JP4218565B2 - Sewage treatment method, sewage treatment control system, and sewage treatment facility - Google Patents

Sewage treatment method, sewage treatment control system, and sewage treatment facility Download PDF

Info

Publication number
JP4218565B2
JP4218565B2 JP2004094006A JP2004094006A JP4218565B2 JP 4218565 B2 JP4218565 B2 JP 4218565B2 JP 2004094006 A JP2004094006 A JP 2004094006A JP 2004094006 A JP2004094006 A JP 2004094006A JP 4218565 B2 JP4218565 B2 JP 4218565B2
Authority
JP
Japan
Prior art keywords
sludge
amount
sewage treatment
input
initial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004094006A
Other languages
Japanese (ja)
Other versions
JP2005279351A (en
Inventor
みさき 隅倉
剛 武本
直樹 原
昭二 渡辺
浩人 横井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004094006A priority Critical patent/JP4218565B2/en
Publication of JP2005279351A publication Critical patent/JP2005279351A/en
Application granted granted Critical
Publication of JP4218565B2 publication Critical patent/JP4218565B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、下水処理方法,下水処理制御システム、及び下水処理設備に関する。   The present invention relates to a sewage treatment method, a sewage treatment control system, and a sewage treatment facility.

汚水の処理施設では、有機物に加え窒素及びりんの除去が要求されている。窒素・りんの除去を安定して行うためには、流入下水中に含まれる有機物に加え、更なるor別途or外部から有機物源の供給が必要である。この有機物源として、最初沈殿池より引抜かれた初沈汚泥を直接、あるいは可溶化等の前処理を施して利用する方法がある。特許文献1には、汚泥処理プロセスからの返流水の混入する生物反応槽に初沈汚泥を投入する方法が示されている。特許文献2には、脱窒槽の酸化還元電位(ORP)が0mVのときに、初沈汚泥の一部を脱窒槽あるいは沈後水の流入する嫌気槽に流入させる方法が開示されている。   Sewage treatment facilities are required to remove nitrogen and phosphorus in addition to organic matter. In order to remove nitrogen and phosphorus stably, in addition to the organic matter contained in the inflowing sewage, it is necessary to further supply organic materials from outside or separately. As this organic matter source, there is a method in which the initial sedimentation sludge extracted from the initial sedimentation basin is used directly or after pretreatment such as solubilization. Patent Document 1 discloses a method in which initial settling sludge is introduced into a biological reaction tank in which return water from the sludge treatment process is mixed. Patent Document 2 discloses a method in which when the oxidation-reduction potential (ORP) of a denitrification tank is 0 mV, a part of the initial settling sludge is introduced into a denitrification tank or an anaerobic tank into which post-settling water flows.

特開平11−104693号公報Japanese Patent Laid-Open No. 11-104693 特開平10−323693号公報Japanese Patent Laid-Open No. 10-323893

活性汚泥の生物学的な性質を利用して、初沈汚泥を投入して窒素やりんを除去する場合、活性汚泥の菌体活性を維持するために過剰投入を防止する事が望ましい。また、初沈汚泥を投入すると有機物負荷が増加し、活性汚泥の菌体が窒素やりんを除去する過程の有機物代謝にともなう酸素消費量が増加するため、送風量を増加させる必要がある。しかし、処理施設の送風機や散気装置の機器仕様により決定する酸素供給能力により、許容できる生物学的酸素要求量BOD(biochemical oxygen demand) 負荷に上限がある。流入した有機物量に対して菌体に充分な酸素が供給されない場合、未利用の有機物が残留し、処理水のBOD濃度が高くなる可能性がある。   When using the biological properties of activated sludge to remove the nitrogen and phosphorus by introducing the initial settling sludge, it is desirable to prevent excessive addition in order to maintain the bacterial activity of the activated sludge. In addition, when the initial settling sludge is added, the load on organic matter increases, and the oxygen consumption accompanying the metabolism of organic matter in the process of removing nitrogen and phosphorus by the activated sludge microbial cells increases, so it is necessary to increase the blast volume. However, there is an upper limit on the BOD (biochemical oxygen demand) load that can be tolerated due to the oxygen supply capacity determined by the equipment specifications of the processing facility blower and diffuser. If sufficient oxygen is not supplied to the cells with respect to the amount of organic matter that has flowed in, unused organic matter may remain and the BOD concentration of the treated water may increase.

しかし、前項で挙げた特許文献1及び2では、いずれも初沈汚泥の投入量の上限値は考慮しておらず、投入量が下水処理設備の許容範囲を超え、処理水の水質が悪化する恐れがある。初沈汚泥の投入量に、SRTと供給可能な送風量から上限値を設け、活性汚泥による窒素・りん除去を向上することが望まれる。   However, in Patent Documents 1 and 2 listed in the previous section, neither of the upper limits of the input amount of initial sludge is taken into consideration, the input amount exceeds the allowable range of the sewage treatment facility, and the quality of the treated water deteriorates. There is a fear. It is desired that the initial sludge input amount be set to an upper limit value based on the SRT and the amount of air that can be supplied to improve the removal of nitrogen and phosphorus by activated sludge.

本発明の目的は、窒素及びりんの除去に要する活性汚泥の菌体組成を維持し、発生汚泥量を削減できる下水処理方法,下水処理制御システム、及び下水処理設備を提供することにある。   An object of the present invention is to provide a sewage treatment method, a sewage treatment control system, and a sewage treatment facility capable of maintaining the bacterial cell composition of activated sludge required for removing nitrogen and phosphorus and reducing the amount of generated sludge.

活性汚泥の平均汚泥滞留時間、又は酸素供給量に基づいて、初沈汚泥の投入量を制御することを特徴とする。 Average Sludge residence time of activated sludge, or based on the oxygen supply, and controls the input of Hatsu沈 sludge.

本発明によると、窒素及びりんの除去に要する活性汚泥の菌体組成を維持でき、発生汚泥量を削減できる下水処理方法,下水処理制御システム、及び下水処理設備を提供できる。   According to the present invention, it is possible to provide a sewage treatment method, a sewage treatment control system, and a sewage treatment facility capable of maintaining the bacterial cell composition of activated sludge required for removing nitrogen and phosphorus and reducing the amount of generated sludge.

本発明の実施の形態では、活性汚泥の平均汚泥滞留時間、又は酸素供給量に基づいて、生物反応の際に初沈汚泥を投入する。   In the embodiment of the present invention, the initial settling sludge is charged in the biological reaction based on the average sludge residence time of the activated sludge or the oxygen supply amount.

窒素やりんの除去には、硝化菌・脱窒菌やりん蓄積菌など除去に寄与する菌体の増殖時間以上の活性汚泥の平均汚泥滞留時間(SRT:Sludge Retention Time) が必要である。このSRTは、活性汚泥の浮遊物濃度であるMLSS(Mixed Liquor Suspended Solids) と余剰汚泥の浮遊物(SS:Suspended Solids)量から次の(式1)により求められる。   Removal of nitrogen and phosphorus requires an average sludge retention time (SRT: Sludge Retention Time) of activated sludge that is longer than the growth time of bacterial cells that contribute to the removal of nitrifying bacteria, denitrifying bacteria, and phosphorus accumulating bacteria. This SRT is obtained by the following (Equation 1) from MLSS (Mixed Liquor Suspended Solids) which is the suspended solid concentration of activated sludge and the amount of suspended sludge (SS: Suspended Solids).

SRT=(MLSS×反応槽容量)/(余剰汚泥SS量) …(式1)
最終沈殿池で活性汚泥と処理水を重力により固液分離する下水処理施設では、MLSSが高いと、最終沈殿池の沈降汚泥の界面位置が高くなり、汚泥流出のおそれがある。例えば、高度処理施設設計マニュアル(日本下水道協会、平成6年)によると、窒素やりんを除去する高度処理施設では、MLSSは、一般に3000mg/l前後とされる。初沈汚泥を投入すると、1)活性汚泥中の微生物が初沈汚泥の有機物を分解し増殖する、2)初沈汚泥はSSが高い、という2つの理由からMLSSが増加する。初沈汚泥投入量が過剰になると、施設面からMLSSが制約されるため、MLSSを低下させるために余剰汚泥を増加させる必要があり、結果としてSRTが短くなり、特に増殖に長い時間を必要とする硝化菌が減少しやすく、窒素除去率が悪化する可能性がある。
SRT = (MLSS × reaction tank capacity) / (excess sludge SS amount) (Equation 1)
In a sewage treatment facility that separates activated sludge and treated water by gravity in the final sedimentation basin, if the MLSS is high, the interface position of the sedimentation sludge in the final sedimentation basin becomes high, and there is a risk of sludge outflow. For example, according to an advanced treatment facility design manual (Japan Sewerage Association, 1994), MLSS is generally around 3000 mg / l in an advanced treatment facility that removes nitrogen and phosphorus. When primary sludge is introduced, MLSS increases for two reasons: 1) microorganisms in activated sludge decompose and propagate organic matter in primary sludge, and 2) primary sediment sludge has a high SS. If the amount of initial sludge input becomes excessive, MLSS is restricted from the facility side, so it is necessary to increase excess sludge in order to reduce MLSS. As a result, SRT is shortened, and in particular, a long time is required for growth. Nitrifying bacteria to be reduced are likely to decrease, and the nitrogen removal rate may deteriorate.

本発明の実施の形態は、活性汚泥の平均汚泥滞留時間又は酸素供給装置の酸素供給量に着目し、初沈汚泥の投入量の適正化を図るものである。   The embodiment of the present invention focuses on the average sludge residence time of activated sludge or the oxygen supply amount of the oxygen supply device, and optimizes the input amount of the first settling sludge.

図1に、本実施例における下水処理装置及びその制御システムの構成図を示す。下水処理装置は、最初沈殿池2,生物反応槽1,最終沈殿池3及び制御手段7を備え、下水処理設備などに設置される。   In FIG. 1, the block diagram of the sewage treatment apparatus and its control system in a present Example is shown. The sewage treatment apparatus includes a first sedimentation basin 2, a biological reaction tank 1, a final sedimentation basin 3, and a control means 7, and is installed in a sewage treatment facility or the like.

生物反応槽1は、微生物群が生息する活性汚泥によって、最初沈殿池2から流出した上澄み液(以後沈後水と呼ぶ)中の有機物,窒素,りんなどを生物学的に処理・分解する生物反応手段である施設である。この生物反応槽1は、複数の反応槽で構成され、嫌気槽1−Aと2−Aと好気槽1−Bと2−Bがある。好気槽1−Bの底部には、ブロア等からなる酸素含有気体供給手段4が接続されている。この酸素含有気体供給手段4から好気槽1−Bに空気を供給する。生物反応槽1の任意の反応槽に反応槽測定手段9が設置され、反応槽のMLSSが計測される。本実施例では、嫌気槽1−Aに設けている。また、好気槽1−BにDO測定手段11が設置され、DOが計測される。   The biological reaction tank 1 is a biological reaction means for biologically treating and decomposing organic matter, nitrogen, phosphorus, etc. in the supernatant liquid (hereinafter referred to as post-sedimentation water) flowing out from the settling basin 2 by activated sludge inhabited by microorganisms. It is a facility. The biological reaction tank 1 includes a plurality of reaction tanks, and includes anaerobic tanks 1-A and 2-A, and aerobic tanks 1-B and 2-B. An oxygen-containing gas supply means 4 made of a blower or the like is connected to the bottom of the aerobic tank 1-B. Air is supplied from the oxygen-containing gas supply means 4 to the aerobic tank 1-B. Reaction tank measurement means 9 is installed in any reaction tank of the biological reaction tank 1, and MLSS of the reaction tank is measured. In this embodiment, it is provided in the anaerobic tank 1-A. Moreover, the DO measurement means 11 is installed in the aerobic tank 1-B, and DO is measured.

最終沈殿池3には、余剰汚泥測定手段10が設置され、余剰汚泥引抜き流量と余剰汚泥MLSSが計測される。これらの計測手段の情報は制御手段7に送られる。   In the final sedimentation basin 3, surplus sludge measuring means 10 is installed, and surplus sludge extraction flow rate and surplus sludge MLSS are measured. Information on these measuring means is sent to the control means 7.

最初沈殿池2には、ポンプ等を備えた初沈汚泥移送手段5が設置されている。初沈汚泥移送手段5と初沈汚泥供給口13との間には、初沈汚泥のSS濃度を計測するための初沈汚泥測定手段8と、弁14が設置されている。初沈汚泥測定手段8の情報は、制御手段7に送られる。制御手段7は初沈汚泥移送手段5と弁14によって初沈汚泥の投入量を制御する。なお、制御手段7が制御に使用する演算条件は、目標値入力手段6及び機器仕様入力手段12によって設定される。なお、本実施例では初沈汚泥供給口13を嫌気槽2−Aに設けている。   The first settling basin 2 is provided with a first settling sludge transfer means 5 equipped with a pump or the like. Between the initial settling sludge transfer means 5 and the initial settling sludge supply port 13, an initial settling sludge measuring means 8 and a valve 14 for measuring the SS concentration of the initial settling sludge are installed. Information of the initial settling sludge measuring means 8 is sent to the control means 7. The control means 7 controls the amount of initial sludge input by means of the initial sludge transfer means 5 and the valve 14. The calculation conditions used for control by the control means 7 are set by the target value input means 6 and the device specification input means 12. In this embodiment, the initial settling sludge supply port 13 is provided in the anaerobic tank 2-A.

次に、本実施例における下水処理設備での流入原水の処理過程を説明する。   Next, the process of inflow raw water in the sewage treatment facility in the present embodiment will be described.

最初沈殿池2に、下水処理設備の外部から供給された流入原水が供給される。最初沈殿池2では流入原水の沈降分離により初沈汚泥が生成される。生成した初沈汚泥の一部は初沈汚泥移送手段5によって生物反応槽1に供給される。後水の有機物,窒素及びりんは、生物反応槽1の活性汚泥の生物反応で除去される。   Inflow raw water supplied from the outside of the sewage treatment facility is supplied to the first sedimentation basin 2. In the first settling basin 2, the first settling sludge is generated by the settling and separation of the incoming raw water. Part of the generated initial settling sludge is supplied to the biological reaction tank 1 by the initial settling sludge transfer means 5. The organic matter, nitrogen and phosphorus in the post-water are removed by the biological reaction of the activated sludge in the biological reaction tank 1.

生物反応槽1に供給した初沈汚泥は、除去に必要な有機物源として活用される。生物反応槽1の反応液は最終沈殿池3に供給され、活性汚泥と上澄み液とに分離され上澄み液が処理水として放流される。余剰汚泥測定手段10を経た余剰汚泥と、生物反応槽1に投入しない初沈汚泥は水処理施設の系外で排出汚泥として処理される。   The initial sedimentation sludge supplied to the biological reaction tank 1 is utilized as an organic matter source necessary for removal. The reaction liquid in the biological reaction tank 1 is supplied to the final sedimentation basin 3 and separated into activated sludge and a supernatant liquid, and the supernatant liquid is discharged as treated water. The surplus sludge that has passed through the surplus sludge measuring means 10 and the initial sedimentation sludge that is not put into the biological reaction tank 1 are treated as discharged sludge outside the system of the water treatment facility.

次に、本実施例における運用方法を、図1、及び図2のフローチャートのステップS1〜S7を用いて説明する。   Next, the operation method in the present embodiment will be described using steps S1 to S7 in the flowcharts of FIGS.

ステップS1の酸素供給量算出工程において、制御手段7における酸素供給量算出手段によって、機器仕様入力手段12から酸素含有気体供給手段4の最大送風量Fmax の情報、DO測定手段11からのDO計測値を得て、総括酸素移動容量係数KLAを用いて酸素供給量の最大値を算出する。算出には、例えば、次に示す(式2),(式3)を用いる。ここでΔDは酸素含有気体供給手段4の供給酸素量、KLAは総括酸素移動容量係数、
DOSは溶存酸素の飽和度、DOは現状溶存酸素である。
In the oxygen supply amount calculation step of step S 1, the oxygen supply amount calculation means in the control means 7 provides information on the maximum air flow F max of the oxygen-containing gas supply means 4 from the equipment specification input means 12 and DO measurement from the DO measurement means 11. A value is obtained, and the maximum value of the oxygen supply amount is calculated using the overall oxygen transfer capacity coefficient KLA . For the calculation, for example, the following (Equation 2) and (Equation 3) are used. Where ΔD is the amount of oxygen supplied by the oxygen-containing gas supply means 4, K LA is the overall oxygen transfer capacity coefficient,
DOS is the saturation level of dissolved oxygen, and DO is dissolved oxygen at present.

ΔD=KLA(DOS−DO) …(式2)
LA=f(Fmax) …(式3)
ここでΔDは酸素含有気体供給手段4の供給酸素量、KLAは総括酸素移動容量係数、
DOSは溶存酸素の飽和度、DOは現状溶存酸素である。また、供給酸素量は、予め作成した送風量とDOの関係から算出してもよい。ここで得られた酸素供給量の最大値に予め目標値入力手段6で設定された定数γをかけた値を生物学的酸素要求量BOD
(biochemical oxygen demand) 負荷の上限値とする。γは生物反応槽1の容積を基に設定するとよい。さらに、沈後水の流入によるBOD負荷を考慮し、前述のBOD負荷上限値を減じてもよい。
ΔD = K LA (DO S −DO) (Formula 2)
K LA = f (F max ) (Formula 3)
Where ΔD is the amount of oxygen supplied by the oxygen-containing gas supply means 4, K LA is the overall oxygen transfer capacity coefficient,
DO S is the degree of saturation of dissolved oxygen, and DO is currently dissolved oxygen. The supplied oxygen amount may be calculated from the relationship between the blown amount created in advance and DO. The value obtained by multiplying the maximum value of the oxygen supply amount obtained here by the constant γ previously set by the target value input means 6 is the biological oxygen demand BOD.
(biochemical oxygen demand) The upper limit of load. γ may be set based on the volume of the biological reaction tank 1. Furthermore, the BOD load upper limit value described above may be reduced in consideration of the BOD load due to the inflow of post-sinking water.

ステップS2の初沈汚泥流量の最大投入流量の算出設定工程では、制御手段7が機器仕様入力手段12から初沈汚泥のBOD値を入手し、前段で算出したBOD負荷上限値の情報を基に、初沈汚泥の流量を算出する。この初沈汚泥流量は最大投入流量を表す。この値をQOmaxとする。BOD値は、実績値から設定してもよい。または初沈汚泥移送手段5にBOD計を設け、その計測値を用いてもよい。BOD計がない場合には、初沈汚泥のSSとBODの相関を用いて算出する方法もある。この算出したQOmaxと、現在の初沈汚泥投入量Qとを比較し、QOmax<Qの場合はQ=QOmaxとし、QOmax≧Qの場合は次のステップに移行する。このように、最大投入流量の算出設定手段により、QOmaxが算出設定される。 In the calculation and setting step of the maximum input flow rate of the initial settling sludge flow rate in step S2, the control means 7 obtains the BOD value of the initial settling sludge from the equipment specification input means 12, and based on the information of the BOD load upper limit value calculated in the previous stage. Calculate the initial sludge flow rate. This initial sedimentation sludge flow rate represents the maximum input flow rate. This value is Q Omax . The BOD value may be set from the actual value. Alternatively, a BOD meter may be provided in the initial settling sludge transfer means 5 and the measured value may be used. When there is no BOD meter, there is a method of calculating using the correlation between SS and BOD of the first settling sludge. The calculated Q Omax is compared with the current initial settling sludge input amount Q. When Q Omax <Q, Q = Q Omax is set, and when Q Omax ≧ Q, the process proceeds to the next step. In this manner, Q Omax is calculated and set by the maximum input flow rate calculation setting means.

ステップS3のSRT算出工程では、制御手段7が反応槽測定手段9のMLSS,余剰汚泥測定手段10の流量とMLSSの計測情報を受信する。制御手段7は余剰汚泥測定手段10の流量とMLSSから、余剰汚泥の引抜きSS量を算出する。制御手段7はこれらの計測情報を記録する機能を持ち、これらの蓄積した計測情報から、反応槽測定手段9のMLSSと余剰汚泥引抜きSS量の、予め目標値入力手段6で設定された所定期間の平均値を算出する。その値を用いて(式1)より現在のSRTを算出する。このように、SRT算出手段により、SRTが算出される。   In the SRT calculation step of step S3, the control means 7 receives the MLSS of the reaction tank measurement means 9, the flow rate of the excess sludge measurement means 10, and the measurement information of MLSS. The control means 7 calculates the amount of extracted SS of excess sludge from the flow rate of the excess sludge measuring means 10 and MLSS. The control means 7 has a function of recording these measurement information. From the accumulated measurement information, the MLSS of the reaction tank measurement means 9 and the excess sludge extraction SS amount are set for a predetermined period set in advance by the target value input means 6. The average value of is calculated. Using this value, the current SRT is calculated from (Equation 1). Thus, the SRT is calculated by the SRT calculation means.

ステップS4では、制御手段7は目標値入力手段6からSRTS とδL の値を得る。
SRTS は硝化菌の増殖速度を基に設定するとよい。δL は下方許容誤差であり、その値はSRTSの20%以下の値にするとよい。次に制御手段7はステップS3で算出した
SRTと、SRTSとδLの差分とを比較し、SRTの方が大きい場合はステップS6へ、小さい場合はステップS5へ移行する。
In step S4, the control means 7 obtains the values of SRT S and δ L from the target value input means 6.
SRT S may be set based on the growth rate of nitrifying bacteria. [delta] L is a lower tolerance, may the value of which 20% or less of the value of the SRTS. Next, the control unit 7 and SRT calculated in step S3, by comparing the difference between the SRTS and [delta] L, in the case who SRT is large to step S6, if it is smaller proceeds to step S5.

ステップS5では、制御手段7は現在の初沈汚泥の投入量Qを、ΔQLだけ減じた値に設定し、フローを終了する。初沈汚泥投入量のΔQLは過去のデータ等から、適宜設定する。 In step S5, the control means 7 sets the current input amount Q of the first settling sludge to a value reduced by ΔQ L and ends the flow. ΔQ L of the initial settling amount of sludge is appropriately set based on past data.

ステップS6では、制御手段7は目標値入力手段6からδU の値を得る。δU は上方許容誤差であり、その値はSRTSの20%以下の値にするとよい。次に制御手段7はステップS3で算出したSRTと、ステップS4で得たSRTSとδU の差分とを比較し、
SRTの方が大きい場合はステップS7へ、小さい場合は終了する。
In step S6, the control means 7 obtains the value of δ U from the target value input means 6. δ U is an upper tolerance, and its value is preferably 20% or less of SRTS. Next, the control means 7 compares the SRT calculated in step S3 with the difference between SRTS and δ U obtained in step S4.
If the SRT is larger, the process proceeds to step S7, and if smaller, the process ends.

ステップS7では、制御手段7は現在の初沈汚泥の投入量Qを、ΔQU だけ加えた値に設定し、フローを終了する。初沈汚泥投入量のΔQU は過去のデータ等から、適宜設定する。 In step S7, the control means 7 sets the current input amount Q of initial sludge to a value obtained by adding ΔQ U and ends the flow. ΔQ U of the initial settling sludge input amount is appropriately set based on past data and the like.

本制御の周期は少なくともSRT以下で行い、沈後水および投入する初沈汚泥のBOD濃度もしくはSS濃度の変動や計測周期に応じて設定するとよい。   The cycle of this control is performed at least at SRT or less, and may be set according to the variation in the BOD concentration or SS concentration of the post-sinking water and the initial sludge to be added or the measurement cycle.

以上のようなステップS1〜S7により、本実施例では、送風量とSRTから初沈汚泥の投入量を制御するため、初沈汚泥のBODを分解するための酸素を供給でき、SRTを増殖速度の遅い硝化菌に合わせて設定できるので、窒素・りん除去に必要な活性汚泥の菌体組成を維持できる。   According to the above-described steps S1 to S7, in this embodiment, oxygen for decomposing the BOD of the initial settling sludge can be supplied in order to control the input amount of the initial settling sludge from the air flow rate and the SRT. Therefore, it is possible to maintain the bacterial composition of activated sludge necessary for nitrogen and phosphorus removal.

本実施例によると、初沈汚泥の投入量を適正化でき、活性汚泥による窒素・りん除去率を向上できる。また、初沈汚泥を活性汚泥で分解するため、排出汚泥量を削減できる。   According to the present embodiment, the amount of initial settling sludge can be optimized, and the nitrogen / phosphorus removal rate by activated sludge can be improved. Moreover, since the initial settling sludge is decomposed with activated sludge, the amount of discharged sludge can be reduced.

本発明の他の実施例のフローを図3のフローチャートを用いて説明する。本実施例と実施例1のフローとの違いは、ステップS4以降にある。以下、ステップS11から説明する。   The flow of another embodiment of the present invention will be described with reference to the flowchart of FIG. The difference between the present embodiment and the flow of embodiment 1 is after step S4. Hereinafter, it demonstrates from step S11.

ステップS11では、制御手段7は目標値入力手段6からSRTSの値を得る。SRTSは硝化菌の増殖速度を基に設定するとよい。次に制御手段7はステップS3で算出したSRTと、SRTS とを比較し、SRTの方が大きい場合はステップS12へ、小さい場合はステップS13へ移行する。 In step S11, the control means 7 obtains the SRTS value from the target value input means 6. SRT S should be set based on the growth rate of nitrifying bacteria. Next, the control means 7 compares the SRT calculated in step S3 with SRT S. If the SRT is larger, the process proceeds to step S12, and if smaller, the process proceeds to step S13.

ステップS12では、制御手段7は初沈汚泥の投入量Qを、ΔQSLを減じた値に設定し、フローを終了する。ΔQSLの設定方法は以下のとおりである。SRTS と反応槽MLSSから(式1)より余剰汚泥SS量を算出し、その値と余剰汚泥測定手段10から得た現状の余剰汚泥SS量とを比較し、その差分を余剰汚泥削減量とする。この余剰汚泥削減量と後述する汚泥転換率αから(式4)より初沈汚泥SSの量を算出する。この初沈汚泥SSの量を、初沈汚泥測定手段8から得た初沈汚泥SS濃度を用いてΔQSLに換算する。 In step S12, the control means 7 sets the input amount Q of the first settling sludge to a value obtained by subtracting ΔQ SL and ends the flow. The setting method of ΔQ SL is as follows. Calculating the excess sludge SS weight than from the reactor MLSS and SRT S (Equation 1), compared with the excess sludge SS of current obtained from the values and excess sludge measuring means 10, and the excess sludge reduction the difference To do. The amount of the first settling sludge SS is calculated from (Equation 4) from this excess sludge reduction amount and the sludge conversion rate α described later. The amount of the initial sedimentation sludge SS is converted into ΔQ SL using the primary sedimentation sludge SS concentration obtained from the primary sedimentation sludge measuring means 8.

ステップS13では、制御手段7はステップS12と同様にして、ΔQSUを算出する。次いで、初沈汚泥の投入量Qを、ΔQSUを加えた値に設定し、フローを終了する。 In step S13, the control means 7 calculates ΔQ SU in the same manner as in step S12. Next, the input amount Q of the first settling sludge is set to a value obtained by adding ΔQ SU , and the flow is finished.

(式1)により、SRTは余剰汚泥量により決定される。初沈汚泥を投入すると、初沈汚泥の分解による菌体増殖と、一部の初沈汚泥が未分解で残留することにより、余剰汚泥が増加する。余剰汚泥の量は、初沈汚泥の投入量と相関があり、例えば比例関係になるとすると、汚泥転換率αを用いて、投入初沈汚泥SS量は、(式4)のように表される。   From (Equation 1), SRT is determined by the amount of excess sludge. When the initial settling sludge is added, the surplus sludge increases due to the growth of the cells due to the decomposition of the initial settling sludge and the partial remaining of the initial settling sludge. The amount of surplus sludge has a correlation with the amount of initial sludge input. For example, assuming a proportional relationship, the amount of initial sludge SS input is expressed as (Equation 4) using the sludge conversion rate α. .

SS量=(初沈汚泥による余剰汚泥SS増加量)/α …(式4)
αの値はSRTなどによって異なるため、処理場毎に設定することが望ましい。例えば、SRTが15日前後の場合では0.35に設定するとよい。
SS amount = (increase in excess sludge SS due to initial settling sludge) / α (Formula 4)
Since the value of α varies depending on the SRT or the like, it is desirable to set it for each processing place. For example, when the SRT is around 15th, it may be set to 0.35.

本実施例によると、初沈汚泥投入量の加減量を汚泥転換率αに基づいて算出するため、SRTが目標値となる初沈汚泥投入量に設定できる。これにより、初沈汚泥の投入量を適正化でき、活性汚泥による窒素・りん除去率を向上できる。また、初沈汚泥を活性汚泥で分解するため、発生汚泥量を削減できる。   According to the present embodiment, the amount of initial settling sludge input is calculated based on the sludge conversion rate α, so that the initial settling sludge input amount at which the SRT becomes the target value can be set. Thereby, the amount of initial sludge input can be optimized, and the nitrogen / phosphorus removal rate by activated sludge can be improved. Moreover, since the initial settling sludge is decomposed with activated sludge, the amount of generated sludge can be reduced.

本実施例における運用方法を図4のフローチャートを用いて説明する。   The operation method in the present embodiment will be described with reference to the flowchart of FIG.

ステップS1、およびS2では、第一の実施例と同様に、酸素供給量から初沈汚泥の投入量の上限値を算出する。この値をQOmaxとする。 In steps S1 and S2, as in the first embodiment, the upper limit value of the initial sludge input amount is calculated from the oxygen supply amount. This value is Q Omax .

ステップS21では、制御手段7は目標値入力手段6から得たMLSSとSRTの設定値を用いて、(式1)より余剰汚泥SS量を算出する。   In step S21, the control means 7 calculates the surplus sludge SS amount from (Equation 1) using the MLSS and SRT set values obtained from the target value input means 6.

ステップS22では、制御手段7は、次の1)〜3)を行う。   In step S22, the control means 7 performs the following 1) to 3).

1)沈後水の分解に伴う汚泥発生量を、BOD負荷と菌体収率、または目標値入力手段6から得た汚泥発生量から得る。この汚泥発生量の値は初沈汚泥を投入していない過去のデータから求める。   1) The amount of sludge generated due to the decomposition of the water after settling is obtained from the BOD load and the bacterial cell yield or the amount of sludge generated from the target value input means 6. The value of this sludge generation amount is obtained from past data in which the initial settling sludge has not been introduced.

2)この沈後水の分解に伴う汚泥発生量と、ステップS21で求めた余剰汚泥SS量とを比較し、その差分を初沈汚泥投入による余剰汚泥量とする。   2) The amount of sludge generated due to the decomposition of the post-sink water is compared with the amount of excess sludge SS obtained in step S21, and the difference is set as the amount of excess sludge by the initial settling sludge input.

3)この初沈汚泥投入による余剰汚泥量と、ステップS12で用いた汚泥転換率αから、初沈汚泥投入量QSmaxを得る。 3) From the surplus sludge amount resulting from the initial sludge input and the sludge conversion rate α used in step S12, the initial sludge input amount Q Smax is obtained.

ステップS23では、QOmaxとQSmaxとを比較し、QOmax<QSmaxの場合はステップ
S24へ移行し、初沈汚泥投入量QをQOmaxとし、フローを終了する。QOmax≧QSmaxの場合はステップS25へ移行し、初沈汚泥投入量QをQSmaxとし、フローを終了する。
In step S23, Q Omax and Q Smax are compared. If Q Omax <Q Smax , the process proceeds to step S24, the initial sludge input Q is set to Q Omax , and the flow ends. If Q Omax ≧ Q Smax, the process proceeds to step S25, the initial settling sludge input amount Q is set to Q Smax , and the flow ends.

本実施例では、初沈汚泥投入量を酸素供給量とSRTから求めた最大量に設定できる。これにより、発生汚泥量の削減量を最大にできる。また、初沈汚泥の投入量を適正化でき、活性汚泥による窒素・りん除去率を向上できる。   In this embodiment, the initial settling sludge amount can be set to the maximum amount obtained from the oxygen supply amount and the SRT. Thereby, the reduction amount of generated sludge can be maximized. In addition, the amount of initial sludge can be optimized and the nitrogen / phosphorus removal rate by activated sludge can be improved.

以上のように、本実施例では、送風量とSRTから初沈汚泥の投入量を制御するため、初沈汚泥のBODを分解するための酸素を供給でき、SRTを増殖速度の遅い硝化菌に合わせて設定できるので、窒素・りん除去に必要な活性汚泥の菌体組成を維持できる。また、初沈汚泥を活性汚泥で分解するため、発生汚泥量を削減できる。   As described above, in this embodiment, since the amount of the initial settling sludge is controlled from the air flow rate and the SRT, oxygen for decomposing the BOD of the initial settling sludge can be supplied, and the SRT can be used as a nitrifying bacterium having a slow growth rate. Since it can be set together, the bacterial composition of activated sludge required for nitrogen and phosphorus removal can be maintained. Moreover, since the initial settling sludge is decomposed with activated sludge, the amount of generated sludge can be reduced.

窒素及びりんの除去に要する活性汚泥の菌体組成を維持でき、発生汚泥量を削減できる下水処理方法,下水処理制御システム、及び下水処理設備を提供できる。   It is possible to provide a sewage treatment method, a sewage treatment control system, and a sewage treatment facility that can maintain the bacterial cell composition of activated sludge required for removing nitrogen and phosphorus and reduce the amount of generated sludge.

実施例1における下水処理設備及びその制御システムの構成図を示す。The block diagram of the sewage treatment equipment in Example 1 and its control system is shown. 実施例1における下水処理装置及びその制御システムの運転制御方法のフローチャートを示す。The flowchart of the operation control method of the sewage treatment apparatus and its control system in Example 1 is shown. 実施例2における下水処理装置及びその制御システムの運転制御方法のフローチャートを示す。The flowchart of the operation control method of the sewage treatment apparatus and its control system in Example 2 is shown. 実施例3における下水処理装置及びその制御システムの運転制御方法のフローチャートを示す。The flowchart of the operation control method of the sewage treatment apparatus and its control system in Example 3 is shown.

符号の説明Explanation of symbols

1…生物反応槽、2…最初沈殿池、3…最終沈殿池、4…酸素含有気体供給手段、5…初沈汚泥移送手段、6…目標値入力手段、7…制御手段、8…初沈汚泥測定手段、9…反応槽測定手段、10…余剰汚泥測定手段、11…DO測定手段、12…機器仕様入力手段、13,14…弁。

DESCRIPTION OF SYMBOLS 1 ... Biological reaction tank, 2 ... First sedimentation tank, 3 ... Final sedimentation tank, 4 ... Oxygen containing gas supply means, 5 ... Initial sedimentation sludge transfer means, 6 ... Target value input means, 7 ... Control means, 8 ... Initial sedimentation Sludge measuring means, 9 ... reaction tank measuring means, 10 ... excess sludge measuring means, 11 ... DO measuring means, 12 ... equipment specification input means, 13, 14 ... valve.

Claims (9)

流入原水を初沈汚泥と上澄み液とに沈降分離する初沈汚泥分離工程と、前記上澄み液を活性汚泥により生物反応槽で生物学的に処理する処理工程と、前記初沈汚泥を該生物反応槽に投入する初沈汚泥投入工程とを含む下水処理方法であって、前記活性汚泥の平均滞留時間に基づいて、前記初沈汚泥投入工程の前記初沈汚泥を投入することを特徴とする下水処理方法。   An initial sedimentation sludge separation step for separating the incoming raw water into primary sedimentation sludge and a supernatant liquid, a treatment step for biologically treating the supernatant liquid with activated sludge in a biological reaction tank, and the biological reaction of the primary sedimentation sludge A sewage treatment method including an initial settling sludge charging step for charging into a tank, wherein the initial settling sludge in the initial settling sludge charging step is charged based on an average residence time of the activated sludge. Processing method. 請求項1に記載の下水処理方法において、前記生物反応槽の活性汚泥の濃度を把握する活性汚泥濃度把握工程と、所定期間の余剰汚泥の引抜き量を把握する余剰汚泥量把握工程と、前記活性汚泥濃度把握工程と余剰汚泥量把握工程の情報から、活性汚泥の平均滞留時間を算出する平均滞留時間算出工程と、該活性汚泥の平均滞留時間を設定する平均滞留時間設定工程とを含み、前記平均滞留時間算出工程と前記平均滞留時間設定工程との情報から、該初沈汚泥投入工程の投入量を設定することを特徴とする下水処理方法。   The sewage treatment method according to claim 1, wherein the activated sludge concentration grasping step for grasping the concentration of activated sludge in the biological reaction tank, the surplus sludge amount grasping step for grasping the amount of excess sludge withdrawn for a predetermined period, and the activity From the information of the sludge concentration grasping step and the excess sludge amount grasping step, including an average residence time calculating step for calculating the average residence time of the activated sludge, and an average residence time setting step for setting the average residence time of the activated sludge, A sewage treatment method characterized by setting an input amount of the initial settling sludge input step from information on an average residence time calculation step and the average residence time setting step. 請求項1に記載の下水処理方法において、前記活性汚泥の濃度の設定値,前記活性汚泥の平均滞留時間の設定値、および該生物反応槽の容積から、余剰汚泥量を算出する余剰汚泥量算出工程と、前記余剰汚泥量算出工程の情報から、該初沈汚泥投入工程の投入量を設定することを特徴とする下水処理方法。   The amount of surplus sludge calculation which calculates the amount of surplus sludge from the set value of the density | concentration of the said activated sludge, the set value of the average residence time of the said activated sludge, and the volume of this biological reaction tank in the sewage treatment method of Claim 1. A sewage treatment method characterized by setting an input amount of the first settling sludge input step based on a process and information on the surplus sludge amount calculating step. 流入原水を初沈汚泥と上澄み液とに沈降分離する初沈汚泥分離工程と、前記上澄み液を活性汚泥により生物学的に処理する処理工程と、前記初沈汚泥を生物反応槽に投入する初沈汚泥投入工程とを含む下水処理方法であって、送風機の送風量から供給酸素量を算出する酸素供給量算出工程を含み、前記酸素供給量算出工程の情報から、前記初沈汚泥投入工程の投入量を設定することを特徴とする下水処理方法。 An initial settling sludge separation step for settling and separating the influent raw water into an initial settling sludge and a supernatant, a treatment step for biologically treating the supernatant with activated sludge, and an initial introduction of the first settling sludge into a biological reaction tank. a sewage treatment process which includes a沈汚mud adding step comprises to that oxygen supply amount calculation step calculates the supply amount of oxygen from the air amount of the blower, the information before hexane containing feed amount calculation step, the Hatsu沈A sewage treatment method characterized by setting an input amount of a sludge input step. 請求項1〜請求項3の何れかに記載の下水処理方法において、送風機の送風量から供給酸素量を算出する酸素供給量算出工程を設け、前記初沈汚泥投入工程の投入量と、前記酸素供給量算出工程の情報から算出した投入量とを比較し、少ない方の投入量を、該初沈汚泥投入工程の投入量とすることを特徴とする下水処理方法。 In sewage treatment method according to any one of claims 1 to 3, the to that oxygen supply amount calculation step calculates the supply amount of oxygen from the air amount of the blower is provided, the input of the primary sludge adding step, sewage treatment method is compared with the input amount calculated from the information of the previous hexane containing feed amount calculation step, lesser the input of, characterized in that the input of該初沈汚mud adding step. 流入原水を初沈汚泥と上澄み液とに沈降分離し、前記上澄み液を活性汚泥により生物反応槽で生物学的に処理する下水処理制御システムであって、前記活性汚泥の平均滞留時間に基づいて前記初沈汚泥を該生物反応槽に投入する制御手段を備えたことを特徴とする下水処理制御システム。 A sewage treatment control system that settles and separates inflow raw water into primary sludge and supernatant liquid, and biologically treats the supernatant liquid with activated sludge in a biological reaction tank, based on the average residence time of the activated sludge sewage treatment control system characterized by comprising a control means for introducing said Hatsu沈 sludge organism reactor. 流入原水を初沈汚泥と上澄み液とに沈降分離し、前記上澄み液を活性汚泥により生物反応槽で生物学的に処理する下水処理制御システムであって、前記生物反応槽に供給する酸素含有気体の送風量に基づいて前記初沈汚泥を該生物反応槽に投入する制御手段を備えたことを特徴とする下水処理制御システム。 A sewage treatment control system that separates inflow raw water into primary sedimentation sludge and supernatant liquid, and biologically treats the supernatant liquid with activated sludge in a biological reaction tank, and supplies an oxygen-containing gas to the biological reaction tank A sewage treatment control system comprising control means for introducing the first settling sludge into the biological reaction tank based on the amount of air flow . 流入原水を初沈汚泥と上澄み液とに沈降分離する最初沈殿池と、前記上澄み液を活性汚泥により生物学的に処理する生物反応槽と、前記初沈汚泥を前記生物反応槽に投入する初沈汚泥投入設備と、前記初沈汚泥投入設備の初沈汚泥の投入量を制御する制御装置と、前記生物反応槽からの反応液を活性汚泥と処理水とに沈降分離する最終沈殿池から余剰な活性汚泥を排出する余剰汚泥排出手段と、前記制御装置に活性汚泥の平均滞留時間の設定値を設定する入力手段とを含む下水処理設備であって、前記生物反応槽に活性汚泥の濃度を測定する活性汚泥濃度測定手段と、前記余剰汚泥排出手段に余剰汚泥の引抜き流量,余剰汚泥の濃度を測定する余剰汚泥測定手段と、前記初沈汚泥投入設備の初沈汚泥濃度を測定する初沈汚泥濃度測定手段とを設け、前記制御装置、余剰汚泥測定手段で測定された余剰汚泥の引抜き流量,余剰汚泥の濃度から余剰汚泥の引抜きSS量を算出して、これらの情報の履歴を蓄積し、前記活性汚泥濃度測定手段で計測された活性汚泥の濃度により活性汚泥の平均滞留時間を算出し、前記初沈汚泥濃度測定手段により測定された初沈汚泥濃度を用いて前記入力手段から得た余剰汚泥量の目標値に対する前記初沈汚泥の量を算出することを特徴とする下水処理設備。 An initial sedimentation basin that separates the influent raw water into primary sludge and supernatant liquid, a biological reaction tank that biologically treats the supernatant liquid with activated sludge, and a first reaction tank that introduces the initial sedimentation sludge into the biological reaction tank. surplus沈汚and mud inserting equipment, the control device for controlling the input of primary sludge of primary sludge inserting equipment, a settling tank for settling a reaction solution from the bioreactor to the activated sludge and treated water A wastewater treatment facility including surplus sludge discharge means for discharging active activated sludge and input means for setting a set value of the average residence time of activated sludge in the control device, wherein the biological reaction tank has a concentration of activated sludge and activated sludge concentration measuring means for measuring, withdrawal flow rate of excess sludge in the excess sludge discharge means, and excess sludge measuring means for measuring the concentration of excess sludge, Hatsu沈measuring the primary sludge concentration of the primary sludge inserting equipment Sludge concentration measuring means Only, the control device, the withdrawal rate of the excess sludge, measured in excess sludge measuring means, calculates the withdrawal SS amount of excess sludge from the concentration of excess sludge, accumulating a history of the information, the activated sludge concentration Calculate the average residence time of activated sludge based on the activated sludge concentration measured by the measuring means, and use the initial sludge concentration measured by the first settled sludge concentration measuring means to obtain the surplus sludge amount obtained from the input means. sewage treatment facility, wherein the benzalkonium to calculate the amount of the primary sludge to the value. 流入原水を初沈汚泥と上澄み液とに沈降分離する最初沈殿池と、前記上澄み液を活性汚泥により生物学的に処理する生物反応槽と、前記初沈汚泥を前記生物反応槽に投入する初沈汚泥投入設備と、前記初沈汚泥投入設備の初沈汚泥の投入量を制御する制御装置と、前記制御装置の送風機の送風量の設定値を設定する入力手段とを含む下水処理設備であって、前記初沈汚泥投入設備に前記初沈汚泥の濃度を測定する初沈汚泥濃度測定手段と、前記制御装置は、送風機の送風量の設定値から供給酸素量を算出、算出した供給酸素量と前記初沈汚泥濃度測定手段により測定された初沈汚泥の濃度に基づいて前記初沈汚泥投入設備の投入量を算出することを特徴とする下水処理設備。 An initial sedimentation basin that separates the influent raw water into primary sludge and supernatant liquid, a biological reaction tank that biologically treats the supernatant liquid with activated sludge, and a first reaction tank that introduces the initial sedimentation sludge into the biological reaction tank. A sewage treatment facility comprising a settling sludge input facility, a control device for controlling the input amount of the initial settling sludge of the initial settling sludge input facility, and an input means for setting a set value of the blower amount of the blower of the control device. Te, wherein the primary sludge concentration measuring means for measuring the concentration of the primary sludge to primary sludge inserting equipment, the control device calculates the supply amount of oxygen from the air volume set values of the blower, the calculated oxygen feed sewage treatment facility, wherein the benzalkonium to calculate the dosage of the primary sludge inserting equipment based on the concentration of primary sludge, which is measured by the amount and the primary sludge concentration measuring means.
JP2004094006A 2004-03-29 2004-03-29 Sewage treatment method, sewage treatment control system, and sewage treatment facility Expired - Fee Related JP4218565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004094006A JP4218565B2 (en) 2004-03-29 2004-03-29 Sewage treatment method, sewage treatment control system, and sewage treatment facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004094006A JP4218565B2 (en) 2004-03-29 2004-03-29 Sewage treatment method, sewage treatment control system, and sewage treatment facility

Publications (2)

Publication Number Publication Date
JP2005279351A JP2005279351A (en) 2005-10-13
JP4218565B2 true JP4218565B2 (en) 2009-02-04

Family

ID=35178310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004094006A Expired - Fee Related JP4218565B2 (en) 2004-03-29 2004-03-29 Sewage treatment method, sewage treatment control system, and sewage treatment facility

Country Status (1)

Country Link
JP (1) JP4218565B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102149645B (en) 2009-12-01 2011-11-16 李进民 Sludge treatment method and apparatus thereof and application to wastewater bio-treatment
WO2016082007A1 (en) * 2014-11-28 2016-06-02 Private Institute For Water Technologies Ltd. Method for reconstruction and optimization of the activated sludge stage of waste water treatment plants with one suspended biomass
CN109836025A (en) * 2019-03-06 2019-06-04 中原环保股份有限公司 A kind of accurate sludge drainage system of sewage treatment and method

Also Published As

Publication number Publication date
JP2005279351A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
JP5890374B2 (en) Biological nitrogen removal apparatus and water treatment system
CN102858696A (en) Hybrid aerobic and anaerobic wastewater and sludge treatment systems and methods
JP6939724B2 (en) Sewage treatment method and equipment
KR100873416B1 (en) Sewage processing apparatus and method using activated sludge of a sequencing batch reactor
US11827550B2 (en) Simultaneous nitrification/denitrification (SNDN) in sequencing batch reactor applications
KR101018587B1 (en) Membrane treatment device for eliminating nitrogen and/or phosphorus
CN106673369A (en) Treatment process and treatment system of lithium battery waste liquid
KR20090030397A (en) Apparatus for high rate removal of nitrogen and phosphorus from swtp/wwtp
KR20080019975A (en) Wastewater treatment apparatus using hybrid bio-electrochemical sequencing batch reactor combined a biological reactor and an electrode system
Montecchio et al. Mathematical modelling of an intermittent anoxic/aerobic MBBR: Estimation of nitrification rates and energy savings
JP4218565B2 (en) Sewage treatment method, sewage treatment control system, and sewage treatment facility
KR100769997B1 (en) Processing method of high thickness organic sewage by sequencing and Batch type AB S(Acksang-Busick-System)
KR101679174B1 (en) Sequencing batch reaction system
KR100839035B1 (en) Biological wastewater treatment apparatus using diffuser-mediated sludge flotation and treatment method using the same
JP2012228645A (en) Water treatment apparatus, water treating method, and program for the method
JP4453287B2 (en) Sewage treatment method and sewage treatment control system
JP4573575B2 (en) Advanced sewage treatment method and apparatus
KR100810960B1 (en) Economic nitrogen phosphorous which uses the to conventional activated sludge processand clear
Kayser Activated sludge process
EP3527539B1 (en) Wastewater treatment system and process
JP4478002B2 (en) Sewage treatment method and sewage treatment control device
JP3303475B2 (en) Operation control method of activated sludge circulation method
JP7494668B2 (en) Method and apparatus for predicting treated water quality at a sewage treatment plant
AU2018331439B2 (en) Simultaneous nitrification/denitrification (SNDN) in sequencing batch reactor applications
KR100721682B1 (en) A treatment method of wastewater for removing organics and nitrogen compounds simultaneously in a single reactor)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060126

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081103

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees