JP4220729B2 - Liquid crystal light modulator and liquid crystal display device using the same - Google Patents

Liquid crystal light modulator and liquid crystal display device using the same Download PDF

Info

Publication number
JP4220729B2
JP4220729B2 JP2002175899A JP2002175899A JP4220729B2 JP 4220729 B2 JP4220729 B2 JP 4220729B2 JP 2002175899 A JP2002175899 A JP 2002175899A JP 2002175899 A JP2002175899 A JP 2002175899A JP 4220729 B2 JP4220729 B2 JP 4220729B2
Authority
JP
Japan
Prior art keywords
liquid crystal
pair
light modulator
alignment
crystal light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002175899A
Other languages
Japanese (ja)
Other versions
JP2004020941A (en
Inventor
英夫 藤掛
弘人 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Broadcasting Corp filed Critical Japan Broadcasting Corp
Priority to JP2002175899A priority Critical patent/JP4220729B2/en
Publication of JP2004020941A publication Critical patent/JP2004020941A/en
Application granted granted Critical
Publication of JP4220729B2 publication Critical patent/JP4220729B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は液晶光変調器及びそれを用いた液晶表示装置に関し、特に、強誘電性液晶を用いて光強度を変調する液晶光変調器及びそれを用いた液晶表示装置に関する。
【0002】
【従来の技術】
液晶膜に電界を加えて、液晶分子の配列状態を変化させるという液晶の電気光学効果を応用すると光変調器が容易に実現できる。液晶光変調器は、他の電気光学効果を示す無機結晶に比べて低電圧で動作し、比較的大きな面積のものを廉価に作ることができるため、ディスプレイ用の電気光学素子として近年注目されている。
【0003】
このような液晶光変調器の1つとして、自発分極を持ちカイラルスメクティックC相を示す強誘電性液晶を、透明電極間の狭いギャップ(通常、2〜3μm)に充填し、液晶分子の配向を双安定化した表面安定化強誘電性液晶がある(参考文献1:N.A.Clark and S.T.Langerwall Appl.Phys.Lett.,Vol.36,No.11,pp.899−901,1980)。
【0004】
その場合、液晶分子は基板と水平な面内で配向膜の配向処理方向から、液晶材料固有のコーン角だけ傾いた2つの安定な配向状態を持ち、それらの2つの配向は、透明電極に加える電圧の極性を切り替えるとスイッチングする。この素子を偏光透過軸が直交した2つの偏光板で挟み、一方の偏光板の偏光透過軸を2方向の配向状態のいずれかに平行に設定することにより、双安定性の光変調動作が得られる。
【0005】
液晶の複屈折効果を有効に利用して、高い透過率を得るためには、コーン角は22.5度程度が望ましい。この分子配向スイッチングは、数十〜数百μsecの高速な光変調を可能にするため、高速動作が求められるフラットパネルディスプレイに有用である。
【0006】
【発明が解決しようとする課題】
しかし、上記の液晶光変調器は液晶の分子配列が双安定のため、中間調表示が困難である。そのため、階調を必要とする画像表示に応用できない。また、液晶の配向が不連続となる配向欠陥(ジグザグ欠陥)が発生しやすく、それに伴う黒表示で光漏れにより、光変調のコントラスト比が低下するといった問題を抱えている。
【0007】
本発明は、上記の点に鑑みてなされたもので、中間調表示を行うことができ面内均一性やコントラスト比に優れた液晶光変調器及びそれを用いた液晶表示装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
請求項1に記載の発明は、最大透過率が得られる理想的なコーン角が45度であるのに対して40度以上のコーン角を有し厚みが1μm以下であるカイラルスメクティックC相の強誘電性液晶膜と、
毛先押し込み量が0.4mm以上のラビング処理により形成され、前記強誘電性液晶膜を挟み液晶分子を配向させる一対の配向膜と、
前記強誘電性液晶膜と前記一対の配向膜とを挟む一対の透明電極と、
前記強誘電性液晶膜と前記一対の配向膜と前記一対の透明電極を挟んで配置され偏光透過軸が直交する一対の偏光板と、
前記一対の透明電極間に印加して光透過率を連続的に変化させる両極性の直流電圧の電圧源とを有することにより、
透明基板上に塗布した配向膜の影響が強くなって双安定特性が消失し、印加電圧に応じて透過率が連続的に変化して中間調表示を行うことができる。
【0010】
請求項に記載の発明は、請求項記載の液晶光変調器において、
前記一対の配向膜は、高プレチルト配向膜であることにより、
配向欠陥が生じにくくなり、面内均一性やコントラスト比に優れた液晶光変調器を構成できる。
【0011】
請求項に記載の発明は、請求項1または2記載の液晶光変調器において、
前記一対の配向膜は、配向処理方向が逆方向であることにより、
配向欠陥が生じにくくなり、面内均一性やコントラスト比に優れた液晶光変調器を構成できる。
【0012】
請求項に記載の発明は、請求項1乃至のいずれか記載の液晶光変調器において、
前記一対の偏光板は、いずれか一方の偏光透過軸が、前記一対の配向膜の配向処理方向と平行であることにより、
印加電圧に応じて透過率を連続的に変化させることが可能となる。
【0013】
【発明の実施の形態】
以下に本発明の実施の形態を説明する。図1は本発明の液晶光変調器の一実施例の構成を示す模式図である。同図中、自発分極をもつカイラルスメクティックC相を示す強誘電性液晶膜1が、配向膜3aを付着させた透明電極4aと配向膜3bを付着させた透明電極4bに挟まれて配設される。透明電極4a,4bそれぞれは透明基板5a、5bに付着させて形成されている。透明電極4a、4bはリード線6a、6bを介して、両極性電圧を供給できる電圧源7に接続されている。
【0014】
透明基板5aの強誘電性液晶膜1とは逆側に配設された入射側の偏光板8aは、強誘電性液晶1の液晶分子2の長軸方向の偏光透過軸を有しており、透明基板5bの強誘電性液晶膜1とは逆側に配設された出射側の偏光板8bは、強誘電性液晶1の液晶分子2の長軸方向と直交する方向の偏光透過軸を有している。
【0015】
入射光9は、入射側の偏光板8aを透過することにより、強誘電性液晶1の液晶分子2の長軸方向に偏光され、強誘電性液晶膜1に入射する。この入射光は強誘電性液晶膜1で偏光状態が制御されたのち、他方の透明基板5bを通し出射側の偏光板8bを透過透過することにより、強度変調された出射光10となる。
【0016】
すなわち2つの偏光板8a、8bの偏光透過軸を直交させ、偏光板8a、8bのいずれか一方の偏光透過軸を配向膜3a,3bの配向処理方向と平行にすることにより、電圧源7による極性及び電圧強度の制御により、液晶分子2の配向方向が透明基板5a,5bの面内で連続的に変化して、光透過率が連続的に変化するアナログ的な光変調機能が得られる。
【0017】
強誘電性液晶膜1には、40度以上(理想的には45度)のコーン角をもたせることにより、入射光に対する複屈折効果を高めることができ、高い光利用率が期待できる。アナログ的な分子配向変化を得るためには、液晶分子2の分子配向が配向膜3a,3bの配向処理方向に安定化されるように、配向膜3a,3bの配向力を強くするか、もしくは強誘電性液晶膜1の厚みを1μm以下と薄くして、配向膜3a,3bの影響を強めることができる。これにより、透明基板上に塗布した配向膜の影響が強くなり、強誘電性液晶膜1の双安定特性が消失する。
【0018】
強誘電性液晶膜1の厚みは、2μm程度でも液晶分子配向が可能であるが、コーン角が広い強誘電性液晶膜では分子配向のスイッチング軸が面内でぶれやすくなり、配向欠陥が生じやすくなる。しかし1μm以下であれば、配向欠陥を大幅に低減することが可能となる。すなわち、強誘電性液晶膜1の膜厚を減少させれば、液晶分子2の分子配向を安定化することができる。
【0019】
更に、配向膜3a,3bとして高プレチルト配向膜を用いて、液晶分子2を透明基板5a,5bから起こして配向させることにより(例えば、透明基板5a,5bと液晶分子2のなす角度であるチルト角は10度程度)、更に配向欠陥を減らして、面内均一性やコントラスト比を高めることができる。この場合、2つの配向膜3a,3bの配向処理は逆方向(アンチパラレル)が効果的である。しかし、平行配向であっても一定の欠陥抑制が期待できる。
【0020】
強誘電性液晶1の分子配向を一方向に安定化する配向膜3a,3bには、摩擦(ラビング)処理、もしくは偏光紫外光の照射による配向処理を施されたポリイミド樹脂、ポリビニルアルコール樹脂、斜方蒸着されたSiO、SiOのいずれかの配向膜を用いることができる。
【0021】
強誘電性液晶膜1の材料としては、入射光の偏光状態を大きく制御できるように、液晶の屈折率異方性△n(△n=異常光屈折率n−常光屈折率n)が大きい方が好ましい。
【0022】
そのため、屈折率異方性の大きなシッフ塩基系強誘電性液晶、アゾ系強誘電性液晶、アゾキシ系強誘電性液晶、ビフェニル系強誘電性液晶、エステル系強誘電性液晶、もしくはフェニルピリミジン系強誘電性液晶などが適している。また、自発分極が大きな強誘電性液晶材料を用いることにより、高速応答と低電圧駆動が可能となる。
【0023】
透明電極4a,4bとしては、錫をドープした酸化インジウム(ITO:In:Sn)などが好適である。透明電極4a,4bを付着させる透明基板5a,5bには、ガラスもしくはプラスティックフィルムを用いることができ、プラスティックフィルムを透明基板5a,5bに用いた場合には、液晶光変調器をフレキシブルにすることが可能である。また、透明基板5a,5bで挟まれた強誘電性液晶1の膜厚は、球状のスペーサを分散するか、フォトリソグラフィーで樹脂製の微細構造物を形成することにより、一定に保つことが可能である。
【0024】
このような液晶光変調器と、蛍光管、冷陰極管、発光ダイオードなどのバックライトを組み合わせることにより、動画表示に適した高速な液晶表示装置を構成することができる。また、液晶光変調器に反射板を組み合わせて用いるか、内蔵させることにより、反射型ディスプレイを構成することも可能である。
【0025】
実施例として、強誘電性液晶膜1にチッソ社、液晶組成物(コーン角度42.9度、カイラルピッチ14μm)を用いて作製した液晶光変調器について述べる。作製方法は以下の通りである。
【0026】
まず、透明ガラスを用いた2枚の透明基板5a,5bに、それぞれ厚み72nmのIn:Snを蒸着して透明電極4a,4bを形成し、さらに透明電極4a,4b上にスピンコート法によって高プレチルト用ポリイミド(JSR社JALS−246−R4)を塗布し、厚み50nmの配向膜3a,3bを形成した。この配向膜3a,3bを微細なレーヨンブラシ(安川加工社、YA−20−RW)で一方向にラビングした。
【0027】
2枚の配向膜3a,3b付きの透明基板5a,5bを配向方向が逆方向になるように、1μm径もしくは1.8μm径もしくは2.5μm径の球状スペーサを介在させて重ね合わせギャップを形成した。そのギャップに、100℃で加熱した強誘電性液晶1を注入し、室温に戻して液晶配向の均一性を偏光顕微鏡により観察した。
【0028】
ラビング強度が強く、レーヨンブラシの毛先押し込み量が0.4mmと大きくした場合、膜厚の減少による液晶配向の均一化が見られた。強誘電性液晶膜1の膜厚が2.5μmではランダムな分子配向となったが、強誘電性液晶膜1の膜厚を薄くして1.8μmにすると配向した液晶領域が現れ始め、さらに薄く膜厚1μmにすると、ラビング方向に一様に配向した液晶領域が観察された。
【0029】
しかし、ラビング強度が弱く、レーヨンブラシの毛先押し込み量が0.2mmと小さくした場合、配向組織の改善効果は低いことが分かった。配向処理を強くして透明基板5a,5b間のギャップを膜厚1μmと薄くすることにより、配向欠陥が減少した結果、コントラスト比が膜厚1.8μmの20:1から、膜厚1μmの250:1に大幅に改善できた。
【0030】
図2は、電圧源7により印加直流電圧を−5V〜+5Vまで変化させたときの透過光強度変化を示す。印加電圧に応じて透過光の強度が連続的に変化して、V字状の光変調特性が確認された。また、試作した素子の応答時間(立上がり時間+立下り時間)は0.6msecと高速であり、動画用の表示材料に好適である。
【0031】
このように、広いコーン角を有する強誘電性液晶膜を用い、膜厚を薄くすることで、表示の一様性やコントラスト比に優れ、高速なアナログ変調が可能な液晶光変調器および液晶表示装置を提供することができる。従って、本発明の液晶光変調器や液晶表示装置は、フラットパネルディスプレイに好適であり、本発明を用いることにより階調を伴う動画表示が可能となる。
【0032】
【発明の効果】
上述の如く、請求項1に記載の発明によれば、透明基板上に塗布した配向膜の影響が強くなって双安定特性が消失し、印加電圧に応じて透過率が連続的に変化して中間調表示を行うことができる。
【0034】
また、請求項に記載の発明によれば、配向欠陥が生じにくくなり、面内均一性やコントラスト比に優れた液晶光変調器を構成できる。
【0035】
また、請求項に記載の発明によれば、配向欠陥が生じにくくなり、面内均一性やコントラスト比に優れた液晶光変調器を構成できる。
【0036】
また、請求項に記載の発明によれば、印加電圧に応じて透過率を連続的に変化させることが可能となる。
【図面の簡単な説明】
【図1】本発明の液晶光変調器の一実施例の構成を示す模式図である。
【図2】印加直流電圧を変化させたときの透過光強度変化を示す図である。
【符号の説明】
1 強誘電性液晶膜
2 液晶分子
3a,3b 配向膜
4a,4B 透明電極
5a,5b 透明基板
6a、6b リード線
7 電圧源
8a,8b 偏光板
9 入射光
10 出射光
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid crystal light modulator and a liquid crystal display device using the same, and more particularly to a liquid crystal light modulator that modulates light intensity using a ferroelectric liquid crystal and a liquid crystal display device using the same.
[0002]
[Prior art]
An optical modulator can be easily realized by applying the electro-optic effect of liquid crystal, in which an electric field is applied to the liquid crystal film to change the alignment state of liquid crystal molecules. Liquid crystal light modulators have been attracting attention as electro-optic elements for displays in recent years because they operate at a lower voltage than other inorganic crystals exhibiting electro-optic effects and can be made inexpensively with relatively large areas. Yes.
[0003]
As one of such liquid crystal light modulators, a ferroelectric liquid crystal having spontaneous polarization and exhibiting a chiral smectic C phase is filled in a narrow gap (usually 2 to 3 μm) between transparent electrodes, and the orientation of liquid crystal molecules is adjusted. There are bistable surface-stabilized ferroelectric liquid crystals (Reference 1: NA Clark and ST Langerwall Appl. Phys. Lett., Vol. 36, No. 11, pp. 899-901. 1980).
[0004]
In that case, the liquid crystal molecules have two stable alignment states inclined by the cone angle specific to the liquid crystal material from the alignment processing direction of the alignment film in a plane parallel to the substrate, and these two alignments are added to the transparent electrode. Switching occurs when the polarity of the voltage is switched. By sandwiching this element between two polarizing plates whose polarization transmission axes are orthogonal to each other and setting the polarization transmission axis of one of the polarizing plates in parallel to one of two orientation states, a bistable light modulation operation can be obtained. It is done.
[0005]
In order to effectively use the birefringence effect of the liquid crystal and obtain high transmittance, the cone angle is preferably about 22.5 degrees. Since this molecular orientation switching enables high-speed optical modulation of several tens to several hundreds of μsec, it is useful for flat panel displays that require high-speed operation.
[0006]
[Problems to be solved by the invention]
However, the liquid crystal light modulator is difficult to display halftone because the liquid crystal molecular alignment is bistable. Therefore, it cannot be applied to image display that requires gradation. Further, alignment defects (zigzag defects) in which the alignment of the liquid crystal becomes discontinuous are likely to occur, and there is a problem that the contrast ratio of light modulation is reduced due to light leakage in black display.
[0007]
The present invention has been made in view of the above points, and provides a liquid crystal light modulator that can perform halftone display and has excellent in-plane uniformity and contrast ratio, and a liquid crystal display device using the same. Objective.
[0008]
[Means for Solving the Problems]
According to one aspect of the present invention, the strength of the chiral smectic C phase thickness have a cone angle of at least 40 degrees with respect to the ideal cone angle is 45 degrees the maximum transmittance is obtained is 1μm or less A dielectric liquid crystal film;
A pair of alignment films formed by rubbing treatment with a hair tip pushing amount of 0.4 mm or more, and aligning liquid crystal molecules with the ferroelectric liquid crystal film interposed therebetween;
A pair of transparent electrodes sandwiching the ferroelectric liquid crystal film and the pair of alignment films;
A pair of polarizing plates arranged with the ferroelectric liquid crystal film, the pair of alignment films, and the pair of transparent electrodes sandwiched therebetween, and whose polarization transmission axes are orthogonal to each other;
By having a voltage source of a bipolar DC voltage applied between the pair of transparent electrodes to continuously change the light transmittance ,
The influence of the alignment film applied on the transparent substrate becomes stronger, the bistable characteristics disappear, and the transmittance changes continuously according to the applied voltage, so that halftone display can be performed.
[0010]
The invention described in claim 2 is the liquid crystal light modulator according to claim 1 ,
The pair of alignment films are high pretilt alignment films,
An alignment defect is less likely to occur, and a liquid crystal light modulator excellent in in-plane uniformity and contrast ratio can be configured.
[0011]
The invention according to claim 3 is the liquid crystal light modulator according to claim 1 or 2 ,
In the pair of alignment films, the alignment treatment direction is opposite,
An alignment defect is less likely to occur, and a liquid crystal light modulator excellent in in-plane uniformity and contrast ratio can be configured.
[0012]
According to a fourth aspect of the present invention, in the liquid crystal light modulator according to any one of the first to third aspects,
In the pair of polarizing plates, any one polarization transmission axis is parallel to the alignment treatment direction of the pair of alignment films,
It becomes possible to continuously change the transmittance according to the applied voltage.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below. FIG. 1 is a schematic diagram showing the configuration of an embodiment of the liquid crystal light modulator of the present invention. In the figure, a ferroelectric liquid crystal film 1 exhibiting a chiral smectic C phase having spontaneous polarization is disposed between a transparent electrode 4a to which an alignment film 3a is attached and a transparent electrode 4b to which an alignment film 3b is attached. The The transparent electrodes 4a and 4b are formed by being attached to the transparent substrates 5a and 5b, respectively. The transparent electrodes 4a and 4b are connected to a voltage source 7 that can supply bipolar voltages via lead wires 6a and 6b.
[0014]
An incident-side polarizing plate 8a disposed on the opposite side of the transparent substrate 5a from the ferroelectric liquid crystal film 1 has a polarization transmission axis in the major axis direction of the liquid crystal molecules 2 of the ferroelectric liquid crystal 1; The output-side polarizing plate 8b disposed on the opposite side of the transparent substrate 5b from the ferroelectric liquid crystal film 1 has a polarization transmission axis in a direction perpendicular to the major axis direction of the liquid crystal molecules 2 of the ferroelectric liquid crystal 1. is doing.
[0015]
Incident light 9 is polarized in the major axis direction of the liquid crystal molecules 2 of the ferroelectric liquid crystal 1 by being transmitted through the polarizing plate 8 a on the incident side, and is incident on the ferroelectric liquid crystal film 1. After the polarization state of the incident light is controlled by the ferroelectric liquid crystal film 1, the incident light is transmitted through the polarizing plate 8 b on the emission side through the other transparent substrate 5 b to become intensity-modulated emission light 10.
[0016]
That is, the polarization transmission axes of the two polarizing plates 8a and 8b are orthogonal to each other, and the polarization transmission axis of one of the polarizing plates 8a and 8b is made parallel to the alignment treatment direction of the alignment films 3a and 3b. By controlling the polarity and voltage intensity, an analog light modulation function is obtained in which the alignment direction of the liquid crystal molecules 2 continuously changes in the plane of the transparent substrates 5a and 5b, and the light transmittance continuously changes.
[0017]
By providing the ferroelectric liquid crystal film 1 with a cone angle of 40 degrees or more (ideally 45 degrees), the birefringence effect on incident light can be enhanced, and a high light utilization rate can be expected. In order to obtain an analog molecular alignment change, the alignment force of the alignment films 3a and 3b is increased so that the molecular alignment of the liquid crystal molecules 2 is stabilized in the alignment treatment direction of the alignment films 3a and 3b, or The influence of the alignment films 3a and 3b can be increased by reducing the thickness of the ferroelectric liquid crystal film 1 to 1 μm or less. Thereby, the influence of the alignment film applied on the transparent substrate becomes strong, and the bistable characteristics of the ferroelectric liquid crystal film 1 disappear.
[0018]
Liquid crystal molecular alignment is possible even when the thickness of the ferroelectric liquid crystal film 1 is about 2 μm. However, in a ferroelectric liquid crystal film having a wide cone angle, the switching axis of the molecular alignment tends to fluctuate in the plane and alignment defects are likely to occur. Become. However, if it is 1 μm or less, alignment defects can be greatly reduced. That is, if the film thickness of the ferroelectric liquid crystal film 1 is reduced, the molecular orientation of the liquid crystal molecules 2 can be stabilized.
[0019]
Further, by using a high pretilt alignment film as the alignment films 3a and 3b, the liquid crystal molecules 2 are raised from the transparent substrates 5a and 5b and aligned (for example, a tilt that is an angle formed by the transparent substrates 5a and 5b and the liquid crystal molecules 2). The angle is about 10 degrees), and the alignment defects can be further reduced to increase the in-plane uniformity and the contrast ratio. In this case, the reverse direction (anti-parallel) is effective for the alignment treatment of the two alignment films 3a and 3b. However, a certain defect suppression can be expected even in the parallel orientation.
[0020]
The alignment films 3a and 3b for stabilizing the molecular alignment of the ferroelectric liquid crystal 1 in one direction are subjected to a rubbing process or an alignment process by irradiation with polarized ultraviolet light, a polyvinyl alcohol resin, an oblique film Either a vapor-deposited alignment film of SiO or SiO 2 can be used.
[0021]
As the material of the ferroelectric liquid crystal layer 1, so that it can greatly control the polarization state of the incident light, the refractive index anisotropy of the liquid crystal △ n (△ n = extraordinary refractive index n e - ordinary refractive index n o) is Larger is preferable.
[0022]
Therefore, Schiff base ferroelectric liquid crystal, azo ferroelectric liquid crystal, azoxy ferroelectric liquid crystal, biphenyl ferroelectric liquid crystal, ester ferroelectric liquid crystal, or phenyl pyrimidine strong Dielectric liquid crystals are suitable. In addition, by using a ferroelectric liquid crystal material having a large spontaneous polarization, high-speed response and low-voltage driving are possible.
[0023]
As the transparent electrodes 4a and 4b, indium oxide doped with tin (ITO: In 2 O 3 : Sn) or the like is suitable. Glass or plastic film can be used for the transparent substrates 5a and 5b to which the transparent electrodes 4a and 4b are attached. When the plastic film is used for the transparent substrates 5a and 5b, the liquid crystal light modulator should be flexible. Is possible. The film thickness of the ferroelectric liquid crystal 1 sandwiched between the transparent substrates 5a and 5b can be kept constant by dispersing spherical spacers or forming resin microstructures by photolithography. It is.
[0024]
By combining such a liquid crystal light modulator with a backlight such as a fluorescent tube, a cold cathode tube, or a light emitting diode, a high-speed liquid crystal display device suitable for moving image display can be configured. In addition, it is also possible to configure a reflective display by using a liquid crystal light modulator in combination with a reflection plate or by incorporating it.
[0025]
As an example, a liquid crystal light modulator manufactured using a liquid crystal composition (cone angle: 42.9 degrees, chiral pitch: 14 μm) from Chisso Corporation for the ferroelectric liquid crystal film 1 will be described. The manufacturing method is as follows.
[0026]
First, two transparent substrates 5a using a transparent glass, in 5b, the thicknesses 72nm In 2 O 3: Sn transparent electrode 4a by depositing, 4b is formed, further the transparent electrode 4a, spin coated onto a 4b A high pretilt polyimide (JALS-246-R4, manufactured by JSR) was applied by a method to form alignment films 3a and 3b having a thickness of 50 nm. The alignment films 3a and 3b were rubbed in one direction with a fine rayon brush (Yaskawa Processing Co., Ltd., YA-20-RW).
[0027]
A transparent gap 5a, 5b with two alignment films 3a, 3b is formed with a 1 μm diameter, 1.8 μm diameter, or 2.5 μm diameter spherical spacer interposed so that the alignment direction is reversed. did. The ferroelectric liquid crystal 1 heated at 100 ° C. was injected into the gap, returned to room temperature, and the uniformity of liquid crystal alignment was observed with a polarizing microscope.
[0028]
When the rubbing strength was strong and the push-in amount of the rayon brush was increased to 0.4 mm, the liquid crystal alignment was uniform due to the decrease in film thickness. The ferroelectric liquid crystal film 1 has a random molecular orientation when the film thickness is 2.5 μm, but when the film thickness of the ferroelectric liquid crystal film 1 is reduced to 1.8 μm, the aligned liquid crystal region starts to appear. When the film thickness was reduced to 1 μm, a liquid crystal region uniformly aligned in the rubbing direction was observed.
[0029]
However, it was found that when the rubbing strength is weak and the tip pushing amount of the rayon brush is as small as 0.2 mm, the effect of improving the oriented structure is low. As a result of reducing the alignment defects by strengthening the alignment treatment and reducing the gap between the transparent substrates 5a and 5b to a film thickness of 1 μm, the contrast ratio is from 20: 1 with a film thickness of 1.8 μm to 250 with a film thickness of 1 μm. : 1 was greatly improved.
[0030]
FIG. 2 shows changes in transmitted light intensity when the applied DC voltage is changed from −5 V to +5 V by the voltage source 7. The intensity of the transmitted light continuously changed according to the applied voltage, and V-shaped light modulation characteristics were confirmed. The response time (rise time + fall time) of the prototyped device is as fast as 0.6 msec, which is suitable for a display material for moving images.
[0031]
In this way, a liquid crystal light modulator and a liquid crystal display capable of high-speed analog modulation with excellent display uniformity and contrast ratio by using a ferroelectric liquid crystal film having a wide cone angle and reducing the film thickness. An apparatus can be provided. Therefore, the liquid crystal light modulator and the liquid crystal display device of the present invention are suitable for a flat panel display, and moving image display with gradation can be performed by using the present invention.
[0032]
【The invention's effect】
As described above, according to the invention described in claim 1, the influence of the alignment film coated on the transparent substrate is strengthened, the bistable characteristic is lost, and the transmittance continuously changes according to the applied voltage. Halftone display can be performed.
[0034]
In addition, according to the second aspect of the present invention, alignment defects are less likely to occur, and a liquid crystal light modulator excellent in in-plane uniformity and contrast ratio can be configured.
[0035]
In addition, according to the third aspect of the present invention, alignment defects are less likely to occur, and a liquid crystal light modulator excellent in in-plane uniformity and contrast ratio can be configured.
[0036]
In addition, according to the invention described in claim 4 , it is possible to continuously change the transmittance according to the applied voltage.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing the configuration of an embodiment of a liquid crystal light modulator of the present invention.
FIG. 2 is a diagram showing a change in transmitted light intensity when an applied DC voltage is changed.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ferroelectric liquid crystal film 2 Liquid crystal molecule 3a, 3b Alignment film 4a, 4B Transparent electrode 5a, 5b Transparent substrate 6a, 6b Lead wire 7 Voltage source 8a, 8b Polarizing plate 9 Incident light 10 Output light

Claims (7)

最大透過率が得られる理想的なコーン角が45度であるのに対して40度以上のコーン角を有し厚みが1μm以下であるカイラルスメクティックC相の強誘電性液晶膜と、
毛先押し込み量が0.4mm以上のラビング処理により形成され、前記強誘電性液晶膜を挟み液晶分子を配向させる一対の配向膜と、
前記強誘電性液晶膜と前記一対の配向膜とを挟む一対の透明電極と、
前記強誘電性液晶膜と前記一対の配向膜と前記一対の透明電極を挟んで配置され偏光透過軸が直交する一対の偏光板と、
前記一対の透明電極間に印加して光透過率を連続的に変化させる両極性の直流電圧の電圧源とを有することを特徴とする液晶光変調器。
A ferroelectric liquid crystal layer of the chiral smectic C phase thickness is 1μm or less ideal cone angle which the maximum transmittance is obtained have a cone angle of at least 40 degrees with respect to a 45 °,
A pair of alignment films formed by rubbing treatment with a hair tip pushing amount of 0.4 mm or more, and aligning liquid crystal molecules with the ferroelectric liquid crystal film interposed therebetween;
A pair of transparent electrodes sandwiching the ferroelectric liquid crystal film and the pair of alignment films;
A pair of polarizing plates arranged with the ferroelectric liquid crystal film, the pair of alignment films, and the pair of transparent electrodes sandwiched therebetween, and whose polarization transmission axes are orthogonal to each other;
A liquid crystal light modulator comprising: a bipolar voltage source that is applied between the pair of transparent electrodes to continuously change the light transmittance .
請求項記載の液晶光変調器において、
前記一対の配向膜は、高プレチルト配向膜であることを特徴とする液晶光変調器。
The liquid crystal light modulator according to claim 1 .
The liquid crystal light modulator according to claim 1, wherein the pair of alignment films are high pretilt alignment films.
請求項1または2記載の液晶光変調器において、
前記一対の配向膜は、配向処理方向が逆方向であることを特徴とする液晶光変調器。
The liquid crystal light modulator according to claim 1 or 2 ,
The pair of alignment films is a liquid crystal light modulator, wherein the alignment treatment direction is opposite.
請求項1乃至のいずれか記載の液晶光変調器において、
前記一対の偏光板は、いずれか一方の偏光透過軸が、前記一対の配向膜の配向処理方向と平行であることを特徴とする液晶光変調器。
In the liquid crystal optical modulator according to any one of claims 1 to 3,
One of the pair of polarizing plates has a polarization transmission axis parallel to the alignment treatment direction of the pair of alignment films.
請求項1乃至のいずれか記載の液晶光変調器において、
前記配向膜は、ラビング配向処理または偏光紫外線光の照射による光配向処理を施されたポリイミド樹脂、ポリビニルアルコール樹脂、及び斜方蒸着処理されたSiO、SiOのいずれかであることを特徴とする液晶光変調器。
The liquid crystal light modulator according to any one of claims 1 to 4 ,
The alignment film may be one of polyimide resin, polyvinyl alcohol resin, and obliquely vapor-deposited SiO, SiO 2 subjected to rubbing alignment treatment or photo-alignment treatment by irradiation with polarized ultraviolet light. Liquid crystal light modulator.
請求項1乃至のいずれか記載の液晶光変調器において、
前記透明電極は、ガラスもしくはプラスティックフィルムの透明基板に付着させて形成したことを特徴とする液晶光変調器。
In the liquid crystal optical modulator according to any of claims 1 to 5,
The liquid crystal light modulator, wherein the transparent electrode is formed by adhering to a transparent substrate of glass or plastic film.
請求項1乃至のいずれか記載の液晶光変調器を用いて表示を行うことを特徴とする液晶表示装置。The liquid crystal display device characterized by performing display using a liquid crystal light modulator according to any one of claims 1 to 6.
JP2002175899A 2002-06-17 2002-06-17 Liquid crystal light modulator and liquid crystal display device using the same Expired - Fee Related JP4220729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002175899A JP4220729B2 (en) 2002-06-17 2002-06-17 Liquid crystal light modulator and liquid crystal display device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002175899A JP4220729B2 (en) 2002-06-17 2002-06-17 Liquid crystal light modulator and liquid crystal display device using the same

Publications (2)

Publication Number Publication Date
JP2004020941A JP2004020941A (en) 2004-01-22
JP4220729B2 true JP4220729B2 (en) 2009-02-04

Family

ID=31174421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002175899A Expired - Fee Related JP4220729B2 (en) 2002-06-17 2002-06-17 Liquid crystal light modulator and liquid crystal display device using the same

Country Status (1)

Country Link
JP (1) JP4220729B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7782438B2 (en) 2006-06-13 2010-08-24 Kent State University Fast switching electro-optical devices using banana-shaped liquid crystals
CN107799016A (en) * 2017-11-07 2018-03-13 南磊 A kind of seamless display method of the additional black and white transflective liquid crystal screen of LED color screens

Also Published As

Publication number Publication date
JP2004020941A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
JPH04212126A (en) Liquid crystal display element
JPH1083000A (en) Twisted nematic liquid crystal device
JPH08122750A (en) Liquid crystal eelectrooptical device, projection type display device formed by utilizing the same and their driving method
JP4220748B2 (en) Liquid crystal display element, method for manufacturing liquid crystal display element, and liquid crystal display device
JP3329565B2 (en) Liquid crystal light modulator
JP4220729B2 (en) Liquid crystal light modulator and liquid crystal display device using the same
JP4832027B2 (en) Liquid crystal light modulator and liquid crystal display device using the same
JP4252202B2 (en) Liquid crystal light modulator using ferroelectric liquid crystal and manufacturing method thereof
JP2004279549A (en) Method for manufacturing liquid crystal optical modulation film, liquid crystal optical modulation film and liquid crystal optical modulator
JPH0862604A (en) Liquid crystal element and its production
JP4223107B2 (en) Liquid crystal light modulator
JPH0720468A (en) Liquid crystal display device
JP2007271846A (en) Method for manufacturing liquid crystal optical modulator, liquid crystal modulator, and liquid crystal display device
JP2753206B2 (en) Guest-host type liquid crystal display
JP4641841B2 (en) Liquid crystal light modulator and liquid crystal display device using the same
JP2693558B2 (en) Light modulation element
JP3062978B2 (en) Ferroelectric liquid crystal device
KR0161377B1 (en) Ferroelectric liquid crystal display element
RU2393517C2 (en) Passive-matrix lcd and method of its control
JPH07181495A (en) Ferroelectric liquid crystal element
JP4216213B2 (en) Liquid crystal light modulator and liquid crystal display device using the same
JP3083021B2 (en) Ferroelectric liquid crystal device
JP3241502B2 (en) Method for manufacturing liquid crystal electro-optical device
JP2000336361A (en) Monostable, ferroelectric, liquid crystal display
JP3538075B2 (en) Method for manufacturing liquid crystal electro-optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081114

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees