JP4218822B2 - Mounting mechanism having a vacuum heat insulating layer - Google Patents

Mounting mechanism having a vacuum heat insulating layer Download PDF

Info

Publication number
JP4218822B2
JP4218822B2 JP2002210449A JP2002210449A JP4218822B2 JP 4218822 B2 JP4218822 B2 JP 4218822B2 JP 2002210449 A JP2002210449 A JP 2002210449A JP 2002210449 A JP2002210449 A JP 2002210449A JP 4218822 B2 JP4218822 B2 JP 4218822B2
Authority
JP
Japan
Prior art keywords
power supply
mounting body
power feeding
vacuum
electrostatic chuck
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002210449A
Other languages
Japanese (ja)
Other versions
JP2004055779A (en
Inventor
正弥 小田桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2002210449A priority Critical patent/JP4218822B2/en
Publication of JP2004055779A publication Critical patent/JP2004055779A/en
Application granted granted Critical
Publication of JP4218822B2 publication Critical patent/JP4218822B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、プラズマ処理装置等の真空処理装置に用いられる被処理体の載置機構に関し、更に詳しくは、真空断熱層を有する載置機構に関する。
【0002】
【従来の技術】
プラズマ処理装置としては例えばCVD装置、エッチング装置あるいはアッシング装置等の真空処理装置が半導体製造装置として広く用いられている。プラズマ処理装置は、例えば、真空処理容器と、真空処理容器内にウエハを載置するように配置され且つ下部電極を兼ねる載置機構と、載置機構の上方に配置された上部電極と、少なくとも下部電極に高周波電力を印加する高周波電源とを備え、下部電極に高周波電力を印加して真空処理容器内にプラズマを発生させて載置機構上のウエハに所定のプラズマ処理を施すように構成されている。
【0003】
載置機構は、例えば図3に示すように、静電チャック1と、静電チャック1の下面に密着する給電板2と、この給電板2に整合器3Aを介して接続された高周波電源3とを備えている。また、給電板2には高圧直流電源4が接続されている。給電板2には給電棒(図示せず)を介して高周波電力及び直流電圧を印加する。更に、静電チャック1上面の外周縁部にはフォーカスリング5が配置され、フォーカスリング5を介してウエハW上にプラズマを集束させる。
【0004】
静電チャック1は、例えばアルミニウムによって形成され、その下面を除く表面にセラミックコーティング1Aが施されている。また、給電板2は例えばアルミニウムによって形成され、その上面の外周縁部2A(図4参照)以外の表面にはアルマイト加工によるアルミナ被膜が形成されている。そして、給電板2の上面の外周縁部2Aは無垢のアルミニウムによって形成され、この外周縁部2Aが静電チャック1と密着して静電チャック1に高周波電力及び直流電圧を給電する。従って、以下では外周縁部を給電部と称する。図4に示すように給電板2の給電部2Aの内側の内側領域2Bにはアルミナ被膜が形成され、内側領域2Bと静電チャック1がアルミナ被膜を介して接触している。また、給電板2の上面には給電部2Aと内側領域2Bを分割するシール用溝2Cが全周に渡って円形状に形成されている。このシール用溝2CにはOリング8が装着され、Oリング8を介して内側領域2Bを給電部2Aから遮断して内側領域2Bを大気側に開放している。
【0005】
また、図3に示すように静電チャック1内には熱媒体として、例えばエチレングリコール水溶液、フロリナート、ガルテン等の冷媒が循環する流路1Bが形成され、この流路1Bには給電板2の貫通孔を貫通する配管6が接続され、この配管6を介して冷媒が静電チャック1内の流路1Bを循環してウエハWを冷却する。尚、図3において、7はヘリウムガスを供給するガス流路で、このガス流路7から静電チャック1とウエハW間にヘリウムガスを供給し、ウエハを効率良く冷却するようにしてある。
【0006】
次に、ウエハを処理する時の動作について説明する。真空処理容器内を所定の真空度に維持すると共に冷媒を供給して載置機構を冷却し、高周波電源3から給電板2に高周波電力を印加すると、真空処理空間内でプラズマを発生して静電チャック1上のウエハWに対してプラズマ処理を施す。この際ウエハWに対して大量の入熱があり、ウエハ温度が上昇するが、冷媒による静電チャック1の冷却によりウエハWを所定の温度に維持してウエハWを処理する。
【0007】
【発明が解決しようとする課題】
しかしながら、従来の載置機構の場合には、静電チャック1と給電板2とが広い範囲で密着していて静電チャック1と給電板2間の熱伝導性が良く、静電チャック1と給電板2間での大量の熱移動により給電板2が静電チャック1の温度に追随して変動し、載置機構からの熱損失が大きくなるため、冷媒による静電チャック1の冷却効率が悪化し、冷却設備が大型化するという課題があった。また、ウエハWの処理を繰り返す度毎に給電板2が静電チャック1の温度に追随して変動するため、給電板2が膨張、収縮を繰り返す間に母材であるアルミニウムとアルミナ被膜間の熱膨張率の差に起因してアルミナ被膜にマイクロクラックが発生して絶縁破壊が起きるという課題があった。更に、給電板2のシール用溝2Cに形成されたアルミナ被膜でもマイクロクラックが発生し、このマイクロクラックから真空漏れを発生する虞すらあった。
【0008】
本発明は、上記課題を解決するためになされたもので、処理時の熱損失を抑制して温度調節設備を小型化することができると共に、絶縁破壊や真空漏れを防止することができる真空断熱層を有する載置機構を提供することを目的としている。
【0009】
【課題を解決するための手段】
本発明の請求項1に記載の真空断熱層を有する載置機構は、載置面上の被処理体の温度を調節するための熱媒体が循環する流路を有する載置体と、この載置体の流路に連通する連通路を有し且つ上記載置体に高周波電力を給電する給電板とを真空処理容器内に備え、上記熱媒体で上記載置体を温度調節しながら上記給電板に高周波電力を印加して上記被処理体を処理する載置機構において、上記給電板の外周縁部に上記載置体の外周縁部と電気的に導通自在に接触する給電部を設け且つ上記載置体と上記給電板の間で上記給電部の内側領域に上記連通路を含む複数の貫通孔を囲むシール部材を設けると共に、上記シール部材によって上記連通路を含む複数の貫通孔を上記真空処理容器内の処理空間から遮断することを特徴とするものである。
【0010】
また、本発明の請求項2に記載の真空断熱層を有する載置機構は、載置面上の被処理体の温度を調節するための熱媒体が循環する流路を有する載置体と、この載置体の流路に連通する連通路を有し且つ上記載置体に高周波電力を給電する給電板とを真空処理容器内に備え、上記熱媒体で上記載置体を温度調節しながら上記給電板に高周波電力を印加して上記被処理体を処理する載置機構において、上記給電板の外周縁部に上記載置体の外周縁部と電気的に導通自在に接触する給電部を設け且つ上記載置体と上記給電板の間で上記給電部の内側領域に上記連通路を含む複数の貫通孔を囲むシール部材を設けると共に上記シール部材と上記給電部の間に上記真空処理容器内の処理空間と連通する空間層を設けたことを特徴とするものである。
【0011】
また、本発明の請求項3に記載の真空断熱層を有する載置機構は、請求項2に記載の発明において、上記処理空間と上記空間層を連通させる手段として上記載置体と上記給電板の接触部に少なくとも一つの通路を設けたことを特徴とすることを特徴とするものである。
【0012】
また、本発明の請求項4に記載の真空断熱層を有する載置機構は、請求項3に記載の発明において、上記空間層及び上記通路を上記給電板側に設けたことを特徴とする ものである。
【0013】
【発明の実施の形態】
以下、図1及び図2に示す実施形態に基づいて本発明について説明する。
本実施形態の載置機構10は、例えば図1に示すように、アルミニウム製の載置体(静電チャック)11と、この静電チャック11の下面に密着して高周波電力を給電するアルミニウム製の給電板12と、この給電板12を支持する絶縁材料からなる支持体13、14とを備えている。静電チャック11の表面にはセラミックコーティングが施され、給電板12の表面にはアルマイト加工が施されている。しかし、静電チャック11の下面及び給電板12の上面の外周縁部(給電部)12Aはそれぞれ無垢のアルミニウムによって形成され、これら両者が給電部12Aを介して互いに密着して電気的に接続されている。
【0014】
そして、図1に示すように静電チャック11の内部には従来と同様に流路11Aが形成され、この流路11Aには冷却設備(図示せず)が配管15を介して接続され、この配管15を介して冷却設備と流路内11Aの間で熱媒体(従来と同様の冷媒)が循環して静電チャック11を冷却する。但し、図1では冷媒の流入配管のみを図示してある。
【0015】
また、図1に示すように給電板12には給電棒16が接続され、この給電棒16には高周波電源17が整合器17Aを介して接続されている。従って、高周波電源17から給電棒16を介して給電板12に所定(例えば、13.56MHz)の高周波電力を印加する。また、給電棒16には高圧直流電源18が接続され、高圧直流電源18から給電板12に対して給電棒16を介して直流電圧を印加する。このように給電板12に高周波電力及び直流電圧を印加することによって給電板12の給電部12Aから静電チャック11へ高周波電力及び直流電圧を給電し、静電チャック11において自己バイアス電位を発生すると共にウエハWを吸着する静電吸着力が発生する。
【0016】
また、静電チャック11の内部には昇降ピン19が設けられ、静電チャック11上でウエハWの受け渡しを行う時に昇降ピン19が駆動軸19Aを介して昇降する。
【0017】
次に、静電チャック11と給電板12の関係について図2の(a)、(b)をも参照しながら更に説明する。静電チャック11と給電板12は上述のように給電部12Aを介して電気的に接続されている。即ち、給電板12の上面の給電部12A(図2に斜線で示す部分)は無垢のアルミニウムによって形成され、この給電部12Aが静電チャック11のアルミニウム母材と密着し、従来と同様に給電部12Aを介してこれら両者11、12が電気的に導通自在に構成されている。
【0018】
更に、図1、図2の(a)、(b)に示すように給電板12の上面には給電部12Aと内側領域12Bが形成され、給電部12Aが内側領域12Bよりも突出して形成されている。また、この内側領域12Bには大気側に通じる冷媒の配管15及び昇降ピン19の駆動軸19A等が貫通する複数の貫通孔が形成され、これらの貫通孔の周囲には図2の(a)、(b)に示すようにシール用溝を形成するための突起部12Cが内側領域12Bの平坦面から給電部12Aと同一高さまで突出して形成されている。そして、この突起部12Cには全周に渡ってシール用溝が形成され、このシール用溝にOリング20が装着されている。従って、給電板12は給電部12A、突起部12C及びOリング20を介して静電チャック11と密着し、内側領域12Bに狭い二つの空間12D、12EがOリング20を境界にして形成されている。外側の空間12Dは給電部12AとOリング20の間に形成され、他の一つの空間12EはOリング20の内側に形成されている。
【0019】
また、図2の(a)において、シール用溝の形成された突起部12Cは昇降ピンの駆動軸19Aを囲む略十字状の突起部等まで延設され、これらの部分は静電チャック11と密着する。但し、これらの突起部はアルマイト加工されてアルミナ被膜によって形成されているため、これらの部分では静電チャック11と給電板12は互いに電気的に絶縁されている。
【0020】
また、給電部12Aには真空処理容器内の真空領域と内側領域12BのOリング20の外側の空間12Dを繋ぐ連通溝12Fが周方向等間隔を空けて複数箇所(例えば、8箇所)に径方向に形成され、これらの連通溝12Fを介して一つの空間12Dは真空断熱層12Dとして形成される。また、他の一つの空間12Eは大気側に開放された大気層12Eとして形成されている。尚、以下では、空間12Dを必要に応じて真空断熱層12Dとして説明する。
【0021】
次に、動作について説明する。真空処理容器内を真空引きして所定の真空度に維持すると共に、冷媒設備から静電チャック11の流路11A内に冷媒を循環させて静電チャック11を冷却する。真空処理容器内を真空引きすると、載置機構10では給電板12の連通溝12Fを介して静電チャック11と給電板12間に真空断熱層12Dを形成し、この真空断熱層12Dを介して給電板12と静電チャック11間を広範囲に渡って断熱する。この状態で静電チャック11上にウエハ(図示せず)を載置し、プロセスガスを真空処理容器内に供給し、プロセスガスを一定の圧力に維持する。この状態で高周波電源17から給電棒16を介して給電板12に高周波電力を印加すると、給電板12の給電部12Aを介して静電チャック11に高周波電力及び直流電圧を給電し、真空処理容器内でプロセスガスのプラズマを発生すると共に静電チャック11上面でウエハを静電吸着して固定する。この状態でプラズマによってウエハに対して所定のプラズマ処理を施す。
【0022】
プラズマ処理時にウエハへのイオン衝撃等によってウエハ内に大量の入熱があり、ウエハ温度が急激に上昇する。しかし、静電チャック11の流路11A内には冷媒が循環しているため、この冷媒によって静電チャック11を介してウエハを冷却し、ウエハ温度を例えば80〜100℃に維持する。この際、図2の(a)で示すように静電チャック11と給電板12の間には真空断熱層12Dが形成されて、給電板12は静電チャック11から広範囲に渡って断熱されているため、静電チャック11と給電板12間の熱移動を抑制して給電板12からの熱損失を格段に抑制して冷媒の冷却効率を格段に高めることができる。従って、冷媒の冷却能力を高めることができ、延いては冷却設備の小型化を実現することができる。
【0023】
ウエハのプラズマ処理が終了して処理後のウエハを真空処理容器内から搬出すると、静電チャック11の温度は冷媒の働きで一気に低下する。そして、次のウエハを真空処理容器内に搬入して静電チャック11上で次のウエハを処理すると再び静電チャック11の温度が上昇する。このように複数のウエハを処理する間に静電チャック11は温度上昇と温度降下とを周期的に繰り返す。
【0024】
ところが、給電板12は静電チャック11から広い範囲で断熱されているため、静電チャック11ほどの大きな温度変動がないため、給電板11では母材であるアルミニウムとアルミナ被膜間の熱膨張差を抑制することができ、複数のウエハを処理してもアルミナ被膜でのマイクロクラックの発生を防止することができ、延いては給電板12でのマイクロクラックに起因する絶縁破壊を防止することができる。また、Oリング20が装着されたシール用溝においてもアルミナ被膜のマイクロクラックを防止することができ、Oリング20でのマイクロクラックに起因する真空漏れを防止することができる。
【0025】
以上説明したように本実施形態によれば、冷媒が循環する流路11Aを有する静電チャック11と、静電チャック11の流路11Aに連通する配管15を有し且つ静電チャック11に高周波電力を給電する給電板12とを真空処理容器内に備え、冷媒で静電チャック11を冷却しながら給電板12に高周波電力を印加してウエハを処理する際に、静電チャック11と給電板12の間に配管15を含む複数の貫通孔を囲むOリング20を設けると共にOリング20の外側に真空処理容器内の処理空間と連通する真空断熱層12Dを設けたため、真空断熱層12Dによって静電チャック11から給電板12への熱移動を抑制して冷媒による静電チャック11の冷却効率高めることができ、延いては冷却設備の小型化を実現することができる。また、複数のウエハを処理する間も給電板12の温度変化を抑制して給電板12の母材であるアルミニウムとアルミナ被膜間の熱膨張差を抑制することができ、延いてはアルミナ被膜でのマイクロクラックの発生を防止し、マイクロクラックに起因する絶縁破壊を防止することができる。更に、シール用溝でのアルミナ被膜のマイクロクラックの発生も防止することができ、この部分での真空漏れを防止することができる。
【0026】
また、本実施形態によれば、真空処理空間と空間12Dを連通させる手段として静電チャック11と給電板12の接触部に8箇所の連通溝12Fを設けたため、真空処理容器内を真空引きするだけで真空断熱層12Dを形成することができる。また、真空断熱層12D及び連通溝12Fを給電板12側に設けたため、給電板12を製造する際に空間12D及び連通溝12Fを給電板12と一体的に形成することができる。
【0027】
尚、上記実施形態では空間12D及び連通溝12Fを給電板12に設けた場合について説明したが、これらの空間及び連通溝は静電チャック側に設けても良い。また、連通溝12Dに代えて給電部12Aに径方向の貫通孔を設けても良い。また、上記実施形態では冷媒を供給する冷却設備について説明したが、加熱用の熱媒体を供給する加熱設備についても本発明を適用することができる。また、本発明の載置機構はプラズマ処理装置以外の真空処理装置にも広く適用することができる。
【0028】
【発明の効果】
本発明の請求項1〜請求項4によれば、処理時の熱損失を抑制して温度調節設備を小型化することができると共に、絶縁破壊や真空漏れを防止することができる真空断熱層を有する載置機構を提供することができる。
【図面の簡単な説明】
【図1】本発明の載置機構の一実施形態を示す断面図である。
【図2】図1に示す載置機構に用いられた給電板を示す図で、(a)はその上面の形態を示す平面図、(b)はその要部を示す断面図である。
【図3】従来の載置機構の一例を概念的に示す断面図である。
【図4】従来の載置機構に用いられた給電板の具体的な上面の形態を示す平面図である。
【符号の説明】
10 載置機構
11 静電チャック(載置体)
11A 冷媒の流路
12 給電板
12A 給電部
12D 空間(真空断熱層)
12F 連通溝(通路)
15 冷媒用の配管
16 給電棒
[0001]
[Industrial application fields]
The present invention relates to a mounting mechanism for an object to be processed used in a vacuum processing apparatus such as a plasma processing apparatus, and more particularly to a mounting mechanism having a vacuum heat insulating layer.
[0002]
[Prior art]
As the plasma processing apparatus, for example, a vacuum processing apparatus such as a CVD apparatus, an etching apparatus or an ashing apparatus is widely used as a semiconductor manufacturing apparatus. The plasma processing apparatus includes, for example, a vacuum processing container, a mounting mechanism that is disposed to place a wafer in the vacuum processing container and also serves as a lower electrode, an upper electrode that is disposed above the mounting mechanism, and at least A high-frequency power source that applies high-frequency power to the lower electrode, and is configured to apply high-frequency power to the lower electrode to generate plasma in the vacuum processing container to perform predetermined plasma processing on the wafer on the mounting mechanism. ing.
[0003]
For example, as shown in FIG. 3, the mounting mechanism includes an electrostatic chuck 1, a power supply plate 2 that is in close contact with the lower surface of the electrostatic chuck 1, and a high-frequency power source 3 connected to the power supply plate 2 via a matching unit 3A. And has. Further, a high voltage DC power supply 4 is connected to the power supply plate 2. High frequency power and DC voltage are applied to the power supply plate 2 via a power supply rod (not shown). Further, a focus ring 5 is disposed on the outer peripheral edge of the upper surface of the electrostatic chuck 1, and plasma is focused on the wafer W via the focus ring 5.
[0004]
The electrostatic chuck 1 is made of, for example, aluminum, and a ceramic coating 1A is applied to the surface except the lower surface thereof. The power feeding plate 2 is made of, for example, aluminum, and an alumina coating by anodizing is formed on the surface of the upper surface other than the outer peripheral edge 2A (see FIG. 4). The outer peripheral edge 2A of the upper surface of the power supply plate 2 is formed of solid aluminum, and the outer peripheral edge 2A is in close contact with the electrostatic chuck 1 to supply high frequency power and DC voltage to the electrostatic chuck 1. Accordingly, hereinafter, the outer peripheral edge portion is referred to as a power feeding portion. As shown in FIG. 4, an alumina coating is formed on the inner region 2B inside the power feeding portion 2A of the power feeding plate 2, and the inner region 2B and the electrostatic chuck 1 are in contact via the alumina coating. In addition, a sealing groove 2C that divides the feeding portion 2A and the inner region 2B is formed in a circular shape over the entire circumference on the upper surface of the feeding plate 2. An O-ring 8 is attached to the sealing groove 2C, and the inner region 2B is cut off from the power feeding portion 2A via the O-ring 8 to open the inner region 2B to the atmosphere side.
[0005]
Further, as shown in FIG. 3, a flow path 1B in which a refrigerant such as an ethylene glycol aqueous solution, fluorinate, garten or the like circulates as a heat medium is formed in the electrostatic chuck 1, and the flow path 1B includes a power supply plate 2 A pipe 6 penetrating the through hole is connected, and the coolant circulates through the flow path 1B in the electrostatic chuck 1 through the pipe 6 to cool the wafer W. In FIG. 3, reference numeral 7 denotes a gas flow path for supplying helium gas. Helium gas is supplied from the gas flow path 7 between the electrostatic chuck 1 and the wafer W to efficiently cool the wafer.
[0006]
Next, the operation when processing a wafer will be described. When the inside of the vacuum processing container is maintained at a predetermined degree of vacuum and the cooling mechanism is supplied to cool the mounting mechanism and high frequency power is applied from the high frequency power source 3 to the power supply plate 2, plasma is generated in the vacuum processing space and static electricity is generated. Plasma processing is performed on the wafer W on the electric chuck 1. At this time, there is a large amount of heat input to the wafer W, and the wafer temperature rises. However, the wafer W is processed by maintaining the wafer W at a predetermined temperature by cooling the electrostatic chuck 1 with a coolant.
[0007]
[Problems to be solved by the invention]
However, in the case of the conventional mounting mechanism, the electrostatic chuck 1 and the power supply plate 2 are in close contact with each other over a wide range, and the thermal conductivity between the electrostatic chuck 1 and the power supply plate 2 is good. Since the power supply plate 2 fluctuates following the temperature of the electrostatic chuck 1 due to a large amount of heat transfer between the power supply plates 2, heat loss from the mounting mechanism increases, so that the cooling efficiency of the electrostatic chuck 1 by the refrigerant is increased. There was a problem that it deteriorated and the cooling equipment was enlarged. Further, each time the processing of the wafer W is repeated, the power supply plate 2 fluctuates following the temperature of the electrostatic chuck 1, so that the power supply plate 2 repeats expansion and contraction between the aluminum and the alumina coating as a base material. There was a problem that micro cracks were generated in the alumina coating due to the difference in thermal expansion coefficient, resulting in dielectric breakdown. Furthermore, micro cracks also occur in the alumina coating formed in the sealing groove 2C of the power supply plate 2, and there is a possibility that vacuum leakage may occur from the micro cracks.
[0008]
The present invention has been made in order to solve the above-described problems, and it is possible to reduce the temperature control equipment by suppressing heat loss during processing, and to prevent insulation breakdown and vacuum leakage. It is an object to provide a mounting mechanism having a layer.
[0009]
[Means for Solving the Problems]
The mounting mechanism having a vacuum heat insulating layer according to claim 1 of the present invention includes a mounting body having a flow path through which a heat medium for adjusting the temperature of the target object on the mounting surface circulates, A vacuum processing vessel having a communication path communicating with the flow path of the mounting body and supplying high-frequency power to the mounting body, and supplying the power while adjusting the temperature of the mounting body with the heat medium. In the mounting mechanism for processing the object to be processed by applying high-frequency power to a plate, a power feeding unit is provided on the outer peripheral edge of the power feeding plate so as to be in electrical conduction with the outer peripheral edge of the mounting body. Rutotomoni provided a seal member above described mounting body and the feeding plates surrounding a plurality of through-holes comprising said communication passage in the inner area of the feed section, the vacuum a plurality of through holes including the communication passage by the seal member It is characterized by being cut off from the processing space in the processing container .
[0010]
Moreover, the mounting mechanism having the vacuum heat insulating layer according to claim 2 of the present invention includes a mounting body having a flow path through which a heat medium for adjusting the temperature of the target object on the mounting surface circulates; A vacuum processing container having a communication path communicating with the flow path of the mounting body and supplying high-frequency power to the mounting body, and adjusting the temperature of the mounting body with the heat medium In the mounting mechanism that processes the object to be processed by applying high-frequency power to the power supply plate, a power supply unit that is in electrical continuity with the outer peripheral edge portion of the mounting body is provided on the outer peripheral edge portion of the power supply plate. together with and above described mounting body and the feeding plates disposed providing a seal member surrounding a plurality of through-holes comprising said communication passage in the inner area of the feed section, the vacuum processing vessel between said sealing member and the feeding portion A space layer communicating with the processing space is provided.
[0011]
According to a third aspect of the present invention, there is provided a mounting mechanism having the vacuum heat insulating layer according to the second aspect of the present invention, wherein the mounting body and the power supply plate are used as means for communicating the processing space with the spatial layer. The contact portion is provided with at least one passage.
[0012]
The mounting mechanism having a vacuum heat insulating layer according to claim 4 of the present invention is characterized in that, in the invention according to claim 3, the space layer and the passage are provided on the power feeding plate side. It is.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on the embodiment shown in FIGS. 1 and 2.
As shown in FIG. 1, for example, the mounting mechanism 10 according to the present embodiment is made of an aluminum mounting body (electrostatic chuck) 11 and an aluminum body that is in close contact with the lower surface of the electrostatic chuck 11 and supplies high-frequency power. Power supply plate 12, and supports 13 and 14 made of an insulating material for supporting the power supply plate 12. A ceramic coating is applied to the surface of the electrostatic chuck 11, and alumite processing is applied to the surface of the power supply plate 12. However, the outer peripheral edge portion (feeding portion) 12A on the lower surface of the electrostatic chuck 11 and the upper surface of the feeding plate 12 is formed of solid aluminum, and both are in close contact with each other and electrically connected via the feeding portion 12A. ing.
[0014]
As shown in FIG. 1, a flow path 11A is formed in the electrostatic chuck 11 as in the prior art, and a cooling facility (not shown) is connected to the flow path 11A via a pipe 15. A heat medium (similar refrigerant) is circulated between the cooling facility and the flow path 11 </ b> A via the pipe 15 to cool the electrostatic chuck 11. However, FIG. 1 shows only the refrigerant inflow piping.
[0015]
Further, as shown in FIG. 1, a power feeding rod 16 is connected to the power feeding plate 12, and a high frequency power source 17 is connected to the power feeding rod 16 via a matching unit 17A. Accordingly, a predetermined (for example, 13.56 MHz) high frequency power is applied from the high frequency power supply 17 to the power supply plate 12 through the power supply rod 16. A high voltage DC power supply 18 is connected to the power supply rod 16, and a DC voltage is applied from the high voltage DC power supply 18 to the power supply plate 12 via the power supply rod 16. In this way, by applying the high frequency power and the DC voltage to the power supply plate 12, the high frequency power and the DC voltage are supplied from the power supply unit 12 </ b> A of the power supply plate 12 to the electrostatic chuck 11, and a self-bias potential is generated in the electrostatic chuck 11. At the same time, an electrostatic attraction force that attracts the wafer W is generated.
[0016]
Further, an elevating pin 19 is provided inside the electrostatic chuck 11, and when the wafer W is transferred on the electrostatic chuck 11, the elevating pin 19 moves up and down via the drive shaft 19A.
[0017]
Next, the relationship between the electrostatic chuck 11 and the power supply plate 12 will be further described with reference to FIGS. 2 (a) and 2 (b). As described above, the electrostatic chuck 11 and the power supply plate 12 are electrically connected via the power supply unit 12A. That is, the power feeding portion 12A (the hatched portion in FIG. 2) on the upper surface of the power feeding plate 12 is formed of solid aluminum, and this power feeding portion 12A is in close contact with the aluminum base material of the electrostatic chuck 11 and feeds power in the same manner as in the past. Both of these 11 and 12 are configured to be electrically conductive via a portion 12A.
[0018]
Further, as shown in FIGS. 1 and 2 (a) and 2 (b), a power feeding portion 12A and an inner region 12B are formed on the upper surface of the power feeding plate 12, and the power feeding portion 12A is formed so as to protrude from the inner region 12B. ing. The inner region 12B is formed with a plurality of through holes through which the refrigerant pipe 15 leading to the atmosphere side, the drive shaft 19A of the elevating pin 19 and the like pass, and the periphery of these through holes is shown in FIG. As shown in (b), a protruding portion 12C for forming a sealing groove is formed so as to protrude from the flat surface of the inner region 12B to the same height as the power feeding portion 12A. The projecting portion 12C is formed with a sealing groove over the entire circumference, and an O-ring 20 is attached to the sealing groove. Accordingly, the power feeding plate 12 is in close contact with the electrostatic chuck 11 via the power feeding portion 12A, the protruding portion 12C and the O-ring 20, and two narrow spaces 12D and 12E are formed in the inner region 12B with the O-ring 20 as a boundary. Yes. The outer space 12 </ b> D is formed between the power feeding unit 12 </ b> A and the O-ring 20, and the other one space 12 </ b> E is formed inside the O-ring 20.
[0019]
Further, in FIG. 2A, the protruding portion 12C in which the seal groove is formed extends to a substantially cross-shaped protruding portion or the like surrounding the drive shaft 19A of the lifting pin, and these portions are connected to the electrostatic chuck 11 and the like. In close contact. However, since these protrusions are anodized and formed of an alumina coating, the electrostatic chuck 11 and the power supply plate 12 are electrically insulated from each other at these portions.
[0020]
In addition, a communication groove 12F that connects the vacuum region in the vacuum processing vessel and the space 12D outside the O-ring 20 in the inner region 12B has a diameter in a plurality of locations (for example, eight locations) at equal intervals in the circumferential direction. One space 12D is formed as a vacuum heat insulating layer 12D through these communication grooves 12F. The other space 12E is formed as an atmospheric layer 12E opened to the atmosphere side. Hereinafter, the space 12D will be described as a vacuum heat insulating layer 12D as necessary.
[0021]
Next, the operation will be described. The inside of the vacuum processing container is evacuated to maintain a predetermined degree of vacuum, and the electrostatic chuck 11 is cooled by circulating a refrigerant from the refrigerant facility into the flow path 11 </ b> A of the electrostatic chuck 11. When the inside of the vacuum processing container is evacuated, the mounting mechanism 10 forms a vacuum heat insulation layer 12D between the electrostatic chuck 11 and the power supply plate 12 via the communication groove 12F of the power supply plate 12, and the vacuum heat insulation layer 12D passes through this vacuum heat insulation layer 12D. The power supply plate 12 and the electrostatic chuck 11 are thermally insulated over a wide range. In this state, a wafer (not shown) is placed on the electrostatic chuck 11, process gas is supplied into the vacuum processing container, and the process gas is maintained at a constant pressure. In this state, when high frequency power is applied from the high frequency power supply 17 to the power supply plate 12 via the power supply rod 16, high frequency power and DC voltage are supplied to the electrostatic chuck 11 via the power supply portion 12A of the power supply plate 12, and a vacuum processing container is supplied. A plasma of a process gas is generated therein, and the wafer is electrostatically adsorbed and fixed on the upper surface of the electrostatic chuck 11. In this state, a predetermined plasma process is performed on the wafer by plasma.
[0022]
During plasma processing, there is a large amount of heat input in the wafer due to ion bombardment to the wafer, and the wafer temperature rises rapidly. However, since the coolant circulates in the flow path 11A of the electrostatic chuck 11, the wafer is cooled by the coolant via the electrostatic chuck 11, and the wafer temperature is maintained at, for example, 80 to 100 ° C. In this case, it is formed a vacuum heat insulating layer 12D is formed between the electrostatic chuck 11 and the feed plate 12 as shown in FIG. 2 (a), the feed plate 12 is insulated extensively from the electrostatic chuck 11 Therefore, the heat transfer between the electrostatic chuck 11 and the power supply plate 12 can be suppressed, the heat loss from the power supply plate 12 can be significantly suppressed, and the cooling efficiency of the refrigerant can be significantly increased. Therefore, we are Rukoto enhance the cooling capacity of the refrigerant, and by extension can be downsized cooling facility.
[0023]
When the plasma processing of the wafer is completed and the processed wafer is unloaded from the vacuum processing container, the temperature of the electrostatic chuck 11 is lowered at a stroke by the action of the refrigerant. When the next wafer is carried into the vacuum processing container and the next wafer is processed on the electrostatic chuck 11, the temperature of the electrostatic chuck 11 rises again. As described above, the electrostatic chuck 11 periodically repeats the temperature increase and the temperature decrease while processing a plurality of wafers.
[0024]
However, since the power supply plate 12 is insulated from the electrostatic chuck 11 in a wide range, there is no temperature fluctuation as large as that of the electrostatic chuck 11. It is possible to suppress the occurrence of microcracks in the alumina coating even when a plurality of wafers are processed, and to prevent dielectric breakdown due to microcracks in the power supply plate 12. it can. In addition, micro cracks in the alumina coating can be prevented even in the sealing groove on which the O-ring 20 is mounted, and vacuum leakage due to micro cracks in the O-ring 20 can be prevented.
[0025]
As described above, according to the present embodiment, the electrostatic chuck 11 having the flow path 11A through which the refrigerant circulates, and the pipe 15 communicating with the flow path 11A of the electrostatic chuck 11 are provided. When the wafer is processed by applying high frequency power to the power supply plate 12 while cooling the electrostatic chuck 11 with a coolant, the power supply plate 12 for supplying power is provided in the vacuum processing container. Since the O-ring 20 surrounding the plurality of through-holes including the pipe 15 is provided between 12 and the vacuum heat insulating layer 12D communicating with the processing space in the vacuum processing container is provided outside the O-ring 20, the vacuum heat insulating layer 12D It is possible to suppress the heat transfer from the electric chuck 11 to the power supply plate 12 and increase the cooling efficiency of the electrostatic chuck 11 by the refrigerant, and to realize downsizing of the cooling equipment. Further, even during processing of a plurality of wafers, the temperature change of the power supply plate 12 can be suppressed to suppress the difference in thermal expansion between the aluminum that is the base material of the power supply plate 12 and the alumina coating. Generation of microcracks can be prevented, and dielectric breakdown due to microcracks can be prevented. Furthermore, the occurrence of micro cracks in the alumina coating in the sealing groove can be prevented, and vacuum leakage at this portion can be prevented.
[0026]
Further, according to the present embodiment, since the eight communication grooves 12F are provided at the contact portion between the electrostatic chuck 11 and the power supply plate 12 as means for communicating the vacuum processing space and the space 12D, the inside of the vacuum processing container is evacuated. Only the vacuum heat insulating layer 12D can be formed. Further, since the vacuum heat insulating layer 12D and the communication groove 12F are provided on the power supply plate 12 side, the space 12D and the communication groove 12F can be formed integrally with the power supply plate 12 when the power supply plate 12 is manufactured.
[0027]
In the above embodiment, the case where the space 12D and the communication groove 12F are provided in the power feeding plate 12 has been described. However, the space and the communication groove may be provided on the electrostatic chuck side. Further, instead of the communication groove 12D, a radial through hole may be provided in the power feeding portion 12A. Moreover, although the cooling facility which supplies a refrigerant | coolant was demonstrated in the said embodiment, this invention is applicable also to the heating facility which supplies the heat medium for a heating. Moreover, the mounting mechanism of the present invention can be widely applied to vacuum processing apparatuses other than plasma processing apparatuses.
[0028]
【The invention's effect】
According to the first to fourth aspects of the present invention, the vacuum heat insulating layer capable of minimizing the temperature control equipment by suppressing the heat loss during the processing, and preventing the dielectric breakdown and the vacuum leakage. A mounting mechanism can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of a mounting mechanism of the present invention.
2A and 2B are diagrams showing a power feeding plate used in the mounting mechanism shown in FIG. 1, wherein FIG. 2A is a plan view showing the form of the upper surface, and FIG. 2B is a cross-sectional view showing the main part thereof.
FIG. 3 is a cross-sectional view conceptually showing an example of a conventional placement mechanism.
FIG. 4 is a plan view showing a form of a specific upper surface of a power feeding plate used in a conventional mounting mechanism.
[Explanation of symbols]
10 Placement Mechanism 11 Electrostatic Chuck (Placement Body)
11A Flow path of refrigerant 12 Power supply plate 12A Power supply unit 12D Space (vacuum heat insulation layer)
12F Communication groove (passage)
15 Piping for refrigerant 16 Feed rod

Claims (4)

載置面上の被処理体の温度を調節するための熱媒体が循環する流路を有する載置体と、この載置体の流路に連通する連通路を有し且つ上記載置体に高周波電力を給電する給電板とを真空処理容器内に備え、上記熱媒体で上記載置体を温度調節しながら上記給電板に高周波電力を印加して上記被処理体を処理する載置機構において、上記給電板の外周縁部に上記載置体の外周縁部と電気的に導通自在に接触する給電部を設け且つ上記載置体と上記給電板の間で上記給電部の内側領域に上記連通路を含む複数の貫通孔を囲むシール部材を設けると共に、上記シール部材によって上記連通路を含む複数の貫通孔を上記真空処理容器内の処理空間から遮断することを特徴とする真空断熱層を有する載置機構。A mounting body having a flow path through which a heat medium for adjusting the temperature of the object to be processed on the mounting surface circulates, and a communication path communicating with the flow path of the mounting body, A mounting mechanism for processing the object to be processed by applying high-frequency power to the power supply plate while adjusting the temperature of the mounting body with the heat medium, and supplying a power supply plate for supplying high-frequency power to the vacuum processing container. A power feeding portion that is in electrical continuity with the outer peripheral edge of the mounting body is provided at the outer peripheral edge of the power feeding plate , and the communication path is provided in an inner region of the power feeding portion between the mounting body and the power feeding plate. having a vacuum heat insulating layer, characterized in that blocking a plurality of through holes including the communication passage from the processing space of the vacuum processing vessel Rutotomoni provided a seal member surrounding a plurality of through holes, by the sealing member including Placement mechanism. 載置面上の被処理体の温度を調節するための熱媒体が循環する流路を有する載置体と、この載置体の流路に連通する連通路を有し且つ上記載置体に高周波電力を給電する給電板とを真空処理容器内に備え、上記熱媒体で上記載置体を温度調節しながら上記給電板に高周波電力を印加して上記被処理体を処理する載置機構において、上記給電板の外周縁部に上記載置体の外周縁部と電気的に導通自在に接触する給電部を設け且つ上記載置体と上記給電板の間で上記給電部の内側領域に上記連通路を含む複数の貫通孔を囲むシール部材を設けると共に上記シール部材と上記給電部の間に上記真空処理容器内の処理空間と連通する空間層を設けたことを特徴とする真空断熱層を有する載置機構。A mounting body having a flow path through which a heat medium for adjusting the temperature of the object to be processed on the mounting surface circulates, and a communication path communicating with the flow path of the mounting body, A mounting mechanism for processing the object to be processed by applying high-frequency power to the power supply plate while adjusting the temperature of the mounting body with the heat medium, and supplying a power supply plate for supplying high-frequency power to the vacuum processing container. A power feeding portion that is in electrical continuity with the outer peripheral edge of the mounting body is provided at the outer peripheral edge of the power feeding plate , and the communication path is provided in an inner region of the power feeding portion between the mounting body and the power feeding plate. provided with a sealing member surrounding the plurality of through-holes containing, having a vacuum insulation layer, characterized in that a space layer in communication with the processing space of the vacuum processing vessel between said sealing member and the feeding portion Placement mechanism. 上記処理空間と上記空間層を連通させる手段として上記載置体と上記給電板の接触部に少なくとも一つの通路を設けたことを特徴とする請求項2に記載の真空断熱層を有する載置機構。3. The mounting mechanism having a vacuum heat insulating layer according to claim 2, wherein at least one passage is provided in a contact portion between the mounting body and the power feeding plate as means for communicating the processing space with the space layer. . 上記空間層及び上記通路を上記給電板側に設けたことを特徴とする請求項3に記載の真空断熱層を有する載置機構。The mounting mechanism having a vacuum heat insulating layer according to claim 3, wherein the space layer and the passage are provided on the power feeding plate side.
JP2002210449A 2002-07-19 2002-07-19 Mounting mechanism having a vacuum heat insulating layer Expired - Fee Related JP4218822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002210449A JP4218822B2 (en) 2002-07-19 2002-07-19 Mounting mechanism having a vacuum heat insulating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002210449A JP4218822B2 (en) 2002-07-19 2002-07-19 Mounting mechanism having a vacuum heat insulating layer

Publications (2)

Publication Number Publication Date
JP2004055779A JP2004055779A (en) 2004-02-19
JP4218822B2 true JP4218822B2 (en) 2009-02-04

Family

ID=31933947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002210449A Expired - Fee Related JP4218822B2 (en) 2002-07-19 2002-07-19 Mounting mechanism having a vacuum heat insulating layer

Country Status (1)

Country Link
JP (1) JP4218822B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4246654B2 (en) * 2004-03-08 2009-04-02 株式会社日立ハイテクノロジーズ Vacuum processing equipment
US7544251B2 (en) 2004-10-07 2009-06-09 Applied Materials, Inc. Method and apparatus for controlling temperature of a substrate
US8241425B2 (en) * 2009-01-23 2012-08-14 Axcelis Technologies, Inc. Non-condensing thermos chuck
JP6173936B2 (en) * 2013-02-28 2017-08-02 東京エレクトロン株式会社 Mounting table and plasma processing apparatus

Also Published As

Publication number Publication date
JP2004055779A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
US20200251315A1 (en) Placing table and substrate processing apparatus
US20150170952A1 (en) Rotatable heated electrostatic chuck
CN110120329B (en) Plasma processing apparatus
KR101927936B1 (en) Substrate treating apparatus
EP3147931B1 (en) Mounting table and plasma processing apparatus
US11551916B2 (en) Sheath and temperature control of a process kit in a substrate processing chamber
KR102089949B1 (en) Substrate treating apparatus component of substrate treating apparatus
KR100861261B1 (en) Heat transfer structure and substrate processing apparatus
US20040045813A1 (en) Wafer processing apparatus, wafer stage, and wafer processing method
JP7381713B2 (en) Process kit sheath and temperature control
US20200411354A1 (en) Detachable biasable electrostatic chuck for high temperature applications
JP4218822B2 (en) Mounting mechanism having a vacuum heat insulating layer
JPH08167595A (en) Plasma treatment device
CN115315798A (en) High-temperature micro-area electrostatic chuck
CN108461441B (en) Bearing device and process chamber
CN110911332A (en) Electrostatic chuck
US20230377852A1 (en) Substrate processing apparatus
US20220293397A1 (en) Substrate edge ring that extends process environment beyond substrate diameter
WO2019155808A1 (en) Substrate placement platform, plasma processing device comprising same, and plasma processing method
US20240038503A1 (en) Focus ring and method for manufacturing the same
US20200243372A1 (en) Susceptor, substrate processing apparatus and protection method
CN115775716A (en) Substrate support assembly and plasma processing apparatus
WO2023034436A1 (en) Replaceable electrostatic chuck outer ring for edge arcing mitigation
KR100272278B1 (en) Dry etcher
CN115602518A (en) Substrate support, substrate support assembly and plasma processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4218822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141121

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees