JP3949488B2 - Storage battery life prediction device and storage battery control device - Google Patents

Storage battery life prediction device and storage battery control device Download PDF

Info

Publication number
JP3949488B2
JP3949488B2 JP2002095295A JP2002095295A JP3949488B2 JP 3949488 B2 JP3949488 B2 JP 3949488B2 JP 2002095295 A JP2002095295 A JP 2002095295A JP 2002095295 A JP2002095295 A JP 2002095295A JP 3949488 B2 JP3949488 B2 JP 3949488B2
Authority
JP
Japan
Prior art keywords
storage battery
deterioration rate
amount
storage
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002095295A
Other languages
Japanese (ja)
Other versions
JP2003297435A (en
Inventor
達郎 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002095295A priority Critical patent/JP3949488B2/en
Publication of JP2003297435A publication Critical patent/JP2003297435A/en
Application granted granted Critical
Publication of JP3949488B2 publication Critical patent/JP3949488B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Description

【0001】
【発明の属する技術分野】
本発明は、使用状態に応じて変動する蓄電池の寿命を予測する蓄電池の寿命予測装置と、蓄電池の寿命を延ばすように使用状態を制御する蓄電池の制御装置に関するものである。
【0002】
【従来の技術】
蓄電池(バッテリ)は、自動車のスタータ用、無停電電源装置あるいは太陽光発電システムなどの様々な分野や環境で利用されており、それぞれの電力として大きな役割を果たしている。そのため、蓄電池の寿命を知ることは各分野において非常に重要なことである。
【0003】
例えば、特開2000−228227号公報においては、蓄電池の蓄電量(SOC:state of charge)と温度との関係式から電池容量の劣化速度を積算し、これを初期の電池容量から減算することにより、所定時間における電池容量を算出するものが開示されている。
【0004】
【発明が解決しようとする課題】
しかしながら、蓄電池が使用される分野によっては、蓄電池の充電状態や温度を考慮するのみでは、十分に蓄電池の寿命を予測できない場合がある。
例えば、蓄電池を駆動源とするハイブリッド車両においては、蓄電池の寿命を高い精度で予測することが要望されており、上述した従来の技術においては十分に要望を満たすことができないという問題があった。
また、蓄電池の寿命を予測できた場合に、その寿命を延ばすように蓄電池の制御を行うことが要望されていた。
【0005】
本発明は、このような事情に鑑みてなされたもので、ハイブリッド車両のような高い精度で蓄電池の寿命を予測することが要望されている分野においても、蓄電池の寿命を高い精度で予測することができる蓄電池の寿命予測装置を提供することを目的とする。
また、本発明は、蓄電池の寿命を伸ばすことができる蓄電池の制御装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
請求項1に記載した発明は、蓄電池(例えば、後述する実施の形態における蓄電池2)の温度を検出する温度検出器(例えば、後述する実施の形態における温度センサー3)と、蓄電池の入出力電流を検出する電流検出器(例えば、後述する実施の形態における電流センサー4)と、電流検出器で検出された電流の積算値より蓄電池の蓄電量を検出する蓄電量検出手段を有する演算制御器(例えば、後述する実施の形態における演算制御器5)を備え、前記演算制御器は、蓄電池の平均温度と平均電流値と蓄電量より蓄電池の劣化速度を算出する劣化速度算出手段と、蓄電池の許容劣化量を算出し、該許容劣化量を前記劣化速度で除算して寿命時間を算出する寿命算出手段を備えたことを特徴とする蓄電池の寿命予測装置(例えば、後述する実施の形態における蓄電池の寿命予測装置1)である。
【0007】
この発明は、蓄電池の劣化速度が、蓄電池の温度と、蓄電池の入出力電流と、蓄電池の蓄電量とに大きく依存するという、本発明者の知見によりなされたものである。この発明によれば、前記温度検出器により検出する蓄電池の温度と、前記電流検出器により検出する蓄電池の入出力電流と、前記演算制御器の蓄電量検出手段により検出する蓄電池の蓄電量の変動幅とに基づいて、前記劣化速度算出手段により蓄電池の劣化速度を算出しているため、使用条件に応じて変動する蓄電池の劣化速度を求めることができる。加えて、前記寿命算出手段により蓄電池の許容劣化量を算出し、該許容劣化量を蓄電池の劣化速度で除算することで、使用条件に応じて変動する蓄電池の寿命時間を高い精度で予測することができる。
【0008】
請求項2に記載した発明は、蓄電池の温度を検出する温度検出器と、蓄電池の入出力電流を検出する電流検出器と、電流検出器で検出された電流の積算値より蓄電池の蓄電量を検出する蓄電量検出手段を有する演算制御器(例えば、後述する実施の形態における演算制御器21)とを備え、前記演算制御器は、蓄電池の平均温度と平均電流値と蓄電量より蓄電池の劣化速度を算出する劣化速度算出手段を備え、劣化速度が所定値以上になると蓄電池の劣化速度を低下させる劣化速度低下制御手段(例えば、後述する実施の形態における演算制御器21)を作動させることを特徴とする蓄電池の制御装置(例えば、後述する実施の形態における蓄電池の制御装置20)である。
【0009】
この発明によれば、請求項1の発明の場合と同様にして、使用条件に応じて変動する蓄電池の劣化速度を求めることができる。加えて、劣化速度が所定値以上の場合には、前記劣化速度低下制御手段を作動させることにより、蓄電池の劣化速度を低下させるため、蓄電池の急激な劣化を防止することができ、蓄電池の寿命を一定以上に確保することができる。
【0010】
請求項3に記載した発明は、請求項2に記載のものであって、前記劣化速度低下制御手段は、劣化速度が所定値以上になると蓄電池に設ける冷却装置(例えば、後述する実施の形態における冷却用ファン22)を作動させる冷却制御手段を備えていることを特徴とする蓄電池の制御装置である。
【0011】
この発明によれば、予定した蓄電池の入出力電流を維持しつつ、蓄電池の劣化速度を低下させることができる。このため、蓄電池の作動を制限することなく、蓄電池の寿命を一定時間以上確保することができる。
【0012】
請求項4に記載した発明は、請求項2または請求項3に記載のものであって、劣化速度が所定値以上になると蓄電池の入出力電流を制限する電流制限手段(例えば、後述する実施の形態における入出力制御器23)を備えていることを特徴とする蓄電池の制御装置である。
【0013】
この発明によれば、劣化速度の低減をより短時間で行うことができ、蓄電池の寿命をより確実に一定時間以上確保することができる。
【0014】
請求項5に記載した発明は、請求項2から請求項4のいずれかに記載のものであって、劣化速度が所定値以上になると蓄電池の蓄電量の上限値を小さくする充放電範囲制限手段を備えていることを特徴とする蓄電池の制御装置である。
この発明によれば、劣化速度の低減をさらに短時間で行うことができ、蓄電池の寿命をさらに確実に確保することができる。
【0015】
請求項6に記載した発明は、請求項2から請求項5のいずれかに記載のものであって、前記劣化速度低下制御手段は、劣化速度が所定値以上になると蓄電池の蓄電量の下限値を大きくする充放電範囲制限手段を備えていることを特徴とする蓄電池の制御装置である。
この発明によれば、劣化速度の低減をさらに短時間で行うことができ、蓄電池の寿命をさらに確実に一定時間以上確保することができる。
【0016】
【発明の実施の形態】
以下、本発明の実施形態における蓄電池の寿命予測装置、蓄電池の制御装置について図面と共に説明する。本実施の形態においては、ハイブリッド車両に搭載された蓄電池の寿命を予測する場合、該蓄電池の寿命を制御する場合を例として説明する。
【0017】
図1は本発明の第1の実施の形態における蓄電池の寿命予測装置1(以下、単に「寿命予測装置1」という)を示すブロック図である。同図に示したように、前記寿命予測装置1は、蓄電池2の温度を検出するための温度センサー3と、該蓄電池2の入出力電流を検出するための電流センサー4と、該蓄電池2の蓄電量を検出する蓄電量検出手段を有する演算制御器(ECU)5を備えている。
【0018】
前記電流センサー4は、前記蓄電池2と電動機(モータ・ジェネレータ)6との接続経路上に設けられ、前記蓄電池2の充放電時の電流を検出できるようにしている。そして、前記演算制御器5は前記温度センサー3や前記電流センサー4に接続され、これらのセンサー3,4で検出した蓄電池2の温度や電流が前記演算制御器5に入力される。
【0019】
また、前記演算制御器5は、その内部に蓄電量検出手段(図示せず)が設けられ、前記電流センサー4で検出された電流の積算値より蓄電池2の蓄電量を検出できるようにしている。前記演算制御器5はイグニッション7に接続され、該イグニッション7からの信号を受けて、後述する演算処理を行うのである。そして、演算制御器5は寿命推定表示器8に接続されており、該寿命推定表示器8にて演算制御器5で演算した寿命を表示できるようにしている。
【0020】
前記蓄電池2は、前記電動機6がモータとして機能する場合には、該モータに駆動電力を供給する。一方、前記電動機6がジェネレータ6として機能する場合には、該ジェネレータから回生電力が供給される。このように、蓄電池2は使用状態が様々に変動する。
【0021】
本発明者は、蓄電池2の劣化速度が、温度Tと、入出力電流(電流負荷)と、蓄電池の蓄電量の変動幅(充電深度或いは放電深度で表される充放電範囲)とに大きく依存するという知見に基づいて、これらの間の関係式を導出した。以下にその内容を示す。
【0022】
蓄電池2の劣化速度をKとし、使用条件の変数をXとすると、これらは次式(1)で表わすことができる。
式(1):K=f(X)
この関数f(X)は、指数関数によってほぼ正確に近似できる傾向がある。
【0023】
さらに、上述の式(1)は、変数XがX1、X2の場合の劣化速度をK1、K2とすると、その比率Q(K2/K1)は他の変数Yの条件が変化してもほぼ等しくなる傾向がある。
【0024】
例えば、K=f(X)が温度Tの相関式の場合、電流値I1のときの劣化速度比率Q1と電流値がI2のときの劣化速度の比率Q2は、ほぼ同じ値を示す。これは、各使用条件の間で交互作用が少ないので成立する。
【0025】
本発明者は以上の知見に基づき、劣化速度Kが下記の式(2)で表現できることを確認した。
式(2):K=ft(T) ×fi(I) × fs(S)
ここで、 ft(T)は温度Tに依存する項、fi(I)は電流値Iに依存する項、fs(S)は蓄電量の変動幅Sに依存する項である。
【0026】
この劣化速度Kで、予め実験で計測した蓄電池の許容劣化量Rを除算することにより、該劣化量Rに達する蓄電池2の寿命時間Lが求められる。すなわち、
式(3):L = R÷K
これらの式(2)、式(3)を用いて、蓄電池2の寿命時間Lを容易に推定することができる。なお、許容劣化量Rについては詳細を後述する。
【0027】
以下、前記式(2)の形をより具体的に算出する。
本発明者は、劣化速度Kが温度Tのみに依存する場合のアレニウスの式(4)式(4):K=Λe(- Δ E/(kT)
(ここで、Λは定数)と、
温度Tと他のストレス因子Sを一つ含んだアイリングの式(5)
式(5):K=a((kT)/h)・e(- Δ E/(kT))・Sα
に基づいて、以下の式(6)を導出した。
式(6):K=a((kT)/h)・e(- Δ E/(kT))・Sα・S’α '
ここで、Sは電流負荷、S’は蓄電量の変動幅を示しており、温度以外のストレス因子である。hはプランク定数、kはボルツマン定数、ΔEは活性化エネルギー、Tは絶対温度である。
【0028】
前記式(6)の係数を求めるために、劣化速度Kと各変数(電流負荷、蓄電量、温度)ごとの関係を、以下に示すように図3〜図5を用いて求める。
前記式(6)において、3つの変数のうち一つ(例えば電流負荷)に着目して両辺の対数をとると、式(6)は、以下のようになる。
式(7):lnK=A+αlnS
ここでA、αは定数である。これらの値を図3から求める。
【0029】
図3は蓄電池2の電流負荷特性を示すグラフである。縦軸に内部抵抗劣化速度K(%/hr)の対数をとり、横軸に電流負荷S(C)の対数をとったものである。同図においては、他の変数の影響を受けないように、温度と蓄電量の条件は一定としている。
図3から、この式(7)の係数A、αは
式(8):A=−3.5、α=1.00
となる。
【0030】
同様にして、前記式(6)において、蓄電量に着目すると、
式(9):lnK=A’+α’lnS’
ここでA’、α’は定数である。これらの値を図4から求める。
図4は蓄電池2の蓄電量特性を示すグラフである。縦軸に内部抵抗劣化速度K(%/hr)の対数をとり、横軸に蓄電量の変動幅(%)の対数をとったものである。同図においては、他の変数の影響を受けないように、温度と電流負荷の条件は一定としている。
図4から、この式(9)の係数A’、α’は、
式(10):A’=−3.8、α=0.32
となる。
【0031】
同様にして、前記式(6)において、温度Tに着目すると、
式(11):lnK=A”−ΔE/(kT)=A”−α”/T
ここでA”、α”は定数であり、この内、α”=ΔE/kである。これらの値を図5から求める。
図5は蓄電池2の温度特性を示すグラフである。縦軸に内部抵抗劣化速度K(%/hr)の対数をとり、横軸に絶対温度の逆数1/T(K)の対数をとったものである。同図においては、他の変数の影響を受けないように、電流負荷と蓄電量の変動幅の条件は一定としている。
図5から、この式の係数A”、α”は、
式(12):A”=11、α”=−4600
となる。
【0032】
以上より、蓄電池の劣化速度(内部抵抗劣化反応速度)Kが次式(13)で表される。
式(13):K=dR/dt=55T・e(-4600/T)・S1・S’0.32
この式(13)に、使用条件として温度T、電流負荷S、蓄電量の変動幅S’の値を代入すれば、劣化速度Kの値を求めることができる。ここで、Rは蓄電池2の許容劣化量、tは規定時間であり、許容劣化量Rは蓄電池の寿命が到来し十分な充放電機能が得られなくなるまでの劣化量を示す値であり、様々な使用条件下での実験により計測して得られる。そして、劣化速度Kを式(2)に代入することにより、蓄電池2の寿命時間Lを求めることができる。
【0033】
例えば、温度50℃、電流値2C、蓄電量の変動幅20%の条件で蓄電池2を使用している場合には、式(13)から、反応速度Kは0.061(%/hr)となり、寿命が到来するまでの許容劣化量Rが30%の場合の寿命時間を式(2)より算出すると、490hrが得られる。
このように使用条件から、劣化速度Kと寿命時間Lを算出することができる。図6は蓄電池2の寿命時間を使用条件ごとに実験したデータである。同図では、許容劣化量Rが30%の場合を寿命として寿命時間を計測している。
【0034】
図2は図1に示した寿命予測装置1のフローチャートである。同図のステップS10に示したように、イグニッション7をONにすると、その信号が演算制御器5に入力されてタイマー(図示せず)が作動し、規定時間の計測を開始する。そして、劣化速度Kの変数である蓄電池2の温度、電流負荷、蓄電量の変動幅を規定測定時間ごとにサンプリングする。ステップS12に示したようにサンプリングを行う時間が規定測定時間に到達したかどうかを判定し、判定結果が「YES」である場合はステップS14に進み、判定結果が「NO」である場合はステップS10に戻って上記処理を繰り返す。
【0035】
ステップS14では、規定時間毎に各変数(温度等)の代表値(使用環境条件代表値、例えば平均値)を算出する。そして、ステップS16では、この各変数の代表値を式(13)に代入して、劣化速度Kを算出する。本実施の形態においては、この劣化速度Kを前記寿命推定表示器8にて表示させ、これにより、現在の蓄電池2に及ぼす影響度合いを示している。
【0036】
ステップS18においては、規定時間毎に算出した各劣化速度Kに規定時間を乗じた劣化量Riを積算して、積算劣化量ΣRiを算出する。そして、ステップS20に示したように、この積算劣化量ΣRiを蓄電池2の初期の許容劣化量R0から減算することで残存する許容劣化量Rを算出する。例えば、初期の許容劣化量R0が30(%)で積算劣化量が10(%)の場合、残存する許容劣化量Rは20(%)となる。この許容劣化量Rが0(%)になった場合は、蓄電池の機能が不十分な状態となり寿命到来となる。
【0037】
そして、ステップS22に示したように、算出した劣化特性値を反応速度で除算することにより推定寿命時間を算出して、処理を終了する。
このようにしたため、使用条件に応じて変動する蓄電池2の劣化速度Kを求めることができ、使用条件に応じて変動する蓄電池2の寿命時間Lを高い精度で予測することができる。なお、劣化速度の履歴を記録しておくことにより、蓄電池2の解析に寄与することができる。
【0038】
以下、蓄電池の制御装置について説明する。図7は本発明の実施の形態における蓄電池の制御装置20(以下、単に「制御装置20」という)を示すブロック図である。ここで、前記寿命予測装置1と同一の構成部分については同一の番号を付してその説明を適宜省略する。
【0039】
前記制御装置20は演算制御器21を備えており、この演算制御器21は前記演算制御器5と同様に、蓄電池2の劣化速度Kや寿命時間Lを式(13)や式(2)により算出する機能を備えている。また、前記演算制御器21は、蓄電池2に設けられた冷却用ファン22や、電動機6に接続された入出力制御器23に接続され、前記冷却用ファン22や入出力制御器23を制御可能としている。
【0040】
図8は図7に示した制御装置20のフローチャートである。同図において、ステップS30〜S36の処理は、図2のステップS10〜S16の処理と同様であるため、説明を省略する。
【0041】
ステップS38においては、ステップS36において算出した劣化速度Kが基準劣化速度以上かどうかを判定し、判定結果が「YES」である場合はステップS40に進み、判定結果が「NO」である場合は一連の処理を一旦終了する。
【0042】
上記判定結果が「YES」の場合には、以下に示すように蓄電池2の劣化速度を低下させる処理を行う。すなわち、ステップS40では、前記冷却用ファン22を作動させて蓄電池2を冷却する制御を行う。図6に示したように、蓄電池2の寿命時間は温度が高くなると低下するため、上述した冷却制御を行うことにより、劣化速度Kの低下を図り、蓄電池2の延命を図っている。これにより、蓄電池2の作動機能を維持しつつ蓄電池2の寿命を確保することができる。
【0043】
そして、ステップS42に示すように、劣化速度Kを再度算出してこれが基準劣化速度以上かどうかを判定し、判定結果が「YES」である場合はステップS44に進み、判定結果が「NO」である場合は一連の処理を一旦終了する。
【0044】
ステップS44では、前記入出力制御器23を作動させることにより充放電量を制御する処理を行う。図6に示したように、蓄電池2の寿命時間は電流負荷が大きくなると低下するため、上述した充放電量を制御することにより、劣化速度Kの低下を図り、蓄電池2の延命を図っている。これにより、蓄電池2の寿命をより確実に一定時間以上確保することができる。
【0045】
そして、ステップS46に示すように、劣化速度Kを再度算出してこれが基準劣化速度以上かどうかを判定し、判定結果が「YES」である場合はステップS48に進み、判定結果が「NO」である場合は一連の処理を一旦終了する。
【0046】
ステップS48においては、前記蓄電池2の蓄電量の変動幅を制御する処理を行う。図6に示したように、蓄電池2の寿命時間は蓄電量の変動幅が大きくなると低下するため、上述した変動幅が小さくなるよう制御することにより、劣化速度Kの低下を図り、蓄電池2の延命を図っている。これにより、蓄電池2の寿命をさらに確実に一定時間以上確保することができる。この蓄電量の変動幅の制限としては、蓄電量の上限値を小さくすることで制限してもよいし、蓄電量の下限値を大きくすることで制限してもよく、また両方の制限を行ってもよい。
【0047】
なお、実施の形態においては、ハイブリッド車両に適用される蓄電池の寿命予測や寿命制御を行う場合について説明したが、本発明の適用範囲はこれに限られず、例えば太陽光発電システムなどの様々な分野や環境で利用される蓄電池の寿命予測や寿命制御を行う場合に適用することができる。
【0048】
【発明の効果】
以上説明したように、請求項1に記載した発明によれば、使用条件に応じて変動する蓄電池の劣化速度を求めることができ、この劣化速度に基づいて蓄電池の寿命時間を高い精度で予測することができる。
【0049】
請求項2に記載した発明によれば、使用条件に応じて変動する蓄電池の劣化速度を求めることができる。加えて、劣化速度が所定値以上の場合には、前記劣化速度低下制御手段を作動させることにより、蓄電池の急激な劣化を防止することができ、蓄電池の劣化速度を低下させるため、蓄電池の寿命を一定時間以上確保することができる。
【0050】
請求項3に記載した発明によれば、予定した蓄電池の入出力電流を維持しつつ、蓄電池の劣化速度を低下させることができるため、蓄電池の作動を制限することなく、蓄電池の寿命を一定時間以上確保することができる。
請求項4に記載した発明によれば、劣化速度の低減をより短時間で行うことができ、蓄電池の寿命をより確実に確保することができる。
【0051】
請求項5に記載した発明によれば、劣化速度の低減をさらに短時間で行うことができ、蓄電池の寿命をさらに確実に一定時間以上確保することができる。
請求項6に記載した発明によれば、劣化速度の低減をさらに短時間で行うことができ、蓄電池の寿命をさらに確実に一定時間以上確保することができる。
【図面の簡単な説明】
【図1】 図1は本発明の実施の形態における蓄電池の寿命予測装置を示すブロック図である。
【図2】 図1に示した蓄電池の寿命予測装置のフローチャートである。
【図3】 図1に示した蓄電池の電流負荷特性を示すグラフである。
【図4】 図1に示した蓄電池のSOC変動幅特性を示すグラフである。
【図5】 図1に示した蓄電池の温度特性を示すグラフである。
【図6】 図1に示した蓄電池の寿命時間を使用条件ごとに実験したデータである。
【図7】 図7は本発明の実施の形態における蓄電池の制御装置を示すブロック図である。
【図8】 図7に示した蓄電池の制御装置のフローチャートである。
【符号の説明】
1 蓄電池の寿命予測装置
2 蓄電池
3 温度検出器
4 電流センサー
5 演算制御器(ECU)
20 蓄電池の制御装置
21 演算制御器
22 冷却用ファン
23 入出力制御器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a storage battery life prediction device that predicts the life of a storage battery that varies depending on the use state, and a storage battery control device that controls the use state so as to extend the life of the storage battery.
[0002]
[Prior art]
Storage batteries (batteries) are used in various fields and environments, such as for automobile starters, uninterruptible power supplies, or solar power generation systems, and play a major role as their respective electric power. Therefore, knowing the life of the storage battery is very important in each field.
[0003]
For example, in Japanese Patent Laid-Open No. 2000-228227, the battery capacity deterioration rate is integrated from the relational expression between the storage battery SOC (state of charge) and temperature, and is subtracted from the initial battery capacity. A battery capacity calculation for a predetermined time is disclosed.
[0004]
[Problems to be solved by the invention]
However, depending on the field in which the storage battery is used, the life of the storage battery may not be sufficiently predicted only by considering the state of charge and temperature of the storage battery.
For example, in a hybrid vehicle using a storage battery as a drive source, it is desired to predict the life of the storage battery with high accuracy, and there has been a problem that the above-described conventional technology cannot sufficiently satisfy the request.
Moreover, when the lifetime of the storage battery can be predicted, it has been desired to control the storage battery so as to extend the lifetime.
[0005]
The present invention has been made in view of such circumstances, and predicts the life of a storage battery with high accuracy even in a field where it is desired to predict the life of the storage battery with high accuracy, such as a hybrid vehicle. An object of the present invention is to provide an apparatus for predicting the life of a storage battery.
Another object of the present invention is to provide a storage battery control device that can extend the life of the storage battery.
[0006]
[Means for Solving the Problems]
The invention described in claim 1 includes a temperature detector (for example, a temperature sensor 3 in an embodiment to be described later) for detecting the temperature of a storage battery (for example, a storage battery 2 in an embodiment to be described later), and an input / output current of the storage battery. An arithmetic controller (for example, a current sensor 4 in an embodiment described later) and a storage controller for detecting a storage amount of the storage battery from an integrated value of the current detected by the current detector ( For example, the calculation controller 5) in the embodiment described later includes a deterioration rate calculation means for calculating the deterioration rate of the storage battery from the average temperature, average current value, and storage amount of the storage battery, and the allowable capacity of the storage battery. A life prediction device for a storage battery (for example, described later), comprising life calculation means for calculating a deterioration amount and dividing the allowable deterioration amount by the deterioration rate to calculate a life time. A life predicting device 1) of the storage battery in the facilities of the form.
[0007]
The present invention has been made based on the knowledge of the present inventor that the deterioration rate of the storage battery greatly depends on the temperature of the storage battery, the input / output current of the storage battery, and the storage amount of the storage battery. According to this invention, the temperature of the storage battery detected by the temperature detector, the input / output current of the storage battery detected by the current detector, and the fluctuation of the storage amount of the storage battery detected by the storage amount detection means of the arithmetic controller. Since the deterioration rate of the storage battery is calculated by the deterioration rate calculation means based on the width, the deterioration rate of the storage battery that varies depending on the use conditions can be obtained. In addition, by calculating the allowable deterioration amount of the storage battery by the lifetime calculation means and dividing the allowable deterioration amount by the deterioration rate of the storage battery, the lifetime of the storage battery that varies depending on the use conditions is predicted with high accuracy. Can do.
[0008]
The invention described in claim 2 is a temperature detector that detects the temperature of the storage battery, a current detector that detects an input / output current of the storage battery, and an accumulated amount of the current detected by the current detector. A calculation controller (for example, a calculation controller 21 in an embodiment described later) having a storage amount detection means for detecting, the deterioration of the storage battery from the average temperature, average current value, and storage amount of the storage battery. A deterioration rate calculating means for calculating the speed, and a deterioration rate lowering control means for reducing the deterioration rate of the storage battery when the deterioration rate reaches a predetermined value (for example, an arithmetic controller 21 in an embodiment to be described later). This is a storage battery control device (for example, a storage battery control device 20 in an embodiment described later).
[0009]
According to this invention, similarly to the case of the invention of claim 1, it is possible to obtain the deterioration rate of the storage battery that varies depending on the use conditions. In addition, when the deterioration rate is equal to or higher than a predetermined value, the deterioration rate of the storage battery is reduced by operating the deterioration rate reduction control means, so that rapid deterioration of the storage battery can be prevented, and the life of the storage battery Can be secured above a certain level.
[0010]
The invention described in claim 3 is the one described in claim 2, wherein the deterioration rate lowering control means is provided with a cooling device (for example, in an embodiment described later) provided in the storage battery when the deterioration rate exceeds a predetermined value. A storage battery control device comprising cooling control means for operating a cooling fan 22).
[0011]
According to the present invention, the deterioration rate of the storage battery can be reduced while maintaining the planned input / output current of the storage battery. For this reason, the lifetime of a storage battery can be ensured more than a fixed time, without restrict | limiting the action | operation of a storage battery.
[0012]
The invention described in claim 4 is the one described in claim 2 or claim 3, wherein current limiting means for limiting the input / output current of the storage battery when the deterioration rate exceeds a predetermined value (for example, an implementation described later) A storage battery control device comprising an input / output controller 23) in the embodiment.
[0013]
According to this invention, the deterioration rate can be reduced in a shorter time, and the life of the storage battery can be more reliably secured for a certain time or more.
[0014]
A fifth aspect of the present invention is the charge / discharge range limiting means for reducing the upper limit value of the storage amount of the storage battery when the deterioration rate becomes a predetermined value or higher. A storage battery control device comprising:
According to the present invention, the deterioration rate can be reduced in a shorter time, and the life of the storage battery can be more reliably ensured.
[0015]
The invention described in claim 6 is the one according to any one of claims 2 to 5, wherein the deterioration rate lowering control means is configured to provide a lower limit value of the storage amount of the storage battery when the deterioration rate exceeds a predetermined value. It is a storage battery control device comprising charge / discharge range limiting means for increasing
According to the present invention, the deterioration rate can be reduced in a shorter time, and the life of the storage battery can be more reliably secured for a certain time or more.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a storage battery life prediction apparatus and a storage battery control apparatus according to embodiments of the present invention will be described with reference to the drawings. In the present embodiment, a case where the life of a storage battery mounted on a hybrid vehicle is predicted and the life of the storage battery is controlled will be described as an example.
[0017]
FIG. 1 is a block diagram showing a storage battery life prediction apparatus 1 (hereinafter simply referred to as “life prediction apparatus 1”) according to a first embodiment of the present invention. As shown in the figure, the life prediction apparatus 1 includes a temperature sensor 3 for detecting the temperature of the storage battery 2, a current sensor 4 for detecting input / output current of the storage battery 2, and the storage battery 2. An arithmetic controller (ECU) 5 having a storage amount detection means for detecting the storage amount is provided.
[0018]
The current sensor 4 is provided on a connection path between the storage battery 2 and an electric motor (motor / generator) 6 so as to detect a current during charging / discharging of the storage battery 2. The arithmetic controller 5 is connected to the temperature sensor 3 and the current sensor 4, and the temperature and current of the storage battery 2 detected by these sensors 3 and 4 are input to the arithmetic controller 5.
[0019]
Further, the arithmetic controller 5 is provided with a storage amount detection means (not shown) in the inside thereof, so that the storage amount of the storage battery 2 can be detected from the integrated value of the current detected by the current sensor 4. . The arithmetic controller 5 is connected to the ignition 7 and receives a signal from the ignition 7 to perform arithmetic processing to be described later. The arithmetic controller 5 is connected to the life estimation display 8 so that the life calculated by the arithmetic controller 5 can be displayed on the life estimation display 8.
[0020]
When the electric motor 6 functions as a motor, the storage battery 2 supplies driving power to the motor. On the other hand, when the electric motor 6 functions as the generator 6, regenerative power is supplied from the generator. Thus, the usage state of the storage battery 2 varies variously.
[0021]
The inventor of the present invention greatly depends on the deterioration rate of the storage battery 2 depending on the temperature T, the input / output current (current load), and the fluctuation range of the storage amount of the storage battery (the charge / discharge range expressed by the charge depth or the discharge depth). Based on the knowledge to do, the relational expression between these was derived. The contents are shown below.
[0022]
Assuming that the deterioration rate of the storage battery 2 is K and the use condition variable is X, these can be expressed by the following equation (1).
Formula (1): K = f (X)
This function f (X) tends to be approximately accurately approximated by an exponential function.
[0023]
Further, in the above equation (1), if the deterioration rates when the variable X is X1 and X2 are K1 and K2, the ratio Q (K2 / K1) is almost equal even if the conditions of the other variables Y change. Tend to be.
[0024]
For example, when K = f (X) is a correlation equation of temperature T, the deterioration rate ratio Q1 when the current value is I1 and the deterioration rate ratio Q2 when the current value is I2 show substantially the same value. This is true because there are few interactions between each use condition.
[0025]
Based on the above findings, the present inventor has confirmed that the deterioration rate K can be expressed by the following equation (2).
Formula (2): K = ft (T) × fi (I) × fs (S)
Here, ft (T) is a term that depends on the temperature T, fi (I) is a term that depends on the current value I, and fs (S) is a term that depends on the fluctuation range S of the charged amount.
[0026]
By dividing the allowable deterioration amount R of the storage battery measured in advance by this deterioration rate K, the life time L of the storage battery 2 reaching the deterioration amount R is obtained. That is,
Formula (3): L = R ÷ K
Using these formulas (2) and (3), the life time L of the storage battery 2 can be easily estimated. Details of the allowable deterioration amount R will be described later.
[0027]
Hereinafter, the form of the formula (2) is calculated more specifically.
The present inventor found that Arrhenius equation (4) and equation (4) when the deterioration rate K depends only on the temperature T: K = Λe ( −Δ E / (kT)
(Where Λ is a constant) and
Eyring's formula including temperature T and one other stress factor S (5)
Equation (5): K = a ( (kT) / h) · e (- Δ E / (kT)) · S α
Based on the following equation (6) was derived.
Equation (6): K = a ( (kT) / h) · e (- Δ E / (kT)) · S α · S 'α'
Here, S represents a current load, and S ′ represents a fluctuation range of the charged amount, which is a stress factor other than temperature. h is the Planck constant, k is the Boltzmann constant, ΔE is the activation energy, and T is the absolute temperature.
[0028]
In order to obtain the coefficient of the equation (6), the relationship between the deterioration rate K and each variable (current load, charged amount, temperature) is obtained using FIGS. 3 to 5 as shown below.
When the logarithm of both sides is taken by paying attention to one of the three variables (for example, current load) in the equation (6), the equation (6) is as follows.
Formula (7): lnK = A + αlnS
Here, A and α are constants. These values are obtained from FIG.
[0029]
FIG. 3 is a graph showing current load characteristics of the storage battery 2. The vertical axis represents the logarithm of the internal resistance deterioration rate K (% / hr), and the horizontal axis represents the logarithm of the current load S (C). In the figure, the conditions of the temperature and the charged amount are constant so as not to be affected by other variables.
From FIG. 3, the coefficients A and α in the equation (7) are the equations (8): A = −3.5, α = 1.00.
It becomes.
[0030]
Similarly, in the above formula (6), when focusing on the charged amount,
Formula (9): lnK = A ′ + α′lnS ′
Here, A ′ and α ′ are constants. These values are obtained from FIG.
FIG. 4 is a graph showing the storage amount characteristic of the storage battery 2. The vertical axis represents the logarithm of the internal resistance deterioration rate K (% / hr), and the horizontal axis represents the logarithm of the fluctuation range (%) of the charged amount. In the figure, the temperature and current load conditions are constant so as not to be affected by other variables.
From FIG. 4, the coefficients A ′ and α ′ of the equation (9) are
Formula (10): A ′ = − 3.8, α = 0.32.
It becomes.
[0031]
Similarly, when attention is paid to the temperature T in the equation (6),
Formula (11): lnK = A ″ −ΔE / (kT) = A ″ −α ″ / T
Here, A ″ and α ″ are constants, of which α ″ = ΔE / k. These values are obtained from FIG.
FIG. 5 is a graph showing the temperature characteristics of the storage battery 2. The vertical axis represents the logarithm of the internal resistance deterioration rate K (% / hr), and the horizontal axis represents the logarithm of the reciprocal 1 / T (K) of the absolute temperature. In the figure, the conditions of the fluctuation range of the current load and the amount of stored electricity are constant so as not to be affected by other variables.
From FIG. 5, the coefficients A ″ and α ″ of this equation are
Formula (12): A ″ = 11, α ″ = − 4600
It becomes.
[0032]
From the above, the deterioration rate (internal resistance deterioration reaction rate) K of the storage battery is expressed by the following equation (13).
Formula (13): K = dR / dt = 55 T · e (−4600 / T) · S 1 · S ′ 0.32
By substituting the values of temperature T, current load S, and storage amount fluctuation range S ′ as usage conditions, the value of deterioration rate K can be obtained. Here, R is an allowable deterioration amount of the storage battery 2, t is a specified time, and the allowable deterioration amount R is a value indicating the deterioration amount until the life of the storage battery reaches a sufficient charge / discharge function. It is obtained by measurement by experiment under various use conditions. And the lifetime L of the storage battery 2 can be calculated | required by substituting the degradation rate K to Formula (2).
[0033]
For example, when the storage battery 2 is used under the conditions of a temperature of 50 ° C., a current value of 2 C, and a fluctuation range of the storage amount of 20%, the reaction rate K is 0.061 (% / hr) from the equation (13). When the life time when the allowable deterioration amount R until the end of the life is 30% is calculated from the equation (2), 490 hr is obtained.
Thus, the deterioration rate K and the lifetime L can be calculated from the use conditions. FIG. 6 shows data obtained by experimenting the lifetime of the storage battery 2 for each use condition. In the figure, the lifetime is measured assuming that the allowable deterioration amount R is 30%.
[0034]
FIG. 2 is a flowchart of the life prediction apparatus 1 shown in FIG. As shown in step S10 in the figure, when the ignition 7 is turned on, the signal is input to the arithmetic controller 5 and a timer (not shown) is activated to start measuring a specified time. Then, the fluctuation range of the temperature of the storage battery 2, which is a variable of the deterioration rate K, the current load, and the amount of stored power is sampled every specified measurement time. As shown in step S12, it is determined whether or not the sampling time has reached the specified measurement time. If the determination result is “YES”, the process proceeds to step S14. If the determination result is “NO”, the process proceeds to step S14. Returning to S10, the above processing is repeated.
[0035]
In step S14, representative values (usage environment condition representative values, for example, average values) of each variable (temperature, etc.) are calculated every specified time. In step S16, the representative value of each variable is substituted into equation (13) to calculate the deterioration rate K. In the present embodiment, the deterioration rate K is displayed on the life estimation display 8, thereby indicating the degree of influence on the current storage battery 2.
[0036]
In step S18, the deterioration amount Ri obtained by multiplying each deterioration rate K calculated every specified time by the specified time is integrated to calculate an integrated deterioration amount ΣRi. Then, as shown in step S <b> 20, the remaining allowable deterioration amount R is calculated by subtracting the integrated deterioration amount ΣRi from the initial allowable deterioration amount R <b> 0 of the storage battery 2. For example, when the initial allowable deterioration amount R0 is 30 (%) and the integrated deterioration amount is 10 (%), the remaining allowable deterioration amount R is 20 (%). When this permissible deterioration amount R becomes 0 (%), the function of the storage battery becomes insufficient and the life is reached.
[0037]
Then, as shown in step S22, the estimated life time is calculated by dividing the calculated deterioration characteristic value by the reaction rate, and the process ends.
Since it did in this way, the deterioration rate K of the storage battery 2 which fluctuates according to use conditions can be calculated | required, and the lifetime L of the storage battery 2 which fluctuates according to use conditions can be estimated with high precision. In addition, it can contribute to the analysis of the storage battery 2 by recording the history of the deterioration rate.
[0038]
Hereinafter, the storage battery control device will be described. FIG. 7 is a block diagram showing storage battery control device 20 (hereinafter simply referred to as “control device 20”) according to an embodiment of the present invention. Here, the same components as those in the life prediction apparatus 1 are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
[0039]
The control device 20 includes an arithmetic controller 21, which, like the arithmetic controller 5, determines the deterioration rate K and life time L of the storage battery 2 according to equations (13) and (2). It has a function to calculate. The arithmetic controller 21 is connected to a cooling fan 22 provided in the storage battery 2 and an input / output controller 23 connected to the electric motor 6, and can control the cooling fan 22 and the input / output controller 23. It is said.
[0040]
FIG. 8 is a flowchart of the control device 20 shown in FIG. In the figure, the processes in steps S30 to S36 are the same as the processes in steps S10 to S16 in FIG.
[0041]
In step S38, it is determined whether or not the deterioration rate K calculated in step S36 is equal to or higher than the reference deterioration rate. If the determination result is “YES”, the process proceeds to step S40, and if the determination result is “NO”, a series of steps. This process is temporarily terminated.
[0042]
When the determination result is “YES”, processing for reducing the deterioration rate of the storage battery 2 is performed as described below. That is, in step S40, the cooling fan 22 is operated to control the storage battery 2 to be cooled. As shown in FIG. 6, since the lifetime of the storage battery 2 decreases as the temperature increases, the above-described cooling control is performed to reduce the deterioration rate K and extend the life of the storage battery 2. Thereby, the lifetime of the storage battery 2 can be ensured, maintaining the operation function of the storage battery 2.
[0043]
Then, as shown in step S42, the deterioration rate K is calculated again and it is determined whether or not it is equal to or higher than the reference deterioration rate. If the determination result is “YES”, the process proceeds to step S44, and the determination result is “NO”. If there is, the series of processes is temporarily terminated.
[0044]
In step S44, the charge / discharge amount is controlled by operating the input / output controller 23. As shown in FIG. 6, the life time of the storage battery 2 decreases as the current load increases. Therefore, by controlling the charge / discharge amount described above, the deterioration rate K is reduced and the life of the storage battery 2 is extended. . Thereby, the lifetime of the storage battery 2 can be ensured more reliably for a certain period of time.
[0045]
Then, as shown in step S46, the deterioration rate K is calculated again and it is determined whether or not it is equal to or higher than the reference deterioration rate. If the determination result is “YES”, the process proceeds to step S48, and the determination result is “NO”. If there is, the series of processes is temporarily terminated.
[0046]
In step S48, a process for controlling the fluctuation range of the storage amount of the storage battery 2 is performed. As shown in FIG. 6, the life time of the storage battery 2 decreases as the fluctuation range of the amount of stored electricity increases. Therefore, by controlling the above-described fluctuation range to decrease, the deterioration rate K is reduced, and the storage battery 2 Life is being extended. Thereby, the lifetime of the storage battery 2 can be ensured more reliably for a certain period of time. As the limitation of the fluctuation range of the storage amount, it may be limited by decreasing the upper limit value of the storage amount, may be limited by increasing the lower limit value of the storage amount, or both are limited. May be.
[0047]
In the embodiment, the case of performing life prediction and life control of a storage battery applied to a hybrid vehicle has been described. However, the scope of application of the present invention is not limited to this, and various fields such as a solar power generation system, for example. It can be applied when performing life prediction and life control of a storage battery used in the environment.
[0048]
【The invention's effect】
As described above, according to the first aspect of the invention, the deterioration rate of the storage battery that varies depending on the use conditions can be obtained, and the lifetime of the storage battery is predicted with high accuracy based on the deterioration speed. be able to.
[0049]
According to the second aspect of the present invention, it is possible to obtain the deterioration rate of the storage battery that varies depending on the use conditions. In addition, when the deterioration rate is equal to or higher than a predetermined value, by operating the deterioration rate lowering control means, it is possible to prevent rapid deterioration of the storage battery and reduce the deterioration rate of the storage battery. Can be secured for a certain period of time.
[0050]
According to the third aspect of the present invention, since the deterioration rate of the storage battery can be reduced while maintaining the planned input / output current of the storage battery, the life of the storage battery is reduced to a certain time without restricting the operation of the storage battery. This can be ensured.
According to the invention described in claim 4, the deterioration rate can be reduced in a shorter time, and the life of the storage battery can be ensured more reliably.
[0051]
According to the fifth aspect of the present invention, the deterioration rate can be reduced in a shorter time, and the life of the storage battery can be ensured more reliably for a certain period of time.
According to the invention described in claim 6, the deterioration rate can be further reduced in a short time, and the life of the storage battery can be more reliably ensured for a certain time or more.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a storage battery life prediction apparatus according to an embodiment of the present invention.
FIG. 2 is a flowchart of the storage battery life prediction apparatus shown in FIG. 1;
FIG. 3 is a graph showing current load characteristics of the storage battery shown in FIG. 1;
4 is a graph showing an SOC fluctuation range characteristic of the storage battery shown in FIG. 1. FIG.
FIG. 5 is a graph showing temperature characteristics of the storage battery shown in FIG. 1;
6 is data obtained by experimenting the life time of the storage battery shown in FIG. 1 for each use condition.
FIG. 7 is a block diagram showing a storage battery control apparatus according to an embodiment of the present invention.
FIG. 8 is a flowchart of the storage battery control device shown in FIG. 7;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Storage battery life prediction apparatus 2 Storage battery 3 Temperature detector 4 Current sensor 5 Arithmetic controller (ECU)
20 Storage Battery Control Device 21 Arithmetic Controller 22 Cooling Fan 23 Input / Output Controller

Claims (6)

蓄電池の温度を検出する温度検出器と、蓄電池の入出力電流を検出する電流検出器と、電流検出器で検出された電流の積算値より蓄電池の蓄電量を検出する蓄電量検出手段を有する演算制御器を備え、
前記演算制御器は、蓄電池の平均温度と平均電流値と蓄電量の変動幅より蓄電池の劣化速度を算出する劣化速度算出手段と、蓄電池の許容劣化量を算出し、該許容劣化量を前記劣化速度で除算して寿命時間を算出する寿命算出手段を備えたことを特徴とする蓄電池の寿命予測装置。
A calculation having a temperature detector for detecting the temperature of the storage battery, a current detector for detecting the input / output current of the storage battery, and a storage amount detecting means for detecting the storage amount of the storage battery from the integrated value of the current detected by the current detector Equipped with a controller,
The arithmetic controller calculates a deterioration rate of the storage battery from the average temperature of the storage battery, an average current value, and a fluctuation range of the storage amount, calculates an allowable deterioration amount of the storage battery, and calculates the allowable deterioration amount to the deterioration A life prediction apparatus for a storage battery, comprising life calculation means for calculating a life time by dividing by a speed.
蓄電池の温度を検出する温度検出器と、蓄電池の入出力電流を検出する電流検出器と、電流検出器で検出された電流の積算値より蓄電池の蓄電量を検出する蓄電量検出手段を有する演算制御器を備え、
前記演算制御器は、蓄電池の平均温度と平均電流値と蓄電量の変動幅より蓄電池の劣化速度を算出する劣化速度算出手段を備え、劣化速度が所定値以上になると蓄電池の劣化速度を低下させる劣化速度低下制御手段を作動させることを特徴とする蓄電池の制御装置。
A calculation having a temperature detector for detecting the temperature of the storage battery, a current detector for detecting the input / output current of the storage battery, and a storage amount detecting means for detecting the storage amount of the storage battery from the integrated value of the current detected by the current detector Equipped with a controller,
The arithmetic controller includes a deterioration rate calculating means for calculating a deterioration rate of the storage battery from the average temperature of the storage battery, an average current value, and a fluctuation range of the storage amount, and reduces the deterioration rate of the storage battery when the deterioration rate exceeds a predetermined value. A control device for a storage battery, wherein the deterioration rate reduction control means is operated.
前記劣化速度低下制御手段は、前記劣化速度が所定値以上になると蓄電池に設ける冷却装置を作動させる冷却制御手段を備えていることを特徴とする請求項2に記載の蓄電池の制御装置。3. The storage battery control device according to claim 2, wherein the deterioration rate lowering control means includes cooling control means for operating a cooling device provided in the storage battery when the deterioration rate becomes a predetermined value or more. 前記劣化速度低下制御手段は、劣化速度が所定値以上になると蓄電池への入出力電流を制限する電流制限手段を備えていることを特徴とする請求項2または請求項3に記載の蓄電池の制御装置。4. The storage battery control according to claim 2, wherein the deterioration rate lowering control unit includes a current limiting unit that limits an input / output current to the storage battery when the deterioration rate exceeds a predetermined value. 5. apparatus. 前記劣化速度低下制御手段は、劣化速度が所定値以上になると蓄電池の蓄電量の上限値を小さくする充放電範囲制限手段を備えていることを特徴とする請求項2から請求項4のいずれかに記載の蓄電池の制御装置。5. The charge / discharge range limiting means for reducing the upper limit value of the storage amount of the storage battery when the deterioration rate becomes a predetermined value or more. 5. The storage battery control device described in 1. 前記劣化速度低下制御手段は、劣化速度が所定値以上になると蓄電池の蓄電量の下限値を大きくする充放電範囲制限手段を備えていることを特徴とする請求項2から請求項5のいずれかに記載の蓄電池の制御装置。The charge / discharge range limiting means for increasing the lower limit value of the storage amount of the storage battery when the deterioration rate becomes a predetermined value or more. The storage battery control device described in 1.
JP2002095295A 2002-03-29 2002-03-29 Storage battery life prediction device and storage battery control device Expired - Fee Related JP3949488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002095295A JP3949488B2 (en) 2002-03-29 2002-03-29 Storage battery life prediction device and storage battery control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002095295A JP3949488B2 (en) 2002-03-29 2002-03-29 Storage battery life prediction device and storage battery control device

Publications (2)

Publication Number Publication Date
JP2003297435A JP2003297435A (en) 2003-10-17
JP3949488B2 true JP3949488B2 (en) 2007-07-25

Family

ID=29387185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002095295A Expired - Fee Related JP3949488B2 (en) 2002-03-29 2002-03-29 Storage battery life prediction device and storage battery control device

Country Status (1)

Country Link
JP (1) JP3949488B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104656026A (en) * 2014-11-13 2015-05-27 浙江吉利罗佑发动机有限公司 Diagnostic method and system for overcharge of battery of hybrid electric vehicle
CN107408832A (en) * 2015-03-31 2017-11-28 株式会社杰士汤浅国际 Deterioration estimator, electrical storage device, the output input control device of charge storage element and the output input control method of charge storage element of charge storage element
US20220229117A1 (en) * 2019-05-30 2022-07-21 Gs Yuasa International Ltd. Generation apparatus, prediction system, generation method, and computer program

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4134877B2 (en) 2003-10-20 2008-08-20 トヨタ自動車株式会社 Storage device control device
JP4039355B2 (en) * 2003-10-29 2008-01-30 トヨタ自動車株式会社 Secondary battery control device and control method
JP4864383B2 (en) * 2005-08-24 2012-02-01 富士重工業株式会社 Deterioration state estimation device for power storage device
JP4238875B2 (en) 2006-02-10 2009-03-18 トヨタ自動車株式会社 Battery life evaluation system for hybrid vehicles
JP4179330B2 (en) 2006-03-31 2008-11-12 トヨタ自動車株式会社 Battery information display device for hybrid vehicle
JP5054338B2 (en) * 2006-07-20 2012-10-24 本田技研工業株式会社 VEHICLE POWER SUPPLY CONTROL DEVICE AND ITS CONTROL METHOD
JP4265629B2 (en) * 2006-08-01 2009-05-20 トヨタ自動車株式会社 Secondary battery charge / discharge control device and hybrid vehicle equipped with the same
JP4341652B2 (en) 2006-09-04 2009-10-07 トヨタ自動車株式会社 Power storage control device and power storage control method
JP4501946B2 (en) * 2007-02-23 2010-07-14 日本電気株式会社 Control program for disk array device and disk controller
JP5319903B2 (en) * 2007-09-18 2013-10-16 三菱重工業株式会社 Power storage system
JP4494453B2 (en) * 2007-11-13 2010-06-30 トヨタ自動車株式会社 Secondary battery control device and control method
FR2944358B1 (en) * 2009-04-09 2011-10-07 Peugeot Citroen Automobiles Sa DEVICE AND METHOD FOR ESTIMATING BATTERY HEALTH CONDITION
DE102009036083A1 (en) * 2009-08-04 2011-02-10 Li-Tec Battery Gmbh Method for controlling a battery and device for carrying out the method
JP5310865B2 (en) * 2009-11-17 2013-10-09 トヨタ自動車株式会社 Vehicle and vehicle control method
JP5466564B2 (en) * 2010-04-12 2014-04-09 本田技研工業株式会社 Battery degradation estimation method, battery capacity estimation method, battery capacity equalization method, and battery degradation estimation apparatus
JP5644855B2 (en) * 2010-05-14 2014-12-24 トヨタ自動車株式会社 Secondary battery control device and control method
JP5537521B2 (en) * 2011-09-20 2014-07-02 株式会社日立製作所 Lithium ion secondary battery control system and battery pack control system
GB2504689B (en) * 2012-08-06 2015-07-29 Jaguar Land Rover Ltd Control of rechargeable electric battery system for a vehicle
JP6096447B2 (en) * 2012-09-13 2017-03-15 株式会社東芝 Storage battery management device and storage battery management system
JP6089553B2 (en) * 2012-10-09 2017-03-08 三菱自動車工業株式会社 Power control device
JP6157880B2 (en) 2013-03-04 2017-07-05 株式会社東芝 Secondary battery system having a plurality of batteries and charge / discharge power distribution method
DE102013211543A1 (en) * 2013-06-19 2014-12-24 Robert Bosch Gmbh Method for the aging and energy-efficient operation, in particular of a motor vehicle
JPWO2015059873A1 (en) * 2013-10-21 2017-03-09 パナソニックIpマネジメント株式会社 Power management equipment
JP6299963B2 (en) * 2014-03-05 2018-03-28 三菱自動車工業株式会社 Secondary battery management device
KR102215450B1 (en) 2014-06-24 2021-02-15 삼성전자주식회사 Method and device to learn and estimate battery state information
US9853471B2 (en) * 2014-12-16 2017-12-26 Intel Corporation Mechanism for extending cycle life of a battery
JP6467320B2 (en) * 2015-09-09 2019-02-13 日立オートモティブシステムズ株式会社 Storage battery control device
JP6892895B2 (en) * 2019-05-28 2021-06-23 本田技研工業株式会社 Management equipment, management methods, and programs
JPWO2022024500A1 (en) * 2020-07-29 2022-02-03
JP7400691B2 (en) * 2020-10-23 2023-12-19 トヨタ自動車株式会社 Vehicle parts life prediction device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104656026A (en) * 2014-11-13 2015-05-27 浙江吉利罗佑发动机有限公司 Diagnostic method and system for overcharge of battery of hybrid electric vehicle
CN104656026B (en) * 2014-11-13 2017-10-27 科力远混合动力技术有限公司 A kind of hybrid power automobile battery overcharges diagnostic method and system
CN107408832A (en) * 2015-03-31 2017-11-28 株式会社杰士汤浅国际 Deterioration estimator, electrical storage device, the output input control device of charge storage element and the output input control method of charge storage element of charge storage element
US10527681B2 (en) * 2015-03-31 2020-01-07 Gs Yuasa International Ltd. Degradation estimator for energy storage device, energy storage apparatus, input-output control device for energy storage device, and method for controlling input and output of energy storage device
CN107408832B (en) * 2015-03-31 2021-03-19 株式会社杰士汤浅国际 Deterioration estimator for power storage element, power storage device, output/input control device for power storage element, and output/input control method for power storage element
US20220229117A1 (en) * 2019-05-30 2022-07-21 Gs Yuasa International Ltd. Generation apparatus, prediction system, generation method, and computer program

Also Published As

Publication number Publication date
JP2003297435A (en) 2003-10-17

Similar Documents

Publication Publication Date Title
JP3949488B2 (en) Storage battery life prediction device and storage battery control device
US7688032B2 (en) Battery remaining capacity detecting apparatus and battery remaining capacity detecting method
US9128162B2 (en) Estimating state of charge (SOC) and uncertainty from relaxing voltage measurements in a battery
JP6615011B2 (en) Battery management system, battery system and hybrid vehicle control system
JP4649101B2 (en) Secondary battery status detection device and status detection method
US20120310571A1 (en) Deterioration estimating apparatus and deterioration estimating method for electric storage element
JP5595361B2 (en) Secondary battery charge state estimation device
JP4042917B1 (en) Capacitor power supply abnormality determination method and abnormality determination apparatus
JP2007292648A (en) Device for estimating charged state of secondary battery
JP6256609B2 (en) Battery degradation level estimation device and battery degradation level estimation method
JPH0652903A (en) Battery monitor for monitoring of operating parameter of battery
JP5470829B2 (en) Discrimination device for discriminating the state of a lithium ion battery
WO2002093712A2 (en) Battery charge management
JP2008141846A (en) Charging state prediction program, cable-less traffic system and its charging method
JP5397013B2 (en) Battery control device
JP2017103077A (en) Power storage system and control method thereof, and device and method for diagnosing sign of thermorunaway of lithium ion secondary battery
JP2007292666A (en) Device for estimating charged state of secondary battery
JP6696311B2 (en) Charging rate estimation device
JP2007048485A (en) Battery cooling apparatus for vehicle
JPWO2012101667A1 (en) Power storage system
JP7207817B2 (en) Battery management method, battery device, and vehicle containing battery
JP4897976B2 (en) Method and apparatus for detecting state of power storage device
JP5704014B2 (en) Secondary battery monitoring device
JP2007333474A (en) Open voltage detection device, and open voltage detection method
JP5056678B2 (en) Data recording apparatus and battery control apparatus for battery for electric vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees