KR100769997B1 - Processing method of high thickness organic sewage by sequencing and Batch type AB S(Acksang-Busick-System) - Google Patents

Processing method of high thickness organic sewage by sequencing and Batch type AB S(Acksang-Busick-System) Download PDF

Info

Publication number
KR100769997B1
KR100769997B1 KR1020070082624A KR20070082624A KR100769997B1 KR 100769997 B1 KR100769997 B1 KR 100769997B1 KR 1020070082624 A KR1020070082624 A KR 1020070082624A KR 20070082624 A KR20070082624 A KR 20070082624A KR 100769997 B1 KR100769997 B1 KR 100769997B1
Authority
KR
South Korea
Prior art keywords
tank
liquid corrosion
liquid
organic sewage
aerobic
Prior art date
Application number
KR1020070082624A
Other languages
Korean (ko)
Other versions
KR20070087544A (en
Inventor
박형인
Original Assignee
주식회사 파이닉스알엔디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 파이닉스알엔디 filed Critical 주식회사 파이닉스알엔디
Priority to KR1020070082624A priority Critical patent/KR100769997B1/en
Publication of KR20070087544A publication Critical patent/KR20070087544A/en
Application granted granted Critical
Publication of KR100769997B1 publication Critical patent/KR100769997B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/10Solids, e.g. total solids [TS], total suspended solids [TSS] or volatile solids [VS]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/16Total nitrogen (tkN-N)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Activated Sludge Processes (AREA)

Abstract

본 발명은 가축분뇨, 축산폐수, 인분뇨와 같은 고농도 유기오수를 연속·배치에 의한 액상부식방법으로 처리하는 연속·배치식 액상부식법에 의한 고농도 유기오수의 처리방법에 관한 것이다. 본 유기오수의 처리방법은, 유입되는 고농도 유기오수로부터 조대협잡물과 미세협잡물을 제거하는 도중에 상기 유기오수를 제 1 저류조에 일시 저류하고, 협잡물이 제거된 균질화 된 상태의 유기오수를 제 2 저류조를 거쳐 무산소 액상부식조에 연속적으로 투입하여 호기 액상부식조에서 순환된 N0x-N (질산성 질소 또는 아질산성 질소)을 탈질하고, 무산소 액상부식조액과 호기 액상부식조액은 순환하고, 액상부식이 완료된 액상부식액은 무산소 액상부식조 및 호기 액상부식조에서 1일 처리량만큼 혼합조로 인출하고, 혼합조를 거쳐 응집반응조에 유입시켜 무기응집제를 액상부식에 투입하고, pH를 조정한 후 응집반응을 실시하여 탈수기로 슬러지와 탈리액으로 분리하고, 탈수기로부터 나온 탈리액은 pH조정제를 투입한 후 조정조로 유입시켜 중화·침전한 처리액을 오존 산화처리하고 오존산화후 발생되는 2차 침전물을 여과하여 방류하는 것을 특징으로 한다.The present invention relates to a method for treating high-concentration organic sewage by a continuous and batch type liquid corrosion method in which high-concentration organic sewage such as livestock manure, livestock wastewater and phosphorus manure is treated by a liquid etching method by a continuous batch. The present method of treating organic sewage temporarily stores the organic sewage in the first storage tank while removing coarse and fine contaminants from the high concentration organic sewage flowing therein, and the second storage tank is disposed of the homogenized organic sewage from which the contaminants are removed. After continuous injection into an oxygen-free liquid corrosion tank, denitrification of N0x-N (nitric acid nitrogen or nitrite nitrogen) circulated in the aerobic liquid corrosion tank was performed, and the oxygen-free liquid corrosion tank and the aerobic liquid corrosion tank were circulated, and liquid corrosion was completed. The corrosive liquid is taken out from the oxygen-free liquid erosion tank and the aerobic liquid erosion tank to the mixing tank for 1 day, flows into the coagulation reaction tank through the mixing tank, and the inorganic coagulant is introduced into the liquid corrosion, the pH is adjusted, and then the coagulation reaction is carried out. The sludge is separated into sludge and desorption liquid, and the desorption liquid from the dehydrator is neutralized and settled by introducing a pH regulator into the adjusting tank An ozone oxidation treatment, and a treatment liquid is characterized in that discharging the secondary precipitate generated after ozonation and filtered.

유기오수, 부유물농도, 협잡물, 액상부식조, 난분해성, 오존산화 Organic sewage, suspended solids concentration, contaminants, liquid corrosive tank, refractory, ozone oxidation

Description

연속 배치식 액상부식법에 의한 고농도 유기오수의 처리방법{Processing method of high thickness organic sewage by sequencing and Batch type AB S(Acksang-Busick-System)}Processing method of high thickness organic sewage by sequencing and Batch type AB S (Acksang-Busick-System)}

본 발명은 특허출원 제87-11599호와, 특허출원 제92-13072호, 특허출원 제96-14641호의 액상부식 처리방법을 개량한 것이다.The present invention is an improvement of the liquid corrosion treatment method of Patent Application No. 87-11599, Patent Application No. 92-13072, and Patent Application No. 96-14641.

본 발명은 액상부식처리방법의 개량에 관한 것으로서, 더욱 상세하게는 가축분뇨, 축산폐수, 인분뇨와 같은 고농도 유기오수를 연속·배치에 의한 액상부식방법으로 처리하는 연속·배치식 액상부식법에 의한 고농도 유기오수의 처리방법에 관한 것이다.The present invention relates to an improvement of a liquid corrosion treatment method, and more particularly, by a continuous and batch liquid corrosion method in which high concentration organic sewage such as livestock manure, livestock wastewater and phosphorus manure is treated by a liquid corrosion method by continuous and batch treatment. The present invention relates to a method for treating high concentration organic sewage.

종래의 특허출원 제87-11599호의 고농도 유기오수의 처리방법은 침사지, 파쇄기, 드럼스크린, 스크류 프레스를 이용하여 유기오수 중에 함유된 협잡물을 제거하여 저류조에 일시 저류함으로서 액상을 균질화한 후 조정반응조에 균질화 된 유기오수를 투입하도록 하였다. 상기 처리방법은 생물반응조의 농도(MLSS)가 매우 고농도로 고농도 유기오수의 처리에 대응은 하였으나, 수거한 고농도 유기오수에서 발생하는 악취와 가스는 처리시설에 대한 불결함과 협잡물처리기, 오수이송펌프, 조작판넬 등에 대한 심각한 부식을 초래하게 된다.Conventional patent application No. 87-11599, a method for treating high concentration organic sewage, removes contaminants contained in organic sewage using a settling paper, crusher, drum screen, screw press to temporarily store the liquid in the storage tank to homogenize the liquid phase, Homogenized organic wastewater was added. Although the treatment method of the bioreactor (MLSS) was very high concentration to deal with the high concentration of organic sewage, the odor and gas generated from the collected high concentration organic sewage, the impurity to the treatment facility, the contaminant treatment pump, sewage pump, It causes severe corrosion on the operation panel.

종래의 특허기술은 유기오수 중에 함유된 협잡물을 제거한 후 현탁액 부유물농도(MLSS)를 20,000~22,000㎎/ℓ가 유지되도록 조정반응조에 투입하도록 하였으나, 생물반응조에 새로운 고농도 유기오수의 투입시 일시적으로 SBOD가 증가하고, 유기오수에 내재된 당류로 인한 거품이 발생하고, 조정반응조내의 산소용해효율의 저하와 조내의 온도가 상승하여 산소공급장치의 변형 및 하절기에 미생물의 활동이 현저히 약화되는 등의 문제점이 있었다.The conventional patent technology is to remove the contaminants contained in the organic sewage and to put the suspension suspension concentration (MLSS) 20,000 ~ 22,000mg / ℓ into the control reactor to maintain, but when the new high concentration organic sewage into the bioreactor temporarily SBOD Increase, foaming due to sugars inherent to organic wastewater, deterioration of oxygen dissolution efficiency and temperature increase in the tank, and deterioration of oxygen supply device and significantly weakening microbial activity in summer There was this.

종래의 특허기술은 가축분뇨, 축산폐수, 인분뇨와 같은 고농도 유기오수에서 함유된 협잡물의 처리외에도 악취, 가스발생에 대한 문제점이 있고, 조정반응조의 현탁액 부유물농도를 매우 고농도로 유지함에 따른 송풍기와 산기관을 다량 설치하여서 설치비 및 유지관리비가 많이 소요되었다.Conventional patented technology has problems with odor and gas generation in addition to the treatment of contaminants contained in high concentration organic sewage such as livestock manure, livestock wastewater and phosphorus manure, and blower and acid according to maintaining the suspension suspension concentration of the control reactor at a very high concentration. The installation of a large amount of institutions required a lot of installation and maintenance costs.

종래의 특허출원 92-13072호와 특허출원 96-14641호의 고농도 유기오수의 처리방법은 축산폐수의 경우 BOD 20,000~30,000㎎/ℓ, T-N 3,000~4,500㎎/ℓ로서 적정한 질소화합물 제거의 C/N비 기준 3:1을 초과하여 저류조에서 무산소 액상부식조로 새로운 고농도 유기오수의 투입시 탈질반응에 필요한 탄소원인 BOD가 다량으로 존재하여 탈질반응에 소모되고 남은 잔존 BOD가 호기 액상부식조로 이송되고, 호기액상부식조의 BOD/MLSS 과부하를 초래하게 되어 있다.Conventional Patent Application No. 92-13072 and Patent Application No. 96-14641 treat high concentrations of organic sewage with BOD 20,000 ~ 30,000mg / l and TN 3,000 ~ 4,500mg / l for livestock wastewater. When the new high-concentration organic sewage is introduced from the storage tank to the ratio above 3: 1, a large amount of BOD, a carbon source necessary for the denitrification reaction, exists in the storage tank, and the remaining BOD consumed in the denitrification reaction is transferred to the aerobic liquid corrosion tank. It causes the BOD / MLSS overload of the liquid corrosion tank.

호기액상부식조의 BOD/MLSS 과부하 하는 호기액상부식조 내부의 산화, 동화작용으로 인한 질산화 미생물의 활동저하로 유입 암모니아성 질소를 N0x-N (질산성 질소 또는 아질산성 질소)으로 변화하는 질산화를 적정 수준까지 이룰 수 없도록 하고 있다.BOD / MLSS of aerobic liquid tanks The nitrate which changes inflow ammonia nitrogen to N0x-N (nitric acid nitrogen or nitrite nitrogen) due to the deterioration of nitrifying microorganism activity due to oxidation and assimilation in the aerobic liquid tank which is overloaded It does not allow to reach the level.

여기서 호기와 무산소 조건의 교호과정에서 호기 액상부식조의 N0x-N (질산성 질소 또는 아질산성 질소)이 부족한 액상부식액이 무산소 액상부식조로 순환되고, 무산소 액상부식조에 새로운 고농도 유기오수의 투입으로 인한 과잉 BOD가 누적되고, 호기 액상부식조는 더욱 더 질산화 정도가 낮아지는 악순환의 운전상태에 놓여 있다. Here, the liquid corrosion solution lacking N0x-N (nitric acid nitrogen or nitrite nitrogen) in the aerobic liquid corrosion tank is circulated to the anoxic liquid corrosion tank, and the excess of the high concentration organic wastewater is added to the oxygen free liquid corrosion tank. BOD accumulates, and the aerobic liquid corrosion tank is in a vicious cycle of further nitrification.

이러한 종래의 발명은 무산소 액상부식조에서 과소한 N0x-N (질산성 질소 또는 아질산성 질소)의 양과 과다한 BOD에 의하여 무산소 액상부식조의 탈질기능과 호기 액상부식조의 질산화기능을 악화시켜 최종적으로 총질소와 BOD 제거효율을 낮추어서 원하는 처리수질을 얻을 수 없게 되어있다.This conventional invention deteriorates the denitrification function of an oxygen-free liquid corrosion tank and the nitrification function of the aerobic liquid corrosion tank due to the excessive amount of N0x-N (nitric acid nitrogen or nitrite nitrogen) and the excessive BOD in the oxygen-free liquid corrosion tank. The lower the removal efficiency of BOD, the desired treatment water quality cannot be obtained.

이러한 악순환의 원인은 호기 액상부식조에서 BOD의 과다로 인한 유기물을 산화시키는 BOD산화미생물이 활성화되어 질산화 미생물의 활동이 저화되기 때문이다. BOD 산화미생물은 질산화 미생물의 활성에 비해 10~20배 강함으로 BOD를 완전히 제거하기 전 까지는 적정한 질산화가 이르지 못하게 된다.The cause of this vicious cycle is because BOD oxidizing microorganisms, which oxidize organic matter due to excess BOD, are activated in aerobic liquid corrosion tanks, thereby lowering the activity of nitrifying microorganisms. BOD oxidizing microorganisms are 10 to 20 times stronger than nitrifying microorganisms, so proper nitrification cannot be achieved until BOD is completely removed.

종래의 특허출원 92-13072호는 1 개조에서 무산소 조건을 8시간 호기적 조건을 16시간으로 구분하고, 특허출원 제96-14641호는 2 개조에서 무산소 조건과 호기적 조건을 1:1~2로 설치하는 것에 문제가 있었기 때문이다.Conventional patent application 92-13072 divides anoxic conditions into 8 hours for aerobic conditions and 16 hours for aerobic conditions in 1 remodeling, and patent application No. 96-14641 discloses anoxic conditions and aerobic conditions in a retrofit of 2 to 1: 1. Because there was a problem with the installation.

종래의 특허출원의 생물학적 질소화합물 제거원리는 C/N비 기준 3:1과 미생물들의 질산화속도 및 탈질속도 1:2를 기준으로 무산소 조건과 호기적 조건의 비율을 1:1~2로 설치한 것으로 이것은 질소화합물을 제거하기 어려운 C/N비를 갖추고 있는 가축분뇨, 축산폐수, 인분뇨와 같은 고농도 유기오수의 처리방법으로는 적당하지 않다. 가축분뇨 또는 축산폐수의 경우 유입 BOD 20,000~30,000㎎/ℓ T-N 3,000~4,500㎎/ℓ로 6~7:1 정도의 C/N비를 갖고 있다.The principle of removal of biological nitrogen compound of the conventional patent application is based on the ratio of anoxic conditions and aerobic conditions of 1: 1 ~ 2 based on the C / N ratio 3: 1 and the nitrification and denitrification rate 1: 2 of microorganisms. This is not suitable for the treatment of high concentrations of organic sewage such as livestock manure, livestock wastewater and phosphorus manure, which have a C / N ratio that is difficult to remove nitrogenous compounds. In the case of livestock manure or livestock wastewater, the inflow BOD 20,000 ~ 30,000mg / l T-N 3,000 ~ 4,500mg / l has a C / N ratio of 6-7: 1.

한편, C/N비의 불균형이 호기 액상부식조의 BOD/MLSS 과부하를 초래함으로 이를 개선하기 위하여 무산소 액상부식조와 호기 액상부식조의 체적비를 1:6으로 개선하는 것은 액상 부식조의 총용량을 100%이상 증가시켜 시설투자비의 증가로 이어진다. 또한 액상부식조의 총용량을 유지한 채 무산소 액상부식조를 1/3으로 줄이는 것은 액상부식액에 대한 새로운 고농도 유기오수의 암모니아성질소의 농도를 2배 이상 증가시켜 최종 처리수에 대한 질소화합물의 수질기준을 초과하는 문제점이 있다.On the other hand, in order to improve the BOD / MLSS overload of the aerobic liquid corrosion tank due to the imbalance of the C / N ratio, improving the volume ratio of the anoxic liquid corrosion tank and the aerobic liquid corrosion tank to 1: 6 increases the total volume of the liquid corrosion tank by more than 100%. This leads to an increase in facility investment costs. In addition, reducing the oxygen free liquid corrosion tank to 1/3 while maintaining the total volume of the liquid corrosion tank increases the concentration of ammonia nitrogen in the new high concentration organic sewage in the liquid corrosion solution by more than twice the water quality standard of the nitrogen compound for the final treated water. There is an excess of problems.

종래의 특허출원 제92-13072호는 배치식 생물반응조의 특성상 1 개조에서 무산소 조건과 호기적 조건을 반복하는 임의시점에서 1일 1회 새로운 고농도 유기오수를 투입함으로 탈질 반응 후 잔여 BOD가 많이 남게 되고, 잔여 BOD가 다량 호기적 조건으로 일시에 이송되어 호기조의 BOD/MLSS 부하를 증가시키고 있다. 또한 종래의 특허출원 제96-14641호는 2 개조에서 무산소 액상부식조와 호기 액상부식조를 이루고 있으나, 새로운 고농도 유기오수를 1일 1회 투입시는 호기 액상부식조에서 1일 순간 BOD/MLSS비가 높아졌다가 낮아지기 때문에 일시적으로 충격을 받는다. 그리고 1일 24시간 연속투입하여 호기 액상부식조의 BOD/MLSS 부하를 일정하게 유지할 수 있으나, 근본적으로 탈질 후 남은 BOD를 호기액상부식조에서 처리하여야 함으로 액상부식조에서 후속공정으로 인출시는 미처리된 채 있는 BOD와 암모니아성 질소가 유출되고 있는 실정이다. Conventional patent application No. 92-13072, due to the characteristics of batch bioreactors, introduces a new high concentration of organic sewage once a day at random times, repeating anaerobic and aerobic conditions, in order to make much residual BOD after denitrification. In addition, the remaining BOD is temporarily transferred to the aerobic condition to increase the BOD / MLSS load of the aerobic tank. In addition, the conventional patent application No. 96-14641 is an oxygen-free liquid corrosion tank and an aerobic liquid corrosion tank in two modifications, but the BOD / MLSS ratio is increased in the aerobic liquid corrosion tank once a day when new high-concentration organic wastewater is injected once a day. As they rise and fall, they are temporarily shocked. In addition, the BOD / MLSS load of the aerobic liquid corrosion tank can be kept constant by 24 hours of continuous injection per day, but the BOD remaining after denitrification must be treated in the aerobic liquid tank after the denitrification. BOD and ammonia nitrogen are leaking.

이상과 같이 새로운 고농도 유기오수의 투입으로 탈질반응 후 잔여 BOD가 호기 액상부식조에 미치는 영향을 최소화할 수 없고, 호기 액상부식조에서 후속공정으로 인출시 미처리된 암모니아성 질소를 해결하지 못하고 있다.As described above, the effects of residual BOD after the denitrification reaction on the aerobic liquid corrosion tank cannot be minimized by the introduction of a new high concentration organic sewage, and the untreated ammonia nitrogen cannot be solved when taken out in a subsequent process in the aerobic liquid corrosion tank.

종래의 특허출원 제96-14641호는 2 개조에서 무산소 액상부식조액과 호기 액상부식조액의 교호에 필요한 순환량은 무산소, 호기 액상부식조 총액량의 2~6배 정도를 하고 있으나, 이는 새로운 고농도 유기오수의 BOD가 다량일 때는 호기 액상부식조의 BOD/MLSS 과부하와 새로운 고농도 유기오수의 BOD가 소량일 때에는 호기 액상부식조의 DO로 인한 무산소조의 호기화가 발생하는 등 그 순환량이 과다하다. 이 순환량이 많기 때문에 호기 액상부식조의 질산화기능과 무산소 액상부식조의 탈질기능이 악화되고 있다.Conventional Patent Application No. 96-14641 discloses that the amount of circulation required for alternating anoxic liquid corrosion bath liquid and aerobic liquid corrosion bath liquid in 2 modifications is about 2 to 6 times the total amount of anoxic and aerobic liquid corrosion bath liquids. When the BOD of the sewage is large, the circulation volume is excessive, such as the overload of the BOD / MLSS of the aerobic liquid corrosion tank and the aerobic aeration of the anaerobic tank caused by the DO of the aerobic liquid corrosion tank when the BOD of the new high concentration organic sewage is small. Due to the large amount of circulation, the nitrification function of the aerobic liquid corrosion tank and the denitrification function of the oxygen free liquid corrosion tank are deteriorated.

AO공법의 경우 통상적인 순환량은 탄소원을 1일 1회 투입시는 호기조와 혐기조의 합에 2배 정도 순환하는데 반해, 탄소원을 1일 24시간 투입시는 순환량을 30%이상 증가시켜 3배 정도 순환하여야 한다.In the case of the AO method, the normal circulation amount is circulated twice the sum of the aerobic and anaerobic tanks when the carbon source is injected once a day, whereas the circulation is increased by 30% or more when the carbon source is added 24 hours a day. shall.

그러나 C/N비가 높은 가축분뇨, 축산폐수, 인분뇨와 같은 고농도 유기오수의 경우는 2~3배의 순환량도 과다하며 순환량을 줄여야 탈질기능을 악화시키지 않는다. 무산소, 호기 조건의 교호는 질소화합물을 제거하고자 함에 목적이 있음으로 호기 액상부식조의 N0x-N (질산성 질소 또는 아질산성 질소)과 무산소 액상부식조의 암모니아성 질소의 총량이 본 발명의 최종공정에서 방류하고자 하는 처리수질 기준 이하일 때 까지만 순환하는 것이 적정하고, 종래 순환량은 과다 계산된 무산 소 액상부식조의 용량을 기준으로 구성되어 있기 때문으로 순환펌프의 용량이 커지게 되는 문제점이 있다.However, high concentrations of organic sewage such as livestock manure, livestock waste, and phosphorus manure, which have a high C / N ratio, also have an excessive 2 ~ 3 times circulation rate and should not decrease the denitrification function. The aerobic and aerobic alternating conditions are intended to remove nitrogen compounds, so the total amount of N0x-N (nitric acid nitrogen or nitrite nitrogen) in the aerobic liquid corrosion tank and the ammonia nitrogen in the aerobic liquid corrosion tank in the final process of the present invention It is appropriate to circulate only until the water quality standard to be discharged is less than the standard, and there is a problem that the capacity of the circulating pump becomes large because the conventional circulation amount is configured based on the capacity of an overcalculated anoxic liquid corrosion tank.

종래의 특허출원 87-11599호는 액상부식이 완료된 액상부식액을 응집처리함에 있어서 pH조정제 등에 의하여 pH를 9~10으로 조정한 후 염화제이철 등의 무기응집제를 소정량 투입하여 pH4.0~4.5 부근에서 고액분리를 행하였는데, SS가 높은 유기오수의 경우는 SS의 pH완충작용으로 인하여 원하는 pH까지 약품을 투입하면 매우 많은 양의 약품을 소모하게 되는 단점이 있었다. 즉 액상부식이 완료된 액상부식액은 pH7정도로 pH9~10까지 pH조정제를 투입하고, 재차 pH4.0~4.5까지의 무기응집제를 사용하게 되면 당초 액상부식액의 pH7에서 염화제이철을 투입할 때와 비교하여 2~3배 이상 염화제이철을 사용하게 되는 문제가 있다.Conventional Patent Application No. 87-11599 discloses a pH of 9 ~ 10 by adjusting a pH adjuster in agglomeration of a liquid erosion liquid after completion of liquid erosion, and then a predetermined amount of inorganic coagulant such as ferric chloride is added to pH 4.0 to 4.5. Solid-liquid separation was carried out in the case of organic sewage with high SS has the disadvantage of consuming a very large amount of chemicals to the desired pH due to the pH buffering action of the SS. In other words, when the liquid corrosion is completed, add pH adjuster to pH9 ~ 10 to pH7 and use inorganic coagulant up to pH4.0 ~ 4.5 again, compared to when ferric chloride is added at pH7 of liquid corrosion. There is a problem of using ferric chloride more than ~ 3 times.

또한, pH4.0~4.5 부근에서 응집반응을 하게 되어 강산성에서 응집효과가 저하되는 고분자 등의 유기응집제를 적절하게 사용할 수 없어서 탈수기에서 슬러지와 탈리액의 분리효율이 낮아지는 문제점이 있다.In addition, there is a problem that the efficiency of separation of sludge and desorption liquid in the dehydrator is lowered because the organic coagulant such as a polymer that is reduced to the coagulation effect in the strong acidity due to the coagulation reaction at pH 4.0 ~ 4.5 is not appropriately used.

종래의 특허출원은 최종 처리방법에 있어서도 탈수기로부터 나온 탈리액을 pH조정제로 조절하여 침전조에 이송하여 3~4시간 체류 침강시켜 깨끗한 상징수의 일부는 탈수기의 세정수로 재이용하기 위하여 용수탱크에 이송하고 잔여분은 소정의 멸균 처리 후 방류하였으나, pH조정조의 경우 pH조정제 투입시 탈리액 내에 염화제이철과 반응하여 수산화제이철이 생성침전되는 등 1차로 침전조 기능을 하여 후속공정의 침전조와 중복되었고, pH조정제의 적정투입량이 어려운 구조로 되어 있어 후속공정에서 강산성에 처리시설과 처리수 이송펌프가 산화되는 문제점이 있다.In the prior patent application, even in the final treatment method, the desorption liquid from the dehydrator was adjusted with a pH adjuster and transferred to a sedimentation tank for 3 to 4 hours to settle, and some of the clean symbol water was transferred to the water tank for reuse as the washing water of the dehydrator. The remainder was discharged after a predetermined sterilization treatment, but in the case of the pH adjusting tank, it reacted with ferric chloride in the desorption solution when the pH adjusting agent was added, and the ferric hydroxide formed and precipitated. Due to the difficult input structure, there is a problem that the treatment facility and the treated water transfer pump are oxidized in the strong acidity in the subsequent process.

종래의 특허출원은 BOD, SS, T-N, T-P의 제거효율은 뛰어났으나, 화학적 산소요구량인 COD의 제거효율은 50㎎/ℓ내외이고, pH조정조에서 pH조정제에 의한 중화반응 후 처리수의 탁도와 COD가 증가하거나 난분해성 COD가 많은 유기오수가 유입되는 경우에는 COD제거 효율이 낮았다. 이 경우 처리수를 탈수기의 세정수로 재사용하게 되면 처리수의 COD가 축적이 되어 목표로 하는 수질기준을 초과하는 문제가 있다.Conventional patent application is excellent in removal efficiency of BOD, SS, TN, TP, COD removal efficiency of chemical oxygen demand is around 50mg / ℓ, turbidity of treated water after neutralization reaction by pH adjuster in pH adjustment tank The removal efficiency of COD was low in the case of increased COD or organic wastewater with high COD. In this case, if the treated water is reused as the washing water of the dehydrator, the COD of the treated water accumulates and there is a problem of exceeding the target water quality standard.

본 발명은 수거된 유기오수를 전처리하는 과정에서 악취, 가스발생을 줄이고, 액상부식조에 투입하는 유기오수의 MLSS농도를 적정한 기준으로 유지하고, 무산소 액상부식조와 호기 액상부식조의 용적과 비율을 설정하고, 무산소호기의 교호시 그 순환량을 유입 암모니아농도 및 투입량에 따라 산정하고, 무산소 액상부식조에 투입되는 새로운 고농도 유기오수의 과잉 BOD를 처리하고, 호기 액상부식조에서 유출되는 BOD와 암모니아성 질소량을 최소화하고, 고액분리시 무기응집제, pH조정제의 사용량을 절감하고, 중복되는 pH조정조와 침전조를 개선하고, 처리수의 탁도와 난분해성 COD등 처리방법을 개선하여 처리수의 재사용으로 인한 오염농도의 축척에 따른 수질악화에 대응하는 연속·배치식 액상부식법에 의한 고농도 유기오수의 처리방법을 제공하는데 있다.The present invention is to reduce the odor, gas generation in the pre-treatment process of the collected organic sewage, maintain the MLSS concentration of organic sewage to be injected into the liquid corrosion tank on an appropriate basis, and set the volume and ratio of the anaerobic liquid corrosion tank and aerobic liquid corrosion tank In the case of alternating anoxic respirators, the amount of circulation is calculated according to the inflow ammonia concentration and the input amount, and the excess BOD of the new high concentration organic sewage injected into the aerobic liquid corrosion tank is treated, and the amount of BOD and ammonia nitrogen flowing out of the aerobic liquid corrosion tank is minimized. To reduce the amount of inorganic coagulant and pH adjuster in solid-liquid separation, to improve overlapping pH adjusting and sedimentation tanks, and to improve the treatment method such as turbidity and hardly degradable COD of the treated water. To provide a method for treating high concentration organic sewage by continuous and batch liquid erosion corresponding to water deterioration There used.

이하, 본 발명을 첨부 도면에 의하여 상세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명을 표현한 개략적인 공정도를 나타내고 있다.Figure 1 shows a schematic process diagram expressing the present invention.

본 발명을 처리순서에 따라 설명한다.The present invention will be described according to the processing procedure.

1)고농도 유기오수의 전처리1) Pretreatment of high concentration organic sewage

본 발명에서는 액상부식액 부유물농도(MLSS)를 7,000~15,000㎎/ℓ정도로 유지함으로 이를 위하여 오수의 전처리 수거한 고농도 유기오수는 조목협잡물분리기와 미세협잡물분리기 등을 적절히 이용하여 조대협잡물과 미세협잡물을 제거하며, 이러한 과정에서 상기 유기오수를 제 1 저류조에 일시 저류한다. 이 경우 조목협잡물분리기 등으로 처리된 유기오수는 제 1 저류조를 거쳐 미세협잡물분리기로 분리할 때 발생하는 악취와 가스발생을 저감하기 위하여 호기 액상부식조에서 무산소 액상부식조로 순환되는 액상부식액의 2 부피% 이하를 제 1 저류조에 투입하거나, 미세협잡물분리의 효율개선을 위하여 응집제를 투입할 수 있다. In the present invention, to maintain the liquid corrosion liquid suspended solids concentration (MLSS) to about 7,000 ~ 15,000mg / ℓ for this purpose, the high concentration organic sewage pre-treatment of sewage to remove coarse contaminants and fine contaminants by appropriately using the crude contaminant separator and the fine contaminant separator In this process, the organic wastewater is temporarily stored in the first storage tank. In this case, the organic wastewater treated with the crude wood sediment separator, etc., is 2 volumes of the liquid corrosion solution circulated from the aerobic liquid corrosion tank to the anaerobic liquid corrosion tank to reduce the odor and gas generated when the micro sewage separator is separated through the first storage tank. Less than or equal to% may be added to the first storage tank, or a flocculant may be added to improve the efficiency of the fine contaminant separation.

이때 제 1 저류조는 액상부식과 새로 유입된 유기오수의 교반포기를 실시한다. 미세협잡물분리기 등으로 처리된 유기오수는 MLSS가 7,000~15,000㎎/ℓ정도로 균질화된 상태로 제 2 저류조를 거쳐 액상부식조로 투입된다.At this time, the first storage tank performs liquid corrosion and stirring aeration of the newly introduced organic wastewater. Organic sewage treated with a fine contaminant separator is introduced into the liquid corrosion vessel through the second storage tank while the MLSS is homogenized to about 7,000-15,000 mg / l.

상기와 같이 미세협잡물분리기 등으로 제거 또는 응집제를 주입하여 미세협잡물분리기 등으로 처리된 유기오수는 TSS와 MLSS가 거의 동일한 상태로서 후속공정인 액상부식조에서 공기공급시 SS의 분해로 인한 BOD가 상승하는 문제점이 해결되고, 제 1 저류조의 교반포기와 미세협잡물분리로 인한 유기성 BOD도 15%가량 제거되는 부수적인 효과 및 미세협작물분리의 효율을 개선하게 된다. 단 수거된 고농도 유기 오수의 MLSS농도가 액상부식액 부유물농도의 7,000~15,000㎎/ℓ와 동일할 경우 조목협잡물분리기와 미세협잡물분리기 및 제 1 저류조의 전처리를 간이하게 할 수 있다.As described above, the organic sewage treated with a fine contaminant separator by injecting or removing a flocculant with a fine contaminant separator is almost the same in TSS and MLSS. As a result, BOD is increased due to decomposition of SS when supplying air in a liquid corrosion tank. The problem is solved, and the organic BOD due to the agitated aeration of the first storage tank and the separation of the fine contaminants are also removed, thereby improving the side effect and the efficiency of the fine confinement separation. However, if the MLSS concentration of the collected high concentration organic sewage is equal to 7,000-15,000 mg / l of the liquid corrosive suspended solids concentration, the pretreatment of the crude wood contaminant separator, the fine contaminant separator and the first storage tank can be simplified.

2)생물반응조의 처리2) treatment of bioreactor

본 발명에서 수거되는 고농도유기오수는 가축분뇨 또는 축산폐수의 경우 유입 BOD20,000~30,000㎎/ℓ T-N 3,000~4,500㎎/ℓ로서 미생물들의 질산화속도 및 탈질속도를 감안하더라도 무산소조와 호기조의 체적비는 1:2~4 내외로 구성하는 것이 질소화합물 제거에 바람직하다.The high concentration organic sewage collected in the present invention is inflow BOD20,000-30,000mg / l TN 3,000-4,500mg / l in the case of livestock manure or livestock wastewater, even considering the nitrification rate and denitrification rate of microorganisms, the volume ratio of the anaerobic tank and aerobic tank is 1 It is preferable to remove nitrogen compounds in the range of about 2-4.

액상부식조에서 질소화합물의 제거과정을 살펴보면 1단계에서는 호기 액상부식조에서 BOD 산화미생물에 의하여 BOD가 완전히 제거되고, 2단계에서는 고농도 유기오수 중에 포함된 암모니아성질소(유기오수중의 질소는 전부 유기성+암모니아성 질소로서 유기성질소는 SS분리시 제거됨)를 호기성 조건하에서 N0x-N (질산성 질소 또는 아질산성 질소)으로 산화하고, 3단계에는 호기 액상부식조에서 순환되어 온 N0x-N (질산성 질소 또는 아질산성 질소) 내의 산소를 전자수용체로 사용하여 무산소 액상부식조에서 탈질미생물이 유입원수의 BOD와 전자수용체 상태의 산소를 소모하면서 탈질(산화질소 또는 질소가스로 대기 중에 방출)이 이루어진다. 이때 BOD제거량은 N0x-N (질산성 질소 또는 아질산성 질소)의 량에 의해서 결정되고, N0x-N (질산성 질소 또는 아질산성 질소) 1kg를 탈질 하는데 소모되 BOD는 3kg정도이다. N0x-N (질산성 질소 또는 아질산성 질소)의 량은 유입원수의 암모니아성질소량과 거의 비슷하다.In the process of removing nitrogen compounds from the liquid corrosion tank, in the first step, BOD is completely removed by the BOD oxidizing microorganism in the aerobic liquid corrosion tank, and in the second step, ammonia nitrogen (concentrated nitrogen in organic wastewater) is completely organic. Organic nitrogen as ammonia nitrogen is removed during SS separation) and oxidized to N0x-N (nitric acid nitrogen or nitrite nitrogen) under aerobic conditions, and in the third step, N0x-N (nitric acid) circulated in an aerobic liquid corrosion tank Using oxygen in nitrogen or nitrite nitrogen as an electron acceptor, denitrification microorganisms denitrify (release to the atmosphere as nitrogen oxides or nitrogen gas) in an oxygen-free liquid corrosion tank while denitrifying microbes consume oxygen in BOD and electron acceptor state. At this time, the amount of BOD removal is determined by the amount of N0x-N (nitric acid nitrogen or nitrite nitrogen), and the BOD consumed to denitrate 1kg of N0x-N (nitric acid nitrogen or nitrite nitrogen) is about 3kg. The amount of NOx-N (nitric acid nitrogen or nitrite nitrogen) is about the same as the amount of ammonia nitrogen in the influent.

따라서 유입원수의 C(BOD)/N(질소)비가 3:1을 초과할 경우 무산소 액상부식조에서 유입원수의 BOD를 전부 제거하지 못하고, 잔존 BOD를 호기 액상부식조에서 처리할 수밖에 없다.Therefore, when the C (BOD) / N (nitrogen) ratio of the inflowed water exceeds 3: 1, all the BODs of the inflowed water cannot be removed from the anoxic liquid corrosion tank, and the remaining BOD can be treated in the aerobic liquid corrosion tank.

무산소 액상부식조에서 순환된 잔존 BOD로 인하여 호기 액상부식조에서는 BOD산화미생물에 의한 유기물의 분해와 질산화미생물에 의한 암모니아성질소의 산화가 병행으로 이루어질 수밖에 없게 된다.Due to the residual BOD circulated in the anoxic liquid corrosion tank, the aerobic liquid corrosion tank is bound to decompose organic matter by BOD oxidizing microorganism and oxidation of ammonia nitrogen by the nitrifying microorganism.

이와 같이 호기 액상부식조에서는 1단계 유기물의 분해와 2단계 암모니아질 소의 산화가 병행하여 이루어져야 함으로 호기 액상부식조의 체적비는 무산소조에 비하여 2배 이상이 되어야 한다.As described above, in the aerobic liquid corrosion tank, the first stage organic matter decomposition and the second stage of ammonia nitrogen oxidation must be performed in parallel, so the volume ratio of the aerobic liquid corrosion tank should be more than twice that of the anoxic tank.

본 발명에서 액상부식조의 조용량의 증가없이 호기 액상부식조의 비율을 높임에 따라 호기 액상부식조의 BOD/MLSS부하는 20%정도 낮아지고, 무산소 액상부식조의 T-N/MLSS 부하는 40%정도 높아지게 된다. 이러한 구성으로 운전관리 조건은 BOD/MLSS부하는 0.05~0.1㎏/MLSS.d가 되도록 하고, T-N/MLSS부하를 0.05㎏/MLSS.d이하가 되도록 하여야 한다. In the present invention, the BOD / MLSS load of the aerobic liquid corrosion tank is lowered by 20% and the T-N / MLSS load of the anoxic liquid corrosion tank is increased by 40% as the ratio of the aerobic liquid corrosion tank is increased without increasing the volume of the liquid corrosion tank. With such a configuration, the operation management conditions should be such that the BOD / MLSS load is 0.05 to 0.1 kg / MLSS.d and the T-N / MLSS load is 0.05 kg / MLSS.d or less.

무산소 액상부식조와 호기 액상부식조의 체적비를 1:2~4내외로 구성하면 액상부식조에 투입되는 새로운 유기오수 중의 과잉 BOD를 호기 액상부식조에서 완전히 제거한 후 암모니아질소를 N0x-N (질산성 질소 또는 아질산성 질소)으로 산화하여 무산소 액상부식조로 순환하게 한다. When the volume ratio of the oxygen-free liquid corrosion tank and the aerobic liquid corrosion tank is configured to be about 1: 2 ~ 4, the excess BOD in the new organic wastewater injected into the liquid corrosion tank is completely removed from the aerobic liquid corrosion tank, and ammonia nitrogen is N0x-N (nitric acid nitrogen or Oxidized to nitrous acid nitrogen) and circulated to an anaerobic liquid corrosion tank.

여기서 전처리효율을 개선하기 위하여 순환되는 액상부식액의 2 부피% 이하를 제 1 저류조에 반송해 투입할 수 있다.Here, in order to improve the pretreatment efficiency, 2 volume% or less of the circulating liquid corrosion solution may be returned to the first storage tank and introduced.

액상부식조로의 새로운 고농도유기오수의 투입은 무산소 액상부식조에서 이루어지며 탈질반응시에 유입되는 BOD를 효율적으로 소모하고, 과잉 BOD로 인한 호기조에 BOD/MLSS부하를 최소화 할 수 있도록 하루에 23 시간 동안 연속적으로 투입·순환 한다. 이 때에 순환량은 무산소 액상부식조액과 호기 액상부식조액의 총량의 1~2배 정도가 적당하고, 하루에 1시간 동안 무산소 액상부식조액과 호기 액상부식조액, 즉, 액상부식액의 투입·순환을 1시간 동안 정지한 상태에서, 액상부식이 완료된 액상부식액을 호기 액상부식조에서 1일 처리량만큼 인출하여 혼합조로 유출 한다. 이 경우 새로운 고농도 유기오수 중의 BOD를 효과적으로 소모할 뿐만 아니라 하루에 23 시간 동안 투입·순환한 후 정지된 상태에서 하루 처리량을 후속공정으로 인출한다. 고농도 유기오수의 투입은 연속적으로 하고, 액상부식이 완료된 액상부식액의 유출은 배치식으로 한다.The introduction of new high concentration organic sewage into the liquid corrosion tank is performed in an oxygen-free liquid corrosion tank, and it effectively consumes the BOD introduced during the denitrification reaction, and minimizes the BOD / MLSS load in the aerobic tank caused by excess BOD. Continuously feed and circulate during the process. At this time, the circulation amount is suitably 1 to 2 times the total amount of the anaerobic liquid corrosion bath solution and the aerobic liquid corrosion bath solution, and the aerobic liquid corrosion bath solution and the aerobic liquid corrosion bath solution for 1 hour per day, that is, the liquid corrosion solution In the stopped state for a period of time, the liquid erosion liquid is completed in the aerobic liquid erosion tank with a daily throughput to flow out into the mixing tank. In this case, it not only effectively consumes BOD in the new high concentration organic sewage, but also inputs and circulates for 23 hours per day, and then withdraws the daily throughput to the subsequent process in the stopped state. The injection of high concentration organic sewage is continuously performed, and the outflow of liquid corrosive liquid after completion of liquid corrosion is batchwise.

3)고액분리3) Solid-liquid separation

본 발명에서는 1일 처리량만큼 액상부식이 완료된 액상부식액을 혼합조를 거쳐 응집반응조에 유입시켜 무기 응집제를 액상부식액에 pH4.0이하로 투입한 후 pH조정제로 4.2~4.5가 되도록 하면 기존 사용량의 무기응집제와 pH조정제를 1/2이하로 절감할 수 있다. 더불어 고분자응집제등의 유기응집제를 투입하여 탈수기에서 슬러지와 탈수액의 분리효과를 극대화시킨다.In the present invention, the liquid corrosion solution, which has completed liquid corrosion as much as 1 day throughput, is introduced into the flocculation reaction tank through the mixing tank, and then the inorganic flocculant is added to the liquid corrosion solution at pH 4.0 or less, and then adjusted to 4.2 to 4.5 as a pH adjuster. Coagulant and pH adjuster can be reduced to less than 1/2. In addition, organic coagulant such as polymer coagulant is added to maximize the separation effect of sludge and dehydration liquid in the dehydrator.

단, 액상부식이 완료된 액상부식액의 MLSS농도가 10,000㎎/ℓ이하일 경우는 pH9까지 pH조정제를 투입한 후 무기응집제로 pH4.2~4.5가 되도록 하여야 한다.However, if the MLSS concentration of the liquid erosion liquid complete liquid erosion is less than 10,000mg / ℓ, the pH adjuster to pH9 should be added to the pH 4.2 ~ 4.5 as an inorganic coagulant.

탈수기에서 슬러지와 분리된 탈수액과 탈수기의 가동으로 인한 기기의 세정수는 pH조정제를 pH6.7~7.0이 되도록 투입하여 조정조로 유입하여 중화·침전시킨다. The dehydration liquid separated from the sludge in the dehydrator and the washing water of the device due to the operation of the dehydrator are introduced into the adjusting tank so that the pH adjuster is adjusted to pH6.7 ~ 7.0 and neutralized and precipitated.

이때 조정조는 침전효과를 위하여 침전조 형태로 설치하거나, pH조정제 사용량을 감소시키기 위하야 탈수기의 세정수는 제외하고 탈리액에만 pH조정제를 투입할 수 있다.In this case, the adjustment tank may be installed in the form of a precipitation tank for the precipitation effect, or the pH adjuster may be added only to the desorption liquid except for the washing water of the dehydrator in order to reduce the amount of the pH adjusting agent.

4) 오존 및 여과처리4) Ozone and Filtration

본 발명은 조정조로 나온 상등수는 COD가 50~200㎎/ℓ으로 COD를 30㎎/ℓ이 하로 처리하기 위하여 오존산화후 여과처리한다. 오존산화의 규모는 유기오수의 COD,SS량에 따라 달라지고, 오존산화의 형태는 오존접촉 및 팬톤접촉등으로 실시한다. 오존산화의 규모를 최소화하기 위하여 여과-오존산화-여과 또는 조정조를 침전조형태로 설치할 수 있다.In the present invention, the supernatant water from the adjustment tank is filtered after ozone oxidation in order to treat COD below 30 mg / l with COD of 50-200 mg / l. The scale of ozone oxidation depends on the amount of COD and SS of organic wastewater, and the type of ozone oxidation is carried out by ozone contact or pantone contact. To minimize the scale of ozone oxidation, a filtration-ozone oxidation-filtration or conditioning bath may be installed in the form of a precipitation tank.

여기서 최종처리수는 BOD 10㎎/ℓ, COD 26㎎/ℓ, SS 11㎎/ℓ, T-N 20㎎/ℓ, T-P 1㎎/ℓ이며 기존처리수질의 1/2이하로 처리수를 탈수기 세정수로 재사용함에 따른 처리수의 오염농도 축척에 대비할 수 있다.The final treatment water is BOD 10mg / l, COD 26mg / l, SS 11mg / l, TN 20mg / l, TP 1mg / l. This can be used to accumulate pollutant concentrations in treated water by reuse.

이와 같은 본 발명은 전처리과정에서 악취, 가스발생을 줄여서 불결함과 전처리시설의 부식정도를 개선하고, 액상부식액 부유물농도(MLSS)를 적정하게 유지하여 액상부식조의 거품과 산소용해 산소용해효율 저하 및 온도상승을 방지하는 효과가 있고 송풍기 및 산기관의 용량을 감소하는 효과가 있다.As described above, the present invention improves the degree of impurity and corrosion of the pretreatment facility by reducing odor and gas generation in the pretreatment process, and maintains the liquid corrosive liquid suspended solids concentration (MLSS) appropriately to reduce bubbles and oxygen dissolved oxygen dissolution efficiency and temperature. There is an effect to prevent the rise and reduce the capacity of the blower and diffuser.

또한 미세협잡물 제거로 TSS와 MLSS가 거의 동일한 상태로 후속공정인 액상부식조에서 공기공급시 SS의 분해로 인한 BOD가 상승하는 문제점이 해결되었고, 제 1 저류조의 교반포기와 미세협잡물분리로 인한 유기성 BOD도 15%가량 제거되는 부수적인 효과 및 미세협잡물분리의 효율이 개선된다.In addition, the problem of the BOD rise due to the decomposition of SS when supplying air in the liquid corrosion tank, which is a subsequent process with the removal of fine contaminants, is almost identical to TSS and MLSS. The secondary effect of removing about 15% of BOD and the efficiency of fine contaminant separation are improved.

그리고 액상부식조에 새로운 유기오수의 투입은 연속적으로 하되 액상부식이 완료된 액상부시액의 유출은 배치식으로 함으로써 처리효율을 향상시키고, 유기오수가 미처리된 채 유출되는 것을 근본적으로 방지하고, 처리수의 멸균처리를 오존 처리가 대신하는 부수적인 효과가 있다.In addition, the new organic sewage is continuously added to the liquid corrosion tank, but the flow of the liquid corrosion solution after the liquid corrosion is completed is batch type to improve the treatment efficiency, and fundamentally prevent the organic water from flowing out untreated, and sterilize the treated water. There is a side effect of replacing the treatment with ozone treatment.

고농도 유기오수의 C/N비에 적정한 호기 액상부식조와 무산소 액상부식조의 용적(체적)비율과 BOD/MLSS부하, TN/MLSS부하와 호기 액상부식조액, 무산소 액상부식조액의 교호시 그 순환량과 새로운 유기오수의 투입 및 인출방법을 개선하여 조용량의 증가없이 BOD와 T-N제거효율을 향상시키고, 고액분리시에 무기응집제와 pH조정제의 사용방법을 개선하여 약품의 사용량을 절감시키고, 조정조에서 중화반응후 처리수의 탁도와 COD가 증가하는 점을 개선하고, 고농도유기오수의 난분해성 COD를 오존산화방법으로 제거하여 과거 처리수질을 1/2 이내로 개선하는 효과가 있다.Volume and volume ratios of aerobic liquid corrosion tank and anoxic liquid corrosion tank suitable for C / N ratio of high concentration organic sewage, BOD / MLSS load, TN / MLSS load and aerobic liquid corrosion tank liquid, and the circulation amount and Improved BOD and TN removal efficiency without increasing crude volume by improving organic wastewater input and withdrawal method, and improving the usage method of inorganic coagulant and pH regulator during solid-liquid separation, reducing the amount of chemicals used, and neutralizing reaction in the tank. It improves the turbidity and COD of post-treatment water, and improves past treatment water quality by less than 1/2 by eliminating COD of high concentration organic sewage by ozone oxidation method.

본 발명은 이와 같은 각 공정에 의하여 처리되는 것이나 실험운전한 실시 예는 다음과 같다.The present invention is processed by each of these processes, but the experimental embodiment is as follows.

1)고농도유기오수의 전처리1) Pretreatment of high concentration organic sewage

수거한 고농도 유기오수의 조목협잡물분리기를 통하여 조대협잡물을 선별제거하여 제 1 저류조로 유입시킨다. 호기 액상부식조에서 무산소 액상부식조로 순환되는 액상부식액의 2 부피% 이하를 제 1 저류조에 투입하고 교반포기하여 미세협잡물분리기를 통하여 미세협잡물을 분리 제거한 다음 제 2 저류조로 유입시킨다. SS가 20,000㎎/ℓ이상인 고농도 유기오수는 MLSS가 10,000㎎/ℓ정도로 하기 위하여 미세협잡물분리시 응집제를 투입한다. 상기와 같이 처리된 유기오수의 수질은 다음 과 같다.The coarse contaminants are sorted out through the crude sewage separator of the collected high concentration organic sewage and introduced into the first storage tank. 2 volume% or less of the liquid corrosion solution circulated from the aerobic liquid corrosion tank to the anaerobic liquid corrosion tank is added to the first storage tank, and aerated to separate and remove the fine contaminants through the fine contaminant separator and then flow into the second storage tank. High concentration organic sewage with SS of 20,000mg / l or more is added with flocculant during separation of fine contaminants in order to make MLSS around 10,000mg / l. The water quality of organic sewage treated as above is as follows.

BOD 23,000㎎/ℓ, COD 14,000㎎/ℓ, SS 11,000㎎/ℓ,BOD 23,000 mg / l, COD 14,000 mg / l, SS 11,000 mg / l,

T-N 4,100㎎/ℓ, T-P 560㎎/ℓT-N 4,100 mg / l, T-P 560 mg / l

2) 생물반응조의 처리2) Treatment of Bioreactor

무산소 액상부식조에 전처리된 새로운 유기오수를 하루에 23시간 동안 연속적으로 투입하여 유기오수중의 BOD를 이용하여 N0x-N (질산성 질소 또는 아질산성 질소)을 탈질하고 탈질반응의 효율을 향상시키기 위하여 수중믹서기로 교반시킨다.New organic sewage pretreated in an oxygen-free liquid corrosion tank was continuously added for 23 hours a day to denitrate N0x-N (nitric acid or nitrite nitrogen) using BOD in organic sewage and to improve the efficiency of the denitrification reaction. Stir with a blender.

이어서 호기 액상부식조로 순환하여 잔존BOD의 분해와 암모니아성질소를 산화하고 미생물의 활성을 위하여 공기공급량을 2.5㎡-Air/㎡.hr로 하였다. 순환량은 무산소 액상부식조액과 호기 액상부식조액의 총량의 1.5배 정도로 하고, 무산소 액상부식조액과 호기 액상부식조액의 투입·순환을 하루에 1시간 동안 정지한 상태에서 액상부식이 완료된 액상부식액을 호기 액상부식조에서 하루 처리량만큼 인출하여 혼합조로 유출한다. 이때에 호기 액상부식조의 BOD/MLSS 부하는 0.05~0.1kg/MLSS.d가 되도록 하고, 무산소 액상부식조의 T-N/MLSS부하는 0.05㎏/MLSS.d 이하가 되도록 하였다.Subsequently, it was circulated through an aerobic liquid corrosion tank to oxidize residual BOD and oxidize ammonia nitrogen and to supply air for 2.5m 2 -Air / m 2 .hr for microbial activity. The amount of circulation is about 1.5 times the total amount of the anaerobic liquid corrosion bath solution and the aerobic liquid corrosion bath solution, and the liquid erosion liquid that has completed liquid erosion is stopped while the input and circulation of the anoxic liquid corrosion bath solution and the aerobic liquid corrosion bath solution are stopped for 1 hour a day. Take out the throughput per day from the liquid corrosion tank and flow out into the mixing tank. At this time, the BOD / MLSS load of the aerobic liquid corrosion tank was set to 0.05 to 0.1 kg / MLSS.d, and the T-N / MLSS load of the anaerobic liquid corrosion tank was set to 0.05 kg / MLSS.d or less.

상기와 같이 처리된 유기오수의 수질은 다음과 같다.The water quality of organic wastewater treated as above is as follows.

PH 8.3 이하, NH3-N (암모니아성 질소) 5㎎/ℓ이하, N0x-N (질산성 질소 또는 아질산성 질소) 20㎎/ℓ이하PH 8.3 or less, NH3-N (ammonia nitrogen) 5 mg / l or less, NOx-N (nitric acid nitrogen or nitrite nitrogen) 20 mg / l or less

3) 고액분리3) Solid-liquid Separation

1일 처리량만큼 액상부식이 완료된 액상부식액을 혼합조를 거쳐 응집반응조 에 유입시켜 염화제2철을 액상부식액에 pH4.0이하로 투입하여 pH조정제(NaOH)로 4.2~4.5가 되도록 하고, 폴리머를 투입한 후 벨트프레스형 탈수기에서 슬러지와 탈리액으로 분리하였다. 탈리액은 pH조정제(NaOH)를 pH6.0~7.0이 되도록 투입하여 조정조로 유입하여 중화·침전시킨다. 이 때에 조정조는 침전조형태로 설치하여 침전슬러지를 혼합조로 반송한다. The liquid corrosion solution, which has completed liquid corrosion as much as 1 day's throughput, is introduced into the flocculation tank through the mixing tank, and the ferric chloride is added to the liquid corrosion solution at pH 4.0 or lower to 4.2 to 4.5 with a pH adjuster (NaOH). After the addition, the belt press type dehydrator was separated into sludge and desorption solution. The desorption liquid is added to the pH adjusting agent (NaOH) so that pH 6.0-7.0 is introduced into the adjusting tank and neutralized and precipitated. At this time, the adjusting tank is installed in the form of settling tank, and the settling sludge is returned to the mixing tank.

상기와 같이 처리된 유기오수의 수질은 다음과 같다.The water quality of organic wastewater treated as above is as follows.

PH 7.0이하, NH3-N (암모니아성 질소) 0㎎/ℓ, N0x-N (질산성 질소 또는 아질산성 질소) 10㎎/ℓ이하PH 7.0 or less, NH3-N (ammonia nitrogen) 0 mg / l, N0x-N (nitric acid nitrogen or nitrite nitrogen) 10 mg / l or less

4) 오존 및 여과처리4) Ozone and Filtration

조정조로부터 나온 유기오수는 오존접촉장치를 거쳐 산화 후 여과처리한다.Organic sewage from the conditioning tank is filtered after oxidation through ozone contact system.

COD이 산화를 위하여 오존공급량을 1.5㎎-O3/㎎-COD로 하고, 오존산화후 2차침전물을 제거하기 위하여 여과장치로 처리하고, 최종처리수는 탈수기 세정수로 재사용한다.The amount of ozone supplied to the COD is 1.5 mg-O 3 / mg-COD for oxidation, treated with a filtration device to remove the secondary precipitate after ozone oxidation, and the final treated water is reused as the dehydrator washing water.

상기와 같이 처리된 유기오수의 수질은 다음과 같다.The water quality of organic wastewater treated as above is as follows.

BOD 10㎎/ℓ, COD 26㎎/ℓ, SS 11㎎/ℓ,BOD 10 mg / l, COD 26 mg / l, SS 11 mg / l,

T-N 20㎎/ℓ, T-P 1㎎/ℓT-N 20mg / l, T-P 1mg / l

도 1은 본 발명을 표현한 개략적인 공정도이고,1 is a schematic process diagram representing the present invention,

도 2는 종래기술의 공정도이다.2 is a process diagram of the prior art.

Claims (4)

유기오수에 포함된 조대협잡물을 조목협잡물분리기에서 제거하는 단계;Removing the coarse grains contained in the organic sewage in the crude sediment separator; 조대협잡물이 제거된 유기오수를 제 1 저류조를 통해 미세협잡물분리기로 투입하는 단계;Injecting the organic sewage from which the coarse coarse material has been removed into the fine coarse matter separator through a first storage tank; 유기오수에 포함된 미세협잡물을 미세협잡물분리기로 제거하는 단계;Removing the fine contaminants contained in the organic sewage with a fine contaminant separator; 미세협잡물이 제거된 유기오수를 제 2 저류조를 통해 무산소 액상부식조로 하루에 23 시간 동안 연속적으로 투입하는 단계;Continuously injecting the organic sewage from which the fine contaminants have been removed into the oxygen-free liquid corrosion tank through the second storage tank for 23 hours a day; 상기 유기오수를 무산소 액상부식조와 호기 액상부식조 사이에서 순환시키면서, 무산소 액상부식조에서는 투입된 유기오수를 탄소원으로 하여 호기 액상부식조로부터 온 순환액의 N0x-N (질산성 질소 또는 아질산성 질소)을 탈질하고, 호기 액상부식조에서는 무산소 액상부식조로부터 온 순환액의 잔류 유기물을 제거하고 암모니아성 질소를 N0x-N (질산성 질소 또는 아질산성 질소)으로 산화하는 단계;N0x-N (nitric acid nitrogen or nitrite nitrogen) of the circulating fluid from the aerobic liquid corrosion tank using the organic wastewater as a carbon source while circulating the organic wastewater between the anoxic liquid corrosion tank and the aerobic liquid corrosion tank. Denitrifying, removing the remaining organic matter from the circulating fluid from the anaerobic liquid corrosion tank and oxidizing ammonia nitrogen to N0x-N (nitric acid nitrogen or nitrite nitrogen) in an aerobic liquid corrosion tank; 상기 유기오수의 투입 및 순환을 하루에 1 시간 동안 정지한 상태에서, 상기 무산소 액상부식조 및 호기 액상부식조에서 처리된 액상부식액을 혼합조로 인출하는 단계;Extracting the liquid corrosion solution treated in the anoxic liquid corrosion tank and the aerobic liquid corrosion tank into a mixing tank while the input and circulation of the organic wastewater is stopped for 1 hour per day; 상기 혼합조로 인출된 액상부식액을 응집반응조에 유입시켜 응집제 및 pH 조정제로 응집처리하는 단계; 및Injecting the liquid corrosion solution drawn out into the mixing tank into an agglomeration reaction tank and coagulating with a coagulant and a pH adjusting agent; And 상기 응집 처리된 액상부식액을 탈수기로 슬러지와 탈리액으로 분리하는 단계를 포함하고, Separating the flocculated liquid erosion solution into sludge and desorption solution with a dehydrator, 상기 유기오수가 제 1 저류조에 투입될 때, 상기 무산소 액상부식조와 호기 액상부식조 사이에서 순환되는 순환액의 2 부피% 이하가 상기 제 1 저류조에 투입되는 연속 배치식 액상부식법에 의한 유기오수의 처리방법.When the organic sewage is introduced into the first storage tank, 2 vol% or less of the circulating fluid circulated between the anoxic liquid corrosion tank and the aerobic liquid corrosion tank is added to the first storage tank. Treatment method. 제 1 항에 있어서, 상기 미세협잡물이 제거된 유기오수의 MLSS가 7,000~15,000㎎/ℓ로 되어 무산소 액상부식조로 투입되는 유기오수의 처리방법.The method of claim 1, wherein the MLSS of the organic sewage from which the fine contaminants are removed is 7,000 to 15,000 mg / l, and the organic sewage treatment tank is introduced into an oxygen-free liquid corrosion tank. 제 1 항에 있어서, 상기 무산소 액상부식조와 호기 액상부식조의 체적비는 1:2~4로 구성되고, According to claim 1, wherein the volume ratio of the anaerobic liquid corrosion tank and aerobic liquid corrosion tank is composed of 1: 2 to 4, 상기 호기 액상부식조의 BOD/MLSS 부하는 0.05~0.1㎏/MLSS.d로 조절되고, The BOD / MLSS load of the aerobic liquid corrosion tank is adjusted to 0.05 ~ 0.1 ㎏ / MLSS.d, 상기 무산소 액상부식조의 T-N/MLSS부하는 0.05㎏/MLSS.d 이하로 조절되는 유기오수의 처리방법.T-N / MLSS load of the oxygen-free liquid corrosion tank is organic wastewater treatment method is adjusted to 0.05kg / MLSS.d or less. 제 1 항에 있어서, 상기 탈리액에 pH 조정제를 투입해 pH 6.0~7.0으로 조절하고 조정조에서 중화·침전시키는 단계;The method of claim 1, wherein the pH adjusting agent is added to the desorption solution to adjust the pH to 6.0-7.0 and neutralize and precipitate in the adjusting tank; 상기 중화·침전 과정에서 생긴 침전 슬러지를 혼합조로 반송하고, 상기 조정조에서 인출된 처리수를 오존 산화하여 2차 침전물을 여과하는 단계; 및Returning the precipitated sludge produced during the neutralization and precipitation process to a mixing tank, and ozonizing the treated water withdrawn from the adjusting tank to filter the secondary precipitate; And 상기 여과된 최종 처리수를 탈수기의 세정수로 사용하고 잔량을 방류하는 단계를 포함하는 유기오수의 처리방법. Using the filtered final treated water as washing water of the dehydrator and discharging the remaining amount.
KR1020070082624A 2007-08-17 2007-08-17 Processing method of high thickness organic sewage by sequencing and Batch type AB S(Acksang-Busick-System) KR100769997B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070082624A KR100769997B1 (en) 2007-08-17 2007-08-17 Processing method of high thickness organic sewage by sequencing and Batch type AB S(Acksang-Busick-System)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070082624A KR100769997B1 (en) 2007-08-17 2007-08-17 Processing method of high thickness organic sewage by sequencing and Batch type AB S(Acksang-Busick-System)

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020050072623A Division KR20070018192A (en) 2005-08-09 2005-08-09 Processing method of high thickness organic sewage by sequencing and Batch type AB SAcksang-Busick-System

Publications (2)

Publication Number Publication Date
KR20070087544A KR20070087544A (en) 2007-08-28
KR100769997B1 true KR100769997B1 (en) 2007-10-25

Family

ID=38613515

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070082624A KR100769997B1 (en) 2007-08-17 2007-08-17 Processing method of high thickness organic sewage by sequencing and Batch type AB S(Acksang-Busick-System)

Country Status (1)

Country Link
KR (1) KR100769997B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103030247A (en) * 2011-10-09 2013-04-10 中国环境科学研究院 Method for treating sewage by organism-soil infiltration and device for realizing method
KR20240071843A (en) 2022-11-16 2024-05-23 정재윤 Livestock manure automatic processing device and system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100952371B1 (en) * 2009-09-29 2010-04-12 박현린 A waste water disposal system
KR101136460B1 (en) * 2009-11-10 2012-04-20 연기능 Advanced treatment system of wastewater and its method
CN109502879A (en) * 2018-03-05 2019-03-22 辽宁石油化工大学 A kind of high-concentration hardly-degradable industrial wastewater treatment system and processing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970042302A (en) * 1997-04-23 1997-07-24 김학로 Nitrogen (N), phosphorus (P) removal method and composting method of high concentration organic wastewater in liquid corrosion method
KR19980019536A (en) * 1998-03-26 1998-06-05 김학로 Method of eliminating nitrogen and phosphorus from used water of livestack and excretion disposal in liquid croding process
KR19990045985A (en) * 1999-03-05 1999-06-25 김재우 Waster water and foul water for froth secession disposal process
KR20020082166A (en) * 2002-08-28 2002-10-30 김학로 Nitrogen and phosphorus removal method for advanced livestock wastewater or manure in liquid corrosion method and sludge reduction system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970042302A (en) * 1997-04-23 1997-07-24 김학로 Nitrogen (N), phosphorus (P) removal method and composting method of high concentration organic wastewater in liquid corrosion method
KR19980019536A (en) * 1998-03-26 1998-06-05 김학로 Method of eliminating nitrogen and phosphorus from used water of livestack and excretion disposal in liquid croding process
KR19990045985A (en) * 1999-03-05 1999-06-25 김재우 Waster water and foul water for froth secession disposal process
KR20020082166A (en) * 2002-08-28 2002-10-30 김학로 Nitrogen and phosphorus removal method for advanced livestock wastewater or manure in liquid corrosion method and sludge reduction system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103030247A (en) * 2011-10-09 2013-04-10 中国环境科学研究院 Method for treating sewage by organism-soil infiltration and device for realizing method
KR20240071843A (en) 2022-11-16 2024-05-23 정재윤 Livestock manure automatic processing device and system

Also Published As

Publication number Publication date
KR20070087544A (en) 2007-08-28

Similar Documents

Publication Publication Date Title
AU2007238520B2 (en) Method and system for nitrifying and denitrifying wastewater
KR100784933B1 (en) Apparatus for treating organic matter and nitrogen of high density organic wastewater
CN107531525B (en) Method for forming aerobic granules, apparatus for forming aerobic granules, method for treating wastewater, and wastewater treatment apparatus
KR101967179B1 (en) Membrane separation water treatment system with reverse osmosis membrane concentrated water treatment facility
KR101463987B1 (en) Method of treating organic waste water
KR20070018192A (en) Processing method of high thickness organic sewage by sequencing and Batch type AB SAcksang-Busick-System
KR100769997B1 (en) Processing method of high thickness organic sewage by sequencing and Batch type AB S(Acksang-Busick-System)
KR20170010679A (en) Treatnent system for organic livestock wastewater by electrolytic oxidation and treatment method thereof
US20240059597A1 (en) Anaerobic ammonia oxidation treatment system for treating wastewater with high ammonia nitrogen and high cod
KR20090030397A (en) Apparatus for high rate removal of nitrogen and phosphorus from swtp/wwtp
KR20000021183A (en) Method for managing wastewater including high concentrated organic matter.
KR100430382B1 (en) Treatment method for livestock waste water including highly concentrated organoc, nitrogen and phosphate and treatment system used therein
KR100479649B1 (en) The procces and apparatus of Livestock wastewater treatment.
KR100229237B1 (en) Advanced treatment method and its device of night soil
KR100853077B1 (en) Submerged poly tetrafluoro ethylene membrane bioreactor and advanced wastewater treatment process using the same
KR100839035B1 (en) Biological wastewater treatment apparatus using diffuser-mediated sludge flotation and treatment method using the same
KR100705541B1 (en) A configuration of process and system for bnr/cpr with a filamentous bio-solids bulking control
KR100440748B1 (en) High-Rate Live Stock Wastewater Treatment Method using Advanced Treatment Process Hybrid SBAR
JP2007061773A (en) Organic sludge treatment method and apparatus
KR100710488B1 (en) Apparatus and method for water and wastewater treatment using dissolved ozone flotation and pressurized ozone oxidation
KR101931346B1 (en) Membrane separation water treatment system with reverse osmosis membrane concentrated water treatment facility
KR100397168B1 (en) Apparatus and Method For Animal Waste water Treatment
KR100710706B1 (en) The non-resolve organic wastewater treatment process and system using the facultative microorganism chemical coagulation reaction
CN111762961A (en) Kitchen wastewater treatment method
KR100457698B1 (en) Livestock wastewater treatment method and equipment using STP waste excess sludge

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121016

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130911

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20141017

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20151012

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20161010

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20171012

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20181011

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190925

Year of fee payment: 13