可能となる。 According to the present invention, since the denitrification reaction can be efficiently promoted in the section where the membrane separation unit is not arranged, the efficiency of removing nitrogen from the organic sewage can be improved. In addition, it can be applied to load fluctuations in the amount of inflowing sewage, and efficient nitrification and denitrification reactions can be performed. Furthermore, the treatment time (HRT) in the reaction vessel can be significantly shortened, and compact and efficient membrane separation activated sludge treatment becomes possible.

従来法(特許文献1)の膜分離活性汚泥処理装置を模式的に示す図である。It is a figure which shows typically the membrane separation activated sludge treatment apparatus of the conventional method (Patent Document 1). 仕切板挿入型の膜分離活性汚泥処理装置における循環水の流れを模式的に示す図である。It is a figure which shows typically the flow of the circulating water in the membrane separation activated sludge treatment apparatus of a partition plate insertion type. 本発明の膜分離活性汚泥処理装置の一実施態様を模式的に示す図である。It is a figure which shows typically one Embodiment of the membrane separation activated sludge treatment apparatus of this invention. 本発明の循環水量調節装置の一態様を模式的に示す側面図及び上面図である。It is a side view and the top view schematically showing one aspect of the circulating water amount adjusting apparatus of this invention. 本発明の循環水量調節装置の別の態様を模式的に示す図である。It is a figure which shows another aspect of the circulating water amount adjustment apparatus of this invention schematically. 本発明の循環水量調節装置の更に別の態様を模式的に示す図である。It is a figure which shows still another aspect of the circulating water amount adjustment apparatus of this invention schematically. 本発明の膜分離活性汚泥処理装置の別の一実施態様を模式的に示す図である。It is a figure which shows typically another embodiment of the membrane separation activated sludge treatment apparatus of this invention.

以下、図面に基づいて、本発明に係る膜分離活性汚泥処理装置及び方法の実施態様を説明する。なお、図1~図7において、同一機能を有する部材には、同一符号を付すものとする。
本発明の特徴は、後述する通り、仕切板挿入型の膜分離活性汚泥処理装置において、循環水量調節装置と第1及び第2の溶存酸素計を設けた点にあるが、まず本発明に係る装置および方法の一実施態様の全体構成について、図3に基づき説明する。
Hereinafter, embodiments of the membrane separation activated sludge treatment apparatus and method according to the present invention will be described with reference to the drawings. In FIGS. 1 to 7, members having the same function are designated by the same reference numerals.
As will be described later, a feature of the present invention is that the partition plate insertion type membrane separation activated sludge treatment apparatus is provided with a circulating water volume adjusting device and first and second dissolved oxygen meters. First, the present invention relates to the present invention. The overall configuration of one embodiment of the apparatus and method will be described with reference to FIG.

図3の膜分離活性汚泥装置においては、単槽式の反応槽1に、浸漬型の膜分離ユニット2aが設けられており、この膜分離ユニット2aには反応槽1の外で吸引ポンプ3が接続されている。
膜分離ユニット2aは、膜そのものとして汚れにくい素材を用いたものや、膜表面に汚れがつきにくくなるように、膜間に適当な隙間を有するものを用いることが好ましい。膜分離ユニット2aには、精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜などを用いて形成されたモジュールを用いることができる。経済性の観点からは、ろ過速度が高くコンパクト化が可能で、メンテナンスが容易である精密ろ過膜、限外ろ過膜を用いたモジュールが好ましい。膜の形状は平膜、中空糸膜等のものが用いられる。ここで用いられる浸漬型膜分離ユニット自体はこの分野において広く用いられており、市販もされている。
In the membrane separation activated sludge apparatus of FIG. 3, a immersion type membrane separation unit 2a is provided in the single tank type reaction tank 1, and the membrane separation unit 2a has a suction pump 3 outside the reaction tank 1. It is connected.
As the membrane separation unit 2a, it is preferable to use a material that does not easily get dirty as the membrane itself, or one that has an appropriate gap between the membranes so that the membrane surface is hard to get dirty. As the membrane separation unit 2a, a module formed by using a microfiltration membrane, an ultrafiltration membrane, a nanofiltration membrane, a reverse osmosis membrane, or the like can be used. From the viewpoint of economy, a module using a microfiltration membrane or an ultrafiltration membrane, which has a high filtration speed, can be made compact, and is easy to maintain, is preferable. As the shape of the membrane, a flat membrane, a hollow fiber membrane, or the like is used. The immersion type membrane separation unit itself used here is widely used in this field and is also commercially available.

膜分離ユニット2aの下方には、膜洗浄用の曝気手段4a(散気装置)が設けられ、膜分離ユニット2aの下部の側方には、補助曝気手段4b(散気装置)が設けられている。曝気手段4a及び4bは、それぞれブロワ5a及び5bに接続され、ブロワ5a及び5bからエア(空気)が供給される。 An aeration means 4a (aeration device) for cleaning the membrane is provided below the membrane separation unit 2a, and an auxiliary aeration means 4b (aeration device) is provided on the side of the lower part of the membrane separation unit 2a. There is. The aeration means 4a and 4b are connected to the blowers 5a and 5b, respectively, and air is supplied from the blowers 5a and 5b.

膜洗浄用の曝気手段4aは、粗大な気泡を発生させ膜分離ユニット2aの膜表面でのスクラビング効果を高めている。消費電力量を抑えるために、間欠的に粗大気泡を発生させる装置を組み込むこともできる。膜洗浄用の曝気手段4aが発生させる気泡は、粗大気泡であることから上昇速度が大きく、循環流速を高める効果は大きいが、一方で酸素移動効率は小さくなる。
補助曝気手段4bは、膜洗浄用の曝気手段4aによる酸素供給では不足する酸素量を補う目的で設置する。補助曝気手段4bとしては、通常は微細気泡を発生するメンブレン式散気装置が用いられ、一般に、膜洗浄用曝気手段と比較して酸素移動効率が2~5倍高い。
The aeration means 4a for cleaning the membrane generates coarse air bubbles to enhance the scrubbing effect on the membrane surface of the membrane separation unit 2a. In order to reduce the amount of power consumption, it is possible to incorporate a device that intermittently generates coarse bubbles. Since the bubbles generated by the aeration means 4a for washing the membrane are coarse bubbles, the rising rate is high and the effect of increasing the circulation flow velocity is great, but the oxygen transfer efficiency is low.
The auxiliary aeration means 4b is installed for the purpose of supplementing the amount of oxygen that is insufficient in the oxygen supply by the aeration means 4a for membrane cleaning. As the auxiliary aeration means 4b, a membrane type aeration device that normally generates fine bubbles is used, and in general, the oxygen transfer efficiency is 2 to 5 times higher than that of the membrane cleaning aeration means.

反応槽1には、微生物を含有する汚泥が収容されており、この微生物が、有機物の分解菌、さらにはそれら微生物の分解菌として作用し、生物処理を行う。したがって、反応槽1は、汚泥が部分的に偏在することがないように、また、酸素が均一に供給されるように、内表面に角がないものや凹凸がないものが好ましい。この結果、反応槽1内では処理液の温度やpHが均一になり、安定に分解処理を進めることができる。また、汚泥に含有される微生物は、細菌類、酵母およびカビを含む真菌類など、溶解性有機物などの分解に寄与するもので、土壌、堆肥、汚泥など、自然界から集積培養および馴養によって取得される。またこの馴養液から分解に関与する主要な微生物群を単離して用いることも可能である。なお、これらの微生物を含有する汚泥自体はこの分野において周知である。 Sludge containing microorganisms is contained in the reaction tank 1, and these microorganisms act as decomposing bacteria of organic substances and further, decomposing bacteria of these microorganisms to perform biological treatment. Therefore, it is preferable that the reaction tank 1 has no corners or irregularities on the inner surface so that the sludge is not partially unevenly distributed and oxygen is uniformly supplied. As a result, the temperature and pH of the treatment liquid become uniform in the reaction tank 1, and the decomposition treatment can proceed stably. In addition, the microorganisms contained in the sludge contribute to the decomposition of soluble organic substances such as bacteria, yeast and fungi including mold, and are obtained from the natural world such as soil, compost, and sludge by enrichment culture and acclimatization. To. It is also possible to isolate and use the main microorganisms involved in the decomposition from this acclimatization solution. The sludge itself containing these microorganisms is well known in this field.

反応槽1内の活性汚泥処理条件は、膜分離活性汚泥法で通常使用する周知の条件であればよいが、MLSS濃度は、通常3000~20000mg/L、好ましくは5000~15000mg/Lであり、OD法に比べ高いMLSS濃度を維持することができる。また、反応槽1内のHRT(水理学的滞留時間)は、通常2~24時間、好ましくは4~8時間であり、OD法に比べ短縮されたHRTを達成可能である。 The activated sludge treatment conditions in the reaction tank 1 may be any well-known conditions usually used in the membrane separation activated sludge method, but the MLSS concentration is usually 3000 to 20000 mg / L, preferably 5000 to 15000 mg / L. A higher MLSS concentration can be maintained as compared with the OD method. Further, the HRT (hydraulic residence time) in the reaction vessel 1 is usually 2 to 24 hours, preferably 4 to 8 hours, and it is possible to achieve a shorter HRT than the OD method.

図3の反応槽1には、仕切板7が更に設けられている。仕切板7は、底部が反応槽の底面から離間して設けられており、膜分離ユニット2aの横方向の周囲を囲包(上下は開放)しているが、膜分離ユニット2aの周囲を実質的に取り囲むものであれば良い。仕切板7は槽壁と組合せて膜分離ユニット2aの周囲を取り囲むものでもよく、反応槽1の槽壁と共働して矩形の領域を規定する2枚の平板状のものが好ましい。図3に示すように、膜分離ユニット2aの周囲4面のうち、1面を仕切板7が囲包し、他の3面を槽壁で囲包するものや、仕切板7が膜分離ユニット2の全周囲を囲包するものでもよい。膜分離ユニット2aの収容区画とその他の区画の容量比は、通常1:0.5~5であり、好ましくは1:1~3の範囲内となるよう設定することができる。 The reaction tank 1 of FIG. 3 is further provided with a partition plate 7. The bottom of the partition plate 7 is provided so as to be separated from the bottom surface of the reaction tank, and surrounds the lateral circumference of the membrane separation unit 2a (upper and lower sides are open), but substantially the circumference of the membrane separation unit 2a. Anything that surrounds the target is sufficient. The partition plate 7 may be combined with the tank wall to surround the membrane separation unit 2a, and is preferably two flat plates that cooperate with the tank wall of the reaction tank 1 to define a rectangular area. As shown in FIG. 3, of the four peripheral surfaces of the membrane separation unit 2a, one surface is surrounded by the partition plate 7 and the other three surfaces are surrounded by the tank wall, and the partition plate 7 is the membrane separation unit. It may surround the entire circumference of 2. The volume ratio of the storage compartment of the membrane separation unit 2a to the other compartments is usually 1: 0.5 to 5, and can be set to be preferably in the range of 1: 1 to 3.

なお、図3の具体例では、浸漬膜分離ユニットの収容区画(以下、「膜分離ユニット収容区画」とも言う)が1つだけであるが、大型の下水処理等の場合には、単位時間当たりの処理量を大きくするために、所望により、膜分離ユニット収容区画(好気区画)を複数設け、これらの各区画にそれぞれ膜分離ユニットを浸漬してもよい。この場合、膜分離ユニット収容区画以外の区画(以下、「その他の区画」とも言う)を複数設けることも可能であるが、1つの方が構造が単純で反応液の均一性も確保しやすいので好ましい。 In the specific example of FIG. 3, there is only one storage compartment for the immersion membrane separation unit (hereinafter, also referred to as “membrane separation unit storage compartment”), but in the case of large-scale sewage treatment or the like, per unit time. If desired, a plurality of membrane separation unit accommodating compartments (aerobic compartments) may be provided and the membrane separation unit may be immersed in each of these compartments in order to increase the processing amount. In this case, it is possible to provide a plurality of compartments other than the membrane separation unit accommodating compartment (hereinafter, also referred to as “other compartments”), but one of them has a simpler structure and it is easier to secure the uniformity of the reaction solution. preferable.

下水処理場等の汚水処理施設に流入した汚水は、前処理設備において砂やごみ等の分離・除去を行った後、原水として原水槽から原水ポンプ8により反応槽1へと導入される。本発明において、原水は、膜分離ユニット収容区画以外の区画に供給するのが好ましい。これにより脱窒反応に必要な水素供与体が供給され、脱窒促進時間帯において脱窒反応が効率的に進行する。 The sewage that has flowed into the sewage treatment facility such as a sewage treatment plant is separated and removed from sand and dust in the pretreatment facility, and then introduced as raw water from the raw water tank into the reaction tank 1 by the raw water pump 8. In the present invention, the raw water is preferably supplied to a compartment other than the membrane separation unit accommodating compartment. As a result, the hydrogen donor required for the denitrification reaction is supplied, and the denitrification reaction proceeds efficiently during the denitrification promotion time zone.

本発明の膜分離活性汚泥処理装置は、反応槽1内の液位を調節するための液位制御手段を有していてもよい。液位制御手段としては、例えば、反応槽内の液位、すなわち、液表面の位置を調べるレベルセンサーを設け、このレベルセンサーにより検出した液位に応じて、原水ポンプにより反応槽に供給する原水の流量を制御する手段が挙げられる。 The membrane separation activated sludge treatment apparatus of the present invention may have a liquid level control means for adjusting the liquid level in the reaction tank 1. As the liquid level control means, for example, a level sensor for checking the liquid level in the reaction tank, that is, the position of the liquid surface is provided, and the raw water supplied to the reaction tank by the raw water pump according to the liquid level detected by the level sensor. Means for controlling the flow rate of the

このような図3に示す構成により、反応槽1内で汚水が生物学的に処理され、曝気手段4aからのエアによって、膜分離ユニット2aの膜面に汚泥物質等が付着するのを防止しながら、膜分離ユニット2aによって反応槽1内の処理液をろ過し、そのろ過水を吸引ポンプ3により吸引して槽外に取り出すことができる。図3の具体例においては、吸引ポンプ3でろ過圧を得ているが、反応槽内の水位と濾過水取り出し口との水位との差、すなわち自然水頭のみによって濾過圧を得てもよく、さらに原液側から加圧することによって濾過圧を得てもよい。 With such a configuration shown in FIG. 3, sewage is biologically treated in the reaction tank 1, and sludge substances and the like are prevented from adhering to the membrane surface of the membrane separation unit 2a due to the air from the aeration means 4a. However, the treatment liquid in the reaction tank 1 can be filtered by the membrane separation unit 2a, and the filtered water can be sucked by the suction pump 3 and taken out of the tank. In the specific example of FIG. 3, the filtration pressure is obtained by the suction pump 3, but the filtration pressure may be obtained only by the difference between the water level in the reaction tank and the water level of the filtered water outlet, that is, the natural head. Further, the filtration pressure may be obtained by pressurizing from the stock solution side.

本発明の特徴は、このような仕切板挿入型の膜分離活性汚泥処理装置において、循環水量調節装置と第1及び第2の溶存酸素計を設ける点にある。 A feature of the present invention is that such a partition plate insertion type membrane separation activated sludge treatment apparatus is provided with a circulating water amount adjusting device and first and second dissolved oxygen meters.

本発明における循環水量調節装置とは、反応槽内に水流を発生させる装置又は機器であれば特に限定されないが、曝気手段(散気装置)からのエアにより反応槽内に形成される循環流の流速を制御することができる装置であるのが好ましい。ここで「循環流」とは、図3に示すように、仕切板内外が越流状態である場合に、膜分離ユニット収容区画から、仕切板7の上を越えてその他の区画に入り、その他の区画内を下降し、仕切板7よりも下の領域を介して膜ユニット収容区画に戻る液の流れである。該循環水量調節装置は、仕切板の上部又は上端に設けるのが好ましく、膜分離ユニット収容区画からその他の区画へ移動する循環流の流速を調節する手段であることが好ましい。 The circulating water amount adjusting device in the present invention is not particularly limited as long as it is a device or device that generates a water flow in the reaction tank, but the circulating water flow formed in the reaction tank by the air from the aeration means (aeration device). A device capable of controlling the flow velocity is preferable. Here, the term "circulating flow" means, as shown in FIG. 3, when the inside and outside of the partition plate is in an overflow state, the membrane separation unit accommodating section passes over the partition plate 7 and enters another section, and the like. It is a flow of liquid that descends in the compartment and returns to the membrane unit accommodating compartment through the region below the partition plate 7. The circulating water amount adjusting device is preferably provided at the upper part or the upper end of the partition plate, and is preferably a means for adjusting the flow velocity of the circulating flow moving from the membrane separation unit accommodating section to another section.

以下に、本発明における循環水量調節装置を図4~6を参照しつつ説明する。図4においては、循環水量調節装置の理解を容易にするために、溶存酸素計と補助曝気手段を省略した。
本発明における循環水量調節装置の第1の態様は、循環水量調節板と、該循環水量調節板をスイングさせる(振り動かす)ための調節板移動手段を備えたスイング式循環水量調節装置である。具体的には、図4に示すような、循環水量調節板(以下、「スイング板」ともいう)20aと、該スイング板の長手方向の一辺を固定する固定部材21aと、該スイング板20aをスイングさせるための調節板移動手段22を備えたスイング式循環水量調節装置である。また、図4の上図は、スイング板20a及び20bが仕切板上部を完全に覆い、循環流を遮断した場合における、本発明の膜分離活性汚泥処理装置の上面図である(図4の側面図において、右側の循環水量調節装置は省略し、上面図において、調節板移動手段22は省略した)。
Hereinafter, the circulating water amount adjusting device in the present invention will be described with reference to FIGS. 4 to 6. In FIG. 4, the dissolved oxygen meter and the auxiliary aeration means are omitted in order to facilitate the understanding of the circulating water amount adjusting device.
A first aspect of the circulating water amount adjusting device in the present invention is a swing type circulating water amount adjusting device including a circulating water amount adjusting plate and an adjusting plate moving means for swinging (swinging) the circulating water amount adjusting plate. Specifically, as shown in FIG. 4, a circulating water amount adjusting plate (hereinafter, also referred to as “swing plate”) 20a, a fixing member 21a for fixing one side of the swing plate in the longitudinal direction, and the swing plate 20a are provided. It is a swing type circulating water amount adjusting device provided with the adjusting plate moving means 22 for swinging. Further, the upper view of FIG. 4 is a top view of the membrane separation activated sludge treatment apparatus of the present invention when the swing plates 20a and 20b completely cover the upper part of the partition plate and block the circulating flow (side surface of FIG. 4). In the figure, the circulating water amount adjusting device on the right side is omitted, and in the top view, the adjusting plate moving means 22 is omitted).

図4に示すスイング板20aは、その長手方向の二つの辺のうちの一辺が棒状の固定部材21aに固定されている。また、スイング板20aは、調節板移動手段22と着脱可能なように連結しており、調節板移動手段22によりスイング板20aを上下に移動させスイングさせることにより、仕切板の上部において開度を調節することができる。 One of the two sides of the swing plate 20a shown in FIG. 4 in the longitudinal direction is fixed to the rod-shaped fixing member 21a. Further, the swing plate 20a is connected to the adjusting plate moving means 22 so as to be detachable, and the swing plate 20a is moved up and down by the adjusting plate moving means 22 to swing, thereby increasing the opening degree at the upper part of the partition plate. Can be adjusted.

ここで、スイング板の開度は、図4の側面図において、スイング板が仕切板上部を完全に覆い、循環流をほぼ完全に遮断した場合を開度0%とし、調節板移動手段22によりスイング板を上方向に移動させ、スイング板の下端部が反応槽内の液位よりも上位となった場合(全開の場合)を開度100%とし、固定部材を中心としたスイング板の移動角度に応じて0~100%の間で設定される。 Here, the opening degree of the swing plate is set to 0% when the swing plate completely covers the upper part of the partition plate and the circulating flow is almost completely blocked in the side view of FIG. 4, and the opening degree is set to 0% by the adjusting plate moving means 22. When the swing plate is moved upward and the lower end of the swing plate is higher than the liquid level in the reaction tank (when fully open), the opening degree is 100%, and the swing plate is moved around the fixing member. It is set between 0 and 100% depending on the angle.

スイング板は、膜分離ユニット収容区画から仕切板7の上を越えてその他の区画に入る循環流の水量を調節できるものであれば、矩形状、台形状、平板状等、どのような形状のものでもよい。図4に示すスイング板20aは、短手方向に湾曲した矩形状の調節板であり、調節板移動手段22方向(上方向)に湾曲した状態(凸状態)となるよう設置すると、仕切板上部において循環流の流れに沿った調節が可能となるため好ましい。 The swing plate has any shape such as a rectangular shape, a trapezoidal shape, a flat plate shape, etc. It may be a thing. The swing plate 20a shown in FIG. 4 is a rectangular adjusting plate curved in the lateral direction, and when installed so as to be curved in the adjusting plate moving means 22 direction (upward direction) (convex state), the upper part of the partition plate. It is preferable because it can be adjusted along the flow of the circulating flow.

スイング板の長手方向長さは、仕切板の上部全体を覆うよう仕切板上端とほぼ同じ長さものを使用できるが、仕切板上端の一部、例えば、仕切板上端の長さの1/5~1/2を覆う長さであってもよい。また、仕切板が反応槽内に複数個設置されている場合であっても、スイング板は全ての仕切板の上部を覆うよう設置する必要はなく、全ての仕切板の上端長さの一部、例えば、仕切板全体の上端長さの1/5~1/2に設置してもよい。スイング板の短手方向長さは、スイング板を調節板移動手段22により仕切板方向(下方向)に移動させた場合に、スイング板が仕切板上部を完全に覆い、循環流をほぼ完全に遮断可能となるような長さとするのが好ましい。また、スイング板の厚みは、循環流の制御に耐える強度を有する厚みであればよい。 The length of the swing plate in the longitudinal direction can be almost the same as the upper end of the partition plate so as to cover the entire upper part of the partition plate, but a part of the upper end of the partition plate, for example, 1/5 of the length of the upper end of the partition plate. It may be a length that covers up to 1/2. Further, even if a plurality of partition plates are installed in the reaction tank, the swing plate does not need to be installed so as to cover the upper part of all the partition plates, and is a part of the upper end length of all the partition plates. For example, it may be installed at 1/5 to 1/2 of the upper end length of the entire partition plate. The length of the swing plate in the lateral direction is such that when the swing plate is moved in the direction of the partition plate (downward) by the adjusting plate moving means 22, the swing plate completely covers the upper part of the partition plate and the circulating flow is almost completely covered. It is preferable that the length is such that it can be cut off. Further, the thickness of the swing plate may be any thickness as long as it has enough strength to withstand the control of the circulating flow.

固定部材21aとしては、スイング板をスイング可能なように固定するものであれば特に限定されない。固定部材21aとしては、例えば、棒状の固定部材の側面にスイング板20aの長手方向の一辺を固定すると共に、棒状部材の両端を軸受を用いて回転可能なように反応槽の槽壁に連結させる構成とすることができる。あるいは、中空管と、その中空管の中を貫通する棒状部材を組み合わせた部材を使用し、スイング板20aの長手方向の一辺が該中空管の側面に固定されると共に、該中空管の中を貫通する棒状部材の両端が反応槽の槽壁に固定される構成とすることができる。このような構成とすることにより、スイング板20aの長手方向の一辺が固定部材に固定されたまま、調節板移動手段22によりスイング板20aを上下にスイングさせ、仕切板の上部を開閉することができる。 The fixing member 21a is not particularly limited as long as it fixes the swing plate so that it can swing. As the fixing member 21a, for example, one side of the swing plate 20a in the longitudinal direction is fixed to the side surface of the rod-shaped fixing member, and both ends of the rod-shaped member are connected to the tank wall of the reaction tank so as to be rotatable by using bearings. It can be configured. Alternatively, using a member that combines a hollow tube and a rod-shaped member penetrating the hollow tube, one side of the swing plate 20a in the longitudinal direction is fixed to the side surface of the hollow tube, and the hollow is formed. Both ends of the rod-shaped member penetrating the inside of the pipe can be fixed to the tank wall of the reaction tank. With such a configuration, the swing plate 20a can be swung up and down by the adjusting plate moving means 22 while one side of the swing plate 20a in the longitudinal direction is fixed to the fixing member, and the upper part of the partition plate can be opened and closed. can.

固定部材21aの両端を反応槽の槽壁に固定する位置は、循環水量の調節を効率的に行い、処理液による固定部材21の腐食を低減するという観点から、反応槽内の最高液位よりも上位とするのが好ましい。また、固定部材21の両端は、循環水量の調節を効率的に行うという観点から、仕切板7の真上よりも前記その他の区画方向にずらした位置に固定するのが好ましい。 The position where both ends of the fixing member 21a are fixed to the tank wall of the reaction tank is from the highest liquid level in the reaction tank from the viewpoint of efficiently adjusting the circulating water amount and reducing the corrosion of the fixing member 21 by the treatment liquid. Is also preferable. Further, from the viewpoint of efficiently adjusting the amount of circulating water, both ends of the fixing member 21 are preferably fixed at positions shifted in the other section direction from directly above the partition plate 7.

また、調節板移動手段22としては、スイング板を上下に移動可能なものであれば特に限定されないが、電動シリンダーや空気圧式又は油圧式シリンダー等の公知の駆動装置を使用することができる。 Further, the adjusting plate moving means 22 is not particularly limited as long as it can move the swing plate up and down, but a known driving device such as an electric cylinder, a pneumatic cylinder, or a hydraulic cylinder can be used.

図4に示す循環水量調節手段以外にも、様々な機構及び形状のものを使用することができる。例えば、図5に示すように、短手方向に曲折した矩形状のスイング板20cを使用することもできる。このようなスイング板を、調節板移動手段22方向(上方向)に曲折した状態(凸状態)となるように設置すると、仕切板上部において循環流の流れに沿った調節が可能となるため好ましい。なお、図5に示す循環水量調節手段は、スイング板が短手方向に曲折した形状であること以外は、図4に示す循環水量調節手段と同様の構成とし、同様の機能を達成することができる。 In addition to the circulating water volume adjusting means shown in FIG. 4, various mechanisms and shapes can be used. For example, as shown in FIG. 5, a rectangular swing plate 20c bent in the lateral direction can also be used. If such a swing plate is installed so as to be bent (convex state) in the adjusting plate moving means 22 direction (upward direction), it is preferable to adjust the upper part of the partition plate along the flow of the circulating flow. .. The circulating water amount adjusting means shown in FIG. 5 has the same configuration as the circulating water amount adjusting means shown in FIG. 4, except that the swing plate is bent in the lateral direction, and can achieve the same function. can.

図4及び図5に示すスイング式の構成以外にも、スイング板(循環水量調節板)をヒンジ部材等を介して仕切板上端部に固定し、該スイング板を調節板移動手段に着脱可能なように連結させ、該調節板移動手段によりスイング板を転倒させることにより、仕切板の上部を開閉させる転倒式ダム構造の循環水量調節手段も使用できる。 In addition to the swing type configuration shown in FIGS. 4 and 5, a swing plate (circulating water amount adjusting plate) is fixed to the upper end of the partition plate via a hinge member or the like, and the swing plate can be attached to and detached from the adjusting plate moving means. A means for adjusting the amount of circulating water in an overturning dam structure that opens and closes the upper part of the partition plate can also be used by connecting the swing plates in such a manner and causing the swing plate to be overturned by the adjusting plate moving means.

また、スイング板の代わりに、風船や中空シートのように、内部に空気を導入することにより膨張又は拡張させることのできる部材を仕切板の上端や上部に設置し、循環流を堰き止めることにより循環水量を調節する堰き止め方式の循環水量調節手段も使用できる。 Also, instead of the swing plate, a member that can be expanded or expanded by introducing air inside, such as a balloon or a hollow sheet, is installed at the upper end or upper part of the partition plate to block the circulation flow. A damming type circulating water volume adjusting means for adjusting the circulating water volume can also be used.

本発明における循環水量調節装置の第2の態様は、図6に示すような開口部31を有するスライド板30を備えた循環水量調節装置である。スライド板30は、同じく開口部32を有する仕切板7の上端付近に設置され、スライド板30を水平方向にスライドさせた場合に、スライド板30の開口部31と仕切板の開口部32の重なり具合を調節することにより、仕切板の開度(開口率)を調節することができる。 A second aspect of the circulating water amount adjusting device in the present invention is a circulating water amount adjusting device provided with a slide plate 30 having an opening 31 as shown in FIG. The slide plate 30 is installed near the upper end of the partition plate 7 also having the opening 32, and when the slide plate 30 is slid in the horizontal direction, the opening 31 of the slide plate 30 and the opening 32 of the partition plate overlap. By adjusting the condition, the opening degree (opening ratio) of the partition plate can be adjusted.

ここで、スライド板の開度(開口率)は、図6において、仕切板の開口部とスライド板の開口部が重ならず、循環流をほぼ完全に遮断した場合を開度0%とし、開口部同士が完全に重なり全開となった場合を開度100%とし、全開した場合の開口総面積に対する開口部の総面積の割合として規定される。 Here, the opening degree (opening ratio) of the slide plate is set to 0% when the opening of the partition plate and the opening of the slide plate do not overlap and the circulating flow is almost completely blocked in FIG. The case where the openings are completely overlapped with each other and fully opened is defined as 100% of the opening, and is defined as the ratio of the total area of the openings to the total area of the openings when the openings are fully opened.

スライド板と仕切板の開口部の形状は矩形状、円状、楕円状等から適宜選択できる。また、スライド板全体の面積に占める全開口部の合計面積は、1/3~2/3程度とするのがよい。スライド板全体の形状は特に限定されないが、通常は、水平方向にスライドしやすい矩形状の板が使用できる。スライド板30は、複数のスライド板固定部材33を用いることにより、水平方向にスライド可能なように仕切板上端付近に固定することができる。スライド板の水平方向への移動はスライド板移動手段34を用いて行うことができ、スライド板移動手段34としては、例えば、電動シリンダーや空気圧式又は油圧式シリンダー等の公知の駆動装置を使用することができる。 The shape of the opening of the slide plate and the partition plate can be appropriately selected from a rectangular shape, a circular shape, an elliptical shape, and the like. Further, the total area of all openings in the total area of the slide plate is preferably about 1/3 to 2/3. The shape of the entire slide plate is not particularly limited, but usually, a rectangular plate that easily slides in the horizontal direction can be used. The slide plate 30 can be fixed near the upper end of the partition plate so as to be slidable in the horizontal direction by using a plurality of slide plate fixing members 33. The horizontal movement of the slide plate can be performed by using the slide plate moving means 34, and as the slide plate moving means 34, for example, a known drive device such as an electric cylinder or a pneumatic or hydraulic cylinder is used. be able to.

このようなスライド板を備えた循環水量調節装置を用いる場合には、反応槽内の液位運転水位を、図6に示すように、スライド板と仕切板の開口部上端よりも低く、スライド板と仕切板の開口部の下から約3分の1よりも高い範囲の運転水位とするのがよい。このような運転水位範囲に液位を維持すれば、スライド板30を用いて仕切板の開度(開口率)を調節することにより、効率的な脱窒反応を進行させることができる。 When a circulating water volume adjusting device equipped with such a slide plate is used, the liquid level operating water level in the reaction tank is lower than the upper end of the opening of the slide plate and the partition plate as shown in FIG. 6, and the slide plate is used. It is preferable to set the operating water level in a range higher than about one-third from the bottom of the opening of the partition plate. If the liquid level is maintained in such an operating water level range, an efficient denitrification reaction can be promoted by adjusting the opening degree (opening ratio) of the partition plate using the slide plate 30.

本発明の膜分離活性汚泥処理装置は、上述した循環水量調節装置と共に、循環水中の溶存酸素濃度を測定するための第1及び第2の溶存酸素計(DO計)を設けることを特徴とする。
第1の溶存酸素計(DO1)は、膜分離ユニット収容区画に設けるが、効率的な制御を行うためには、膜分離ユニット収容区画の中央部付近であって、膜分離ユニットの上端よりも上部であり、反応槽内の液位が最低水位となっても、DO1が液に浸漬する位置に設置するのがよい。また、第2の溶存酸素計(DO2)は、膜分離ユニット収容区画以外の区画(その他の区画)に設けるが、効率的な制御を行うためには、反応槽内の液位深さの半分程度の位置に設置するのがよい。
The membrane-separating activated sludge treatment apparatus of the present invention is characterized in that a first and second dissolved oxygen meters (DO meters) for measuring the dissolved oxygen concentration in the circulating water are provided together with the above-mentioned circulating water amount adjusting device. ..
The first dissolved oxygen meter (DO1) is provided in the membrane separation unit accommodating compartment, but for efficient control, it is near the central portion of the membrane separation unit accommodating compartment and above the upper end of the membrane separation unit. It is the upper part, and even if the liquid level in the reaction tank becomes the lowest water level, it is preferable to install it at a position where DO1 is immersed in the liquid. Further, the second dissolved oxygen meter (DO2) is provided in a compartment (other compartment) other than the membrane separation unit accommodating compartment, but in order to perform efficient control, it is half the liquid level depth in the reaction vessel. It is better to install it in a certain position.

本発明においては、上記の循環水量調節装置と第1及び第2の溶存酸素計(DO計)を組み合わせて制御を行うことにより、窒素除去効率が高く、流入下水量の負荷変動に適用可能な処理を行うことができる。具体的には、第1の溶存酸素計(DO1)により測定した溶存酸素濃度が、予め設定したDO1の目標値となるよう補助曝気手段(ブロワー)による送風量を制御し、第2の溶存酸素計(DO2)により測定した溶存酸素濃度が、予め設定したDO2の目標値となるよう循環水量調節装置の開度を制御する。 In the present invention, by controlling the circulating water amount adjusting device in combination with the first and second dissolved oxygen meters (DO meters), the nitrogen removal efficiency is high and it can be applied to the load fluctuation of the inflow sewage amount. Processing can be performed. Specifically, the amount of air blown by the auxiliary aeration means (blower) is controlled so that the dissolved oxygen concentration measured by the first dissolved oxygen meter (DO1) becomes the preset target value of DO1, and the second dissolved oxygen. The opening degree of the circulating water amount adjusting device is controlled so that the dissolved oxygen concentration measured by the meter (DO2) becomes a preset target value of DO2.

予め設定するDO1の目標値は、0.5~2.0mg/L程度であり、予め設定するDO2の目標値は、0.1~0.5mg/L程度である。DO1とDO2の目標値は24時間一定とすることもできるが、下記表1に示すように、1日の中でも負荷状況に応じて時間帯により変更する方がより細やかな制御が可能となる。なお、下記表1において、負荷状況は、流入排水量や汚濁物質の濃度が高い順に高負荷、中負荷及び低負荷と分類したものである。 The preset target value of DO1 is about 0.5 to 2.0 mg / L, and the preset target value of DO2 is about 0.1 to 0.5 mg / L. The target values of DO1 and DO2 can be fixed for 24 hours, but as shown in Table 1 below, finer control is possible by changing the target values according to the time zone according to the load condition even during the day. In Table 1 below, the load status is classified into high load, medium load, and low load in descending order of the amount of inflow and drainage and the concentration of pollutants.

Figure 0007016622000001
Figure 0007016622000001

以下に、図3に基づき、本発明における具体的な制御方法について説明する。
反応槽1に原水を供給する原水ポンプ8は、インバータの周波数が20~50Hzの範囲内で制御可能であり、原則として、ろ過ポンプの吸引流量と同じか少し多い流量にして、50Hz等の一定流量で運転を行う。反応槽の水位が最高水位(H)に達したら原水ポンプを停止し、最低水位(L)まで低下したら原水ポンプの運転を開始するようにレベル制御を行う。また、原水槽の水位が最低水位(L)レベル以下となった場合には、インターロックをして空運転を防止する。
Hereinafter, a specific control method in the present invention will be described with reference to FIG.
The raw water pump 8 that supplies raw water to the reaction tank 1 can control the frequency of the inverter within the range of 20 to 50 Hz. Operate at the flow rate. Level control is performed so that the raw water pump is stopped when the water level in the reaction tank reaches the maximum water level (H) and the operation of the raw water pump is started when the water level drops to the minimum water level (L). Further, when the water level of the raw water tank becomes equal to or lower than the minimum water level (L) level, an interlock is performed to prevent empty operation.

ろ過ポンプ3は、インバータの周波数が20~50Hzの範囲内で制御可能である。原則として、50Hz等の一定流量で運転を行う。浸漬膜分離ユニットの膜表面のファウリングを防止するために、9分間吸引したら1分間停止するサイクルを繰り返す。あるいは、流入原水量の変動に合わせてろ過水量を変化させる様にしても良い。反応槽内の液位が浸漬膜分離ユニットの上端まで低下した場合(LLレベル)には、ろ過ポンプ3はインターロックされ空運転が防止される。 The filtration pump 3 can control the frequency of the inverter within the range of 20 to 50 Hz. As a general rule, operate at a constant flow rate such as 50 Hz. In order to prevent fouling of the membrane surface of the immersion membrane separation unit, a cycle of sucking for 9 minutes and then stopping for 1 minute is repeated. Alternatively, the amount of filtered water may be changed according to the fluctuation of the amount of inflow raw water. When the liquid level in the reaction vessel drops to the upper end of the immersion membrane separation unit (LL level), the filtration pump 3 is interlocked to prevent empty operation.

膜洗浄用ブロワ(B1)は、インバータの周波数が20~50Hzの範囲内で制御可能であり、膜面積当たりの曝気量SADmが0.1~0.15の範囲で、原則として一定風量で連続運転を行う(SADm(Specific-Air-Demand per membrane surface area)は必要な曝気量を意味し、通常はNm/m/hの単位で表される)。 The membrane cleaning blower (B1) can control the frequency of the inverter within the range of 20 to 50 Hz, and the aeration amount SADm per membrane area is in the range of 0.1 to 0.15, and in principle, it is continuous with a constant air volume. Perform driving (SADm (Specific-Air-Demand per membrane surface area) means the required amount of aeration, usually expressed in units of Nm 3 / m 2 / h).

なお、流入原水量の変動に合わせてろ過水量を変化させる場合には、膜フラックスに合わせて、膜洗浄用ブロワ(B1)の送風量をSADmとして0.05~0.2の範囲で調整することも有効である。ここで、膜フラックスとは、単位膜面積・単位時間当たりの膜ろ過水量(m/m/d)を表す。
下記表2に、1日の負荷時間帯に合わせて設定された膜フラックスの目標値の例と、この膜フラックスの値に対応させて調整可能な膜洗浄用ブロワ(B1)のSADmを示す。
When the amount of filtered water is changed according to the fluctuation of the amount of inflow raw water, the amount of air blown by the membrane cleaning blower (B1) is adjusted in the range of 0.05 to 0.2 as SADm according to the membrane flux. That is also effective. Here, the membrane flux represents a unit membrane area and the amount of membrane filtered water per unit time (m 3 / m 2 / d).
Table 2 below shows an example of the target value of the membrane flux set according to the load time zone of one day, and the SADm of the membrane cleaning blower (B1) that can be adjusted according to the value of the membrane flux.

Figure 0007016622000002
Figure 0007016622000002

補助曝気ブロワ(B2)は、インバータの周波数が20~50Hzの範囲内で制御可能であり、DO1により測定した溶存酸素濃度の値が目標値となる様に送風量を自動制御(PID制御)することにより、補助曝気手段の曝気量を調節する。具体的には、DO1の測定値が目標値よりも小さい場合には、補助曝気ブロワ(B2)の送風量を大きくするよう制御し、DO1の測定値が目標値よりも大きい場合には、補助曝気ブロワ(B2)の送風量を小さくするよう制御する。インバータの周波数が制御可能範囲の下限値においても、DO1が目標値以上である場合には、一定時間(例えば、30分間)補助曝気ブロワ(B2)を停止する。 The auxiliary aeration blower (B2) can control the frequency of the inverter within the range of 20 to 50 Hz, and automatically controls the amount of air blown (PID control) so that the value of the dissolved oxygen concentration measured by DO1 becomes the target value. Thereby, the aeration amount of the auxiliary aeration means is adjusted. Specifically, when the measured value of DO1 is smaller than the target value, the auxiliary aeration blower (B2) is controlled to increase the amount of air blown, and when the measured value of DO1 is larger than the target value, the auxiliary is controlled. The amount of air blown by the aeration blower (B2) is controlled to be small. Even when the frequency of the inverter is at the lower limit of the controllable range, if DO1 is equal to or higher than the target value, the auxiliary aeration blower (B2) is stopped for a certain period of time (for example, 30 minutes).

補助曝気ブロワ(B2)は、必要酸素量に対して膜洗浄用ブロワ(B1)によって供給される酸素量を差引いた酸素量(補助酸素量)を供給するために用いる。前述の通り補助曝気手段は膜洗浄用曝気手段と比較して酸素移動効率が2~5倍高いことから、膜洗浄用ブロワの風量を可能な限り少なくした上で(例えば、前述の通り1日の負荷時間帯に合わせてSADmを設定する)、補助曝気ブロワを効率よく制御することが、電力消費量削減に寄与できる。また、効率的に制御できる範囲が広いブロワ(例えば、スクリュー式ブロワ)を用いることも有効である。 The auxiliary aeration blower (B2) is used to supply an oxygen amount (auxiliary oxygen amount) obtained by subtracting the oxygen amount supplied by the membrane cleaning blower (B1) from the required oxygen amount. As described above, the auxiliary aeration means has an oxygen transfer efficiency of 2 to 5 times higher than that of the membrane cleaning aeration means. Therefore, after reducing the air volume of the membrane cleaning blower as much as possible (for example, one day as described above). SADm is set according to the load time zone of the above), and efficient control of the auxiliary aeration blower can contribute to the reduction of power consumption. It is also effective to use a blower having a wide range of efficient control (for example, a screw type blower).

循環水量調節装置は、DO2により測定した溶存酸素濃度が目標値となるように、開度を10~100%の範囲内で自動制御(PID制御)する。すなわち、DO2が目標値よりも大きい場合には、DO1からDO2に達するまでの時間に消費する酸素量が少ないことを意味するので、循環流速を遅くするために、循環水量調節装置の開度を小さくするよう制御する。逆に、DO2が目標値よりも小さい場合には酸素消費量が大きいので、循環流速を早くするために、循環水量調節装置の開度を大きくするよう制御する。循環水量調節装置の開度が制御下限値である10%の場合においても、DO2の測定値が目標値よりも大きい場合には、一定時間(30分間等)循環水量調節装置を全閉する。 The circulating water amount adjusting device automatically controls the opening degree within the range of 10 to 100% (PID control) so that the dissolved oxygen concentration measured by DO2 becomes the target value. That is, when DO2 is larger than the target value, it means that the amount of oxygen consumed in the time from DO1 to DO2 is small. Therefore, in order to slow down the circulation flow rate, the opening degree of the circulating water amount adjusting device is adjusted. Control to make it smaller. On the contrary, when DO2 is smaller than the target value, the oxygen consumption is large, so that the opening degree of the circulating water amount adjusting device is controlled to be increased in order to increase the circulating flow velocity. Even when the opening degree of the circulating water amount adjusting device is 10%, which is the lower limit of control, if the measured value of DO2 is larger than the target value, the circulating water amount adjusting device is fully closed for a certain period of time (30 minutes, etc.).

図7に、本発明の膜分離活性汚泥処理装置の別の実施態様を示す。本実施形態では、循環流速を高く維持できるように、複数の膜分離ユニット2bを仕切板7の近くに設け、膜分離ユニット2bの下方に膜洗浄用の曝気手段(散気装置)4cを設置した。補助曝気手段(散気装置)4dは膜分離ユニット収容区画下方の中心部に配置し、その上部にDO1を配置した。また、DO2は膜分離ユニット収容区画以外の区画に設置した。 FIG. 7 shows another embodiment of the membrane separation activated sludge treatment apparatus of the present invention. In the present embodiment, a plurality of membrane separation units 2b are provided near the partition plate 7 and an aeration means (aeration device) 4c for membrane cleaning is installed below the membrane separation unit 2b so that the circulation flow velocity can be maintained high. did. The auxiliary aeration means (air diffuser) 4d was arranged in the central part below the membrane separation unit accommodating section, and DO1 was arranged in the upper part thereof. Further, DO2 was installed in a section other than the membrane separation unit accommodating section.

図7に示す実施態様においては、循環水量調節装置を補完するために撹拌機15を設置している。スイング式の循環水量調節装置により十分な制御が可能であれば省エネ効果が大きいが、十分な水流が得られない場合には撹拌機を設置することが効果的である。撹拌機の撹拌翼としては、プロペラ型、スクリュー型、パドル型等各種のものを使用することができる。 In the embodiment shown in FIG. 7, a stirrer 15 is installed to complement the circulating water amount adjusting device. If sufficient control is possible with a swing-type circulating water volume adjusting device, the energy saving effect is large, but if a sufficient water flow cannot be obtained, it is effective to install a stirrer. As the stirring blade of the stirrer, various types such as a propeller type, a screw type, and a paddle type can be used.

このような図7に示す装置によっても、上述したような制御、即ち、DO1及びDO2により測定した溶存酸素濃度が予め設定した目標値となるよう、補助曝気手段による曝気量と循環水量調節装置の開度を制御することにより、流入下水量の負荷変動に適応した効率的な窒素除去を行うことができる。 Even with the device shown in FIG. 7, the aeration amount and the circulating water amount adjusting device by the auxiliary aeration means so that the above-mentioned control, that is, the dissolved oxygen concentration measured by DO1 and DO2 becomes the preset target value. By controlling the opening degree, it is possible to efficiently remove nitrogen in accordance with the load fluctuation of the inflow sewage amount.

図3及び図7の装置において、好気ゾーンとは、膜分離ユニット収容区画内の曝気手段よりも上部とその他の区画の上部のゾーンであり、無酸素ゾーンとは、その他の区画内のDO2よりも下部と膜分離ユニット収容区画内の曝気手段よりも下部のゾーンである。この好気ゾーンと無酸素ゾーンの容量比は1:1~1:2となる様に設計することができる。一般に、BODや窒素の負荷が大きい場合には硝化速度がネックになり、負荷が小さい場合には脱窒速度がネックになる。従って、負荷が大きい場合には好気ゾーンと無酸素ゾーンの比率は1:1程度が好ましく、負荷が低い場合には1:2程度とするのが好ましい。負荷状況に応じた適切なゾーン比率となるよう、DO2の設置位置を上下させて調整するか、又は上記表1に示した様にDO2の目標値を負荷に応じて変化させることが好ましい。 In the apparatus of FIGS. 3 and 7, the aerobic zone is a zone above the aeration means in the membrane separation unit accommodating compartment and the zone above the other compartment, and the oxygen-free zone is the DO2 in the other compartment. The zone below and below the aeration means in the membrane separation unit containment compartment. The volume ratio of the aerobic zone to the anoxic zone can be designed to be 1: 1 to 1: 2. Generally, when the load of BOD or nitrogen is large, the nitrification rate becomes a bottleneck, and when the load is small, the denitrification rate becomes a bottleneck. Therefore, when the load is large, the ratio of the aerobic zone to the anoxic zone is preferably about 1: 1 and when the load is low, it is preferably about 1: 2. It is preferable to raise or lower the installation position of the DO2 so that the zone ratio becomes appropriate according to the load condition, or to change the target value of the DO2 according to the load as shown in Table 1 above.

上記のように、循環水量調節装置と第1及び第2の溶存酸素計(DO計)を組み合わせて制御を行うことにより、従来法(特許文献1)のように、仕切板内外で液の越流状態と分断状態を作り出すために液位を大きく変動させる必要がないため、原水を一定流量で連続的に反応槽に供給することが可能となる。このため、特別な原水供給装置や原水流量制御装置を設置する必要がない。なお、本発明において「一定流量」とは、ある所定の時間において流量が一定であればよく、最適な流量とするために変更されることがあってもよい。 As described above, by controlling the circulating water volume adjusting device in combination with the first and second dissolved oxygen meters (DO meters), the liquid flows inside and outside the partition plate as in the conventional method (Patent Document 1). Since it is not necessary to fluctuate the liquid level significantly in order to create a flow state and a split state, it is possible to continuously supply raw water to the reaction tank at a constant flow rate. Therefore, it is not necessary to install a special raw water supply device or raw water flow rate control device. In the present invention, the "constant flow rate" may be changed as long as the flow rate is constant at a predetermined time, and may be changed to obtain the optimum flow rate.

本発明においては、DO計の代わりに、又はDO計を補完する目的で、アンモニア計及び/又は硝酸計を設けて制御することもできる。すなわち、アンモニアが多い場合には硝化ゾーンを大きくし、硝酸が多い場合には脱窒ゾーンを大きくする様に制御する。 In the present invention, an ammonia meter and / or a nitric acid meter may be provided and controlled in place of the DO meter or for the purpose of complementing the DO meter. That is, when the amount of ammonia is large, the nitrification zone is enlarged, and when the amount of nitric acid is large, the denitrification zone is controlled to be large.

本発明の装置を用いた膜分離活性汚泥処理方法は、OD法に比べ高いMLSS濃度を維持できることから、硝化に必要なA-SRT(Aerobic Solid Retention Time:好気的固形物滞留時間)を確保して、低BOD-MLSS負荷の条件においても、微生物の内生呼吸による酸素消費速度が大きくなるために、好気ゾーンと無酸素ゾーンの制御がし易くなるという利点を有する。 Since the membrane separation activated sludge treatment method using the apparatus of the present invention can maintain a higher MLSS concentration than the OD method, the A-SRT (Aerobic Solid Retention Time) required for nitrification is secured. Further, even under the condition of low BOD-MLSS load, since the oxygen consumption rate due to the endogenous respiration of microorganisms is increased, there is an advantage that the aerobic zone and the anoxic zone can be easily controlled.

本発明は、循環水量調節装置と第1及び第2の溶存酸素計を設けた膜分離活性汚泥処理装置、及びこの装置を用いた膜分離活性汚泥処理方法であれば、上記実施態様に限定されるものではなく、上記以外の処理条件および原水の前処理は、従来から周知の方法と同様の条件で行うことができる。 The present invention is limited to the above embodiment as long as it is a membrane separation activated sludge treatment apparatus provided with a circulating water volume adjusting device and first and second dissolved oxygen meters, and a membrane separation activated sludge treatment method using this apparatus. However, treatment conditions other than the above and pretreatment of raw water can be performed under the same conditions as those conventionally known.

本発明は、窒素除去効率を更に向上させ、流入下水量の日間の負荷変動に対しても高い適用性を示し、更には、反応槽内の処理時間(HRT)を大幅に短縮し、中大規模の下水処理場や工場排水処理でも採用可能な膜分離活性汚泥装置及び方法を提供することができる。 The present invention further improves the nitrogen removal efficiency, shows high applicability to daily load fluctuations of inflow sewage, and further shortens the treatment time (HRT) in the reaction vessel significantly, and is medium and large. It is possible to provide a membrane separation activated sludge device and a method that can be adopted in a large-scale sewage treatment plant or factory wastewater treatment.

1 反応槽
2、2a、2b 膜分離ユニット
3 吸引ポンプ
4、4a、4c 膜洗浄用曝気手段
4b、4d 補助曝気手段
5、5a、5b、5c ブロワ
6 レベルセンサー
7 仕切板
8 原水ポンプ
9 原水槽
10a 第1の溶存酸素計
10b 第2の溶存酸素計
15 撹拌機
20a、20b、20c 循環水量調節板(スイング板)
21a、21b、21c 固定部材
22 調節板移動手段
30 スライド板
31 スライド板開口部
32 仕切板開口部
33 スライド板固定部材
34 スライド板移動手段
1 Reaction tank 2, 2a, 2b Membrane separation unit 3 Suction pump 4, 4a, 4c Membrane cleaning aeration means 4b, 4d Auxiliary aeration means 5, 5a, 5b, 5c Blower 6 Level sensor 7 Partition plate 8 Raw water pump 9 Raw water tank 10a First Dissolved Oxygen Meter 10b Second Dissolved Oxygen Meter 15 Stirrer 20a, 20b, 20c Circulating Water Volume Adjusting Plate (Swing Plate)
21a, 21b, 21c Fixing member 22 Adjusting plate moving means 30 Slide plate 31 Slide plate opening 32 Partition plate opening 33 Slide plate fixing member 34 Slide plate moving means

Claims (6)

好気性処理および無酸素処理を行う単一の反応槽と、その反応槽の内部に配置された浸漬膜分離ユニットと、曝気手段とを有する膜分離活性汚泥処理装置であって、反応槽は、底部が反応槽の底面から離間して設けられた仕切板によって複数個の区画に分割され、その複数個の区画のうちの少なくとも一つの区画を、浸漬膜分離ユニットおよび曝気手段が配置された好気区画とし、その他の区画内で無酸素処理を行う膜分離活性汚泥処理装置において、循環水量調節装置を設けると共に、前記好気区画に第1の溶存酸素計を設け、前記その他の区画に第2の溶存酸素計を設け、前記循環水量調節装置が、循環水量調節板と調節板移動手段を備えたスイング式循環水量調節装置、又は開口部を有するスライド板を備えた循環水量調節装置であり、第2の溶存酸素計により測定した溶存酸素濃度が予め設定した目標値となるよう、前記循環水量調節板又はスライド板の開度を調節して循環水量を制御する手段を設けたことを特徴とする膜分離活性汚泥処理装置。 It is a membrane separation active sludge treatment apparatus having a single reaction tank for aerobic treatment and anoxic treatment, an immersion membrane separation unit arranged inside the reaction tank, and an aeration means, and the reaction tank is a reaction tank. The bottom portion is divided into a plurality of compartments by a partition plate provided apart from the bottom surface of the reaction tank, and at least one of the plurality of compartments is preferably provided with an immersion membrane separation unit and an aeration means. In the membrane-separated active sludge treatment apparatus which is used as an air compartment and performs oxygen-free treatment in the other compartments, a circulating water amount adjusting device is provided, a first dissolved oxygen meter is provided in the aerobic compartment, and a first dissolved oxygen meter is provided in the other compartments. The circulating water amount adjusting device provided with the dissolved oxygen meter of No. 2 is a swing type circulating water amount adjusting device provided with a circulating water amount adjusting plate and an adjusting plate moving means, or a circulating water amount adjusting device provided with a slide plate having an opening. It is characterized by providing a means for controlling the circulating water amount by adjusting the opening degree of the circulating water amount adjusting plate or the slide plate so that the dissolved oxygen concentration measured by the second dissolved oxygen meter becomes a preset target value. Membrane separation active sludge treatment equipment. 前記好気区画内に補助曝気手段を更に設け、第1の溶存酸素計により測定した溶存酸素濃度が予め設定した目標値となるよう、前記補助曝気手段による曝気量を制御する手段を設けた、請求項1記載の膜分離活性汚泥処理装置An auxiliary aeration means is further provided in the aerobic compartment, and a means for controlling the amount of aeration by the auxiliary aeration means is provided so that the dissolved oxygen concentration measured by the first dissolved oxygen meter becomes a preset target value. The membrane separation activated sludge treatment apparatus according to claim 1 . 前記スイング式循環水量調節装置は仕切板の上部に設けられ、前記循環水量調節板は長手方向の一辺が固定部材に固定され、前記循環水量調節板の開度は前記調節板移動手段が循環水量調節板を移動させることにより調節される、請求項1又は2に記載の膜分離活性汚泥処理装置 The swing-type circulating water amount adjusting device is provided on the upper part of the partition plate, one side of the circulating water amount adjusting plate is fixed to a fixing member in the longitudinal direction, and the opening degree of the circulating water amount adjusting plate is adjusted by the adjusting plate moving means. The membrane-separating activated sludge treatment apparatus according to claim 1 or 2, which is adjusted by moving the adjusting plate . 前記スライド板を備えた循環水量調節装置は開口部を有する仕切板の上端に設けられ、前記スライド板の開度はスライド板の開口部と仕切板の開口部の重なりを調節することにより調節される、請求項1又は2に記載の膜分離活性汚泥処理装置 The circulating water amount adjusting device provided with the slide plate is provided at the upper end of the partition plate having an opening, and the opening degree of the slide plate is adjusted by adjusting the overlap between the opening of the slide plate and the opening of the partition plate. The membrane separation active sludge treatment apparatus according to claim 1 or 2 . 反応槽に供給される原水の負荷状況に応じて予め設定した第1の溶存酸素計及び第2の溶存酸素計の目標値となるよう制御する手段を設けた、請求項1~4のいずれか一項に記載の膜分離活性汚泥処理装置。 Any of claims 1 to 4 , wherein a means for controlling the target values of the first dissolved oxygen meter and the second dissolved oxygen meter set in advance according to the load condition of the raw water supplied to the reaction tank is provided. The membrane separation activated sludge treatment apparatus according to item 1 . 浸漬膜分離ユニットを配置した単一の反応槽内で好気性処理および無酸素処理を行う膜分離活性汚泥処理方法であって、浸漬膜分離ユニットの周囲を底部が反応槽の底面から離間して設けられた仕切板で区画し、浸漬膜分離ユニットの下方から曝気を行うことにより、浸漬膜分離ユニットが配置された区画内を好気状態に維持しつつ、その他の区画内で無酸素処理を行う膜分離活性汚泥処理方法において、請求項1~5のいずれか一項に記載の膜分離活性汚泥処理装置を使用し、前記浸漬膜分離ユニットが配置された区画の溶存酸素濃度と、前記その他の区画の溶存酸素濃度をそれぞれ測定し、前記その他の区画の溶存酸素濃度の測定値が予め設定した目標値となるよう循環水の流速を制御することを特徴とする膜分離活性汚泥処理方法。 This is a membrane separation activated sludge treatment method in which aerobic treatment and anoxic treatment are performed in a single reaction vessel in which the immersion membrane separation unit is arranged. The bottom of the immersion membrane separation unit is separated from the bottom surface of the reaction vessel. By partitioning with the provided partition plate and aerating from below the immersion membrane separation unit, anoxic treatment is performed in the other compartments while maintaining the inside of the compartment where the immersion membrane separation unit is located in an aerobic state. In the membrane separation activated sludge treatment method to be carried out , the membrane separation activated sludge treatment apparatus according to any one of claims 1 to 5 is used, and the dissolved oxygen concentration of the section in which the immersion membrane separation unit is arranged and the other A membrane-separated activated sludge treatment method, characterized in that the dissolved oxygen concentration in each of the compartments is measured, and the flow velocity of the circulating water is controlled so that the measured value of the dissolved oxygen concentration in the other compartments becomes a preset target value.
JP2017089621A 2017-04-28 2017-04-28 Membrane separation activated sludge treatment equipment and membrane separation activated sludge treatment method Active JP7016622B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017089621A JP7016622B2 (en) 2017-04-28 2017-04-28 Membrane separation activated sludge treatment equipment and membrane separation activated sludge treatment method
PCT/JP2017/045050 WO2018198422A1 (en) 2017-04-28 2017-12-15 Membrane-separation activated sludge treatment device and membrane-separation activated sludge treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017089621A JP7016622B2 (en) 2017-04-28 2017-04-28 Membrane separation activated sludge treatment equipment and membrane separation activated sludge treatment method

Publications (2)

Publication Number Publication Date
JP2018187539A JP2018187539A (en) 2018-11-29
JP7016622B2 true JP7016622B2 (en) 2022-02-07

Family

ID=64479304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017089621A Active JP7016622B2 (en) 2017-04-28 2017-04-28 Membrane separation activated sludge treatment equipment and membrane separation activated sludge treatment method

Country Status (1)

Country Link
JP (1) JP7016622B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109467281B (en) * 2018-12-25 2024-03-05 湖南智水环境科技有限公司 Sewage treatment equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003136091A (en) 2001-11-01 2003-05-13 Yanmar Co Ltd Sewage treatment method, sewage treatment apparatus and sewage treatment system equipped with sewage treatment apparatus
JP2004261711A (en) 2003-02-28 2004-09-24 Yoshikimi Watanabe Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
JP2004305884A (en) 2003-04-07 2004-11-04 Kubota Corp Circulation type treatment tank
JP2005052804A (en) 2003-08-07 2005-03-03 Hiroshi Tsuno Waste water treatment equipment and operation method for the same
JP2008221160A (en) 2007-03-14 2008-09-25 Kobelco Eco-Solutions Co Ltd Denitrifying treatment device and denitrifying treatment method
JP2010110706A (en) 2008-11-07 2010-05-20 Obihiro Univ Of Agriculture & Veterinary Medicine System and method for treating organic waste
WO2014112640A1 (en) 2013-01-21 2014-07-24 昭和電工株式会社 System for treating nitrogen-containing water, and method for treating nitrogen-containing water

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003136091A (en) 2001-11-01 2003-05-13 Yanmar Co Ltd Sewage treatment method, sewage treatment apparatus and sewage treatment system equipped with sewage treatment apparatus
JP2004261711A (en) 2003-02-28 2004-09-24 Yoshikimi Watanabe Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
JP2004305884A (en) 2003-04-07 2004-11-04 Kubota Corp Circulation type treatment tank
JP2005052804A (en) 2003-08-07 2005-03-03 Hiroshi Tsuno Waste water treatment equipment and operation method for the same
JP2008221160A (en) 2007-03-14 2008-09-25 Kobelco Eco-Solutions Co Ltd Denitrifying treatment device and denitrifying treatment method
JP2010110706A (en) 2008-11-07 2010-05-20 Obihiro Univ Of Agriculture & Veterinary Medicine System and method for treating organic waste
WO2014112640A1 (en) 2013-01-21 2014-07-24 昭和電工株式会社 System for treating nitrogen-containing water, and method for treating nitrogen-containing water

Also Published As

Publication number Publication date
JP2018187539A (en) 2018-11-29

Similar Documents

Publication Publication Date Title
WO2018198422A1 (en) Membrane-separation activated sludge treatment device and membrane-separation activated sludge treatment method
CN102180543B (en) Highly-efficient stable bio-doubling sewage treatment device
JP4059790B2 (en) Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
KR20170117247A (en) Sewage Treatment Apparatus with Granular Activated Sludge and Bio Membrane-reactor and a Method for Treating Sewage Threrewith
JP7016623B2 (en) Membrane separation activated sludge treatment equipment and membrane separation activated sludge treatment method
JP2011194330A (en) Apparatus and method for treating wastewater
JP4409532B2 (en) Apparatus for treating wastewater containing high-concentration nitrogen such as livestock wastewater and manure, and its treatment method
CN110510815A (en) Integrated sewage treating apparatus and sewage water treatment method based on simultaneous nitrification-denitrification
KR100492683B1 (en) Method and Apparatus for Treating Wastewater
JP7016622B2 (en) Membrane separation activated sludge treatment equipment and membrane separation activated sludge treatment method
WO2018123647A1 (en) Membrane-separation activated sludge treatment device, membrane-separation activated sludge treatment method, raw water supply device, and raw water supply method
EP2049443B1 (en) A method and apparatus for simultaneous clarification and endogenous post denitrification
WO2018096583A1 (en) Microorganism reaction vessel and method for treating wastewater
US6773596B2 (en) Activated sludge method and device for the treatment of effluent with nitrogen and phosphorus removal
JP6941439B2 (en) Membrane separation activated sludge treatment equipment, membrane separation activated sludge treatment method and raw water supply equipment
KR101192174B1 (en) Plants for advanced treatment of wastewater
JP7220740B2 (en) MEMBRANE ACTIVATED SLUDGE TREATMENT APPARATUS AND MEMBRANE ACTIVATED SLUDGE TREATMENT METHOD
JP4034074B2 (en) Wastewater treatment equipment
JP2020501890A (en) Aeration reactor with internal solids separation
JPH09253687A (en) Anaerobic and aerobic treatment apparatus for waste water
JP5863409B2 (en) Wastewater treatment equipment
JP7121823B2 (en) Membrane separation activated sludge treatment device, membrane separation activated sludge treatment method and raw water supply device
FI123453B (en) clarifier
JP3652473B2 (en) Wastewater treatment system
KR0142581B1 (en) Wastewater Biofiltration Treatment Apparatus and Method Using Biofiltration Material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220126