JP4223308B2 - Vehicle battery control device - Google Patents

Vehicle battery control device Download PDF

Info

Publication number
JP4223308B2
JP4223308B2 JP2003083237A JP2003083237A JP4223308B2 JP 4223308 B2 JP4223308 B2 JP 4223308B2 JP 2003083237 A JP2003083237 A JP 2003083237A JP 2003083237 A JP2003083237 A JP 2003083237A JP 4223308 B2 JP4223308 B2 JP 4223308B2
Authority
JP
Japan
Prior art keywords
ignition
water temperature
turned
twx
outside air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003083237A
Other languages
Japanese (ja)
Other versions
JP2004297852A (en
Inventor
浩一郎 小沢
志信 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003083237A priority Critical patent/JP4223308B2/en
Publication of JP2004297852A publication Critical patent/JP2004297852A/en
Application granted granted Critical
Publication of JP4223308B2 publication Critical patent/JP4223308B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、車両に搭載されるバッテリの残容量を検知するための車両用電池の制御装置に関するものである。
【0002】
【従来の技術】
従来、バッテリ(蓄電池)の残容量(SOC:State Of Charge)を、開路電圧(OCV:Open Circuit Voltage)を用いて推定する技術が知られている。バッテリは、その電解液の濃度によって開路電圧が変化し、この開路電圧と残容量とが比例する特性を備えているため、開路電圧を用いることで残容量を推定することができる。
ところで、バッテリの電解液濃度が安定していないと、検出した開路電圧から推定される残容量は、実際の残容量との誤差が大きくなってしまう。そのため、開路電圧を検出する際には、バッテリの電解液濃度を安定させるため、使用後一定時間(例えば数時間)無負荷状態で放置する必要がある。しかし、車両に搭載されるバッテリの場合には、前記一定時間が経過する前に再度起動されることも多いため、開路電圧を測定して残容量を推定しても、実用に十分な精度を確保できない場合が多い。
一方、特許文献1には、車両に搭載されたバッテリの残容量を周期的に計測して、所定タイミングにおけるバッテリ電圧と当該バッテリを十分に放置した後のバッテリ開路電圧との対応関係を予め定めておき、所定タイミングでサンプリングしたバッテリ電圧に対応した開路電圧に基づいてバッテリの残容量を予測する技術が提案されている。
【0003】
【特許文献1】
特開2000−134706号公報
【0004】
【発明が解決しようとする課題】
しかしながら、上述した従来の技術では、車両を停止(イグニッションオフ)後においても、車両停止後の経過時間を測定する装置(ECUなど)やバッテリの電圧検出装置を作動させておく必要があるため、車両停止時にも電力を消費してしまう。この為、車両停止後に車両始動時の電力を確保しておく必要があるとともに、車両停止時に作動する装置の状態を監視する制御が必要となり、制御負担が大きいという問題がある。
【0005】
本発明は、このような事情に鑑みてなされたもので、イグニッションオフから再度イグニッションオンになるまでの間の消費電力を抑制しつつ、バッテリの残容量を実用に十分な精度を確保して算出することができる車両用電池の制御装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するために、請求項1に記載した発明は、エンジン(例えば、実施の形態におけるエンジン2)冷却水温と外気温とを検出する温度検出手段(例えば、実施の形態における水温センサ12、外気温センサ13)と、イグニッションオフ時に検出される冷却水温Twiniと外気温TAoffとを記憶する記憶手段(例えば、実施の形態におけるメモリ14)と、バッテリの開路電圧を測定する電圧測定手段(例えば、実施の形態における電圧センサ11)と、前記イグニッションオフ後でイグニッションオン時に検出される外気温TAに基づいて、前記イグニッションオフから一定時間経過後の予測水温Twxを演算する演算手段(例えば、実施の形態におけるECU6)と、前記イグニッションオン時に検出される冷却水温Twと前記予測水温Twxとを比較して、前記冷却水温Twが前記予測水温Twxよりも低い場合には、前記イグニッションオン時に測定した開路電圧に対するバッテリ残容量を算出し、前記冷却水温Twが前記予測水温Twxよりも高い場合には、前記イグニッションオフ時またはその直後のバッテリ残容量を用いることを特徴とする。
【0007】
この発明によれば、前記イグニッションオフ時に前記温度検出手段により前記冷却水温Twiniと外気温TAoffとを検出して、これらの温度Twini、TAoffを前記記憶手段に記憶して、その後車両を停止(イグニッションオフ)する。ついで、前記イグニッションオフ後にイグニッションオンした時に、前記温度検出手段により冷却水温Twと外気温TAとを検出する。そして、前記外気温TAoffにおける前記一定時間経過後の予測水温Twxを前記演算手段により算出する。この冷却水温Twと、前記一定時間経過後の予測水温Twxとを比較する。ここで、一定時間は、前記バッテリの電解液濃度が安定していると判断できる時間を設定することが好ましい。前記イグニッションオフ時の前記冷却水温Twiniは常温より高くなっているため、時間の経過に応じて低下していく。よって、前記冷却水温Twが前記予測水温Twxよりも低い場合には、前記一定時間が経過した後でイグニッションオンされたと推定できる。この場合には、前記バッテリの電解液濃度は安定していると推定できるので、イグニッションオン時に測定した開路電圧に対するバッテリ残容量を算出する。また、前記冷却水温Twが前記予測水温Twxよりも高い場合には、前記一定時間が経過する前にイグニッションオンされたと推定できる。この場合には、前記バッテリの電解液濃度はまだ安定していないと推定できるので、前記イグニッションオフ時またはその直後のバッテリ残容量を用いる。このように、前記イグニッションオフ時と前記イグニッションオン時に水温や外気温を検出すれば、これらに基づいて前記バッテリ残容量を算出できるため、イグニッションオフ時からイグニッションオン時の間で装置を作動させる必要がなく、消費電力を抑制することができる。また、前記バッテリの電解液濃度は安定していると推定できる場合にイグニッションオン時に測定した開路電圧に対するバッテリ残容量を算出し、前記バッテリの電解液濃度はまだ安定していないと推定できる場合に前記イグニッションオフ時またはその直後のバッテリ残容量を用いるので、バッテリの残容量を実用に十分な精度を確保して算出することができる。
【0008】
請求項2に記載した発明は、エンジン冷却水温と外気温とを検出する温度検出手段と、イグニッションオフ時に検出される冷却水温Twiniと外気温TAoffとを記憶する記憶手段と、バッテリの開路電圧を測定する電圧測定手段と、前記イグニッションオフ後でイグニッションオン時に検出される外気温TAと、前記イグニッションオフ時に検出される外気温TAoffとから平均外気温TAaveを算出する平均外気温算出手段(例えば、実施の形態におけるECU6)と、該平均外気温TAaveに基づいて、前記イグニッションオフから一定時間経過後の予測水温Twxを演算する演算手段と、前記イグニッションオン時に検出される冷却水温Twと前記予測水温Twxとを比較して、前記冷却水温Twが前記予測水温Twxよりも低い場合には、前記イグニッションオン時に測定した開路電圧に対するバッテリ残容量を算出し、前記冷却水温Twが前記予測水温Twxよりも高い場合には、前記イグニッションオフ時またはその直後のバッテリ残容量を用いることを特徴とする。
【0009】
この発明によれば、前記イグニッションオフ時に検出した冷却水温Twiniと外気温TAoffとを前記記憶手段に記憶して、その後車両を停止(イグニッションオフ)する。そして、前記イグニッションオフ後にイグニッションオンした時に外気温TAと前記外気温TAoffとを検出して、これらから平均外気温TAaveを前記平均外気温算出手段により算出する。前記平均外気温TAaveに基づいて前記予測水温Twxを算出することで、前記イグニッションオフからイグニッションオン間での外気温変化を考慮することができ、予測水温Twxの精度を高めることができる。また、この予測水温Twxよりも前記冷却水温Twが低い場合に、前記バッテリの電解液濃度が十分安定していると推定できるので、算出されるバッテリの残容量の精度を高めることができる。
【0010】
請求項3に記載した発明は、前記イグニッションオンから前記エンジンが始動するまでの間に、前記バッテリを所定時間無負荷状態に維持することを特徴とする。
この発明によれば、前記電圧測定手段により前記イグニッションオン時に開路電圧を測定する際に、前記バッテリを無負荷状態に維持することで、電解液濃度を安定させた状態で開路電圧を測定でき、算出される残容量の精度をより高めることができる。
【0011】
請求項4に記載した発明は、前記予測水温Twxを下式より算出することを特徴とする。
Twx=(Twini−TAave)×exp(−K×ΔT)+TAave
ここで、ΔTは前記一定時間であり、Kは熱通過係数であり、冷却水の熱量をQとして、下式より算出する。
K=−ln((Tw−TAave)/(Twini−TAave))×Q/ΔT
この発明によれば、精度の高い予測水温Twxを一意的に求めることができるため、算出される残容量の信頼性をさらに高めることができる。
【0012】
また、請求項5に記載した発明は、前記予測水温Twxを、予め記憶されたデータテーブルから読み込むことを特徴とする。
この発明によれば、精度の高い予測水温Twxを一意的に求めることができるため、算出される残容量の信頼性をさらに高めることができる。
【0013】
また、請求項6に記載した発明は、前記バッテリのイグニッションオフ時における処理を、充電処理または放電処理のいずれか一方に設定することを特徴とする。
この発明によれば、イグニッションオフ時からの経過時間と残容量との関係を一意的に定めることができるため、残容量の推定制御を簡略化して行うことが可能となる。すなわち、前記経過時間と開路電圧との関係は、前記イグニッションオフ時におけるバッテリの処理が充電処理か放電処理かで異なるため、前記開路電圧から残容量を推定するにあたっては、前記イグニッションオフ時のバッテリの処理が充電か放電かによって開路電圧のデータを持ち替える必要があるが、上述のようにイグニッションオフ時の処理を充電処理か放電処理のいずれか一方に設定することで、前記データを持ち替える必要がなくなり経過時間から開路電圧を一意的に定めることができる。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態における車両用電池の制御装置を図面と共に説明する。図1は本発明の実施の形態における車両用電池の制御装置1を示す概略構成図である。この制御装置1が適用される車両は、図1に示すように、エンジン2とモータ3とを駆動源とし、この駆動源からの動力を自動変速機4を介して車輪(図示せず)に伝達できるようにしたハイブリッド車両である。本実施の形態においては、エンジン2とモータ3とが直結され、等しい回転数Neで回転するように構成されている。
【0015】
モータ3は、PDU(パワードライブユニット)8を介して鉛バッテリ9に接続されている。モータ3は電動機と発電機の機能を有しており、電動機として作用させたときにはモータ走行あるいはモータアシスト走行が可能であり、発電機として作用させたときにはバッテリ9への充電が可能になる。このために、モータ3とバッテリ9との間の電力の授受をPDU8が制御している。バッテリ9には、バッテリ9の残容量(SOC)を検出するSOC検出装置15が接続されている。SOC検出装置15は、例えば、バッテリの充電電流および放電電流を所定期間毎に積算して積算充電量および積算放電量を算出し、これらの積算充電量および積算放電量を初期状態あるいは充放電開始直前の残容量に加算又は減算することで現時点の残容量を算出する構成とすることができ、イグニッションスイッチ7がオンになっている時(IG−ON)に、バッテリ9の残容量を所定間隔毎に検出する。また、PDU8とバッテリ9の間には、電流センサ10、電圧センサ11が設けられ、バッテリ9の電流、端子間電圧をそれぞれ検出する。
【0016】
エンジン2には、ラジエータ5が冷却水循環通路を介して接続され、両者2,5の間を冷却水が前記循環通路により循環する。この循環通路には、冷却水の水温を検出する水温センサ12が設けられている。
【0017】
また、ハイブリッド車両は、制御部(ECU)6を備えている。この制御部6は前記電流センサ10、電圧センサ11、水温センサ12、SOC検出装置15に加えて、車両の外気温を検出する外気温センサ13と、イグニッションスイッチ7に接続されている、制御部6は、これらの各センサ10〜13、装置15、スイッチ7からの入力値に基づいて各種機器2〜5、8、9の制御を行う。
【0018】
ECU6はその内部にメモリ14を備えており、後述するように、該メモリ14に水温センサ12や外気温センサ13で検出した水温や外気温、残容量検出装置15で検出した残容量が記憶される。また、メモリ14には、開路電圧と経過時間の関係を複数のデータからなるデータテーブルで示すマップ(図4参照)や開路電圧と残容量の関係を複数のデータからなるデータテーブルで示すマップ、後述するしきい値である予測水温Twxの平均外気温TAaveと冷却水温Twに関する複数のデータからなるデータテーブルで示すマップ、等が記憶されている。
【0019】
上述のように構成された車両用電池の制御装置1の作用について説明する。まず、車両の走行時などのイグニッションオン時においては、バッテリ9の残容量は残容量検出装置15にて所定間隔毎に検出され、検出された残容量がECU6のメモリ14に記憶される。
そして、車両が停止時にイグニッションスイッチ7が停止するイグニッションオフ時には、この時の冷却水温Twiniや外気温TAoffを前記水温センサ12や外気温センサ13により検出し、これらの検出値Twini、TAoffがメモリ14に記憶され、その後、車両が停止する。このとき、車両用電池の制御装置1を構成する各機器2〜15は、その作動を停止する。
【0020】
そして、再度イグニッションスイッチ7を作動させた時に、バッテリ9の残容量を算出する。これについて図3を用いて説明する。
図2は残容量SOC算出制御を示すフローチャートである。同図のステップS10に示す開路電圧(OCV)による残容量(SOC)算出制御が開始されると、ステップS12で、イグニッションスイッチ7が作動してイグニッションオン(IG−ON)になる。ステップS14で、イグニッションオフ時にメモリ14に記憶された外気温TAoffを該メモリ14から読み込む。
【0021】
そして、ステップS16で、無負荷時のバッテリ電圧Vocvを電圧センサ11にて測定する。本実施の形態においては、前記イグニッションオンから前記エンジン2が始動するまでの間に、前記バッテリ9を所定時間無負荷状態に維持している。これにより、バッテリ9の電解液濃度を安定させた状態で開路電圧を測定できる。
【0022】
ステップS18で、イグニッションオン時(現在)の外気温TA、水温Twを外気温センサ13にて測定する。そして、ステップS20で放置時(イグニッションオフ時からイグニッションオン時まで)の平均外気温TAaveを下式により求める。
【0023】
TAave=|(TA+TAoff)|/2
【0024】
そして、ステップS22で、平均外気温TAaveと水温Twによりしきい値(予測水温)Twxをマップ検索する。図5はイグニッションオフ時からの経過時間と水温との関係を示すグラフである。同図に示すように、前記イグニッションオフ時の前記冷却水温Twiniは、エンジン2により加熱されているため、常温よりも高い温度(例えば80度程度)になっており、時間の経過に応じて低下していく。また、冷却水温の温度低下度合いは、外気温によっても異なる。本実施の形態においては、図5に示したデータテーブルから、平均外気温TAave下でのイグニッションオフから一定時間経過後の予測水温Twxを求める。ここで、一定時間としては、前記バッテリ9の電解液濃度が安定していると判断できる時間(例えば、4時間)を設定することが好ましい。このように、予測水温Twxをデータテーブルから読み込むため、精度の高い予測水温Twxを一意的に求めることができる。また、平均外気温TAaveに基づいて予測水温Twxを算出することで、前記イグニッションオフからイグニッションオン間での外気温変化を考慮することができ、予測水温Twxの精度を高めることができる。
【0025】
そして、ステップS24により、水温Twが予測水温Twxより大きいかどうかを判定し、判定結果がYesであればステップS26に進み、判定結果がNoであればステップS28に進む。上述したように、冷却水温Twはイグニッションオフ時からの経過時間に応じて低下していくため、前記冷却水温Twが前記予測水温Twxよりも低い場合には(判定結果がNoの場合)、前記一定時間が経過した後でイグニッションオンされたと推定できる。この場合には、前記バッテリ9の電解液濃度は安定していると推定できるので、ステップS28に示したように、イグニッションオン時に電圧センサ11で測定した開路電圧に対するバッテリ残容量を算出する。一方、前記冷却水温Twが前記予測水温Twxよりも高い場合(判定結果がYesの場合)には、前記一定時間が経過する前にイグニッションオンされたと推定できる。この場合には、前記バッテリ9の電解液濃度はまだ安定していないと推定できるので、前記イグニッションオフ時またはその直後のバッテリ残容量を用いる。そして、一連の処理を終了する。
【0026】
このように、前記イグニッションオフ時と前記イグニッションオン時に水温Twや外気温TAを検出すれば、これらに基づいて前記バッテリ残容量を算出できるため、イグニッションオフ時からイグニッションオン時の間で制御装置1を作動させる必要がなく、消費電力を抑制することができる。また、前記バッテリ9の電解液濃度は安定していると推定できる場合にイグニッションオン時に測定した開路電圧に対するバッテリ残容量を算出し、前記バッテリ9の電解液濃度はまだ安定していないと推定できる場合に前記イグニッションオフ時またはその直後のバッテリ残容量を用いるので、バッテリ9の残容量を実用に十分な精度を確保して算出することができる。
【0027】
図3は図1に示した車両用電池の制御装置による残容量算出処理を示す他のフローチャートである。図2と同じ処理については同一の番号を付してその説明を省略する。まず、ステップS12でイグニッションオンになった後は、ステップS13で、前記イグニッションオフ時の外気温TAoffに加えて、前記イグニッションオフ時の冷却水温Twiniをメモリ14から読み込む。
【0028】
そして、前記予測水温Twxを以下の式より算出する。
まず、ステップS30で、熱通過係数Kを算出する。この係数Kは、冷却水の熱量をQ、一定時間をΔTとして、下式より算出する。
【0029】
K=−ln(Tw−TAave)/(Twini−TAave)×Q/ΔT
【0030】
そして、この熱通過係数Kを用いて、予測水温Twxを下式より算出する。
【0031】
Twx=(Twini−TAave)×exp(−K×ΔT)+TAave
【0032】
このように予測水温Twxを算出する場合でも、精度の高い予測水温Twxを一意的に求めることができるため、算出される残容量の信頼性をさらに高めることができる。
【0033】
以上のように、本発明における車両用電池の制御装置を、上述した実施の形態において説明したが、本発明はこの内容に限定されない。例えば、バッテリとして鉛バッテリではなくリチウムバッテリを用いてもよい。また、実施の形態においては、平均外気温TAaveを用いて予測水温Twxを求めたため、その精度を高めることができるが、これに限らず、外気温TAから予測水温を求めてもよい。
【0034】
さらに、前記バッテリ9のイグニッションオフ時における処理を、充電処理または放電処理のいずれか一方に設定するようにしてもよい。図4に示したように、前記経過時間と開路電圧との関係は、前記イグニッションオフ時におけるバッテリ9の処理が充電処理か放電処理かで異なる。このため、前記開路電圧から残容量を推定するにあたっては、前記イグニッションオフ時のバッテリ9の処理が充電か放電かによって開路電圧のデータを持ち替える必要があるが、イグニッションオフ時の処理を充電処理か放電処理のいずれか一方に設定することで、前記データを持ち替える必要がなくなり経過時間から開路電圧を一意的に定めることができる。
【0035】
【発明の効果】
以上説明したように、請求項1に記載した発明によれば、前記イグニッションオフ時からイグニッションオン時の間の消費電力を抑制することができ、バッテリの残容量を実用に十分な精度を確保して算出することができる。
【0036】
請求項2に記載した発明によれば、前記予測水温Twxの精度を高めることができ、前記予測水温Twxより冷却水温Twが低い場合に算出されるバッテリの残容量の信頼性を高めることができる。
請求項3に記載した発明によれば、バッテリの電解液濃度を安定させた状態で開路電圧を測定でき、算出される残容量の信頼性をより高めることができる。
【0037】
請求項4または請求項5に記載した発明によれば、精度の高い予測水温Twxを一意的に求めることができるため、算出される残容量の信頼性をさらに高めることができる。
請求項6に記載した発明によれば、イグニッションオフ時からの経過時間と残容量との関係を一意的に定めることができるため、残容量の推定制御を簡略化して行うことが可能となる。
【図面の簡単な説明】
【図1】 図1は本発明の実施の形態における車両用電池の制御装置の要部構成を示す説明図である。
【図2】 図1に示した車両用電池の制御装置による残容量算出処理を示すフローチャートである。
【図3】 図1に示した車両用電池の制御装置による残容量算出処理を示す他のフローチャートである。
【図4】 イグニッションオフ時からの経過時間と開路電圧との関係を示すグラフである。
【図5】 イグニッションオフ時からの経過時間と水温との関係を示すグラフである。
【符号の説明】
1 車両用電池の制御装置
2 エンジン
6 制御部(ECU)
11 電圧センサ
12 水温センサ
13 外気温センサ
14 メモリ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vehicle battery control device for detecting the remaining capacity of a battery mounted on a vehicle.
[0002]
[Prior art]
Conventionally, a technique for estimating a remaining capacity (SOC: State Of Charge) of a battery (storage battery) using an open circuit voltage (OCV) is known. Since the open circuit voltage varies depending on the concentration of the electrolyte and the battery has a characteristic in which the open circuit voltage is proportional to the remaining capacity, the remaining capacity can be estimated by using the open circuit voltage.
By the way, if the electrolyte concentration of the battery is not stable, the remaining capacity estimated from the detected open circuit voltage has a large error from the actual remaining capacity. Therefore, when detecting the open circuit voltage, in order to stabilize the electrolyte concentration of the battery, it is necessary to leave it in a no-load state for a certain time (for example, several hours) after use. However, in the case of a battery mounted on a vehicle, it is often restarted before the predetermined time elapses. Therefore, even if the open circuit voltage is measured and the remaining capacity is estimated, the accuracy sufficient for practical use is obtained. In many cases, it cannot be secured.
On the other hand, in Patent Document 1, a remaining capacity of a battery mounted on a vehicle is periodically measured, and a correspondence relationship between a battery voltage at a predetermined timing and a battery open circuit voltage after the battery is sufficiently left is determined in advance. A technique for predicting the remaining battery capacity based on the open circuit voltage corresponding to the battery voltage sampled at a predetermined timing has been proposed.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2000-134706
[Problems to be solved by the invention]
However, in the above-described conventional technology, even after the vehicle is stopped (ignition off), it is necessary to operate a device (such as an ECU) that measures an elapsed time after the vehicle stops or a battery voltage detection device. Electricity is consumed even when the vehicle is stopped. For this reason, it is necessary to secure electric power at the time of starting the vehicle after the vehicle is stopped, and it is necessary to perform control for monitoring the state of the device that operates when the vehicle is stopped, resulting in a large control burden.
[0005]
The present invention has been made in view of such circumstances, and calculates the remaining capacity of the battery while ensuring sufficient accuracy for practical use while suppressing power consumption between the time when the ignition is turned off and the time when the ignition is turned on again. It is an object of the present invention to provide a control device for a vehicle battery that can be used.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention described in claim 1 is a temperature detection means (for example, a water temperature sensor 12 in the embodiment) for detecting an engine (for example, the engine 2 in the embodiment) cooling water temperature and an outside air temperature. , The outside air temperature sensor 13), storage means (for example, the memory 14 in the embodiment) for storing the cooling water temperature Twiini and the outside air temperature TAoff detected when the ignition is turned off, and voltage measuring means for measuring the open circuit voltage of the battery ( For example, based on the voltage sensor 11) in the embodiment and the outside air temperature TA detected when the ignition is turned on after the ignition is turned off, calculating means (for example, calculating the predicted water temperature Twx after a predetermined time has passed since the ignition is turned off) ECU 6) and cooling water temperature detected when the ignition is turned on When the cooling water temperature Tw is lower than the predicted water temperature Twx, the remaining battery capacity with respect to the open circuit voltage measured when the ignition is turned on is calculated, and the cooling water temperature Tw is When the temperature is higher than the predicted water temperature Twx, the remaining battery capacity at the time of ignition off or immediately after that is used.
[0007]
According to the present invention, when the ignition is turned off, the temperature detection means detects the cooling water temperature Twiini and the outside air temperature TAoff, stores these temperatures Twini and TAoff in the storage means, and then stops the ignition (ignition). Off). Next, when the ignition is turned on after the ignition is turned off, the cooling water temperature Tw and the outside air temperature TA are detected by the temperature detecting means. And the predicted water temperature Twx after the said fixed time progress in the said external temperature TAoff is calculated by the said calculating means. The cooling water temperature Tw is compared with the predicted water temperature Twx after the predetermined time has elapsed. Here, it is preferable that the fixed time is set to a time during which it can be determined that the electrolyte concentration of the battery is stable. Since the cooling water temperature Twini when the ignition is off is higher than the normal temperature, it decreases with the passage of time. Therefore, when the cooling water temperature Tw is lower than the predicted water temperature Twx, it can be estimated that the ignition is turned on after the predetermined time has elapsed. In this case, since it can be estimated that the electrolyte concentration of the battery is stable, the remaining battery capacity with respect to the open circuit voltage measured when the ignition is turned on is calculated. Further, when the cooling water temperature Tw is higher than the predicted water temperature Twx, it can be estimated that the ignition is turned on before the predetermined time elapses. In this case, since it can be estimated that the electrolyte concentration of the battery is not yet stable, the remaining battery capacity at the time of ignition off or immediately after that is used. In this way, if the water temperature and the outside air temperature are detected when the ignition is turned off and when the ignition is turned on, the remaining battery capacity can be calculated based on these, so there is no need to operate the device between the time when the ignition is turned off and the time when the ignition is turned on. , Power consumption can be suppressed. Also, when it can be estimated that the battery electrolyte concentration is stable, the remaining battery capacity is calculated with respect to the open circuit voltage measured when the ignition is turned on, and when the battery electrolyte concentration can be estimated not yet stable. Since the remaining battery capacity at the time of ignition off or immediately after the ignition is used, the remaining battery capacity can be calculated while ensuring sufficient accuracy for practical use.
[0008]
The invention described in claim 2 includes temperature detecting means for detecting the engine cooling water temperature and the outside air temperature, storage means for storing the cooling water temperature Twiini and the outside air temperature TAoff detected when the ignition is turned off, and the open circuit voltage of the battery. A voltage measuring means for measuring, an average outside air temperature calculating means for calculating an average outside air temperature TAave from the outside air temperature TA detected when the ignition is turned on after the ignition is turned off, and the outside air temperature TAoff detected when the ignition is turned off (for example, ECU 6) in the embodiment, calculation means for calculating a predicted water temperature Twx after a predetermined time has elapsed from the ignition off based on the average outside air temperature TAave, the cooling water temperature Tw detected when the ignition is turned on, and the predicted water temperature Compared to Twx, the cooling water temperature Tw is equal to the predicted water temperature Twx. If the cooling water temperature Tw is higher than the predicted water temperature Twx, the remaining battery capacity at or immediately after the ignition is turned off is calculated. It is characterized by using.
[0009]
According to this invention, the coolant temperature Twiini and the outside air temperature TAoff detected when the ignition is turned off are stored in the storage means, and then the vehicle is stopped (ignition off). Then, when the ignition is turned on after the ignition is turned off, the outside air temperature TA and the outside air temperature TAoff are detected, and the average outside air temperature TAave is calculated therefrom by the average outside air temperature calculating means. By calculating the predicted water temperature Twx based on the average outside air temperature TAave, it is possible to consider the change in the outside air temperature from the ignition off to the ignition on, and to increase the accuracy of the predicted water temperature Twx. In addition, when the cooling water temperature Tw is lower than the predicted water temperature Twx, it can be estimated that the electrolyte concentration of the battery is sufficiently stable, so that it is possible to improve the accuracy of the calculated remaining battery capacity.
[0010]
The invention described in claim 3 is characterized in that the battery is maintained in a no-load state for a predetermined time from when the ignition is turned on until the engine is started.
According to the present invention, when the open circuit voltage is measured when the ignition is turned on by the voltage measuring means, the open circuit voltage can be measured in a state in which the electrolyte concentration is stabilized by maintaining the battery in an unloaded state. The accuracy of the calculated remaining capacity can be further increased.
[0011]
The invention described in claim 4 is characterized in that the predicted water temperature Twx is calculated from the following equation.
Twx = (Twini−TAave) × exp (−K × ΔT) + TAave
Here, ΔT is the predetermined time, K is a heat passage coefficient, and is calculated from the following equation, where Q is the amount of heat of the cooling water.
K = −ln ((Tw−TAave) / (Twini−TAave)) × Q / ΔT
According to the present invention, since the predicted water temperature Twx with high accuracy can be uniquely obtained, the reliability of the calculated remaining capacity can be further increased.
[0012]
Further, the invention described in claim 5 is characterized in that the predicted water temperature Twx is read from a data table stored in advance.
According to the present invention, since the predicted water temperature Twx with high accuracy can be uniquely obtained, the reliability of the calculated remaining capacity can be further increased.
[0013]
The invention described in claim 6 is characterized in that the process when the ignition of the battery is turned off is set to one of a charging process and a discharging process.
According to the present invention, since the relationship between the elapsed time from the ignition off time and the remaining capacity can be uniquely determined, it is possible to simplify the estimation control of the remaining capacity. That is, the relationship between the elapsed time and the open circuit voltage differs depending on whether the battery process at the time of ignition off is a charge process or a discharge process. Therefore, in estimating the remaining capacity from the open circuit voltage, the battery at the time of the ignition off is determined. It is necessary to change the data of the open circuit voltage depending on whether the process is charging or discharging, but it is necessary to change the data by setting the process at the time of ignition off to either the charging process or the discharging process as described above. The open circuit voltage can be uniquely determined from the elapsed time.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a vehicle battery control apparatus according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram showing a vehicle battery control device 1 according to an embodiment of the present invention. As shown in FIG. 1, a vehicle to which the control device 1 is applied has an engine 2 and a motor 3 as drive sources, and power from the drive source is transmitted to wheels (not shown) via an automatic transmission 4. It is a hybrid vehicle that can transmit. In the present embodiment, the engine 2 and the motor 3 are directly connected and are configured to rotate at the same rotation speed Ne.
[0015]
The motor 3 is connected to a lead battery 9 via a PDU (power drive unit) 8. The motor 3 has functions of an electric motor and a generator. When the motor 3 is operated as an electric motor, the motor 3 can be driven or assisted by the motor. When the motor 3 is operated as a generator, the battery 9 can be charged. For this purpose, the PDU 8 controls the transfer of power between the motor 3 and the battery 9. An SOC detection device 15 that detects the remaining capacity (SOC) of the battery 9 is connected to the battery 9. The SOC detection device 15 calculates, for example, the accumulated charge amount and the accumulated discharge amount by integrating the charge current and discharge current of the battery every predetermined period, and sets the accumulated charge amount and the accumulated discharge amount to the initial state or the start of charge / discharge. The current remaining capacity can be calculated by adding or subtracting to the immediately preceding remaining capacity. When the ignition switch 7 is turned on (IG-ON), the remaining capacity of the battery 9 is set at a predetermined interval. Detect every time. A current sensor 10 and a voltage sensor 11 are provided between the PDU 8 and the battery 9 to detect the current of the battery 9 and the voltage between terminals.
[0016]
A radiator 5 is connected to the engine 2 via a cooling water circulation passage, and cooling water circulates between the two and 5 through the circulation passage. A water temperature sensor 12 for detecting the coolant temperature is provided in the circulation passage.
[0017]
The hybrid vehicle includes a control unit (ECU) 6. The control unit 6 is connected to the outside air temperature sensor 13 for detecting the outside air temperature of the vehicle and the ignition switch 7 in addition to the current sensor 10, the voltage sensor 11, the water temperature sensor 12, and the SOC detection device 15. 6 controls the various devices 2 to 5, 8, and 9 based on input values from the sensors 10 to 13, the device 15, and the switch 7.
[0018]
The ECU 6 includes a memory 14 therein, and the water temperature and the outside air temperature detected by the water temperature sensor 12 and the outside air temperature sensor 13 and the remaining capacity detected by the remaining capacity detecting device 15 are stored in the memory 14 as will be described later. The The memory 14 also includes a map (see FIG. 4) showing the relationship between the open circuit voltage and the elapsed time as a data table composed of a plurality of data, and a map showing the relationship between the open circuit voltage and the remaining capacity as a data table composed of a plurality of data. A map shown by a data table composed of a plurality of data relating to an average outside air temperature TAave of a predicted water temperature Twx and a cooling water temperature Tw, which are threshold values to be described later, is stored.
[0019]
The operation of the vehicle battery control device 1 configured as described above will be described. First, when the ignition is on, such as when the vehicle is running, the remaining capacity of the battery 9 is detected at predetermined intervals by the remaining capacity detecting device 15, and the detected remaining capacity is stored in the memory 14 of the ECU 6.
When the ignition switch 7 stops when the vehicle stops, the cooling water temperature Twiini and the outside air temperature TAoff at this time are detected by the water temperature sensor 12 and the outside air temperature sensor 13, and the detected values Twini and TAoff are stored in the memory 14. And then the vehicle stops. At this time, each device 2-15 which comprises the control apparatus 1 for vehicle batteries stops the operation | movement.
[0020]
Then, when the ignition switch 7 is operated again, the remaining capacity of the battery 9 is calculated. This will be described with reference to FIG.
FIG. 2 is a flowchart showing remaining capacity SOC calculation control. When the remaining capacity (SOC) calculation control based on the open circuit voltage (OCV) shown in step S10 of the figure is started, the ignition switch 7 is operated and the ignition is turned on (IG-ON) in step S12. In step S14, the outside air temperature TAoff stored in the memory 14 when the ignition is off is read from the memory 14.
[0021]
In step S16, the battery voltage Vocv at no load is measured by the voltage sensor 11. In the present embodiment, the battery 9 is maintained in a no-load state for a predetermined time from when the ignition is turned on until the engine 2 is started. Thereby, the open circuit voltage can be measured in a state where the electrolyte concentration of the battery 9 is stabilized.
[0022]
In step S 18, the outside air temperature TA and the water temperature Tw when the ignition is on (current) are measured by the outside air temperature sensor 13. Then, in step S20, an average outside temperature TAave at the time of leaving (from ignition off to ignition on) is obtained by the following equation.
[0023]
TAave = | (TA + TAoff) | / 2
[0024]
In step S22, the threshold value (predicted water temperature) Twx is searched for a map based on the average outside air temperature TAave and the water temperature Tw. FIG. 5 is a graph showing the relationship between the elapsed time from the ignition off time and the water temperature. As shown in the figure, the cooling water temperature Twini when the ignition is off is heated by the engine 2 and thus is higher than room temperature (for example, about 80 degrees), and decreases with time. I will do it. Further, the degree of the cooling water temperature drop varies depending on the outside air temperature. In the present embodiment, the predicted water temperature Twx after a fixed time has elapsed from the ignition off under the average outside air temperature TAave is obtained from the data table shown in FIG. Here, as the fixed time, it is preferable to set a time (for example, 4 hours) during which it can be determined that the electrolyte concentration of the battery 9 is stable. Thus, since the predicted water temperature Twx is read from the data table, the highly accurate predicted water temperature Twx can be uniquely obtained. Further, by calculating the predicted water temperature Twx based on the average outside air temperature TAave, it is possible to consider the change in the outside air temperature from the ignition off to the ignition on, and it is possible to improve the accuracy of the predicted water temperature Twx.
[0025]
In step S24, it is determined whether the water temperature Tw is higher than the predicted water temperature Twx. If the determination result is Yes, the process proceeds to step S26, and if the determination result is No, the process proceeds to step S28. As described above, since the cooling water temperature Tw decreases according to the elapsed time from the ignition off time, when the cooling water temperature Tw is lower than the predicted water temperature Twx (when the determination result is No), It can be estimated that the ignition is turned on after a certain time has elapsed. In this case, since it can be estimated that the electrolyte concentration of the battery 9 is stable, the remaining battery capacity with respect to the open circuit voltage measured by the voltage sensor 11 when the ignition is turned on is calculated as shown in step S28. On the other hand, when the cooling water temperature Tw is higher than the predicted water temperature Twx (when the determination result is Yes), it can be estimated that the ignition is turned on before the predetermined time elapses. In this case, since it can be estimated that the electrolyte concentration of the battery 9 is not yet stable, the remaining battery capacity at the time of ignition off or immediately after that is used. Then, a series of processing ends.
[0026]
Thus, if the water temperature Tw and the outside air temperature TA are detected when the ignition is turned off and when the ignition is turned on, the remaining battery capacity can be calculated based on the detected water temperature Tw and the outside air temperature TA. Therefore, the control device 1 is operated between the time when the ignition is turned off and the time when the ignition is turned on. Therefore, power consumption can be suppressed. Further, when it can be estimated that the electrolyte concentration of the battery 9 is stable, the remaining battery capacity with respect to the open circuit voltage measured when the ignition is turned on is calculated, and it can be estimated that the electrolyte concentration of the battery 9 is not yet stable. In this case, since the remaining battery capacity at the time of ignition off or immediately after that is used, the remaining capacity of the battery 9 can be calculated with a sufficient accuracy for practical use.
[0027]
FIG. 3 is another flowchart showing a remaining capacity calculation process by the vehicle battery control device shown in FIG. The same processes as those in FIG. 2 are denoted by the same reference numerals and description thereof is omitted. First, after the ignition is turned on in step S12, in step S13, in addition to the outside air temperature TAoff when the ignition is turned off, the cooling water temperature Twini when the ignition is turned off is read from the memory 14.
[0028]
Then, the predicted water temperature Twx is calculated from the following equation.
First, in step S30, a heat passage coefficient K is calculated. The coefficient K is calculated from the following equation, where Q is the heat quantity of the cooling water and ΔT is a certain time.
[0029]
K = −ln (Tw−TAave) / (Twini−TAave) × Q / ΔT
[0030]
And using this heat passage coefficient K, the predicted water temperature Twx is calculated from the following equation.
[0031]
Twx = (Twini−TAave) × exp (−K × ΔT) + TAave
[0032]
As described above, even when the predicted water temperature Twx is calculated, the highly accurate predicted water temperature Twx can be uniquely obtained, so that the reliability of the calculated remaining capacity can be further increased.
[0033]
As described above, the vehicle battery control apparatus according to the present invention has been described in the above-described embodiment, but the present invention is not limited to this content. For example, a lithium battery may be used as the battery instead of a lead battery. Moreover, in embodiment, since the estimated water temperature Twx was calculated | required using average outside temperature TAave, the precision can be improved, but it is not restricted to this, You may obtain | require predicted water temperature from outside temperature TA.
[0034]
Furthermore, the process when the ignition of the battery 9 is turned off may be set to one of a charging process and a discharging process. As shown in FIG. 4, the relationship between the elapsed time and the open circuit voltage differs depending on whether the processing of the battery 9 at the time of the ignition off is a charging process or a discharging process. For this reason, in estimating the remaining capacity from the open circuit voltage, it is necessary to change the data of the open circuit voltage depending on whether the processing of the battery 9 at the time of ignition off is charging or discharging. By setting either one of the discharge processes, it is not necessary to change the data, and the open circuit voltage can be uniquely determined from the elapsed time.
[0035]
【The invention's effect】
As described above, according to the first aspect of the present invention, it is possible to suppress power consumption from when the ignition is turned off to when the ignition is turned on, and to calculate the remaining capacity of the battery while ensuring sufficient accuracy for practical use. can do.
[0036]
According to the invention described in claim 2, the accuracy of the predicted water temperature Twx can be increased, and the reliability of the remaining battery capacity calculated when the cooling water temperature Tw is lower than the predicted water temperature Twx can be increased. .
According to the invention described in claim 3, the open circuit voltage can be measured in a state where the electrolyte concentration of the battery is stabilized, and the reliability of the calculated remaining capacity can be further increased.
[0037]
According to the invention described in claim 4 or claim 5, since the predicted water temperature Twx with high accuracy can be obtained uniquely, the reliability of the calculated remaining capacity can be further increased.
According to the sixth aspect of the present invention, since the relationship between the elapsed time from the ignition off time and the remaining capacity can be uniquely determined, the remaining capacity estimation control can be simplified.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a configuration of a main part of a control device for a vehicle battery according to an embodiment of the present invention.
FIG. 2 is a flowchart showing remaining capacity calculation processing by the vehicle battery control device shown in FIG. 1;
FIG. 3 is another flowchart showing remaining capacity calculation processing by the vehicle battery control device shown in FIG. 1;
FIG. 4 is a graph showing a relationship between an elapsed time from the ignition off time and an open circuit voltage.
FIG. 5 is a graph showing the relationship between the elapsed time from the ignition off time and the water temperature.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Control apparatus of vehicle battery 2 Engine 6 Control part (ECU)
11 Voltage sensor 12 Water temperature sensor 13 Outside air temperature sensor 14 Memory

Claims (6)

エンジン冷却水温と外気温とを検出する温度検出手段と、
イグニッションオフ時に検出される冷却水温Twiniと外気温TAoffとを記憶する記憶手段と、
バッテリの開路電圧を測定する電圧測定手段と、
前記イグニッションオフ後でイグニッションオン時に検出される外気温TAに基づいて、前記イグニッションオフから一定時間経過後の予測水温Twxを演算する演算手段と、
前記イグニッションオン時に検出される冷却水温Twと前記予測水温Twxとを比較して、前記冷却水温Twが前記予測水温Twxよりも低い場合には、前記イグニッションオン時に測定した開路電圧に対するバッテリ残容量を算出し、前記冷却水温Twが前記予測水温Twxよりも高い場合には、前記イグニッションオフ時またはその直後のバッテリ残容量を用いることを特徴とする車両用電池の制御装置。
Temperature detecting means for detecting the engine coolant temperature and the outside air temperature;
Storage means for storing the cooling water temperature Twiini and the outside air temperature TAoff detected when the ignition is turned off;
Voltage measuring means for measuring the open circuit voltage of the battery;
A calculation means for calculating a predicted water temperature Twx after a predetermined time has elapsed from the ignition off, based on an outside air temperature TA detected when the ignition is turned on after the ignition is turned off;
When the cooling water temperature Tw detected when the ignition is turned on and the predicted water temperature Twx are compared and the cooling water temperature Tw is lower than the predicted water temperature Twx, the remaining battery capacity with respect to the open circuit voltage measured when the ignition is turned on is calculated. When the cooling water temperature Tw is calculated and is higher than the predicted water temperature Twx, the remaining battery capacity at the time of ignition off or immediately after the ignition is used.
エンジン冷却水温と外気温とを検出する温度検出手段と、
イグニッションオフ時に検出される冷却水温Twiniと外気温TAoffとを記憶する記憶手段と、
バッテリの開路電圧を測定する電圧測定手段と、
前記イグニッションオフ後でイグニッションオン時に検出される外気温TAと、前記イグニッションオフ時に検出される外気温TAoffとから平均外気温TAaveを算出する平均外気温算出手段と、
該平均外気温TAaveに基づいて、前記イグニッションオフから一定時間経過後の予測水温Twxを演算する演算手段と、
前記イグニッションオン時に検出される冷却水温Twと前記予測水温Twxとを比較して、前記冷却水温Twが前記予測水温Twxよりも低い場合には、前記イグニッションオン時に測定した開路電圧に対するバッテリ残容量を算出し、前記冷却水温Twが前記予測水温Twxよりも高い場合には、前記イグニッションオフ時またはその直後のバッテリ残容量を用いることを特徴とする車両用電池の制御装置。
Temperature detecting means for detecting the engine coolant temperature and the outside air temperature;
Storage means for storing the cooling water temperature Twiini and the outside air temperature TAoff detected when the ignition is turned off;
Voltage measuring means for measuring the open circuit voltage of the battery;
Average outside air temperature calculating means for calculating an average outside air temperature TAave from the outside air temperature TA detected when the ignition is turned on after the ignition is turned off and the outside air temperature TAoff detected when the ignition is turned off;
Calculation means for calculating a predicted water temperature Twx after a predetermined time has elapsed from the ignition off, based on the average outside air temperature TAave;
When the cooling water temperature Tw detected when the ignition is turned on and the predicted water temperature Twx are compared and the cooling water temperature Tw is lower than the predicted water temperature Twx, the remaining battery capacity with respect to the open circuit voltage measured when the ignition is turned on is calculated. When the cooling water temperature Tw is calculated and is higher than the predicted water temperature Twx, the remaining battery capacity at the time of ignition off or immediately after the ignition is used.
前記イグニッションオンから前記エンジンが始動するまでの間に、前記バッテリを所定時間無負荷状態に維持することを特徴とする請求項1から請求項2のいずれかに記載の車両用電池の制御装置。3. The vehicle battery control device according to claim 1, wherein the battery is maintained in a no-load state for a predetermined time period from when the ignition is turned on until the engine is started. 4. 前記予測水温Twxを下式より算出することを特徴とする請求項2または請求項3に記載の車両用電池の制御装置。
Twx=(Twini−TAave)×exp(−K×ΔT)+TAave
ここで、ΔTは前記一定時間であり、Kは熱通過係数であり、冷却水の熱量をQとして、下式より算出する。
K=−ln((Tw−TAave)/(Twini−TAave))×Q/ΔT
4. The vehicle battery control apparatus according to claim 2, wherein the predicted water temperature Twx is calculated from the following equation.
Twx = (Twini−TAave) × exp (−K × ΔT) + TAave
Here, ΔT is the predetermined time, K is a heat passage coefficient, and is calculated from the following equation, where Q is the amount of heat of the cooling water.
K = −ln ((Tw−TAave) / (Twini−TAave)) × Q / ΔT
前記予測水温Twxを、予め記憶されたデータテーブルから読み込むことを特徴とする請求項2または請求項3に記載の車両用電池の制御装置。4. The vehicle battery control device according to claim 2, wherein the predicted water temperature Twx is read from a data table stored in advance. 前記バッテリのイグニッションオフ時における処理を、充電処理または放電処理のいずれか一方に設定することを特徴とする請求項1から請求項5のいずれかに記載の車両用電池の制御装置。The vehicle battery control device according to any one of claims 1 to 5, wherein a process at the time of ignition off of the battery is set to one of a charging process and a discharging process.
JP2003083237A 2003-03-25 2003-03-25 Vehicle battery control device Expired - Fee Related JP4223308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003083237A JP4223308B2 (en) 2003-03-25 2003-03-25 Vehicle battery control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003083237A JP4223308B2 (en) 2003-03-25 2003-03-25 Vehicle battery control device

Publications (2)

Publication Number Publication Date
JP2004297852A JP2004297852A (en) 2004-10-21
JP4223308B2 true JP4223308B2 (en) 2009-02-12

Family

ID=33398763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003083237A Expired - Fee Related JP4223308B2 (en) 2003-03-25 2003-03-25 Vehicle battery control device

Country Status (1)

Country Link
JP (1) JP4223308B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4609106B2 (en) * 2005-02-17 2011-01-12 トヨタ自動車株式会社 Power supply device, automobile equipped with the same, and control method of power supply device
JP4872496B2 (en) 2006-07-06 2012-02-08 日産自動車株式会社 Battery detection device

Also Published As

Publication number Publication date
JP2004297852A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
JP4890977B2 (en) Battery deterioration calculation device
US7800345B2 (en) Battery management system and method of operating same
US7646176B2 (en) Controller for rechargeable battery and temperature estimation method and deterioration determination method for rechargeable battery
US7893652B2 (en) Battery control apparatus, electric vehicle, and computer-readable medium storing a program that causes a computer to execute processing for estimating a state of charge of a secondary battery
JP3949488B2 (en) Storage battery life prediction device and storage battery control device
US20140100803A1 (en) Power estimation device for estimating chargeable/dischargeable power of electric storage device, electric storage apparatus, and method of estimating chargeable/dischargeable power
US20080208494A1 (en) Method and Device for Determining the Charge and/or Aging State of an Energy Store
JP2007323999A (en) Battery control device of automobile
JP6603888B2 (en) Battery type determination device and battery type determination method
JP6439352B2 (en) Secondary battery deterioration state estimation device
JP2007055450A (en) Estimating system for deteriorated state of capacitor device
JP2015158416A (en) Apparatus for estimating soc of secondary battery, and soc estimation method
JP2003035755A (en) Method for detecting stored power in battery
EP3756937B1 (en) Apparatus and method for estimating soc
JP2010058635A (en) Battery cooling device
US11085967B2 (en) Battery control device
WO2019131740A1 (en) Rechargeable battery temperature estimation device and rechargeable battery temperature estimation method
JPWO2009118904A1 (en) Battery state detection system and automobile equipped with the same
JP4223308B2 (en) Vehicle battery control device
KR100901594B1 (en) Method for calculating battery SOC of electronic vehicle
JP2003068370A (en) Detector of charged state of battery
JP2007278851A (en) Battery state detection system
JP5413592B2 (en) Secondary battery charge state estimation control device
JP2002250757A (en) Method and apparatus for estimation of open circuit voltage of battery for vehicle
JPH1138107A (en) Method for estimating residual capacity of secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees