JP2004020941A - Liquid crystal optical modulator and liquid crystal display using the same - Google Patents

Liquid crystal optical modulator and liquid crystal display using the same Download PDF

Info

Publication number
JP2004020941A
JP2004020941A JP2002175899A JP2002175899A JP2004020941A JP 2004020941 A JP2004020941 A JP 2004020941A JP 2002175899 A JP2002175899 A JP 2002175899A JP 2002175899 A JP2002175899 A JP 2002175899A JP 2004020941 A JP2004020941 A JP 2004020941A
Authority
JP
Japan
Prior art keywords
liquid crystal
pair
alignment
light modulator
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002175899A
Other languages
Japanese (ja)
Other versions
JP4220729B2 (en
Inventor
Hideo Fujikake
藤掛 英夫
Hiroto Sato
佐藤 弘人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP2002175899A priority Critical patent/JP4220729B2/en
Publication of JP2004020941A publication Critical patent/JP2004020941A/en
Application granted granted Critical
Publication of JP4220729B2 publication Critical patent/JP4220729B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid crystal optical modulator which can perform halftone display and has excellent intrasurface uniformity and contrast ratio, and to provide a liquid crystal display using the same. <P>SOLUTION: The liquid crystal optical modulator comprises a ferroelectric liquid crystal film 1 with a chiral smectic C phase having a cone angle of ≥40°, a pair of aligning films 3a, 3b which hold the ferroelectric liquid crystal film between them and align liquid crystal molecules, a pair of transparent electrodes 4a, 4b which hold the ferroelectric liquid crystal film and the pair of alignment layers between them, a pair of polarizing plates 8a, 8b arranged in such a way as to hold the ferroelectric liquid crystal film, the pair of alignment layers, and the pair of transparent electrodes between them and having polarized light transmission axes orthogonal to each other, and a voltage supply source 7 which applies bipolar DC voltage between the pair of transparent electrodes. The modulator is capable of halftone display by continuously varying light transmittance by control of the polarity of DC voltage and the voltage. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は液晶光変調器及びそれを用いた液晶表示装置に関し、特に、強誘電性液晶を用いて光強度を変調する液晶光変調器及びそれを用いた液晶表示装置に関する。
【0002】
【従来の技術】
液晶膜に電界を加えて、液晶分子の配列状態を変化させるという液晶の電気光学効果を応用すると光変調器が容易に実現できる。液晶光変調器は、他の電気光学効果を示す無機結晶に比べて低電圧で動作し、比較的大きな面積のものを廉価に作ることができるため、ディスプレイ用の電気光学素子として近年注目されている。
【0003】
このような液晶光変調器の1つとして、自発分極を持ちカイラルスメクティックC相を示す強誘電性液晶を、透明電極間の狭いギャップ(通常、2〜3μm)に充填し、液晶分子の配向を双安定化した表面安定化強誘電性液晶がある(参考文献1:N.A.Clark and S.T.Langerwall Appl.Phys.Lett.,Vol.36,No.11,pp.899−901,1980)。
【0004】
その場合、液晶分子は基板と水平な面内で配向膜の配向処理方向から、液晶材料固有のコーン角だけ傾いた2つの安定な配向状態を持ち、それらの2つの配向は、透明電極に加える電圧の極性を切り替えるとスイッチングする。この素子を偏光透過軸が直交した2つの偏光板で挟み、一方の偏光板の偏光透過軸を2方向の配向状態のいずれかに平行に設定することにより、双安定性の光変調動作が得られる。
【0005】
液晶の複屈折効果を有効に利用して、高い透過率を得るためには、コーン角は22.5度程度が望ましい。この分子配向スイッチングは、数十〜数百μsecの高速な光変調を可能にするため、高速動作が求められるフラットパネルディスプレイに有用である。
【0006】
【発明が解決しようとする課題】
しかし、上記の液晶光変調器は液晶の分子配列が双安定のため、中間調表示が困難である。そのため、階調を必要とする画像表示に応用できない。また、液晶の配向が不連続となる配向欠陥(ジグザグ欠陥)が発生しやすく、それに伴う黒表示で光漏れにより、光変調のコントラスト比が低下するといった問題を抱えている。
【0007】
本発明は、上記の点に鑑みてなされたもので、中間調表示を行うことができ面内均一性やコントラスト比に優れた液晶光変調器及びそれを用いた液晶表示装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
請求項1に記載の発明は、40度以上のコーン角を有するカイラルスメクティックC相の強誘電性液晶膜と、
前記強誘電性液晶膜を挟み液晶分子を配向させる一対の配向膜と、
前記強誘電性液晶膜と前記一対の配向膜とを挟む一対の透明電極と、
前記強誘電性液晶膜と前記一対の配向膜と前記一対の透明電極を挟んで配置され偏光透過軸が直交する一対の偏光板と、
前記一対の透明電極間に両極性の直流電圧を印加する電圧源とを有し、
前記直流電圧の極性及び電圧の制御により光透過率を連続的に変化させることにより、
印加電圧に応じて透過率が連続的に変化して中間調表示を行うことができる。
【0009】
請求項2に記載の発明は、請求項1記載の液晶光変調器において、
前記強誘電性液晶膜は、厚みが1μm以下であることにより、
透明基板上に塗布した配向膜の影響が強くなって双安定特性が消失し、印加電圧に応じて透過率を連続的に変化させることが可能となる。
【0010】
請求項3に記載の発明は、請求項1または2記載の液晶光変調器において、
前記一対の配向膜は、高プレチルト配向膜であることにより、
配向欠陥が生じにくくなり、面内均一性やコントラスト比に優れた液晶光変調器を構成できる。
【0011】
請求項4に記載の発明は、請求項1乃至3のいずれか記載の液晶光変調器において、
前記一対の配向膜は、配向処理方向が逆方向であることにより、
配向欠陥が生じにくくなり、面内均一性やコントラスト比に優れた液晶光変調器を構成できる。
【0012】
請求項5に記載の発明は、請求項1乃至4のいずれか記載の液晶光変調器において、
前記一対の偏光板は、いずれか一方の偏光透過軸が、前記一対の配向膜の配向処理方向と平行であることにより、
印加電圧に応じて透過率を連続的に変化させることが可能となる。
【0013】
【発明の実施の形態】
以下に本発明の実施の形態を説明する。図1は本発明の液晶光変調器の一実施例の構成を示す模式図である。同図中、自発分極をもつカイラルスメクティックC相を示す強誘電性液晶膜1が、配向膜3aを付着させた透明電極4aと配向膜3bを付着させた透明電極4bに挟まれて配設される。透明電極4a,4bそれぞれは透明基板5a、5bに付着させて形成されている。透明電極4a、4bはリード線6a、6bを介して、両極性電圧を供給できる電圧源7に接続されている。
【0014】
透明基板5aの強誘電性液晶膜1とは逆側に配設された入射側の偏光板8aは、強誘電性液晶1の液晶分子2の長軸方向の偏光透過軸を有しており、透明基板5bの強誘電性液晶膜1とは逆側に配設された出射側の偏光板8bは、強誘電性液晶1の液晶分子2の長軸方向と直交する方向の偏光透過軸を有している。
【0015】
入射光9は、入射側の偏光板8aを透過することにより、強誘電性液晶1の液晶分子2の長軸方向に偏光され、強誘電性液晶膜1に入射する。この入射光は強誘電性液晶膜1で偏光状態が制御されたのち、他方の透明基板5bを通し出射側の偏光板8bを透過透過することにより、強度変調された出射光10となる。
【0016】
すなわち2つの偏光板8a、8bの偏光透過軸を直交させ、偏光板8a、8bのいずれか一方の偏光透過軸を配向膜3a,3bの配向処理方向と平行にすることにより、電圧源7による極性及び電圧強度の制御により、液晶分子2の配向方向が透明基板5a,5bの面内で連続的に変化して、光透過率が連続的に変化するアナログ的な光変調機能が得られる。
【0017】
強誘電性液晶膜1には、40度以上(理想的には45度)のコーン角をもたせることにより、入射光に対する複屈折効果を高めることができ、高い光利用率が期待できる。アナログ的な分子配向変化を得るためには、液晶分子2の分子配向が配向膜3a,3bの配向処理方向に安定化されるように、配向膜3a,3bの配向力を強くするか、もしくは強誘電性液晶膜1の厚みを1μm以下と薄くして、配向膜3a,3bの影響を強めることができる。これにより、透明基板上に塗布した配向膜の影響が強くなり、強誘電性液晶膜1の双安定特性が消失する。
【0018】
強誘電性液晶膜1の厚みは、2μm程度でも液晶分子配向が可能であるが、コーン角が広い強誘電性液晶膜では分子配向のスイッチング軸が面内でぶれやすくなり、配向欠陥が生じやすくなる。しかし1μm以下であれば、配向欠陥を大幅に低減することが可能となる。すなわち、強誘電性液晶膜1の膜厚を減少させれば、液晶分子2の分子配向を安定化することができる。
【0019】
更に、配向膜3a,3bとして高プレチルト配向膜を用いて、液晶分子2を透明基板5a,5bから起こして配向させることにより(例えば、透明基板5a,5bと液晶分子2のなす角度であるチルト角は10度程度)、更に配向欠陥を減らして、面内均一性やコントラスト比を高めることができる。この場合、2つの配向膜3a,3bの配向処理は逆方向(アンチパラレル)が効果的である。しかし、平行配向であっても一定の欠陥抑制が期待できる。
【0020】
強誘電性液晶1の分子配向を一方向に安定化する配向膜3a,3bには、摩擦(ラビング)処理、もしくは偏光紫外光の照射による配向処理を施されたポリイミド樹脂、ポリビニルアルコール樹脂、斜方蒸着されたSiO、SiOのいずれかの配向膜を用いることができる。
【0021】
強誘電性液晶膜1の材料としては、入射光の偏光状態を大きく制御できるように、液晶の屈折率異方性△n(△n=異常光屈折率n−常光屈折率n)が大きい方が好ましい。
【0022】
そのため、屈折率異方性の大きなシッフ塩基系強誘電性液晶、アゾ系強誘電性液晶、アゾキシ系強誘電性液晶、ビフェニル系強誘電性液晶、エステル系強誘電性液晶、もしくはフェニルピリミジン系強誘電性液晶などが適している。また、自発分極が大きな強誘電性液晶材料を用いることにより、高速応答と低電圧駆動が可能となる。
【0023】
透明電極4a,4bとしては、錫をドープした酸化インジウム(ITO:In:Sn)などが好適である。透明電極4a,4bを付着させる透明基板5a,5bには、ガラスもしくはプラスティックフィルムを用いることができ、プラスティックフィルムを透明基板5a,5bに用いた場合には、液晶光変調器をフレキシブルにすることが可能である。また、透明基板5a,5bで挟まれた強誘電性液晶1の膜厚は、球状のスペーサを分散するか、フォトリソグラフィーで樹脂製の微細構造物を形成することにより、一定に保つことが可能である。
【0024】
このような液晶光変調器と、蛍光管、冷陰極管、発光ダイオードなどのバックライトを組み合わせることにより、動画表示に適した高速な液晶表示装置を構成することができる。また、液晶光変調器に反射板を組み合わせて用いるか、内蔵させることにより、反射型ディスプレイを構成することも可能である。
【0025】
実施例として、強誘電性液晶膜1にチッソ社、液晶組成物(コーン角度42.9度、カイラルピッチ14μm)を用いて作製した液晶光変調器について述べる。作製方法は以下の通りである。
【0026】
まず、透明ガラスを用いた2枚の透明基板5a,5bに、それぞれ厚み72nmのIn:Snを蒸着して透明電極4a,4bを形成し、さらに透明電極4a,4b上にスピンコート法によって高プレチルト用ポリイミド(JSR社JALS−246−R4)を塗布し、厚み50nmの配向膜3a,3bを形成した。この配向膜3a,3bを微細なレーヨンブラシ(安川加工社、YA−20−RW)で一方向にラビングした。
【0027】
2枚の配向膜3a,3b付きの透明基板5a,5bを配向方向が逆方向になるように、1μm径もしくは1.8μm径もしくは2.5μm径の球状スペーサを介在させて重ね合わせギャップを形成した。そのギャップに、100℃で加熱した強誘電性液晶1を注入し、室温に戻して液晶配向の均一性を偏光顕微鏡により観察した。
【0028】
ラビング強度が強く、レーヨンブラシの毛先押し込み量が0.4mmと大きくした場合、膜厚の減少による液晶配向の均一化が見られた。強誘電性液晶膜1の膜厚が2.5μmではランダムな分子配向となったが、強誘電性液晶膜1の膜厚を薄くして1.8μmにすると配向した液晶領域が現れ始め、さらに薄く膜厚1μmにすると、ラビング方向に一様に配向した液晶領域が観察された。
【0029】
しかし、ラビング強度が弱く、レーヨンブラシの毛先押し込み量が0.2mmと小さくした場合、配向組織の改善効果は低いことが分かった。配向処理を強くして透明基板5a,5b間のギャップを膜厚1μmと薄くすることにより、配向欠陥が減少した結果、コントラスト比が膜厚1.8μmの20:1から、膜厚1μmの250:1に大幅に改善できた。
【0030】
図2は、電圧源7により印加直流電圧を−5V〜+5Vまで変化させたときの透過光強度変化を示す。印加電圧に応じて透過光の強度が連続的に変化して、V字状の光変調特性が確認された。また、試作した素子の応答時間(立上がり時間+立下り時間)は0.6msecと高速であり、動画用の表示材料に好適である。
【0031】
このように、広いコーン角を有する強誘電性液晶膜を用い、膜厚を薄くすることで、表示の一様性やコントラスト比に優れ、高速なアナログ変調が可能な液晶光変調器および液晶表示装置を提供することができる。従って、本発明の液晶光変調器や液晶表示装置は、フラットパネルディスプレイに好適であり、本発明を用いることにより階調を伴う動画表示が可能となる。
【0032】
【発明の効果】
上述の如く、請求項1に記載の発明によれば、印加電圧に応じて透過率が連続的に変化して中間調表示を行うことができる。
【0033】
また、請求項2に記載の発明によれば、透明基板上に塗布した配向膜の影響が強くなって双安定特性が消失し、印加電圧に応じて透過率を連続的に変化させることが可能となる。
【0034】
また、請求項3に記載の発明によれば、配向欠陥が生じにくくなり、面内均一性やコントラスト比に優れた液晶光変調器を構成できる。
【0035】
また、請求項4に記載の発明によれば、配向欠陥が生じにくくなり、面内均一性やコントラスト比に優れた液晶光変調器を構成できる。
【0036】
また、請求項5に記載の発明によれば、印加電圧に応じて透過率を連続的に変化させることが可能となる。
【図面の簡単な説明】
【図1】本発明の液晶光変調器の一実施例の構成を示す模式図である。
【図2】印加直流電圧を変化させたときの透過光強度変化を示す図である。
【符号の説明】
1 強誘電性液晶膜
2 液晶分子
3a,3b 配向膜
4a,4B 透明電極
5a,5b 透明基板
6a、6b リード線
7 電圧源
8a,8b 偏光板
9 入射光
10 出射光
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a liquid crystal light modulator and a liquid crystal display device using the same, and more particularly, to a liquid crystal light modulator that modulates light intensity using a ferroelectric liquid crystal and a liquid crystal display device using the same.
[0002]
[Prior art]
An optical modulator can be easily realized by applying an electro-optic effect of liquid crystal, which changes an alignment state of liquid crystal molecules by applying an electric field to a liquid crystal film. Liquid crystal light modulators operate at a lower voltage than inorganic crystals exhibiting other electro-optical effects, and can be manufactured at relatively low cost with relatively large areas. I have.
[0003]
As one of such liquid crystal optical modulators, a ferroelectric liquid crystal having a spontaneous polarization and exhibiting a chiral smectic C phase is filled in a narrow gap (typically, 2 to 3 μm) between transparent electrodes to adjust the orientation of liquid crystal molecules. There is a bistable surface stabilized ferroelectric liquid crystal (Reference 1: NA Clark and ST Langerwall Appl. Phys. Lett., Vol. 36, No. 11, pp. 899-901, pp. 899-901). 1980).
[0004]
In that case, the liquid crystal molecules have two stable alignment states inclined by a cone angle inherent to the liquid crystal material from the alignment processing direction of the alignment film in a plane parallel to the substrate, and the two alignments are applied to the transparent electrode. Switching is performed by switching the polarity of the voltage. By sandwiching this element between two polarizing plates whose polarization transmission axes are orthogonal to each other and setting the polarization transmission axis of one of the polarization plates to be parallel to one of the two orientation states, a bistable light modulation operation can be obtained. Can be
[0005]
In order to effectively utilize the birefringence effect of liquid crystal and obtain a high transmittance, the cone angle is desirably about 22.5 degrees. This molecular orientation switching enables high-speed light modulation of several tens to several hundreds of microseconds, and is therefore useful for flat panel displays that require high-speed operation.
[0006]
[Problems to be solved by the invention]
However, in the liquid crystal light modulator, halftone display is difficult because the molecular arrangement of the liquid crystal is bistable. Therefore, it cannot be applied to image display requiring gradation. Further, there is a problem that alignment defects (zigzag defects) in which the alignment of the liquid crystal becomes discontinuous are likely to occur, and the contrast ratio of light modulation is reduced due to light leakage in black display accompanying the defects.
[0007]
The present invention has been made in view of the above points, and it is an object of the present invention to provide a liquid crystal light modulator capable of performing halftone display and having excellent in-plane uniformity and contrast ratio, and a liquid crystal display device using the same. Aim.
[0008]
[Means for Solving the Problems]
The ferroelectric liquid crystal film of a chiral smectic C phase having a cone angle of 40 degrees or more,
A pair of alignment films for aligning the liquid crystal molecules sandwiching the ferroelectric liquid crystal film,
A pair of transparent electrodes sandwiching the ferroelectric liquid crystal film and the pair of alignment films,
A pair of polarizing plates disposed so as to sandwich the ferroelectric liquid crystal film, the pair of alignment films, and the pair of transparent electrodes, and having a polarization transmission axis orthogonal thereto,
A voltage source for applying a bipolar DC voltage between the pair of transparent electrodes,
By continuously changing the light transmittance by controlling the polarity and voltage of the DC voltage,
The transmissivity continuously changes according to the applied voltage, so that halftone display can be performed.
[0009]
According to a second aspect of the present invention, in the liquid crystal optical modulator according to the first aspect,
The ferroelectric liquid crystal film has a thickness of 1 μm or less,
The influence of the alignment film applied on the transparent substrate becomes stronger, the bistable characteristic disappears, and the transmittance can be continuously changed according to the applied voltage.
[0010]
According to a third aspect of the present invention, in the liquid crystal optical modulator according to the first or second aspect,
The pair of alignment films is a high pretilt alignment film,
Alignment defects are less likely to occur, and a liquid crystal light modulator having excellent in-plane uniformity and contrast ratio can be configured.
[0011]
According to a fourth aspect of the present invention, in the liquid crystal optical modulator according to any one of the first to third aspects,
The pair of alignment films, the alignment processing direction is the opposite direction,
Alignment defects are less likely to occur, and a liquid crystal light modulator having excellent in-plane uniformity and contrast ratio can be configured.
[0012]
According to a fifth aspect of the present invention, in the liquid crystal optical modulator according to any one of the first to fourth aspects,
The pair of polarizing plates, one of the polarization transmission axis is parallel to the alignment processing direction of the pair of alignment films,
It is possible to continuously change the transmittance according to the applied voltage.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described. FIG. 1 is a schematic diagram showing the configuration of one embodiment of the liquid crystal light modulator of the present invention. In the figure, a ferroelectric liquid crystal film 1 having a chiral smectic C phase having spontaneous polarization is disposed between a transparent electrode 4a having an alignment film 3a attached thereto and a transparent electrode 4b having an alignment film 3b attached thereto. You. The transparent electrodes 4a and 4b are formed so as to adhere to the transparent substrates 5a and 5b, respectively. The transparent electrodes 4a, 4b are connected via lead wires 6a, 6b to a voltage source 7 capable of supplying a bipolar voltage.
[0014]
The incident-side polarizing plate 8a disposed on the side opposite to the ferroelectric liquid crystal film 1 of the transparent substrate 5a has a polarization transmission axis in the major axis direction of the liquid crystal molecules 2 of the ferroelectric liquid crystal 1, The exit-side polarizing plate 8b disposed on the side opposite to the ferroelectric liquid crystal film 1 of the transparent substrate 5b has a polarization transmission axis in a direction orthogonal to the long axis direction of the liquid crystal molecules 2 of the ferroelectric liquid crystal 1. are doing.
[0015]
The incident light 9 is polarized in the major axis direction of the liquid crystal molecules 2 of the ferroelectric liquid crystal 1 by passing through the polarizing plate 8 a on the incident side, and enters the ferroelectric liquid crystal film 1. After the polarization state of the incident light is controlled by the ferroelectric liquid crystal film 1, the incident light is transmitted through the other transparent substrate 5b and transmitted through the polarizing plate 8b on the emission side to become the intensity-modulated emission light 10.
[0016]
That is, the polarization transmission axes of the two polarizing plates 8a and 8b are made orthogonal to each other, and one of the polarization transmission axes of the polarizing plates 8a and 8b is made parallel to the alignment processing direction of the alignment films 3a and 3b. By controlling the polarity and the voltage intensity, the orientation direction of the liquid crystal molecules 2 changes continuously in the plane of the transparent substrates 5a and 5b, and an analog light modulation function in which the light transmittance changes continuously is obtained.
[0017]
By giving the ferroelectric liquid crystal film 1 a cone angle of 40 degrees or more (ideally 45 degrees), the birefringence effect with respect to incident light can be enhanced, and high light utilization can be expected. In order to obtain an analogous change in molecular alignment, the alignment force of the alignment films 3a and 3b is increased so that the molecular alignment of the liquid crystal molecules 2 is stabilized in the alignment processing direction of the alignment films 3a and 3b. The effect of the alignment films 3a and 3b can be enhanced by reducing the thickness of the ferroelectric liquid crystal film 1 to 1 μm or less. As a result, the influence of the alignment film applied on the transparent substrate becomes stronger, and the bistability of the ferroelectric liquid crystal film 1 disappears.
[0018]
Although the thickness of the ferroelectric liquid crystal film 1 is about 2 μm, liquid crystal molecule alignment is possible. However, in a ferroelectric liquid crystal film having a wide cone angle, the switching axis of the molecular alignment is easily blurred in the plane, and alignment defects are easily generated. Become. However, when the thickness is 1 μm or less, it is possible to greatly reduce alignment defects. That is, if the thickness of the ferroelectric liquid crystal film 1 is reduced, the molecular orientation of the liquid crystal molecules 2 can be stabilized.
[0019]
Further, by using a high pretilt alignment film as the alignment films 3a and 3b, the liquid crystal molecules 2 are raised from the transparent substrates 5a and 5b and aligned (for example, a tilt which is an angle formed between the transparent substrates 5a and 5b and the liquid crystal molecules 2). The angle is about 10 degrees), and furthermore, alignment defects can be reduced, and in-plane uniformity and contrast ratio can be increased. In this case, the alignment processing of the two alignment films 3a and 3b is effective in the opposite direction (anti-parallel). However, a certain degree of defect suppression can be expected even in the parallel orientation.
[0020]
The alignment films 3a and 3b for stabilizing the molecular alignment of the ferroelectric liquid crystal 1 in one direction include a polyimide resin, a polyvinyl alcohol resin, and an obliquely-rubbed or rubbed ultraviolet ray-irradiated alignment treatment. Either an SiO or SiO 2 alignment film that has been vapor deposited can be used.
[0021]
As the material of the ferroelectric liquid crystal layer 1, so that it can greatly control the polarization state of the incident light, the refractive index anisotropy of the liquid crystal △ n (△ n = extraordinary refractive index n e - ordinary refractive index n o) is Larger is preferable.
[0022]
Therefore, Schiff base ferroelectric liquid crystal, azo ferroelectric liquid crystal, azoxy ferroelectric liquid crystal, biphenyl ferroelectric liquid crystal, ester ferroelectric liquid crystal, or phenylpyrimidine based ferroelectric liquid crystal with large refractive index anisotropy. Dielectric liquid crystals are suitable. Further, by using a ferroelectric liquid crystal material having a large spontaneous polarization, high-speed response and low-voltage driving can be achieved.
[0023]
As the transparent electrodes 4a and 4b, indium oxide (ITO: In 2 O 3 : Sn) doped with tin is suitable. Glass or a plastic film can be used for the transparent substrates 5a and 5b to which the transparent electrodes 4a and 4b are attached, and when the plastic film is used for the transparent substrates 5a and 5b, the liquid crystal light modulator can be made flexible. Is possible. The thickness of the ferroelectric liquid crystal 1 sandwiched between the transparent substrates 5a and 5b can be kept constant by dispersing spherical spacers or forming a resin microstructure by photolithography. It is.
[0024]
By combining such a liquid crystal light modulator with a backlight such as a fluorescent tube, a cold cathode tube, or a light emitting diode, a high-speed liquid crystal display device suitable for displaying moving images can be configured. Further, it is also possible to constitute a reflection type display by using a liquid crystal light modulator in combination with a reflection plate or by incorporating the reflection plate.
[0025]
As an example, a liquid crystal optical modulator manufactured by using a liquid crystal composition (cone angle 42.9 degrees, chiral pitch 14 μm) by Chisso Corporation for the ferroelectric liquid crystal film 1 will be described. The fabrication method is as follows.
[0026]
First, 72 nm thick In 2 O 3 : Sn is vapor-deposited on each of two transparent substrates 5a and 5b using transparent glass to form transparent electrodes 4a and 4b, and further spin-coated on the transparent electrodes 4a and 4b. Polyimide for high pretilt (JALS-246-R4 manufactured by JSR) was applied by a method to form alignment films 3a and 3b having a thickness of 50 nm. The alignment films 3a, 3b were rubbed in one direction with a fine rayon brush (YA-20-RW, Yaskawa Kako).
[0027]
An overlapping gap is formed between two transparent substrates 5a and 5b having alignment films 3a and 3b with a 1 μm diameter, 1.8 μm diameter, or 2.5 μm diameter spherical spacer interposed therebetween so that the alignment directions are opposite to each other. did. The ferroelectric liquid crystal 1 heated at 100 ° C. was injected into the gap, the temperature was returned to room temperature, and the uniformity of the liquid crystal alignment was observed with a polarizing microscope.
[0028]
When the rubbing strength was strong and the amount of pushing in the tip of the rayon brush was as large as 0.4 mm, uniformity of the liquid crystal alignment due to a decrease in the film thickness was observed. When the film thickness of the ferroelectric liquid crystal film 1 is 2.5 μm, random molecular alignment is obtained. However, when the film thickness of the ferroelectric liquid crystal film 1 is reduced to 1.8 μm, an oriented liquid crystal region starts to appear. When the film thickness was set to 1 μm, a liquid crystal region uniformly aligned in the rubbing direction was observed.
[0029]
However, it was found that when the rubbing strength was weak and the amount of pushing in the tip of the rayon brush was as small as 0.2 mm, the effect of improving the texture was low. By reducing the gap between the transparent substrates 5a and 5b to a film thickness of 1 μm by strengthening the alignment treatment, the alignment defect was reduced. As a result, the contrast ratio was changed from 20: 1 of 1.8 μm to 250 μm of 1 μm. : 1 was greatly improved.
[0030]
FIG. 2 shows a change in transmitted light intensity when the applied DC voltage is changed from −5 V to +5 V by the voltage source 7. The intensity of the transmitted light changed continuously according to the applied voltage, and a V-shaped light modulation characteristic was confirmed. In addition, the response time (rise time + fall time) of the prototype element is as high as 0.6 msec, which is suitable as a display material for a moving image.
[0031]
In this way, by using a ferroelectric liquid crystal film with a wide cone angle and reducing the film thickness, it is excellent in display uniformity and contrast ratio, and liquid crystal light modulator and liquid crystal display capable of high-speed analog modulation An apparatus can be provided. Therefore, the liquid crystal light modulator and the liquid crystal display device of the present invention are suitable for a flat panel display, and by using the present invention, a moving image display with gradation can be displayed.
[0032]
【The invention's effect】
As described above, according to the first aspect of the invention, the halftone display can be performed by changing the transmittance continuously according to the applied voltage.
[0033]
According to the second aspect of the present invention, the influence of the alignment film applied on the transparent substrate becomes strong, the bistable characteristic disappears, and the transmittance can be continuously changed according to the applied voltage. It becomes.
[0034]
Further, according to the third aspect of the invention, it is possible to form a liquid crystal light modulator that is less likely to cause alignment defects and has excellent in-plane uniformity and contrast ratio.
[0035]
According to the fourth aspect of the present invention, it is possible to form a liquid crystal light modulator which is less likely to cause alignment defects and has excellent in-plane uniformity and contrast ratio.
[0036]
Further, according to the invention described in claim 5, it is possible to continuously change the transmittance according to the applied voltage.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a configuration of one embodiment of a liquid crystal light modulator of the present invention.
FIG. 2 is a diagram showing a change in transmitted light intensity when an applied DC voltage is changed.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ferroelectric liquid crystal film 2 Liquid crystal molecule 3a, 3b Alignment film 4a, 4B Transparent electrode 5a, 5b Transparent substrate 6a, 6b Lead wire 7 Voltage source 8a, 8b Polarizer 9 Incident light 10 Outgoing light

Claims (8)

40度以上のコーン角を有するカイラルスメクティックC相の強誘電性液晶膜と、
前記強誘電性液晶膜を挟み液晶分子を配向させる一対の配向膜と、
前記強誘電性液晶膜と前記一対の配向膜とを挟む一対の透明電極と、
前記強誘電性液晶膜と前記一対の配向膜と前記一対の透明電極を挟んで配置され偏光透過軸が直交する一対の偏光板と、
前記一対の透明電極間に両極性の直流電圧を印加する電圧源とを有し、
前記直流電圧の極性及び電圧の制御により光透過率を連続的に変化させることを特徴とする液晶光変調器。
A chiral smectic C phase ferroelectric liquid crystal film having a cone angle of 40 degrees or more;
A pair of alignment films for aligning the liquid crystal molecules sandwiching the ferroelectric liquid crystal film,
A pair of transparent electrodes sandwiching the ferroelectric liquid crystal film and the pair of alignment films,
A pair of polarizing plates disposed so as to sandwich the ferroelectric liquid crystal film, the pair of alignment films, and the pair of transparent electrodes, and having a polarization transmission axis orthogonal thereto,
A voltage source for applying a bipolar DC voltage between the pair of transparent electrodes,
A liquid crystal light modulator characterized in that the light transmittance is continuously changed by controlling the polarity and the voltage of the DC voltage.
請求項1記載の液晶光変調器において、
前記強誘電性液晶膜は、厚みが1μm以下であることを特徴とする液晶光変調器。
The liquid crystal optical modulator according to claim 1,
The ferroelectric liquid crystal film has a thickness of 1 μm or less.
請求項1または2記載の液晶光変調器において、
前記一対の配向膜は、高プレチルト配向膜であることを特徴とする液晶光変調器。
The liquid crystal light modulator according to claim 1, wherein
The liquid crystal light modulator according to claim 1, wherein the pair of alignment films is a high pretilt alignment film.
請求項1乃至3のいずれか記載の液晶光変調器において、
前記一対の配向膜は、配向処理方向が逆方向であることを特徴とする液晶光変調器。
The liquid crystal light modulator according to claim 1,
The liquid crystal light modulator according to claim 1, wherein the alignment processing directions of the pair of alignment films are opposite to each other.
請求項1乃至4のいずれか記載の液晶光変調器において、
前記一対の偏光板は、いずれか一方の偏光透過軸が、前記一対の配向膜の配向処理方向と平行であることを特徴とする液晶光変調器。
The liquid crystal optical modulator according to any one of claims 1 to 4,
A liquid crystal light modulator, wherein one of the pair of polarizing plates has one of the polarization transmission axes parallel to the alignment processing direction of the pair of alignment films.
請求項1乃至5のいずれか記載の液晶光変調器において、
前記配向膜は、ラビング配向処理または偏光紫外線光の照射による光配向処理を施されたポリイミド樹脂、ポリビニルアルコール樹脂、及び斜方蒸着処理されたSiO、SiOのいずれかであることを特徴とする液晶光変調器。
The liquid crystal light modulator according to any one of claims 1 to 5,
The alignment film may be a polyimide resin, a polyvinyl alcohol resin that has been subjected to a rubbing alignment process or a photo alignment process by irradiation with polarized ultraviolet light, or one of SiO and SiO 2 that has been subjected to oblique deposition. Liquid crystal light modulator.
請求項1乃至6のいずれか記載の液晶光変調器において、
前記透明電極は、ガラスもしくはプラスティックフィルムの透明基板に付着させて形成したことを特徴とする液晶光変調器。
The liquid crystal light modulator according to any one of claims 1 to 6,
A liquid crystal light modulator according to claim 1, wherein said transparent electrode is formed by being attached to a transparent substrate of glass or plastic film.
請求項1乃至7のいずれか記載の液晶光変調器を用いて表示を行うことを特徴とする液晶表示装置。A liquid crystal display device which performs display using the liquid crystal light modulator according to claim 1.
JP2002175899A 2002-06-17 2002-06-17 Liquid crystal light modulator and liquid crystal display device using the same Expired - Fee Related JP4220729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002175899A JP4220729B2 (en) 2002-06-17 2002-06-17 Liquid crystal light modulator and liquid crystal display device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002175899A JP4220729B2 (en) 2002-06-17 2002-06-17 Liquid crystal light modulator and liquid crystal display device using the same

Publications (2)

Publication Number Publication Date
JP2004020941A true JP2004020941A (en) 2004-01-22
JP4220729B2 JP4220729B2 (en) 2009-02-04

Family

ID=31174421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002175899A Expired - Fee Related JP4220729B2 (en) 2002-06-17 2002-06-17 Liquid crystal light modulator and liquid crystal display device using the same

Country Status (1)

Country Link
JP (1) JP4220729B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7782438B2 (en) 2006-06-13 2010-08-24 Kent State University Fast switching electro-optical devices using banana-shaped liquid crystals
CN107799016A (en) * 2017-11-07 2018-03-13 南磊 A kind of seamless display method of the additional black and white transflective liquid crystal screen of LED color screens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7782438B2 (en) 2006-06-13 2010-08-24 Kent State University Fast switching electro-optical devices using banana-shaped liquid crystals
CN107799016A (en) * 2017-11-07 2018-03-13 南磊 A kind of seamless display method of the additional black and white transflective liquid crystal screen of LED color screens

Also Published As

Publication number Publication date
JP4220729B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
JPH1083000A (en) Twisted nematic liquid crystal device
JPH08122750A (en) Liquid crystal eelectrooptical device, projection type display device formed by utilizing the same and their driving method
JP2006171681A (en) Liquid crystal display and method of manufacturing the same
JP4220748B2 (en) Liquid crystal display element, method for manufacturing liquid crystal display element, and liquid crystal display device
JP3329565B2 (en) Liquid crystal light modulator
JP4220729B2 (en) Liquid crystal light modulator and liquid crystal display device using the same
JP4740784B2 (en) Liquid crystal light modulator manufacturing method, liquid crystal light modulator, and liquid crystal display device
JP2942442B2 (en) Liquid crystal display
JP4832027B2 (en) Liquid crystal light modulator and liquid crystal display device using the same
JP3204256B2 (en) Liquid crystal element, method of manufacturing the same, liquid crystal display element and method of driving the same
JPH0862604A (en) Liquid crystal element and its production
JP3404467B2 (en) Liquid crystal display
JP4252202B2 (en) Liquid crystal light modulator using ferroelectric liquid crystal and manufacturing method thereof
KR101149933B1 (en) Liquid crystal display panel of in-plane-switching mode and method of fabricating the same
US7567320B2 (en) Electro-optical device with liquid crystal
JP2753206B2 (en) Guest-host type liquid crystal display
KR20040060526A (en) Optically Compensated Bend Mode Liquid Crystal Display Device
Sun et al. 49.5: True Glass‐based Micro‐display with 3µm pixel size using Deformed Helix Ferroelectric Liquid Crystal for VR/AR Displays
JP5388423B2 (en) Liquid crystal light modulator, manufacturing method thereof, and liquid crystal display device
JP2006267562A (en) Method for manufacturing liquid crystal optical modulator, liquid crystal optical modulator and liquid crystal display device
JP2000122043A (en) Liquid crystal optical modulator and its production
WO2006000133A1 (en) An improved pi-cell liquid crystal display
KR0161377B1 (en) Ferroelectric liquid crystal display element
JP3062978B2 (en) Ferroelectric liquid crystal device
JP3359893B2 (en) Method for manufacturing liquid crystal electro-optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081114

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees