JP4228614B2 - Phenylenediamine with ester bond - Google Patents

Phenylenediamine with ester bond Download PDF

Info

Publication number
JP4228614B2
JP4228614B2 JP2002228918A JP2002228918A JP4228614B2 JP 4228614 B2 JP4228614 B2 JP 4228614B2 JP 2002228918 A JP2002228918 A JP 2002228918A JP 2002228918 A JP2002228918 A JP 2002228918A JP 4228614 B2 JP4228614 B2 JP 4228614B2
Authority
JP
Japan
Prior art keywords
liquid crystal
diamine
polyamide
alignment film
varnish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002228918A
Other languages
Japanese (ja)
Other versions
JP2004067589A (en
Inventor
典央 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
JNC Petrochemical Corp
Original Assignee
Chisso Petrochemical Corp
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Petrochemical Corp, Chisso Corp filed Critical Chisso Petrochemical Corp
Priority to JP2002228918A priority Critical patent/JP4228614B2/en
Publication of JP2004067589A publication Critical patent/JP2004067589A/en
Application granted granted Critical
Publication of JP4228614B2 publication Critical patent/JP4228614B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術野】
本発明は、液晶セルのプレチルト角がラビング、洗浄等のセル製造工程における条件や液晶セルの周囲温度等環境変化に対し安定であり、液晶表示素子を製造したときに高い電圧保持率を持ち焼き付きが少ない液晶配向膜を製造する原料である、新規なフェニレンジアミン化合物に関する。
【0002】
【従来の技術】
液晶表示素子はその駆動方式に応じて、液晶が適切なプレチルト角を持つことが必要である。例えば、現在液晶ディスプレイの主流であるTN−TFT(Twisted Nematic-Thin Film Transistor)モードの表示素子においては、基板平面に対し液晶が数度から10度程度のプレチルト角を持つことが要求されている。またVA(vertically aligned)モードにおいては、セルに液晶を注入して配向処理した時に液晶を基板平面に対し垂直に配向させる必要がある。プレチルト角の制御には液晶配向膜の材料設計が重要である。近年では耐熱性や配向安定性に優れたポリイミドが液晶配向膜として主に使用されている。このようなポリイミド系液晶配向膜は、原料であるジアミンに大きな置換基を導入することによって、プレチルト角を大きくできることが知られている。このような目的のために開発されたフェニレンジアミンおよびそれを用いた液晶配向膜は、例えば、国際公開第97/30107号パンフレット等に記載されている。しかしながら、本発明のような長い側鎖を有するジアミンの合成例はこれらの特許には記載されていない。液晶配向膜には特に、液晶セルのプレチルト角がラビング、洗浄等のセル製造工程における条件や液晶セルの周囲温度等環境変化に対し安定であること、液晶表示素子を製造したときに高い電圧保持率を持つこと、焼き付きが少ないこと等が要求されている。この要求を充足するために、液晶配向膜の設計を行うに当たって、さらにさまざまな置換基を有する誘導体が開発されている。
【0003】
本発明の目的は上記の要求を充足する配向膜を製造する原料である、新規なフェニレンジアミンを提供することである。
【0004】
【課題を解決するための手段】
発明者らは鋭意研究開発を進めた結果、前記の式(1)のように、1,4−シクロヘキシレン及び1,4−フェニレンの環構造を、側鎖に3個から4個有するフェニレンジアミン誘導体を原料とした液晶配向膜は、これを用いた液晶表示素子が数度から90度までのプレチルト角を持つこと、またそのプレチルト角がラビング、洗浄等のセル製造工程における条件、さらにセルの周囲温度の変化によって変化しないことを見出した。この配向膜を用いれば、従来の配向膜に比べ、電圧保持率、焼き付き、および液晶の配向安定性等の特性を損なうことなく、プレチルト角の変化に起因するムラ等の表示不良の発生を防ぐことができることを見出した。
上記の目的を達成するための手段は次の項の通りである。
【0005】
(1)下記の式(1)で表されるフェニレンジアミン。

Figure 0004228614
およびA が1,4−シクロヘキシレンであり;A が1,4−フェニレンであり;A が単結合または1,4−フェニレンであり;Rは炭素数が1〜20のアルキルであり、このアルキルにおいて1つの−CH−は−O−で置き換えられてもよい。)
【0023】
【発明の実施の形態】
本発明は式(1)で表されるフェニレンジアミンである。本発明のフェニレンジアミンを原料の一部として得られるポリマーを含む液晶配向膜を用いれば、前述の要求を充足する液晶表示素子が得られる。以下、式(1)で表されるフェニレンジアミンをジアミン(1)と称することがある。
【0024】
ジアミン(1)のRは炭素数が1〜20のアルキルから任意に選ばれ、直鎖でも分岐でもよい。また1つの−CH−が−O−で置き換えられてもよい。具体例は、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、トリデシル、テトラデシル、ペンタデシル、ヘキサデシル、ヘプタデシル、オクタデシル、ノナデシル、エイコシル、イソプロピル、イソブチル、sec−ブチル、t−ブチル、イソペンチル、ネオペンチル、t−ペンチル、1−メチルペンチル、2−メチルペンチル、3−メチルペンチル、4−メチルペンチル、イソヘキシル、1−エチルペンチル、2−エチルペンチル、3−エチルペンチル、4−エチルペンチル、2,4−ジメチルヘキシル、2,3,5−トリエチルヘプチルメトキシ、エトキシ、プロピルオキシ、ブチルオキシ、ペンチルオキシ、ヘキシルオキシ、メトキシメチル、メトキシエチル、メトキシプロピル、メトキシブチル、メトキシペンチル、メトキシヘキシル、エトキシメチル、エトキシエチル、エトキシプロピル、エトキシブチル、エトキシペンチル、エトキシヘキシル、ヘキシルオキシメチル、ヘキシルオキシエチル、ヘキシルオキシプロピル、ヘキシルオキシブチル、ヘキシルオキシペンチル、ヘキシルオキシヘキシル等である。これらの中で好ましい例は、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、トリデシル、テトラデシル、ペンタデシル、ヘキサデシル、ヘプタデシル、オクタデシル、ノナデシル、エイコシル等である。
【0026】
ジアミン(1)は、前記の課題を解決するのに効果的であるが、その中でも特に好適な化合物として、以下の表1〜3に例示するRを有する化合物を挙げることができる1,4−シクロヘキシレンのシス/トランス異性体は混在してもよいが、トランス異性体が好ましい。
【0027】
表1
Figure 0004228614
【0028】
表2
Figure 0004228614
【0030】
アミン(1)を溶媒中でテトラカルボン酸二無水物と共重合させるとポリアミド酸、ポリイミドまたはそれらの混合物を含有する溶液(ワニス)が得られる。ワニスの溶媒を留去することによって、ポリアミド酸、ポリイミドまたはそれらの混合物が得られる。このときジアミン(1)は単独で使用してもよいが、ジアミン(1)の2つ以上を組み合わせてもよい。ジアミン(1)と他のジアミンとを組み合わせて使用してもよい。
【0031】
また、ジアミン(1)と、テトラカルボン酸二無水物とジカルボン酸誘導体との混合物を反応させるとポリアミドイミド、またはジアミン(1)とジカルボン酸誘導体を反応させるとポリアミドが得られる。ポリアミドイミドまたはポリアミドは配向膜を製造する際に単独で使用してもよく、さらに前記のポリアミド酸、ポリイミドまたはそれらの混合物と併用してもよい。なお、ジカルボン酸誘導体とは、ジカルボン酸またはジカルボン酸のジメチルエステル、ジエチルエステル等、ジアミン(1)と反応してポリアミドイミドまたはポリアミドになる化合物の総称である。
【0032】
ジアミン(1)をすべてのジアミンに対し1〜50モル%の比率で共重合して得たポリイミド、ポリアミドまたはポリアミドイミドは5〜10度程度のプレチルト角が必要とされる通常のTNモード用の液晶配向膜として特に好適である。またジアミン(1)をすべてのジアミンに対し50〜100モル%の比率で共重合して得たポリイミド、ポリアミドまたはポリアミドイミドは、VAモード用の液晶配向膜として特に好適である。
ジアミン(1)と共重合させることができる酸無水物の例は以下に示す化合物である。
【0033】
Figure 0004228614
【0034】
Figure 0004228614
【0035】
Figure 0004228614
【0036】
またジアミン(1)と併用することができるジアミンは、脂肪族ジアミン、脂環式ジアミンおよび芳香族ジアミンである。これらジアミンの例を以下に示す。
【0037】
Figure 0004228614
【0038】
Figure 0004228614
【0039】
Figure 0004228614
【0040】
Figure 0004228614
【0041】
Figure 0004228614
【0042】
これらのジアミンは単独でジアミン(1)と併用してもよく、2つ以上併用してもよい。本発明に使用するジアミンは上記の化合物以外でもよい。
【0043】
本発明のジアミンは下記の式(2)で表されるシロキサン系のジアミンとも併用して用いることができる。
Figure 0004228614
(式中、RおよびRは独立して炭素数1〜3のアルキルまたはフェニルであり;Rはメチレン、フェニレンまたはアルキルで置換されたフェニレンであり;vは1〜6の整数であり;wは1〜10の整数である。)
【0044】
ワニスは、ジアミン(1)とテトラカルボン酸二無水物または/およびジカルボン酸誘導体を溶媒中で重合させて得られた反応生成物で、ポリアミド酸、ポリイミド、ポリアミドイミドまたはポリアミドの少なくとも1つを含有する。反応生成物の溶媒を留去した後、異なる溶媒に溶解させてワニスを調整してもよい。
【0045】
特性を更に改善するために、ジアミン(1)とジカルボン酸誘導体とを反応させたポリアミドを前記のポリアミド酸またはポリイミドに添加してもよい。このポリアミドの成分としてジアミン(1)を単独で使用してもよいが、ジアミン(1)の2つ以上を、またはジアミン(1)と他のジアミンとを組み合わせて使用してもよい。このポリアミドの代わりにジアミン(1)と他のテトラカルボン酸二無水物およびジカルボン酸誘導体との混合物とを反応させたポリアミドイミドを用いてもよい。
上記のポリアミドまたはポリアミドイミドの添加量は、ポリマー全体に対し0.01〜30重量%が好ましく、0.01〜10重量%がより好ましく、0.1〜5重量%が更に好ましい。
【0046】
さらに液晶配向膜のガラス基板への密着性の改善を行うために、アミノシリコン化合物等の第3成分をこれらに添加してもよい。アミノシリコン化合物の具体例は、下記の4−トリメトキシシリルアニリンなど、分子内にアミノ基とケイ素を含む置換基を有する化合物である。
Figure 0004228614
【0047】
ポリアミドイミドのアミド基の比率を、
r=(アミド基の数/(アミド基の数+イミド基の数))×100
で表すとき、rは0.1〜99%の範囲で任意に選択できる。ここにおいてrが50%以上の場合は既述の添加剤としての用途に好ましい。またrが20%以下の場合はポリアミドイミド単独でも配向膜とすることができる。
【0048】
リイミド、ポリアミドまたはポリアミドイミドの溶解に使用される溶媒の例はN−メチル−2−ピロリドン(NMP)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、ジメチルスルホキシド(DMSO)、エチレングリコールモノブチルエーテル(BC)、エチレングリコールモノエチルエーテル、γ−ブチロラクトンである。これらの溶媒の2種以上を混合して用いてもよい。また、上記溶媒以外であっても反応生成物が可溶であればこれらに限定されるものではない。
【0049】
ワニスから配向膜が製造される。ワニスは前記の有機溶媒に0.1〜30重量%、好ましくは1〜10重量%の濃度で本発明のポリアミド酸、ポリイミド、ポリアミド、およびポリアミドイミドの少なくとも1つ、および必要に応じてその他の成分を溶解させた溶液である。このワニスを刷毛塗り法、浸漬法、スピンナー法、スプレー法、印刷法等により基板上に塗布する。その後50〜150℃、好ましくは80〜120℃で溶媒を蒸発させた後、150〜400℃好ましくは180〜280℃で加熱し、成膜する。塗布前に基盤表面上をシランカップリング剤で処理し、その上に成膜すれば膜と基板との接着性を改善できる。その後、必要であればこの膜表面を布等で一方向にラビングすることにより、配向膜が得られる。
【0050】
配向膜は液晶表示素子に用いられる。本発明のジアミン(1)を用いた配向膜を使用すれば、公知のすべての液晶表示素子に関し、その特性を改善できるが、特に高い電圧保持率が要求される分野において好適であり、しかも焼き付き改善の効果が大きい。このようなTFT型液晶表示素子用(TNモード用、IPSモード用、VAモード用、またはOCBモード用)に使用される液晶組成物の例としては、特許第3086228号、特許第2635435号、特表平5−501735号公報、特開平8−199168号公報、特開平9−235552号公報、特開平9−241643号公報、特開平9−255956号公報、特開平10−176167号公報、特開平10−204016号公報、特開平10−204436号公報、特開平10−231482号公報、特開平11−228966号公報、特開2000−087040公報、特開2001−48822公報、および特開2001−192657公報等に記載されたそれらが挙げられる。したがって液晶配向膜はこれらに記載された、末端に−OCF基を有する化合物やフッ素原子を1〜3個あるいはそれ以上有する化合物などを含有する高い電圧保持率を有するフッ素系液晶組成物と組み合わせて用いるのが特に好ましい。また、前記液晶組成物に1種以上の光学活性化合物を含有して使用することも何ら差し支えない。
【0051】
本発明のジアミン(1)は以下のような方法で容易に合成できる。
EP19921318等に従って合成した式(1−1)で表される化合物を市販の3,5−ジニトロ安息香酸クロリドと反応させることにより式(1−2)で表される化合物が得られる。この化合物を水素添加反応することにより一般式(1)で表される化合物が得られる。
【0052】
Figure 0004228614
【0053】
本発明のフェニレンジアミン化合物は、液晶配向膜用ポリイミド樹脂以外にも、各種ポリイミドコーティング剤、ポリイミド樹脂成型品、フィルム、または繊維等に利用することができる。さらにはポリアミド樹脂、ポリアミドイミド樹脂、ポリウレア樹脂の原料、あるいはエポキシ樹脂の硬化剤等として用いることもできる。
【0054】
【実施例】
以下実施例によって本発明をさらに詳細に説明するが、本発明は実施例に限定されることはない。
実施例中、NMRはすべて重クロロホルム中で測定した。また融点(相転移点)は示差走査カロリメータ(DSC)を用い測定した。C、S、N、Iの記号はそれぞれ結晶、スメクチック、ネマチック、等方相を示す。分子量の測定はGPCを用い、ポリスチレンを標準溶液とし、溶出液はDMFを用いた。
【0055】
液晶表示素子の評価法
実施例で用いた液晶表示素子の評価法を記載する。
1.プレチルト角
クリスタルローテーション法により行った。測定に用いた光の波長は589nmである。
2.焼き付き(残留電荷)
三宅他、信学技報、EID91−111,p19に記載の方法により、残留電荷を測定した。この残留電荷を焼き付きの指標にした。つまり残留電荷が多いほど焼き付きやすいとした。測定時液晶セルに印加した電圧は、50mV、1kHzの交流と、周波数0.0036Hzの三角波を重畳させた交流電圧である。
3.電圧保持率
「水嶋他、第14回液晶討論会予稿集 p78」に記載の方法により行った。測定に用いた交流パルス電圧は、ゲート幅69μs、周波数60Hz、波高±4.5Vであった。
実施例中に記載された諸物性の測定値は、特に断りのない限り25℃の値である。
【0056】
実施例1;化合物No.1(表1)の合成
EP19921318に従って合成した4−(4−(4−メチルシクロヘキシル)シクロヘキシル)フェノール4.0g(15mmol)およびピリジン1.7g(21mmol)の塩化メチレン(30ml)溶液に0℃で3,5−ジニトロ安息香酸クロリド4.1g(18mmol)を加えた。室温で一晩反応させた後、塩化メチレン−純水系で抽出操作を行った。有機層を無水硫酸マグネシウムで乾燥した後、ろ過し、溶媒を減圧留去した。残さをトルエンを溶出液としたシリカゲルカラムクロマトグラフィーで精製し、次いでトルエンから再結晶して目的とするジニトロ体6.3g(90%)を得た。
このジニトロ体を、5%−Pd/Cを触媒に用いて40℃で5時間水素添加反応させた。得られた粗生成物を塩化メチレン/メタノール(1:1)を溶出液としたシリカゲルカラムクロマトグラフィーで精製し、次いでトルエンから再結晶して目的とする化合物4.3g(82%)を得た。
H NMR; δ 7.21−7.27, 7.03−7.08(AA’BB’, 4H), 6.91(s, 2H), 6.24(s, 1H), 3.70(br s, 4H), 0.8−2.6(m, 23H).
融点; 217℃
【0057】
実施例2;化合物No.2(表1)の合成
EP19921318に従って合成した4−(4−(4−プロピルシクロヘキシル)シクロヘキシル)フェノールを原料とし、実施例1の方法に準じて合成した。
H NMR; δ 7.22−7.28, 7.04−7.09(AA’BB’, 4H), 6.92(s, 2H), 6.25(s, 1H), 3.72(br s, 4H), 0.8−2.6(m, 27H).
相転移点;C・200.4℃・S・231℃・N・268.0℃・I
【0058】
実施例3;化合物No.4(表1)の合成
EP19921318に従って合成した4−(4−(4−ヘプチルシクロヘキシル)シクロヘキシル)フェノールを原料とし、実施例1の方法に準じて合成した。
H NMR; δ 7.22−7.28, 7.04−7.09(AA’BB’, 4H), 6.92(s, 2H), 6.25(s, 1H), 3.72(br s, 4H), 0.8−2.6(m, 35H).
相転移点;C154.5℃・S・232.3℃・N・267.2℃・I
【0059】
実施例4;化合物No.11(表)の合成
EP19921318に従って合成した4−ヒドロキシ−4’−(4−(4−ペンチルシクロヘキシル)シクロヘキシル)ビフェニルを原料とし、実施例1の方法に準じて合成した。
H NMR; δ 7.04−7.49(m, 8H), 6.90(s, 2H), 6.23(s, 1H), 3.71(br s, 4H), 0.8−2.7(m, 31H).
【0060】
実施例5(ポリアミド酸の合成)
50mlの3つ口フラスコに、実施例1で合成したジアミン(化合物No.1(表1))1.0g(2.5mmol)を入れ、NMP10gに溶解した。ここにピロメリット酸無水物(PMDA)0.54g(2.5mmol)を加え、1時間攪拌した。その後この溶液をNMP21gで希釈することにより、ポリアミド酸約5重量%の透明溶液が得られた。この溶液中のポリマーの重量平均分子量は4.9万であり、25℃での粘度は43mPa・sであった。以下この溶液をワニスAとする。
【0061】
実施例6(ポリアミドの合成)
100mlの3つ口フラスコに実施例1で合成したジアミン(化合物No.1(表1))1.0g(2.5mmol)および4,4’−ジアミノジフェニルメタン(以下DDMと略記する)700mg(3.5mmol)、テレフタル酸(TPA)1.0g(6.0mmol)、塩化リチウム1.3g(31mmol)を入れ、NMP(20ml)に溶解させた。ここに亜リン酸トリフェニル4.0g(13mmol)を滴下し、窒素気流中、100℃で4時間反応させた。冷却後反応物をメタノール300mlに加え、ポリマーを再沈澱させた。この粗生成物を、純水150mlで2回、メタノール150mlで1回、各30分程度煮沸洗浄した。120℃で8時間真空乾燥させポリアミド2.7gを得た。このときのポリアミドの重量平均分子量は12万であった。
【0062】
3つ口フラスコに上記ポリアミド2.5gを入れ、NMP(50ml)に溶解させた。ここに60重量%水素化ナトリウム290mg(7.2mmol) を加え、室温で3時間攪拌させた。この溶液にヨウ化メチル1.3g(9.2mmol)を添加し、さらに室温で2時間反応させた。反応物を純水700mlに再沈させ、ろ過した後、純水350mlで2回各30分間煮沸洗浄した後、純水/IPA(1/1:w/w)混合溶媒100mlで1回洗浄した。120℃で8時間真空乾燥させポリN−メチルアミド2.1gを得た。このポリマーをポリアミドAとする。このときの重量平均分子量は5.4万であり、アミド水素のメチル基への置換率は、NMRの測定から100%であった。
【0063】
実施例7(ポリアミドイミドの合成)
50mlの3つ口フラスコに、実施例1で合成したジアミン(化合物No.1(表1))1.0g(2.5mmol)を入れ、NMP20gに溶解した。ここにPMDA270mg(1.2mmol)を加え、窒素気流中、1時間攪拌した。次いでテレフタル酸クロリド(TPACl) 250mg(1.2mmol)およびピリジン1mlを加え、さらに2時間攪拌した。反応終了後、無水酢酸20mlを加え100℃で1時間反応させた。冷却後反応物をメタノール300mlに加え、ポリマーを再沈澱させた。この粗生成物を、純水150mlで2回、メタノール150mlで1回、各30分程度煮沸洗浄した。120℃で8時間真空乾燥させポリアミドイミドA1.2gを得た。このときの重量平均分子量は5.4万であった。
【0064】
実施例8〜12 ジアミンの一部を変えた他は上記実施例5〜7の方法に準じて、表4に示すポリアミド酸、ポリアミド、およびポリアミドイミドを調製した(実施例5〜7も再掲する)。
【0065】

Figure 0004228614
【0066】

Figure 0004228614
(表中、カッコ内の数値はモル%を示し、CBTDAは1,2,3,4−シクロブタンテトラカルボン酸無水物を表す。)
【0067】
応用例1
3つ口フラスコにワニスA、およびワニスGをそれぞれ0.18mlおよび18.2ml入れ、さらにポリアミドAの5重量%NMP溶液0.02mlを加え、室温で1時間攪拌した。その後BC12mlを加え、約3重量%の樹脂組成物を得た。片面にITO電極を設けた透明ガラス基板上に、この組成物を滴下し、スピンナー法により塗布した(2500rpm、20秒)。塗布後80℃で5分間溶媒を蒸発させた後、オーブン中で250℃30分間加熱処理を行い、膜厚約65nmの樹脂膜を得た。この樹脂膜を形成したガラス基板をラビング処理した(毛先押しこみ量;0.4mm、ローラー回転数;300rpm、ローラー送り速度;30mm/sec、回数;3回)。ラビング方向が逆平行になるようにこれらの2枚を合わせ、セル厚20μmの液晶セルを組み立てた。特開平10−176167号公報に記載の下記の液晶組成物1をこのセルに注入し、110℃で30分間アイソトロピック処理を行い、室温まで冷却し液晶表示素子を得た。この液晶表示素子の残留電荷は25℃で0.14ボルト(V)であり、20、60および90℃における電圧保持率はそれぞれ98.9%、95.3%、および94.5%であった。またこの表示素子のプレチルト角を、クリスタルローテーション法を用いて室温で測定した。プレチルト角算出に用いた液晶組成物1のΔnとnoの数値はそれぞれ0.0759と1.4747である。結果は89度であった(この値を初期値とする)。このセルを110℃で20時間静置し、室温まで冷却した後、これらの値を再測定した(この値を高温後値とする)。その結果25℃での残留電荷は0.17ボルト(V)、電圧保持率は98.2%(20℃)、97.0%(60℃)、93.5%(90℃)、プレチルト角は90度であった。
【0068】
液晶組成物1
Figure 0004228614
【0069】
応用例2〜5
ワニスAの代わりに下記のワニスB〜Fを用い、ポリアミドAを除いた他は応用例1に準じた方法で液晶表示素子を得た。これらの特性を以下の表6に示す。
【0070】

Figure 0004228614
【0071】
応用例6
ワニスAおよび液晶組成物1の代わりにそれぞれワニスBおよび下記の液晶組成物2を用いた他は応用例1に準じた方法で液晶表示素子を得た。これらの特性を以下に示す。プレチルト角算出に用いた液晶組成物2のΔnとnoの数値はそれぞれ0.0930と1.4890である。
Figure 0004228614
【0072】
液晶組成物2
Figure 0004228614
【0073】
比較例1
国際公開第97/30107号パンフレットに記載の方法に従って、以下の式(3)の化合物を合成した。また実施例1のジアミンとこの(3)とを置き換えた以外は実施例5の方法に準じた方法でワニスHを調製した。このワニスH中のポリマーの重量平均分子量は4.2万であった。これらを用い応用例2に準じた方法で液晶表示素子を製作し、特性を測定した。以下の物性測定結果に示すように、この液晶表示素子は特にプレチルト角が高温後値で低下する傾向が見られた。
Figure 0004228614
【0074】
Figure 0004228614
【0075】
ラビング条件によるプレチルト変化の比較
実験Aでは、応用例1におけるワニスAの代わりにワニスEを用いた以外は応用例1に準じた方法でガラス基板上にポリイミド薄膜を形成した。実験Bでは、応用例1におけるワニスAの代わりにワニスHを用いた以外は応用例1に準じた方法でガラス基板上にポリイミド薄膜を形成した。これらの基板に対し条件を以下のように変えてラビングを施し、応用例1に準じた方法で液晶表示素子を作製した。これらの表示素子のプレチルト角を測定した結果を図1に示す(初期値のみ)。
毛先押しこみ量(mm):0.2、0.4、0.6、0.8、
ローラー回転数(rpm):300、
ローラー送り速度(mm/sec):30、
回数;3回
本発明のジアミンを原料とした配向膜を用いた実験Aでは、ラビング条件が変化しても表示素子のプレチルト角の変化はほとんどない。それに対して、式(3)のジアミンを原料とした配向膜を用いた実験Bでは、ラビング条件の変化に伴って表示素子のプレチルト角は大きく変化した。
【0076】
【発明の効果】
本発明の式(1)で表されるフェニレンジアミンを用いたポリアミド酸、ポリイミド、ポリアミド、ポリアミドイミドを液晶配向膜として用いると、ラビング条件によるプレチルト角の変化の小さい液晶配向膜が得られる。またこの配向膜は環境変化によるプレチルトの変化も少ない。したがってこの液晶配向膜を用いて作成した液晶表示素子は従来の液晶配向膜を用いた素子に比べ、電圧保持率および焼き付き性能を維持したまま環境負荷による性能劣化を防ぐことができる。また、式(1)で表されるフェニレンジアミン、これを用いたポリアミド酸、ポリイミド、ポリアミド、およびポリアミドイミドは、選択透過膜等の他の高分子原料としても使用できる。
【図面の簡単な説明】
【図1】ラビング条件によるプレチルト角の変化[0001]
TECHNICAL minute field to which the invention pertains]
In the present invention , the pretilt angle of the liquid crystal cell is stable against environmental changes such as the conditions in the cell manufacturing process such as rubbing and cleaning, and the ambient temperature of the liquid crystal cell, and has a high voltage holding ratio when the liquid crystal display element is manufactured. a raw material to produce a small liquid crystal alignment film, relates to a novel phenylenediamine compound.
[0002]
[Prior art]
The liquid crystal display element requires that the liquid crystal has an appropriate pretilt angle in accordance with the driving method. For example, in a TN-TFT (Twisted Nematic-Thin Film Transistor) mode display element, which is currently the mainstream of liquid crystal displays, the liquid crystal is required to have a pretilt angle of several degrees to about 10 degrees with respect to the substrate plane. . In the VA (vertically aligned) mode, it is necessary to align the liquid crystal perpendicular to the substrate plane when the liquid crystal is injected into the cell and subjected to alignment treatment. The material design of the liquid crystal alignment film is important for the control of the pretilt angle. In recent years, polyimides excellent in heat resistance and alignment stability are mainly used as liquid crystal alignment films. It is known that such a polyimide-based liquid crystal alignment film can have a large pretilt angle by introducing a large substituent into a raw material diamine. A phenylenediamine developed for such a purpose and a liquid crystal alignment film using the same are described in, for example, pamphlet of International Publication No. 97/30107. However, examples of synthesizing diamines having long side chains as in the present invention are not described in these patents. Especially for liquid crystal alignment films, the pretilt angle of the liquid crystal cell is stable against environmental changes such as the conditions in the cell manufacturing process such as rubbing and cleaning, and the ambient temperature of the liquid crystal cell, and a high voltage is maintained when the liquid crystal display device is manufactured It is required to have a high rate and less burn-in. In order to satisfy this requirement, derivatives having various substituents have been developed in designing a liquid crystal alignment film.
[0003]
An object of the present invention is to provide a novel phenylenediamine, which is a raw material for producing an alignment film that satisfies the above requirements.
[0004]
[Means for Solving the Problems]
We result of extensive advanced research and development, as in the above formula (1), phenylene having four 1,4-cyclohexylene and 1,4-phenylene ring structure, from three in the side chain A liquid crystal alignment film using a diamine derivative as a raw material has a pretilt angle of several to 90 degrees for a liquid crystal display device using the same, and the pretilt angle is a condition in the cell manufacturing process such as rubbing and cleaning, and further the cell It was found that it does not change with the change of ambient temperature. Using this alignment film prevents the occurrence of display defects such as unevenness due to changes in the pretilt angle without impairing characteristics such as voltage holding ratio, image sticking, and liquid crystal alignment stability, as compared with conventional alignment films. I found that I can do it.
Means for achieving the above object are as follows.
[0005]
(1) Phenylenediamine represented by the following formula (1).
Figure 0004228614
( A 1 and A 2 are 1,4-cyclohexylene; A 3 is 1,4-phenylene; A 4 is a single bond or 1,4-phenylene ; R has 1 to 20 carbon atoms; Alkyl, in which one —CH 2 — may be replaced by —O—.)
[0023]
DETAILED DESCRIPTION OF THE INVENTION
This onset Ming phenylenediamine represented by the formula (1). If a liquid crystal alignment film containing a polymer obtained by using the phenylenediamine of the present invention as a part of the raw material is used, a liquid crystal display element satisfying the above-described requirements can be obtained. Hereinafter, the phenylenediamine represented by the formula (1) may be referred to as a diamine (1).
[0024]
R of diamine (1) is arbitrarily selected from alkyl having 1 to 20 carbon atoms, and may be linear or branched. One —CH 2 — may be replaced by —O—. Specific examples are methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl, isopropyl, isobutyl, sec- Butyl, t-butyl, isopentyl, neopentyl, t-pentyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, isohexyl, 1-ethylpentyl, 2-ethylpentyl, 3-ethylpentyl 4-ethylpentyl, 2,4-dimethylhexyl, 2,3,5-triethylheptylmethoxy, ethoxy, propyloxy, butyloxy, pentyloxy, hexyloxy, methoxymethyl, methoxyethyl Methoxypropyl, methoxybutyl, methoxypentyl, methoxyhexyl, ethoxymethyl, ethoxyethyl, ethoxypropyl, ethoxybutyl, ethoxypentyl, ethoxyhexyl, hexyloxymethyl, hexyloxyethyl, hexyloxypropyl, hexyloxybutyl, hexyloxypentyl, Hexyloxyhexyl and the like. Preferred examples among these are propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl and the like.
[0026]
The diamine (1) is effective for solving the above-mentioned problems, and among them, particularly preferable compounds include compounds having R exemplified in the following Tables 1 to 3 . Although the cis / trans isomer of 1,4-cyclohexylene may be mixed, the trans isomer is preferred.
[0027]
Table 1
Figure 0004228614
[0028]
Table 2
Figure 0004228614
[0030]
When di amine (1) is copolymerized with a tetracarboxylic dianhydride in a solvent polyamic acid solution containing a polyimide or a mixture thereof (varnish) is obtained. By distilling off the solvent of the varnish, polyamic acid, polyimide or a mixture thereof is obtained. At this time, although diamine (1) may be used independently, you may combine two or more of diamine (1). You may use combining diamine (1) and another diamine.
[0031]
Moreover, a di-amine (1), when a mixture of tetracarboxylic dianhydride and dicarboxylic acid derivatives Ru reacted polyamideimide, or diamines (1) and the dicarboxylic acid derivative Ru reacted polyamide is obtained. Polyamideimide or polyamide may be used alone in producing the alignment film, and may be used in combination with the above-mentioned polyamic acid, polyimide or a mixture thereof. The dicarboxylic acid derivative is a general term for dicarboxylic acid or a compound such as dimethyl ester or diethyl ester of dicarboxylic acid that reacts with diamine (1) to become polyamideimide or polyamide.
[0032]
Polyimide, polyamide, or polyamideimide obtained by copolymerizing diamine (1) at a ratio of 1 to 50 mol% with respect to all diamines is used for a normal TN mode that requires a pretilt angle of about 5 to 10 degrees. It is particularly suitable as a liquid crystal alignment film. Polyimide, polyamide or polyamideimide obtained by copolymerizing diamine (1) at a ratio of 50 to 100 mol% with respect to all diamines is particularly suitable as a liquid crystal alignment film for VA mode.
Examples of acid anhydrides that can be copolymerized with diamine (1) are the compounds shown below.
[0033]
Figure 0004228614
[0034]
Figure 0004228614
[0035]
Figure 0004228614
[0036]
Diamines that can be used in combination with the diamine (1) are aliphatic diamines, alicyclic diamines, and aromatic diamines. Examples of these diamines are shown below.
[0037]
Figure 0004228614
[0038]
Figure 0004228614
[0039]
Figure 0004228614
[0040]
Figure 0004228614
[0041]
Figure 0004228614
[0042]
These diamines may be used alone or in combination with two or more diamines (1). The diamine used in the present invention may be other than the above compounds.
[0043]
The diamine of the present invention can be used in combination with a siloxane-based diamine represented by the following formula (2).
Figure 0004228614
Wherein R 1 and R 2 are independently alkyl or phenyl having 1 to 3 carbon atoms; R 3 is phenylene substituted with methylene, phenylene or alkyl; v is an integer of 1 to 6 ; W is an integer of 1-10.)
[0044]
The varnish is a reaction product obtained by polymerizing diamine (1) and tetracarboxylic dianhydride or / and dicarboxylic acid derivative in a solvent, and contains at least one of polyamic acid, polyimide, polyamideimide or polyamide. To do . After distilling off the solvent of the reaction product, the varnish may be prepared by dissolving in a different solvent.
[0045]
In order to further improve the characteristics, a polyamide obtained by reacting the diamine (1) with a dicarboxylic acid derivative may be added to the polyamic acid or polyimide. The diamine (1) may be used alone as a component of this polyamide, but two or more of the diamines (1) or a combination of the diamine (1) and another diamine may be used. Instead of this polyamide, polyamideimide obtained by reacting diamine (1) with a mixture of other tetracarboxylic dianhydrides and dicarboxylic acid derivatives may be used.
The amount of the polyamide or polyamideimide added is preferably 0.01 to 30% by weight, more preferably 0.01 to 10% by weight, and still more preferably 0.1 to 5% by weight based on the whole polymer.
[0046]
Further, in order to improve the adhesion of the liquid crystal alignment film to the glass substrate, a third component such as an aminosilicon compound may be added thereto. Specific examples of the aminosilicon compound are compounds having a substituent containing an amino group and silicon in the molecule, such as the following 4-trimethoxysilylaniline.
Figure 0004228614
[0047]
The ratio of the amide group of the polyamideimide is
r = (number of amide groups / (number of amide groups + number of imide groups)) × 100
R can be arbitrarily selected within a range of 0.1 to 99%. Here, when r is 50% or more, it is preferable for the use as the additive described above. When r is 20% or less, the polyamideimide alone can be used as the alignment film.
[0048]
Polyimide, examples of the solvent used to dissolve the polyamide or polyamide-imide N- methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), ethylene glycol monobutyl ether (BC), ethylene glycol monoethyl ether, and γ -butyrolactone. Two or more of these solvents may be mixed and used. Moreover, even if it is except the said solvent, if a reaction product is soluble, it will not be limited to these.
[0049]
An alignment film is produced from the varnish . The varnish is at a concentration of 0.1 to 30% by weight, preferably 1 to 10% by weight, in the organic solvent, at least one of the polyamic acid, polyimide, polyamide and polyamideimide of the present invention, and other A solution in which components are dissolved. The varnish is applied onto the substrate by a brush coating method, a dipping method, a spinner method, a spray method, a printing method, or the like. Thereafter, the solvent is evaporated at 50 to 150 ° C., preferably 80 to 120 ° C., and then heated at 150 to 400 ° C., preferably 180 to 280 ° C., to form a film. If the surface of the substrate is treated with a silane coupling agent before coating and a film is formed thereon, the adhesion between the film and the substrate can be improved. Thereafter, if necessary, this film surface is rubbed in one direction with a cloth or the like to obtain an alignment film.
[0050]
The alignment film is used for a liquid crystal display element . If the alignment film using the diamine (1) of the present invention is used , the characteristics of all known liquid crystal display elements can be improved, but it is particularly suitable in a field where a high voltage holding ratio is required. The effect of improvement is great. Examples of liquid crystal compositions used for such TFT type liquid crystal display elements (for TN mode, IPS mode, VA mode, or OCB mode) include Japanese Patent No. 3086228, Japanese Patent No. 2635435, Table 5-5501735, JP 8-199168, JP 9-235552, JP 9-241643, JP 9-255956, JP 10-176167, JP JP-A-10-204016, JP-A-10-204436, JP-A-10-231482, JP-A-11-228966, JP-A-2000-087040, JP-A-2001-48822, and JP-A-2001-192657. Those described in the gazette etc. are mentioned. Therefore, the liquid crystal alignment film is combined with a fluorine-based liquid crystal composition having a high voltage holding ratio containing a compound having a —OCF 3 group at a terminal, a compound having 1 to 3 or more fluorine atoms, or the like described therein. It is particularly preferable to use them. Further, the liquid crystal composition may be used by containing one or more optically active compounds.
[0051]
The diamine (1) of the present invention can be easily synthesized by the following method.
A compound represented by the formula (1-2) is obtained by reacting a compound represented by the formula (1-1) synthesized according to EP 19921318 or the like with a commercially available 3,5-dinitrobenzoic acid chloride. The compound represented by the general formula (1) is obtained by hydrogenating this compound.
[0052]
Figure 0004228614
[0053]
The phenylenediamine compound of the present invention can be used for various polyimide coating agents, polyimide resin molded products, films, fibers, and the like in addition to the polyimide resin for liquid crystal alignment films. Furthermore, it can also be used as a raw material for polyamide resin, polyamideimide resin, polyurea resin, or a curing agent for epoxy resin.
[0054]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the examples.
In the examples, all NMR was measured in deuterated chloroform. The melting point (phase transition point) was measured using a differential scanning calorimeter (DSC). The symbols C, S, N, and I indicate crystal, smectic, nematic, and isotropic phases, respectively. For the measurement of molecular weight, GPC was used, polystyrene was used as a standard solution, and DMF was used as an eluent.
[0055]
Evaluation Method of Liquid Crystal Display Element The evaluation method of the liquid crystal display element used in the examples is described.
1. The pretilt angle crystal rotation method was used. The wavelength of light used for the measurement is 589 nm.
2. Burn-in (residual charge)
Residual charge was measured by the method described in Miyake et al., Shingaku Giho, EID91-111, p19. This residual charge was used as an index for image sticking. In other words, the more residual charge, the easier it is to burn. The voltage applied to the liquid crystal cell at the time of measurement is an AC voltage obtained by superimposing 50 mV, 1 kHz AC and a triangular wave having a frequency of 0.0036 Hz.
3. The voltage holding ratio was measured according to the method described in “Mizushima et al. The AC pulse voltage used for the measurement had a gate width of 69 μs, a frequency of 60 Hz, and a wave height of ± 4.5V.
The measured values of various physical properties described in the examples are values of 25 ° C. unless otherwise specified.
[0056]
Example 1 Compound no. Synthesis of 1 (Table 1) 4- (4- (4-methylcyclohexyl) cyclohexyl) phenol synthesized according to EP 19921318 in a solution of 4.0 g (15 mmol) and 1.7 g (21 mmol) of pyridine at 30 ° C. in methylene chloride at 30 ° C. 4.1 g (18 mmol) of 3,5-dinitrobenzoic acid chloride was added. After reacting overnight at room temperature, extraction was performed with a methylene chloride-pure water system. The organic layer was dried over anhydrous magnesium sulfate and then filtered, and the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography using toluene as an eluent, and then recrystallized from toluene to obtain 6.3 g (90%) of the desired dinitro compound.
This dinitro compound was subjected to hydrogenation reaction at 40 ° C. for 5 hours using 5% -Pd / C as a catalyst. The resulting crude product was purified by silica gel column chromatography using methylene chloride / methanol (1: 1) as an eluent, and then recrystallized from toluene to obtain 4.3 g (82%) of the desired compound. .
1 H NMR; δ 7.21-7.27, 7.03-7.08 (AA′BB ′, 4H), 6.91 (s, 2H), 6.24 (s, 1H), 3.70. (Br s, 4H), 0.8-2.6 (m, 23H).
Melting point: 217 ° C
[0057]
Example 2: Compound no. Synthesis of 2 (Table 1) 4- (4- (4-propylcyclohexyl) cyclohexyl) phenol synthesized according to EP 19921318 was used as a raw material and synthesized according to the method of Example 1.
1 H NMR; δ 7.22-7.28, 7.04-7.09 (AA′BB ′, 4H), 6.92 (s, 2H), 6.25 (s, 1H), 3.72. (Br s, 4H), 0.8-2.6 (m, 27H).
Phase transition point: C · 200.4 ° C · S · 231 ° C · N · 268.0 ° C · I
[0058]
Example 3; Compound No. Synthesis of 4 (Table 1) 4- (4- (4-Heptylcyclohexyl) cyclohexyl) phenol synthesized according to EP 19921318 was used as a raw material and synthesized according to the method of Example 1.
1 H NMR; δ 7.22-7.28, 7.04-7.09 (AA′BB ′, 4H), 6.92 (s, 2H), 6.25 (s, 1H), 3.72. (Br s, 4H), 0.8-2.6 (m, 35H).
Phase transition point: C154.5 ° C · S · 232.3 ° C · N · 267.2 ° C · I
[0059]
Example 4: Compound no. 11 (Table 2 ) Synthesis 4-hydroxy-4 ′-(4- (4-pentylcyclohexyl) cyclohexyl) biphenyl synthesized according to EP 19921318 was used as a raw material and synthesized according to the method of Example 1.
1 H NMR; δ 7.04-7.49 (m, 8H), 6.90 (s, 2H), 6.23 (s, 1H), 3.71 (br s, 4H), 0.8- 2.7 (m, 31H).
[0060]
Example 5 (Synthesis of polyamic acid)
In a 50 ml three-necked flask, 1.0 g (2.5 mmol) of the diamine synthesized in Example 1 (Compound No. 1 (Table 1)) was added and dissolved in 10 g of NMP. Pyromellitic anhydride (PMDA) 0.54 g (2.5 mmol) was added thereto and stirred for 1 hour. Thereafter, this solution was diluted with 21 g of NMP to obtain a clear solution of about 5% by weight of polyamic acid. The weight average molecular weight of the polymer in this solution was 49,000, and the viscosity at 25 ° C. was 43 mPa · s. This solution is hereinafter referred to as “varnish A”.
[0061]
Example 6 (Synthesis of polyamide)
In a 100 ml three-necked flask, 1.0 g (2.5 mmol) of the diamine synthesized in Example 1 (Compound No. 1 (Table 1)) and 700 mg of 4,4′-diaminodiphenylmethane (hereinafter abbreviated as DDM) (3 0.5 mmol), 1.0 g (6.0 mmol) of terephthalic acid (TPA), and 1.3 g (31 mmol) of lithium chloride were added and dissolved in NMP (20 ml). To this, 4.0 g (13 mmol) of triphenyl phosphite was added dropwise and reacted at 100 ° C. for 4 hours in a nitrogen stream. After cooling, the reaction product was added to 300 ml of methanol to reprecipitate the polymer. The crude product was boiled and washed for about 30 minutes, twice with 150 ml of pure water and once with 150 ml of methanol. Vacuum drying was performed at 120 ° C. for 8 hours to obtain 2.7 g of polyamide. The weight average molecular weight of the polyamide at this time was 120,000.
[0062]
2.5 g of the above polyamide was placed in a three-necked flask and dissolved in NMP (50 ml). To this was added 290 mg (7.2 mmol) of 60 wt% sodium hydride, and the mixture was stirred at room temperature for 3 hours. To this solution, 1.3 g (9.2 mmol) of methyl iodide was added and further reacted at room temperature for 2 hours. The reaction product was re-precipitated in 700 ml of pure water, filtered, boiled and washed twice with 350 ml of pure water for 30 minutes each, and then washed once with 100 ml of pure water / IPA (1/1: w / w) mixed solvent. . Vacuum drying was performed at 120 ° C. for 8 hours to obtain 2.1 g of poly N-methylamide. This polymer is designated as polyamide A. The weight average molecular weight at this time was 54,000, and the substitution rate of amide hydrogen to a methyl group was 100% from the NMR measurement.
[0063]
Example 7 (Synthesis of polyamideimide)
In a 50 ml three-necked flask, 1.0 g (2.5 mmol) of the diamine synthesized in Example 1 (Compound No. 1 (Table 1)) was added and dissolved in 20 g of NMP. PMDA 270 mg (1.2 mmol) was added here, and it stirred in nitrogen stream for 1 hour. Next, 250 mg (1.2 mmol) of terephthalic acid chloride (TPACl) and 1 ml of pyridine were added, and the mixture was further stirred for 2 hours. After completion of the reaction, 20 ml of acetic anhydride was added and reacted at 100 ° C. for 1 hour. After cooling, the reaction product was added to 300 ml of methanol to reprecipitate the polymer. The crude product was boiled and washed for about 30 minutes, twice with 150 ml of pure water and once with 150 ml of methanol. It vacuum-dried at 120 degreeC for 8 hours, and obtained polyamidoimide A1.2g. The weight average molecular weight at this time was 54,000.
[0064]
Examples 8-12 Polyamic acid, polyamide, and polyamideimide shown in Table 4 were prepared according to the method of Examples 5-7 except that a part of the diamine was changed (Examples 5-7 are also shown again). ).
[0065]
Table 3
Figure 0004228614
[0066]
Table 4
Figure 0004228614
(In the table, numerical values in parentheses indicate mol%, and CBTDA represents 1,2,3,4-cyclobutanetetracarboxylic anhydride.)
[0067]
Application example 1
Varnish A and Varnish G were placed in a three-necked flask, 0.18 ml and 18.2 ml, respectively, and 0.02 ml of a 5 wt% NMP solution of polyamide A was added and stirred at room temperature for 1 hour. Thereafter, 12 ml of BC was added to obtain about 3% by weight of a resin composition. This composition was dropped onto a transparent glass substrate provided with an ITO electrode on one side and applied by a spinner method (2500 rpm, 20 seconds). After the application, the solvent was evaporated at 80 ° C. for 5 minutes, and then heat treatment was performed in an oven at 250 ° C. for 30 minutes to obtain a resin film having a film thickness of about 65 nm. The glass substrate on which this resin film was formed was rubbed (brush tip indentation amount: 0.4 mm, roller rotation speed: 300 rpm, roller feed speed: 30 mm / sec, frequency: 3 times). These two sheets were put together so that the rubbing directions were antiparallel, and a liquid crystal cell having a cell thickness of 20 μm was assembled. The following liquid crystal composition 1 described in JP-A-10-176167 was poured into this cell, subjected to an isotropic treatment at 110 ° C. for 30 minutes, and cooled to room temperature to obtain a liquid crystal display element. The residual charge of this liquid crystal display element was 0.14 volts (V) at 25 ° C., and the voltage holding ratios at 20, 60 and 90 ° C. were 98.9%, 95.3% and 94.5%, respectively. It was. Further, the pretilt angle of this display element was measured at room temperature using a crystal rotation method. The values of Δn and no of the liquid crystal composition 1 used for calculating the pretilt angle are 0.0759 and 1.4747, respectively. The result was 89 degrees (this value is the initial value). The cell was allowed to stand at 110 ° C. for 20 hours and cooled to room temperature, and then these values were measured again (this value is regarded as the value after high temperature). As a result, the residual charge at 25 ° C. was 0.17 volts (V), the voltage holding ratio was 98.2% (20 ° C.), 97.0% (60 ° C.), 93.5% (90 ° C.), and the pretilt angle. Was 90 degrees.
[0068]
Liquid crystal composition 1
Figure 0004228614
[0069]
Application examples 2-5
The following varnishes B to F were used in place of varnish A, and a liquid crystal display device was obtained by a method according to Application Example 1 except that polyamide A was excluded. These characteristics are shown in Table 6 below.
[0070]
Table 5
Figure 0004228614
[0071]
Application example 6
A liquid crystal display device was obtained by a method according to Application Example 1 except that varnish B and the following liquid crystal composition 2 were used instead of varnish A and liquid crystal composition 1, respectively. These characteristics are shown below. The numerical values of Δn and no of the liquid crystal composition 2 used for calculating the pretilt angle are 0.0930 and 1.4890, respectively.
Figure 0004228614
[0072]
Liquid crystal composition 2
Figure 0004228614
[0073]
Comparative Example 1
The compound of the following formula (3) was synthesized according to the method described in WO 97/30107 pamphlet. Moreover, the varnish H was prepared by the method according to the method of Example 5 except having replaced the diamine of Example 1 and this (3). The weight average molecular weight of the polymer in this varnish H was 42,000. Using these, a liquid crystal display element was manufactured by a method according to Application Example 2, and the characteristics were measured. As shown in the following physical property measurement results, this liquid crystal display element particularly showed a tendency that the pretilt angle decreases at a high temperature post-temperature value.
Figure 0004228614
[0074]
Figure 0004228614
[0075]
In comparative experiment A of pretilt change under rubbing conditions, a polyimide thin film was formed on a glass substrate by the method according to application example 1 except that varnish E was used instead of varnish A in application example 1. In Experiment B, a polyimide thin film was formed on a glass substrate by the method according to Application Example 1 except that varnish H was used instead of varnish A in Application Example 1. These substrates were rubbed with the conditions changed as follows, and liquid crystal display elements were produced by a method according to Application Example 1. The results of measuring the pretilt angles of these display elements are shown in FIG. 1 (only initial values).
Indentation amount (mm): 0.2, 0.4, 0.6, 0.8,
Roller rotation speed (rpm): 300,
Roller feed speed (mm / sec): 30,
Number of times: 3 times In Experiment A using the alignment film made of the diamine of the present invention as a raw material, there is almost no change in the pretilt angle of the display element even when the rubbing conditions are changed. On the other hand, in the experiment B using the alignment film using the diamine of the formula (3) as a raw material, the pretilt angle of the display element greatly changed with the change of the rubbing conditions.
[0076]
【The invention's effect】
When polyamic acid, polyimide, polyamide, or polyamideimide using phenylenediamine represented by the formula (1) of the present invention is used as a liquid crystal alignment film, a liquid crystal alignment film having a small change in pretilt angle due to rubbing conditions can be obtained. Further, this alignment film has little change in pretilt due to environmental change. Therefore, the liquid crystal display element prepared using this liquid crystal alignment film can prevent performance deterioration due to environmental load while maintaining the voltage holding ratio and the image sticking performance as compared with the element using the conventional liquid crystal alignment film. Moreover, the phenylenediamine represented by the formula (1), polyamic acid, polyimide, polyamide, and polyamideimide using the same can be used as other polymer raw materials such as a selectively permeable membrane.
[Brief description of the drawings]
FIG. 1 Changes in pretilt angle due to rubbing conditions

Claims (1)

下記の式(1)で表されるフェニレンジアミン。
Figure 0004228614
およびA が1,4−シクロヘキシレンであり;A が1,4−フェニレンであり;A が単結合または1,4−フェニレンであり;Rは炭素数が1〜20のアルキルであり、このアルキルにおいて1つの−CH−は−O−で置き換えられてもよい。)
Phenylenediamine represented by the following formula (1).
Figure 0004228614
( A 1 and A 2 are 1,4-cyclohexylene; A 3 is 1,4-phenylene; A 4 is a single bond or 1,4-phenylene ; R has 1 to 20 carbon atoms; Alkyl, in which one —CH 2 — may be replaced by —O—.)
JP2002228918A 2002-08-06 2002-08-06 Phenylenediamine with ester bond Expired - Lifetime JP4228614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002228918A JP4228614B2 (en) 2002-08-06 2002-08-06 Phenylenediamine with ester bond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002228918A JP4228614B2 (en) 2002-08-06 2002-08-06 Phenylenediamine with ester bond

Publications (2)

Publication Number Publication Date
JP2004067589A JP2004067589A (en) 2004-03-04
JP4228614B2 true JP4228614B2 (en) 2009-02-25

Family

ID=32015484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002228918A Expired - Lifetime JP4228614B2 (en) 2002-08-06 2002-08-06 Phenylenediamine with ester bond

Country Status (1)

Country Link
JP (1) JP4228614B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102585843A (en) * 2011-01-05 2012-07-18 Jnc株式会社 Liquid crystal alignment agents for photo-alignment, liquid crystal photo-alignment layers, and liquid crystal displays using the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4569145B2 (en) * 2004-03-25 2010-10-27 チッソ株式会社 Polyimide copolymer, liquid crystal aligning agent and liquid crystal display element using the same
KR101318953B1 (en) * 2006-02-22 2013-10-17 주식회사 동진쎄미켐 Alignment material for liquid crystal display device of vertical alignment mode and a preparing method of same
JP5019038B2 (en) * 2007-04-18 2012-09-05 Jsr株式会社 Liquid crystal aligning agent, liquid crystal display element, and polymer and raw material diamine for the same
WO2009084665A1 (en) * 2007-12-28 2009-07-09 Nissan Chemical Industries, Ltd. Liquid crystal aligning agent and liquid crystal display device using the same
JP5365780B2 (en) * 2008-03-18 2013-12-11 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
KR101613751B1 (en) * 2008-09-24 2016-04-19 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal aligning agent and liquid crystal display element using same
TWI431039B (en) 2009-12-16 2014-03-21 Cheil Ind Inc Liquid crystal photo-alignment agent, liquid crystal photo-alignment layer manufactured using the same, and liquid crystal display device including the liquid crystal photo-alignment layer
CN102559205B (en) 2010-12-29 2014-07-30 第一毛织株式会社 Liquid crystal alignment agent, liquid crystal alignment film manufactured using the same, and liquid crystal display device
KR101444190B1 (en) 2011-12-19 2014-09-26 제일모직 주식회사 Liquid crystal alignment agent, liquid crystal alignment film using the same, and liquid crystal display device including the liquid crystal alignment film
JP5673869B2 (en) * 2014-01-15 2015-02-18 Jnc株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
EP3163368B1 (en) * 2014-06-30 2019-06-26 JNC Corporation Liquid crystal display element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102585843A (en) * 2011-01-05 2012-07-18 Jnc株式会社 Liquid crystal alignment agents for photo-alignment, liquid crystal photo-alignment layers, and liquid crystal displays using the same
CN102585843B (en) * 2011-01-05 2016-03-30 Jnc株式会社 Form method and the liquid crystal display device of light orientation liquid crystal orienting film

Also Published As

Publication number Publication date
JP2004067589A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
US6746730B1 (en) Varnish composition and liquid-crystal display element
KR100510760B1 (en) Acid anhydride, liquid crystal alignment layer and liquid crystal display device
WO2005105892A1 (en) Liquid-crystal aligning agent, liquid-crystal alignment film comprising the same, and liquid-crystal element
JPH11193345A (en) Polyamic acid composition, liquid crystal orientation film, and liquid crystal display element
JP4894120B2 (en) Phenylenediamine derivative, liquid crystal alignment film, and liquid crystal display element
JPH11193347A (en) Polyamic acid composition, liquid crystal orientation film, and liquid crystal display element
JP4228614B2 (en) Phenylenediamine with ester bond
JPH11193346A (en) Polyamic acid composition, liquid crystal orientation film, and liquid crystal display element
US6685997B1 (en) Varnish composition and liquid-crystal display element
JP5245187B2 (en) Polyamideimide, liquid crystal aligning agent varnish, and liquid crystal display element
JP4595417B2 (en) Phenylenediamine, alignment film formed using the same, and liquid crystal display device including the alignment film
JP4537996B2 (en) Polyimide resin for non-rubbing vertical alignment material and method for producing the same
JP2005157346A (en) Liquid crystal aligning agent and liquid crystal display using the same
JP4140252B2 (en) Phenylenediamine having a siloxane moiety, a liquid crystal alignment material including a polymer using the same, and a liquid crystal display element including the liquid crystal alignment material
JP4461909B2 (en) Acid dianhydride, alignment film, and liquid crystal display element
JP2006124371A (en) Phenylenediamine, oriented film and liquid crystal display element
JP4687859B2 (en) Varnish composition and liquid crystal display element
JP5783166B2 (en) Liquid crystal aligning agent, liquid crystal display element and diamine compound
WO2001014457A1 (en) Polyamide compounds and liquid crystal aligning agents containing the same
JP5092382B2 (en) Diamine with liquid crystal-like structure
JP4992893B2 (en) Acid anhydride having asymmetric structure, liquid crystal alignment film, and liquid crystal display device
WO2021060270A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP4569221B2 (en) Tetracarboxylic dianhydrides, polymers made from them, varnishes using these, alignment films, and liquid crystal display elements
JP4415566B2 (en) Acid anhydride having asymmetric structure, liquid crystal alignment film, and liquid crystal display device
KR101073949B1 (en) Liquid crystal aligning agent and liquid crystal display element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081124

R150 Certificate of patent or registration of utility model

Ref document number: 4228614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term