JP4218077B2 - Non-oriented electrical steel sheet and manufacturing method thereof - Google Patents

Non-oriented electrical steel sheet and manufacturing method thereof Download PDF

Info

Publication number
JP4218077B2
JP4218077B2 JP17574298A JP17574298A JP4218077B2 JP 4218077 B2 JP4218077 B2 JP 4218077B2 JP 17574298 A JP17574298 A JP 17574298A JP 17574298 A JP17574298 A JP 17574298A JP 4218077 B2 JP4218077 B2 JP 4218077B2
Authority
JP
Japan
Prior art keywords
plane
steel sheet
rolled
steel
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17574298A
Other languages
Japanese (ja)
Other versions
JPH11310857A (en
Inventor
光代 前田
智機 深川
裕義 屋鋪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP17574298A priority Critical patent/JP4218077B2/en
Publication of JPH11310857A publication Critical patent/JPH11310857A/en
Application granted granted Critical
Publication of JP4218077B2 publication Critical patent/JP4218077B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電気機器の鉄心として広く用いられる磁気特性に優れた無方向性電磁鋼板およびその製造方法に関する。とりわけ、高効率回転機用の鉄心材料として好適な磁気特性に優れた無方向性電磁鋼板およびその製造方法に関する。
【0002】
【従来の技術】
無方向性電磁鋼板は主に変圧器、安定器等の静止機器や、電動機、発電機等の回転機器の鉄心材料として用いられている。最近、特に地球温暖化防止に関連して、エネルギー使用効率の改善が進められており、産業用や家電用に多用されている無方向性電磁鋼板に対しても、さらなる低鉄損、および高磁束密度化が望まれている。
【0003】
無方向性電磁鋼板は、方向性電磁鋼板に比較すると磁気特性の異方性(磁化方向による磁気特性の差異)が少ないが、それでも少なからず異方性を有しているのが普通である。例えば磁束密度であれば、通常は、圧延方向に磁化した場合に最も高くなる。
【0004】
回転機器の鉄心は鋼板面内のあらゆる方向に磁化されるので、磁気特性の異方性が大きい鋼板を回転機器の鉄心に使用すると、回転子の軸に誘起電流が流れて回転子が熱損傷を受けやすくなるうえ、回転バランスが悪くなり誘起トルクむらなどの不都合が生じる。このため、回転機器の鉄心用の無方向性電磁鋼板としては、磁気特性の鋼板面内での異方性が少なく、鋼板面内の平均値としての磁気特性が良好であることが求められており、その改善方法が検討されている。
【0005】
特開昭64−55338号公報において、本発明者等の内の1人は、粗大な結晶粒からなる熱延鋼板を冷延し焼鈍する無方向性電磁鋼板の製造方法を開示した。しかし、この方法では、粗大な結晶粒を得るために鋼のMnとS含有量を特定量以下に制限する必要があり、製造に際しての化学組成選択の自由度が制限されるうえ、冷間圧延母材の結晶粒が粗大であるために製品表面にうねりが生じて、占積率や外観が損なわれる場合がある。また、ここに開示されている方法では得られる磁気特性レベルは、必ずしも十分なものではない。
【0006】
特開平2−274844号公報において、本発明者らの内の1人は、鋼板面に垂直な方向に<100>軸密度が高い無方向性電磁鋼板およびその製造方法を開示した。この鋼板は、鋼板面に平行な{100}面方位を発達させ、磁気特性の異方性を低減させるものである。しかし、この鋼板を製造するには、最終焼鈍工程で2段階からなる脱炭処理をおこない、脱炭焼鈍が進行する過程でγ→α変態を利用して上記の集合組織を発達させる方法であり、真空脱炭焼鈍炉や高度な制御技術を必要とするので、製造するのは容易ではない。
【0007】
特開平8−157966号公報には、Niを含有させた鋼をAc3変態点以上の高温で焼鈍する磁気特性の異方性が少ない無方向性電磁鋼板の製造方法が開示されている。しかしながらこの製造方法では、高価なNiを使用する必要があるので製造コストが高くなるうえ、コスト上昇分に見合う特性改善効果が得られない。
【0008】
特開平9−125145号公報には、C、S、N含有量を低減しさらにTi、V、Nb、As含有量をも同時に低減した高純度鋼をγ域で熱延板焼鈍することにより熱延板の結晶粒を粗大にして冷間圧延、焼鈍する磁気特性に優れた無方向性電磁鋼板の製造方法が開示されている。しかしながらこの方法では高純度化するのが容易でないうえ、熱延板や製品鋼板の結晶組織を単に粗粒化しただけでは磁気特性や鋼板面内での異方性に好ましくない集合組織を有する結晶粒も成長する。このため、製造コストの上昇に見合う特性改善効果が得られないおそれがある。
【0009】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、磁化方向による磁気特性の異方性が少なく、しかも鋼板面内で平均した磁束密度が高い電磁鋼板およびその効率的な製造方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明者らは、無方向性電磁鋼板における材料の組織制御に関する詳細な研究をおこなった結果、圧延面に平行な{411}面の集積度のランダム強度比が高い集合組織を有する鋼板では、鋼板面内での磁気特性の異方性が減少し、平均磁束密度が極めて優れることを知見した。特に{411}面のランダム強度比の{211}面のランダム強度比に対する比、すなわちI411 /I211 を1以上とすることで良好な磁気特性が得られることを見いだした。
【0011】
ここで{411}面の集積度のランダム強度比とは、ランダム試料(同一組成の集合組織を有しない標準試料)の{411}面の回折強度に対する比のことである(以下、ランダム強度比を単に「{411}集積度」または「I411 」と記す。他の結晶面についても同様に記す。)
磁気特性を良好にするには磁化容易軸である<001>方位を有する{200}面の集積度が高く、磁化容易軸を含まない{111}面の集積度が低いほど良好となる。しかしながら従来の鋼では{200}面の集積度は{111}面のそれよりも弱い場合が多い。
【0012】
{411}面は、磁化容易軸である<100>を互いに直交する2方向に含む{100}面に近い結晶面方位である。従って、{411}集積度を高めることにより、圧延方向以外の方向での磁化特性も改善され、磁気特性の鋼板面内での異方性が改善される。他方、{211}面は{111}面に近い方位であり、磁化容易軸を面内に含まないため、{111}面に次いで磁気特性に対して好ましくない。
【0013】
無方向性電磁鋼板の製造に際して{200}集積度を高めるのは容易ではないが、本発明で開示する方法によれば{411}集積度は比較的容易に高めることができる。例えば、冷間圧下率を高めて圧延した鋼板では、再結晶と結晶粒の成長に伴い、{200}集積度があまり高くならないのに対して、{411}集積度は優先的に高まる傾向がある。
【0014】
以上述べたように、焼鈍後の鋼板のI411 /I211 は鋼板の磁気特性レベルと強い相関関係があり、この値を大きくすることにより磁気特性の異方性を減少させ、平均磁束密度を向上させることができる。
【0015】
冷間圧延後の焼鈍時の再結晶過程において、{411}面近傍の方位を有する結晶粒は、{211}近傍の方位の結晶粒を蚕食しながら優先的に再結晶し粒成長すると考えられる。このことは、I211 が高い冷間圧延鋼板を再結晶焼鈍することにより、I411 が高い鋼板が得られることを意味している。冷間圧延鋼板のI211 集積度を高めるには、熱延板のI211 をI411 に比べて相対的に高くしておくのが有効であることから、冷間圧延母材としてはI411 /I211 を小さくした熱延板が好ましい。また、冷間圧延時の圧下率を高くすることも、焼鈍後の鋼板のI411 を大きくするのに有効である。
【0016】
本発明者らはさらに研究を進めた結果、上述の知見に加えて、磁気の改善に好ましい方位である{200}面と、好ましくない方位である{222}面のランダム強度比をも考慮した式(I411+I200)/(I211+I222)で求められる値を、特定の限界値以上に大きくすることで鋼板の磁気特性の異方性と平均磁束密度が大幅に改善できることも知見した。
【0017】
さらに、平均粒径がある限界値以上に大きく、かつ粒径変動が少ない結晶組織を有する鋼板を冷間圧延母材として用いることで、冷間圧延した後の焼鈍過程において{411}面近傍の方位を有する結晶粒が増すことも知見した。
【0018】
本発明は、これらの知見を基にして完成されたものであり、その要旨は下記(1) に記載の磁気特性に優れた無方向性電磁鋼板および(2) 記載のその製造方法にある。
【0020】
(1)化学組成が重量%で、C:0.005%以下、Si:0〜4.0%、sol.Al:0〜4.0%、Mn:0.05〜4.0%、P:0.15%以下、S:0.035%以下、残部がFeおよび不可避的不純物からなる化学組成を有する鋼であって、鋼板面に平行な{411}面、{200}面、{211}面、および{222}面の集積度が、下記式の関係を満たすものであることを特徴とする無方向性電磁鋼板。
【0021】
(I411 +I200 )/(I211 +I222 )≧0.75・・
ただし、I411 、I200 、I211 およびI222 は、それぞれ鋼板面に平行な{411}面、{200}面、{211}面および{222}面の集積度を表す。
【0023】
(2)上記(1)に記載の化学組成を有し、平均結晶粒径が60μm以上で、結晶粒径の変動係数が80%以下である熱延鋼板を圧下率80%以上で冷間圧延し、焼鈍する上記(1)に記載の無方向性電磁鋼板の製造方法。
【0024】
【発明の実施の形態】
以下に本発明の実施の形態を詳細に説明する。なお、以下に記す化学組成の%表示は重量%を意味する。
【0025】
鋼の化学組成は以下のとおりである。
Cは磁気特性を劣化させるので少ないほどよい。磁気特性に対する悪影響を避けるために、その上限を0.005%とする。好ましくは0.003%以下である。
【0026】
Siは鋼の電気抵抗を高めて渦電流損を抑制し鉄損を低減する作用があるが、Siの含有が増加するにつれて磁束密度が低くなる。従って鉄損低減を重視する場合には含有させるのがよいが、鉄損よりも磁束密度を重視する場合には含有させなくてもよい。Siを過剰に含有させると冷間圧延性や打ち抜き加工性が劣化するため、含有させる場合でもその上限は4%とする。
【0027】
Mnは、Sによる熱間脆性を防止するために0.05%以上含有させる。また、Mnには鋼の電気抵抗を高める作用があるので、渦電流損を抑制し鉄損を低減する目的で含有させることができる。しかし、Siと同様にMn含有量が増すにつれて磁束密度が低下するとともに、冷間圧延性や打ち抜き加工性が劣化するため、その上限を4%とする。好ましくは3%以下、さらに好ましくは2%以下である。
【0028】
sol.Alは、鋼の電気抵抗を高めて渦電流損を抑制し鉄損を低減する作用があるが、鋼の磁束密度を損なう作用もある。従って、鉄損低減を重視する場合にはsol.Alを含有させるのがよいが、鉄損よりも磁束密度を重視する場合には含有させなくてもよい。過剰にsol.Alを含有させると冷間圧延性や打ち抜き加工性が劣化するため、含有させる場合でも4%以下とする。なお、SiをAlの和が高くなると鋼が過度に硬化して冷間圧延性や打ち抜き性がよくないので、SiおよびAl含有量は、Si(%)+0.5Al(%)≦4.5となる範囲にするのが好ましい。
【0029】
Pは、電気抵抗を高めて鉄損を改善し、鋼を硬くして打ち抜き性を向上させる効果があるので、打ち抜き性を重視する場合にはPを含有させてもよい。しかし、過度に含有させると鋼を脆化させるので、含有させる場合でもその上限は0.15%とする。
【0030】
Sは、磁気特性を劣化させるので少ないほどよい。ただし、鋼板の打ち抜き性や切削性を改善する効果があるので、この様な効果を得る目的で0.035%以下のSを含有させてもよい。
【0031】
上記以外は、Feおよび不可避的不純物である。なお、SiおよびAlを含有させない場合でも、製鋼時に鋼を脱酸する目的で溶鋼に添加したSiおよび/またはAlの残留物が、不可避的不純物として0.01%程度以下は検出されても構わない。
【0032】
製品鋼板の集合組織は、{211}集積度に対する{411}集積度の比が大きくなるほど鋼板面内の平均の磁束密度が向上し、圧延方向以外の方向の磁束密度が改善されて鋼板面内の磁気特性の異方性が減少する効果が得られる。このため、I411 /I211 で計算される値を1以上、好ましくは1.5以上、さらに好ましくは2以上とする。
【0033】
また、製品鋼板の集合組織を、式 :(I411 +I200 )/(I211 +I222 )から求められる値を0.75以上にすることによっても同様の効果を得ることができる。このため、製品鋼板における式 から求められる値を0.75以上とするのもよい。より好ましくは1以上、さらに好ましくは1.125以上とするのがよい。
【0034】
本発明の電磁鋼板は以下に述べる方法で製造することができる。
上述の化学組成を有する素材鋼は、転炉や電気炉で溶製され、真空処理された後、連続鋳造法などによりスラブとされ、熱間圧延、冷間圧延、焼鈍、コーティングなどの工程を経て製品とされる。
【0035】
溶鋼の溶製方法、真空処理方法、鋳造方法などは特に限定する必要はなく、従来から用いられている公知の方法でよい。熱間圧延前のスラブ加熱は施してもよいし、圧延温度が確保できる場合には加熱を省略してもよい。加熱する場合の加熱温度は1250℃以下とするのがよい。熱間圧延温度は、圧延終了温度(仕上温度)を800〜950℃、巻取温度は500〜750℃の範囲とするのがよい。
【0036】
熱延板には、必須条件ではないが、冷間圧延前に焼鈍を施すとリジング(圧延後に生じる畳目状の凹凸欠陥)の発生を抑制できるので好ましい。また、冷間圧延母材の結晶組織を均一にする目的で焼鈍するのも効果的である。熱延板焼鈍は酸洗前、酸洗後いずれの時期に施しても構わない。
【0037】
冷間圧延母材としては、前述の化学組成を有し、{411}集積度と{211}集積度の比I411 /I211 が1以下の熱延板を用いるのがよい。冷間圧延母材の比I411 /I211 は、より好ましくは0.8以下、さらに好ましくは0.5以下とするのがよい。鋼板の集合組織は、公知のX線回折における積分強度測定方法で求めることができる。集合組織は板厚方向に変化するため、板厚方向数ヶ所測定して平均値を求めるが、平均的な厚さ位置である板厚の1/4の部分での回折強度を求めるのが簡便である。
【0038】
また、製品鋼板の(I411 +I200 )/(I211 +I222 )を大きくするには、冷間圧延母材として、前述の化学組成を有し、平均結晶粒径が60μm以上で、その結晶粒径分布の変動係数(相対標準偏差:(標準偏差÷平均値の割合)×100%)が80%以下である熱延板を母材として使用するのも好ましい方法である。さらに好ましくは平均結晶粒径を80μm以上、なお好ましくは100μm以上とし、結晶粒径の変動係数を70%以下、なお好ましくは65%以下とするのがよい。平均結晶粒径が600μmを超えると冷間圧延後の製品鋼板の渦電流損が増して鉄損が増加するので冷間圧延母材の平均結晶粒径は600μm以下とするのが好ましい。
【0039】
この平均結晶粒径は鋼板の厚さ方向の断面で観察した結晶組織粒を公知の方法で測定すればよく、例えばJIS−G−0552に定める方法でもよいが、公知の画像処理技術を利用し、結晶を面積が等しい円と仮定してそれらの直径の平均値を求めて平均結晶粒径としてもよい。変動係数は、例えば上記の画像処理により得られる粒径分布の標準偏差を求め、これを平均粒径で除すなどの方法で求めることができる。
【0040】
母材の結晶組織を上述のようなものとするには、熱間圧延時の圧下率、仕上温度、冷却温度、巻取温度および熱延板焼鈍の昇温速度、均熱温度と時間、冷却速度等を調整すればよい。
【0041】
冷間圧延時の圧下率が高いほど、製品鋼板のI411 /I211 または(I411 +I200 )/(I211 +I222 )が増し、磁束密度が向上し板面内での磁気特性の異方性が改善される。このため、熱延板が製品鋼板になるまでの総圧下率を80%以上とするのがよい。より好ましくは83%以上、さらに好ましくは85%以上とするのがよい。圧下率の上限は操業上の制約から決められるので特別には限定しない。
【0042】
冷間圧延は1回で製品鋼板の厚さに圧延するのがよいが、中間に焼鈍を挟んで2回以上の圧延により製品鋼板の厚さに圧延しても構わない。また、ここでの冷間圧延は、鋼板の温度を高めて圧延するいわゆる温間圧延で施しても構わない。この際の鋼板温度は300℃以下がよい。冷間圧延後には公知の方法により再結晶および結晶粒成長させるための焼鈍を施す。
【0043】
焼鈍された鋼板には公知の方法により、打ち抜き性や絶縁性を向上させるための表面コーティングを施すのが好ましい。無方向性電磁鋼板には、所定の磁気特性が付与されて出荷されるフルプロセス品と、打ち抜きなどの加工が施された後に歪み取り焼鈍されて所定の磁気特性を発現するセミプロセス品とがある。本発明の鋼板はこれらのいずれにも適用可能である。
【0044】
【実施例】
予備試験1)
表1に示す化学組成を有する鋼を転炉−RH−連続鋳造の工程で製造し、得られたスラブを1120℃に加熱した後、熱間圧延して種々の厚さの熱延板を得た。
【0045】
【表1】

Figure 0004218077
【0046】
これらの熱延板を酸洗した後、850℃で2時間保持する箱焼鈍を施し、1回または、900℃で1分間の中間焼鈍を挟む2回の冷延により、総圧下率が83〜90%の冷間圧延を施して厚さを0.5mmにし、850℃で1分間保持する連続焼鈍を施し、表面に公知の無機−有機複合系の絶縁コーティングを施した。上記の焼鈍後の熱延板および絶縁コーティングした製品鋼板の{411}、{211}集積度を測定し、I411 /I211 を調査した。X線積分強度は、鋼板の表面から厚さ方向に25%の位置まで化学研磨した鋼板表面について測定した。さらに、製品鋼板の、圧延方向、圧延方向に対して45°方向および圧延方向に対して90°方向の3方向から、長さ100mm、幅30mmの単板磁気測定試験片を採取し、3方向それぞれの鉄損W15/50 と磁束密度B50を測定した。これらの測定値から、面内平均値を、計算式{(圧延方向)+2×(45°方向)+(90°方向)}/4で求めた。また、板面内異方性は、計算式{(90°方向)+(45°方向)−2×(圧延方向)}/(圧延方向)で求めた。
【0047】
表1にこれらの磁気特性測定結果を示した。表1で、製品鋼板の特性欄に記載の鉄損W15/50 と磁束密度B50は上記の板面内平均値を示す。試験番号1〜6では製品鋼板のI411 /I211 が1以上であり、その磁気特性は、鉄損、磁束密度共に板面内平均値が良好であり、磁束密度の板面内異方性は絶対値が0.005以下で極めて良好であった。これに対し、C、Si、Mnなどの含有量が本発明の規定する範囲外であった試験番号7、8および10では、製品鋼板のI411 /I211 が1に満たず、その磁気特性は、鉄損、磁束密度共に悪く、磁束密度の板面内異方性も大きかった。これに対し、Si含有量が高すぎた試験番号9およびsol.Al含有量が高すぎた試験番号12では冷間圧延時に割れが発生し、製品鋼板が得られなかった。試験番号11および13では鋼の化学組成は本発明が規定する範囲内にあるが、製品のI411 /I211 が1.0よりも低いために優れた特性が得られなかった。これは磁気特性に好ましい集合組織が得られなかったことが原因である。
【0048】
予備試験2)
予備試験1に記載した試験番号3の鋼と同一の化学組成からなるスラブを1150℃に加熱し、熱間圧延時の圧下率を変化させて熱延板のI411/I211を変化させ、冷間圧延時の圧下率を変更して冷間圧延し、最終板厚を0.50mmにした。これらの鋼板を800℃で1分間焼鈍し、表面絶縁コーティングを施した後、打ち抜き加工により、圧延方向、45゜方向および90゜方向から単板磁気測定試験片を採取し、750℃で2時間保持する歪取り焼鈍を施した。熱延板と上記の試験片を用いて予備試験1に記載したのと同様の方法で集合組織および磁気特性を測定した。得られた熱延板と製品鋼板のI411/I211、製品鋼板の板面内平均の磁気特性、および磁気特性の異方性を表2に示した。
【0049】
【表2】
Figure 0004218077
【0050】
表2からわかるように、I411 /I211 が1以下である熱延板を冷間圧延母材にして製造した試験番号21〜26の磁気特性の板面内平均値および磁束密度の板面内異方性はいずれも良好であった。しかしながら、冷間圧延圧下率が低すぎた試験番号27では、製品鋼板のI411 /I211 が1に満たず、平均の磁気特性と板面内異方性が共に好ましくなかった。また、熱延板のI411 /I211 が1を超えた試験番号28および29も同様に磁気特性、異方性とも優れた特性は得られなかった。
【0051】
予備試験3)
C:0.002%、Si:0.1〜1.0%、sol.Al:0.1〜1.0%、但しSiとAlの含有量は(Si+0.5Al)が約1%になるように変更し、Mn:0.2%、P:0.09%、S:0.001%、残部がFeおよび不可避的不純物からなる種々の化学組成の鋼から得た熱延板を酸洗した後、850℃で2時間保持する箱焼鈍を施し、圧下率88%で冷間圧延して厚さ0.5mmの鋼板とし、850℃で1分間保持する連続焼鈍を施し、表面に公知の無機−有機複合系の絶縁コーティングを施した。これらの鋼板について予備試験1に記載したのと同様の方法でこれらの鋼板の磁気特性とI411/I211を調査した。
【0052】
図1は、得られた結果の内の平均磁束密度に対するI411 /I211 の関係を示す。図1にあるように、両者の間には良好な相関関係があり、I411 /I211 が1以上の領域では平均磁束密度が1.75以上の良好な特性を示していることがわかる。
【0053】
図2は、得られた結果の内の磁束密度の板面内異方性に対するI411 /I211 の関係を示す。図2にあるように、両者の間には良好な相関関係があり、I411 /I211 が1以上の領域では異方性指数の絶対値が0.05以下である良好な特性を示していることがわかる。
【0054】
実施例1
表3に示す化学組成を有する鋼を転炉―RH―連続鋳造の工程で製造し、得られたスラブを1150℃に加熱した後、熱間圧延して種々の厚さの熱延板を得た。
【0055】
【表3】
Figure 0004218077
【0056】
これらの熱延板を酸洗した後、種々の圧下率での1回冷間圧延、または、900℃で1分間の中間焼鈍を挟む2回冷延を施して厚さを0.5mmにし、850℃で1分間保持する連続焼鈍を施し、表面に公知の無機−有機複合系の絶縁コーティングを施した。冷間圧延前には、一部のものを除いて、850℃で2時間保持する箱焼鈍を施した。得られた製品鋼板の各結晶面の集積度を実施例1に記載したのと同様の方法で測定し、(I411 +I200 )/(I211 +I222 )を測定した。また、実施例1に記載したのと同様の方法で圧延方向その他の3方向の磁気特性を測定し、これらの測定値から、板面内平均値と板面内異方性を求めた。
【0057】
表3にこれらの測定結果を示した。試験番号31〜36は、製品鋼板の(I411 +I200 )/(I211 +I222 )は0.75以上であり、その磁気特性は、鉄損、磁束密度ともに板面内平均値が良好であり、磁束密度の板面内異方性は絶対値が0.003以下で極めて良好であった。これに対して、試験番号37〜41では冷間圧延母材の結晶組織が好ましくないために製品鋼板の(I411 +I200 )/(I211 +I222 )が小さくなり、優れた磁気特性が得られなかった。
【0058】
(実施例
予備試験3で用いたのと同一の化学組成のスラブを種々の熱延条件で熱延し、熱延板の結晶組織を種々に変更した熱延鋼板を得た。これらの鋼板を母材として、予備試験3に記載したのと同様の条件で冷間圧延し、焼鈍および絶縁コーティングして得た鋼板の磁気特性と集合組織を予備試験1に記載したのと同様の方法で測定した。
【0059】
図3は、得られた結果の内の平均磁束密度に対する製品鋼板の(I411 /+I200 )/(I211 +I222 )の関係を示す。図3に示されているように、両者の間には良好な相関関係があり、(I411 +I200 )/(I211 +I222 )が0.75以上の領域では平均磁束密度が1.75以上の良好な特性を示していることがわかる。
【0060】
(実施例
実施例の試験番号32に記載したのと同一の化学組成からなるスラブを1120℃に加熱し、熱間圧延時の圧下率を変化させて、平均結晶粒径とその粒径分布の変動係数を種々変化させた熱延板を準備し、これらを83〜88%の範囲内の圧下率で冷間圧延して、最終板厚0.5mmにし、800℃で1分間焼鈍し、表面絶縁コーティングを施した。
【0061】
得られた製品鋼板から予備試験2に記載したのと同様の方法で圧延方向その他の3方向の単板磁気測定試験片を採取し、予備試験2に記載したのと同様の方法で歪取り焼鈍を施した。熱延板の結晶組織は、圧延方向に平行な板厚断面について画像処理装置にて調査し、各サンプルの平均結晶粒径と粒径分布の変動係数を求めた。製品鋼板の試験片の集合組織と磁気特性を予備試験1に記載したのと同様の方法で測定した。
【0062】
表4に、熱延板の結晶組織と製品鋼板の(I411 +I200 )/(I211 +I222 )および板面内平均の磁気特性、異方性を示した。
【0063】
【表4】
Figure 0004218077
【0064】
表4から分かるように、平均結晶粒径が60μm以上かつその結晶粒径分布の変動係数が80%以下である熱延板を冷間圧延母材にして製造し試験番号42〜47における磁気特性の板面内平均値および磁束密度の板面内異方性はいずれも良好であった。しかしながら、熱延板の結晶組織が好ましくなかった試験番号48〜50では、製品鋼板の(I411 +I200 )/(I211 +I222 )が0.75に満たず、磁気特性が好ましくなかった。
【0065】
【発明の効果】
本発明の鋼板は、板面内平均の鉄損が低く磁束密度が高いうえに、板面内の磁束密度の異方性が極めて少ないので、電動機や発電機などの回転機器の鉄心用の電磁鋼板として極めて好適である。また、本発明の鋼板は、特殊な合金添加や設備を使用することなく製造できるので、効率的かつ経済的に高性能の無方向性電磁鋼板を供給することができる。
【図面の簡単な説明】
【図1】平均磁束密度に対する製品の集合組織の影響を示すグラフである。
【図2】磁束密度の板面内異方性に対する製品の集合組織の影響を示すグラフである。
【図3】平均磁束密度に対する製品の集合組織の影響を示す他のグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-oriented electrical steel sheet excellent in magnetic properties widely used as an iron core of electrical equipment and a method for manufacturing the same. In particular, the present invention relates to a non-oriented electrical steel sheet excellent in magnetic properties suitable as an iron core material for a high-efficiency rotating machine and a method for manufacturing the same.
[0002]
[Prior art]
Non-oriented electrical steel sheets are mainly used as iron core materials for stationary equipment such as transformers and ballasts, and rotating equipment such as motors and generators. Recently, especially in connection with the prevention of global warming, energy use efficiency has been improved, and even for non-oriented electrical steel sheets, which are frequently used for industrial and household appliances, even lower iron loss and higher Magnetic flux density is desired.
[0003]
Non-oriented electrical steel sheets have less magnetic property anisotropy (difference in magnetic properties depending on the magnetization direction) than directional electrical steel sheets, but they still have anisotropy. For example, the magnetic flux density is usually highest when magnetized in the rolling direction.
[0004]
Since the iron core of a rotating device is magnetized in all directions within the surface of the steel plate, if a steel plate with a large magnetic property anisotropy is used for the iron core of a rotating device, an induced current flows through the rotor shaft and the rotor is thermally damaged. In addition, the rotational balance is deteriorated, and inconveniences such as induced torque unevenness occur. For this reason, as a non-oriented electrical steel sheet for an iron core of a rotating device, there is little anisotropy in the steel sheet surface of the magnetic characteristics, and the magnetic property as an average value in the steel sheet surface is required to be good. The improvement method is being studied.
[0005]
In Japanese Patent Application Laid-Open No. 64-55338, one of the present inventors disclosed a method for producing a non-oriented electrical steel sheet that cold-rolls and anneals a hot-rolled steel sheet made of coarse crystal grains. However, in this method, in order to obtain coarse crystal grains, it is necessary to limit the Mn and S contents of the steel to a specific amount or less, and the degree of freedom in selecting the chemical composition during production is limited, and cold rolling is performed. Since the crystal grains of the base material are coarse, waviness is generated on the product surface, and the space factor and appearance may be impaired. Also, the magnetic property level obtained by the method disclosed herein is not always sufficient.
[0006]
In Japanese Patent Laid-Open No. 2-274844, one of the present inventors disclosed a non-oriented electrical steel sheet having a high <100> axial density in a direction perpendicular to the steel sheet surface and a method for producing the same. This steel plate develops a {100} plane orientation parallel to the steel plate surface and reduces anisotropy of magnetic properties. However, in order to manufacture this steel sheet, it is a method of performing the decarburization process consisting of two stages in the final annealing process and developing the above texture using the γ → α transformation in the process of decarburization annealing. Because it requires vacuum decarburization annealing furnace and advanced control technology, it is not easy to manufacture.
[0007]
Japanese Laid-Open Patent Publication No. 8-157966 discloses a method for producing a non-oriented electrical steel sheet with low magnetic property anisotropy by annealing a steel containing Ni at a high temperature above the Ac3 transformation point. However, in this manufacturing method, it is necessary to use expensive Ni, so that the manufacturing cost becomes high and the characteristic improvement effect corresponding to the cost increase cannot be obtained.
[0008]
Japanese Patent Application Laid-Open No. 9-125145 discloses a technique in which high purity steel having a reduced C, S, N content and further reduced Ti, V, Nb, As content is subjected to hot rolling by annealing in the γ region. A method for producing a non-oriented electrical steel sheet having excellent magnetic properties in which the rolled grains are coarsened and cold-rolled and annealed is disclosed. However, with this method, it is not easy to achieve high purity, and a crystal having a texture unfavorable for magnetic properties or anisotropy in the steel sheet surface simply by coarsening the crystal structure of a hot-rolled sheet or product steel sheet. Grains also grow. For this reason, there exists a possibility that the characteristic improvement effect corresponding to a raise of manufacturing cost may not be acquired.
[0009]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to provide an electrical steel sheet having a low magnetic property anisotropy depending on the magnetization direction and having a high average magnetic flux density in the steel sheet surface, and an efficient manufacturing method thereof.
[0010]
[Means for Solving the Problems]
As a result of conducting detailed research on the structure control of the material in the non-oriented electrical steel sheet, the present inventors found that the steel sheet having a texture with a high random strength ratio of {411} planes parallel to the rolling surface, It was found that the anisotropy of the magnetic properties in the steel sheet surface decreased and the average magnetic flux density was extremely excellent. In particular, it has been found that good magnetic properties can be obtained by setting the ratio of the random intensity ratio of the {411} plane to the random intensity ratio of the {211} plane, that is, I 411 / I 211 is 1 or more.
[0011]
Here, the random intensity ratio of the integration degree of {411} plane is the ratio of the random sample (standard sample having no texture of the same composition) to the diffraction intensity of {411} plane (hereinafter, random intensity ratio). Is simply written as “{411} degree of integration” or “I 411. ” The same applies to other crystal planes.)
In order to improve the magnetic characteristics, the degree of integration of the {200} plane having the <001> orientation which is the easy axis of magnetization is higher, and the degree of integration of the {111} plane not including the easy axis of magnetization is better. However, in conventional steels, the {200} plane is often weaker than the {111} plane.
[0012]
The {411} plane has a crystal plane orientation close to the {100} plane including <100> that is the easy axis of magnetization in two directions orthogonal to each other. Therefore, by increasing the degree of {411} accumulation, the magnetization characteristics in directions other than the rolling direction are also improved, and the anisotropy of the magnetic characteristics in the steel sheet plane is improved. On the other hand, the {211} plane has an orientation close to that of the {111} plane and does not include the easy axis of magnetization in the plane.
[0013]
Although it is not easy to increase the {200} integration degree in the production of the non-oriented electrical steel sheet, according to the method disclosed in the present invention, the {411} integration degree can be increased relatively easily. For example, in a steel sheet rolled with an increased cold rolling reduction, the {411} accumulation degree does not increase so much with recrystallization and the growth of crystal grains, whereas the {411} accumulation degree tends to increase preferentially. is there.
[0014]
As described above, I 411 / I 211 of the steel plate after annealing has a strong correlation with the magnetic property level of the steel plate. Increasing this value decreases the anisotropy of the magnetic property and increases the average magnetic flux density. Can be improved.
[0015]
In the recrystallization process at the time of annealing after cold rolling, the crystal grains having the orientation in the vicinity of {411} plane are preferentially recrystallized while growing the crystal grains in the orientation in the vicinity of {211}. . This means that a steel sheet having a high I 411 can be obtained by recrystallization annealing of a cold rolled steel sheet having a high I 211 . To increase the I 211 degree of integration of the cold-rolled steel sheet, the I 211 of the hot-rolled sheet since that keep relatively high in comparison with I 411 are effective, as cold-rolled base material I 411 A hot rolled sheet having a small / I211 is preferable. In addition, increasing the rolling reduction during cold rolling is also effective for increasing I 411 of the steel sheet after annealing.
[0016]
As a result of further research, the present inventors also considered a random intensity ratio between the {200} plane which is a preferable orientation for magnetic improvement and the {222} plane which is an undesirable orientation in addition to the above-described knowledge. also finding that the value determined by the formula (I 411 + I 200) / (I 211 + I 222), an anisotropic an average flux density of the magnetic properties of the steel plate by larger than a specific limit value can be greatly improved did.
[0017]
Furthermore, by using a steel sheet having a crystal structure having an average grain size larger than a certain limit and having a small grain size variation as a cold rolling base material, in the annealing process after cold rolling, the vicinity of the {411} plane is used. It has also been found that crystal grains having an orientation increase.
[0018]
The present invention has been completed on the basis of these findings. The gist of the present invention resides in a non-oriented electrical steel sheet having excellent magnetic properties as described in (1) below and a method for producing the same as described in (2) .
[0020]
(1) The chemical composition is% by weight, C: 0.005% or less, Si: 0 to 4.0%, sol. Steel having a chemical composition in which Al: 0 to 4.0%, Mn: 0.05 to 4.0%, P: 0.15% or less, S: 0.035% or less, the balance being Fe and inevitable impurities a is, parallel to the steel sheet surface {411} plane, {200} plane, {211} plane, and {222} plane of the integration degree, you wherein a satisfies the following relationship type continuously Oriented electrical steel sheet.
[0021]
(I 411 + I 200 ) / (I 211 + I 222 ) ≧ 0.75
However, I 411 , I 200 , I 211, and I 222 represent the degree of integration of {411} plane, {200} plane, {211} plane, and {222} plane parallel to the steel plate surface, respectively.
[0023]
(2) Cold rolling a hot-rolled steel sheet having the chemical composition described in (1 ) above, an average crystal grain size of 60 μm or more, and a coefficient of variation of crystal grain size of 80% or less at a reduction rate of 80% or more. And the manufacturing method of the non-oriented electrical steel sheet as described in said (1) which anneals.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail. In addition, the% display of the chemical composition described below means weight%.
[0025]
The chemical composition of steel is as follows.
Since C deteriorates magnetic characteristics, the smaller the better. In order to avoid adverse effects on the magnetic properties, the upper limit is made 0.005%. Preferably it is 0.003% or less.
[0026]
Si has the effect of increasing the electrical resistance of steel to suppress eddy current loss and reducing iron loss, but the magnetic flux density decreases as the Si content increases. Therefore, it is preferable to contain it when importance is attached to iron loss reduction, but it is not necessary to contain it when importance is attached to magnetic flux density rather than iron loss. When Si is excessively contained, cold rolling property and punching workability deteriorate, so even if it is included, the upper limit is made 4%.
[0027]
Mn is contained in an amount of 0.05% or more in order to prevent hot brittleness due to S. Further, since Mn has an effect of increasing the electrical resistance of steel, it can be contained for the purpose of suppressing eddy current loss and reducing iron loss. However, as with Mn, the magnetic flux density decreases as the Mn content increases, and the cold rolling property and punching property deteriorate, so the upper limit is made 4%. Preferably it is 3% or less, More preferably, it is 2% or less.
[0028]
sol. Al has the effect of increasing the electrical resistance of steel to suppress eddy current loss and reducing iron loss, but also has the effect of impairing the magnetic flux density of steel. Therefore, when emphasizing iron loss reduction, sol. Al is preferably contained, but may not be contained when the magnetic flux density is more important than the iron loss. Excessively sol. When Al is contained, cold rolling property and punching workability deteriorate, so even if it is contained, the content is made 4% or less. Note that when the sum of Al in Si increases, the steel is excessively hardened and the cold rolling and punching properties are not good. Therefore, the Si and Al contents are Si (%) + 0.5 Al (%) ≦ 4.5. It is preferable to be in the range.
[0029]
P has the effect of increasing the electrical resistance to improve the iron loss and hardening the steel to improve the punchability. Therefore, when emphasizing the punchability, P may be contained. However, if excessively contained, steel is embrittled, so even if it is included, the upper limit is made 0.15%.
[0030]
The smaller the S, the better as it degrades the magnetic properties. However, since there is an effect of improving the punchability and machinability of the steel plate, 0.035% or less of S may be contained for the purpose of obtaining such an effect.
[0031]
Other than the above are Fe and inevitable impurities. Even when Si and Al are not contained, the Si and / or Al residue added to the molten steel for the purpose of deoxidizing the steel during steelmaking may be detected as an inevitable impurity of about 0.01% or less. Absent.
[0032]
In the texture of the product steel plate, the average magnetic flux density in the steel plate surface increases as the ratio of {411} integration degree to {211} integration degree increases, and the magnetic flux density in directions other than the rolling direction is improved. The effect of reducing the anisotropy of the magnetic properties of the film is obtained. For this reason, the value calculated by I 411 / I 211 is set to 1 or more, preferably 1.5 or more, more preferably 2 or more.
[0033]
Further, the same effect can be obtained by setting the texture obtained from the formula: (I 411 + I 200 ) / (I 211 + I 222 ) to 0.75 or more for the texture of the product steel plate. For this reason, it is good also considering the value calculated | required from the formula in a product steel plate as 0.75 or more. More preferably, it is 1 or more, and more preferably 1.125 or more.
[0034]
The electrical steel sheet of the present invention can be manufactured by the method described below.
The material steel having the above chemical composition is melted in a converter or electric furnace, vacuum processed, and then slabed by a continuous casting method, etc., and processes such as hot rolling, cold rolling, annealing, coating, etc. After that it is made into a product.
[0035]
There are no particular limitations on the method for producing molten steel, the vacuum treatment method, the casting method, and the like, and any known method that has been conventionally used may be used. Slab heating before hot rolling may be performed, or heating may be omitted when the rolling temperature can be secured. The heating temperature when heating is preferably 1250 ° C. or lower. As for the hot rolling temperature, the rolling end temperature (finishing temperature) is preferably in the range of 800 to 950 ° C, and the winding temperature is preferably in the range of 500 to 750 ° C.
[0036]
Although it is not an indispensable condition for a hot-rolled sheet, it is preferable to perform annealing before cold rolling because generation of ridging (tatami-like uneven defects generated after rolling) can be suppressed. It is also effective to anneal for the purpose of making the crystal structure of the cold rolled base metal uniform. Hot-rolled sheet annealing may be performed either before pickling or after pickling.
[0037]
As the cold-rolled base material, it is preferable to use a hot-rolled sheet having the above-described chemical composition and having a {411} integration degree to a {211} integration degree I 411 / I 211 of 1 or less. The cold rolled base metal ratio I 411 / I 211 is more preferably 0.8 or less, and even more preferably 0.5 or less. The texture of the steel plate can be obtained by a known integrated intensity measurement method in X-ray diffraction. Since the texture changes in the plate thickness direction, the average value is obtained by measuring several points in the plate thickness direction, but it is easy to obtain the diffraction intensity at a quarter of the plate thickness which is the average thickness position. It is.
[0038]
Further, in order to increase (I 411 + I 200 ) / (I 211 + I 222 ) of the product steel plate, it has the above-mentioned chemical composition as a cold-rolled base material, the average crystal grain size is 60 μm or more, and the crystal It is also a preferable method to use a hot-rolled sheet having a coefficient of variation in particle size distribution (relative standard deviation: (standard deviation ÷ average ratio) × 100%) as 80% or less as a base material. More preferably, the average crystal grain size is 80 μm or more, more preferably 100 μm or more, and the variation coefficient of crystal grain size is 70% or less, more preferably 65% or less. If the average crystal grain size exceeds 600 μm, the eddy current loss of the product steel sheet after cold rolling increases and the iron loss increases, so the average crystal grain size of the cold rolled base metal is preferably 600 μm or less.
[0039]
This average crystal grain size may be measured by a known method of crystal structure grains observed in the cross section in the thickness direction of the steel sheet. For example, a method defined in JIS-G-0552 may be used, but a known image processing technique is used. The average crystal grain size may be obtained by obtaining an average value of the diameters assuming that the crystals are circles having the same area. The variation coefficient can be obtained by a method such as obtaining the standard deviation of the particle size distribution obtained by the above image processing and dividing this by the average particle size.
[0040]
In order to make the crystal structure of the base material as described above, the reduction ratio during hot rolling, the finishing temperature, the cooling temperature, the coiling temperature, the heating rate of hot-rolled sheet annealing, the soaking temperature and time, cooling The speed and the like may be adjusted.
[0041]
The higher the rolling reduction during cold rolling, the more I 411 / I 211 or (I 411 + I 200 ) / (I 211 + I 222 ) of the product steel sheet increases, the magnetic flux density improves, and the magnetic properties in the plate surface differ. The direction is improved. For this reason, it is good to make the total rolling reduction until a hot-rolled sheet turns into a product steel plate to be 80% or more. More preferably 83% or more, and still more preferably 85% or more. The upper limit of the rolling reduction is not particularly limited because it is determined by operational restrictions.
[0042]
The cold rolling is preferably performed to the thickness of the product steel plate at one time, but may be rolled to the thickness of the product steel plate by rolling twice or more with an annealing in between. Moreover, you may perform cold rolling here by what is called warm rolling which raises the temperature of a steel plate and rolls. The steel plate temperature at this time is preferably 300 ° C. or lower. After cold rolling, annealing for recrystallization and crystal grain growth is performed by a known method.
[0043]
The annealed steel sheet is preferably provided with a surface coating for improving punchability and insulation by a known method. Non-oriented electrical steel sheets include full-process products that are shipped with given magnetic properties, and semi-processed products that are subjected to stress relief annealing after processing such as punching, and exhibit the prescribed magnetic properties. is there. The steel plate of the present invention can be applied to any of these.
[0044]
【Example】
( Preliminary test 1)
Steel having the chemical composition shown in Table 1 is manufactured in a converter-RH-continuous casting process, and the obtained slab is heated to 1120 ° C. and then hot-rolled to obtain hot-rolled sheets of various thicknesses. It was.
[0045]
[Table 1]
Figure 0004218077
[0046]
After these hot-rolled sheets are pickled, box annealing is performed at 850 ° C. for 2 hours, and the total rolling reduction is 83 to 83 by one or two cold rolling sandwiching intermediate annealing at 900 ° C. for 1 minute. 90% cold rolling was applied to a thickness of 0.5 mm, continuous annealing was performed at 850 ° C. for 1 minute, and a known inorganic-organic composite insulating coating was applied to the surface. The degree of {411} and {211} integration of the hot-rolled sheet after annealing and the product steel sheet coated with insulation was measured, and I 411 / I 211 was investigated. The X-ray integral intensity was measured on the steel plate surface that had been chemically polished from the surface of the steel plate to a position of 25% in the thickness direction. Further, from a rolling direction of the product steel plate, a single-plate magnetic measurement test piece having a length of 100 mm and a width of 30 mm was taken from three directions of 45 ° direction with respect to the rolling direction and 90 ° direction with respect to the rolling direction. Each iron loss W 15/50 and magnetic flux density B 50 were measured. From these measured values, the in-plane average value was determined by the calculation formula {(rolling direction) + 2 × (45 ° direction) + (90 ° direction)} / 4. Further, the in-plane anisotropy was determined by the calculation formula {(90 ° direction) + (45 ° direction) −2 × (rolling direction)} / (rolling direction).
[0047]
Table 1 shows the measurement results of these magnetic properties. In Table 1, the iron loss W 15/50 and the magnetic flux density B 50 described in the characteristic column of the product steel plate indicate the above-mentioned average values in the plate surface. In Test Nos. 1 to 6, I 411 / I 211 of the product steel plate is 1 or more, and the magnetic properties of the iron loss and the magnetic flux density are good in the in-plane average value, and the in-plane anisotropy of the magnetic flux density. Was extremely good with an absolute value of 0.005 or less. On the other hand, in the test numbers 7, 8 and 10 in which the contents of C, Si, Mn and the like were outside the range defined by the present invention, I 411 / I 211 of the product steel plate was less than 1, and the magnetic properties thereof Both the iron loss and the magnetic flux density were poor, and the in-plane anisotropy of the magnetic flux density was also large. In contrast, Test No. 9 and sol. In Test No. 12 where the Al content was too high, cracks occurred during cold rolling, and a product steel plate could not be obtained. In Test Nos. 11 and 13, the chemical composition of the steel was within the range specified by the present invention, but excellent characteristics were not obtained because I 411 / I 211 of the product was lower than 1.0. This is due to the fact that a texture favorable for magnetic properties could not be obtained.
[0048]
( Preliminary test 2)
A slab composed of the same chemical composition as the steel of test number 3 described in the preliminary test 1 is heated to 1150 ° C., the rolling reduction during hot rolling is changed, and I 411 / I 211 of the hot rolled sheet is changed, The rolling reduction at the time of cold rolling was changed and cold rolling was performed to make the final plate thickness 0.50 mm. These steel sheets were annealed at 800 ° C. for 1 minute, and after surface insulation coating was applied, single plate magnetic measurement test specimens were collected from the rolling direction, 45 ° direction, and 90 ° direction by punching, and then at 750 ° C. for 2 hours. Holding strain relief annealing was performed. The texture and magnetic properties were measured in the same manner as described in Preliminary Test 1 using a hot-rolled sheet and the above test piece. Table 2 shows the I 411 / I 211 of the obtained hot-rolled sheet and the product steel sheet, the average magnetic properties in the plate surface of the product steel plate, and the magnetic property anisotropy.
[0049]
[Table 2]
Figure 0004218077
[0050]
As can be seen from Table 2, the in-plane average value of the magnetic properties and the magnetic flux density of the test numbers 21 to 26 manufactured using a hot-rolled sheet having I 411 / I 211 of 1 or less as a cold-rolled base material The internal anisotropy was good. However, in Test No. 27 in which the cold rolling reduction was too low, I 411 / I 211 of the product steel plate was less than 1, and both the average magnetic properties and in-plane anisotropy were not preferable. Further, in Test Nos. 28 and 29 in which I 411 / I 211 of the hot-rolled sheet exceeded 1, similarly, excellent characteristics in both magnetic characteristics and anisotropy were not obtained.
[0051]
( Preliminary test 3)
C: 0.002%, Si: 0.1-1.0%, sol. Al: 0.1 to 1.0%, but the contents of Si and Al were changed so that (Si + 0.5Al) was about 1%, Mn: 0.2%, P: 0.09%, S : Hot rolled sheet obtained from steels of various chemical compositions consisting of 0.001%, the balance being Fe and unavoidable impurities, and then subjected to box annealing held at 850 ° C. for 2 hours, with a reduction rate of 88% The steel sheet was cold-rolled to give a 0.5 mm thick steel plate, subjected to continuous annealing held at 850 ° C. for 1 minute, and a known inorganic-organic composite insulating coating was applied to the surface. The magnetic properties and I 411 / I 211 of these steel plates were investigated in the same manner as described in Preliminary Test 1 for these steel plates.
[0052]
FIG. 1 shows the relationship of I 411 / I 211 to the average magnetic flux density among the obtained results. As shown in FIG. 1, it can be seen that there is a good correlation between the two, and in the region where I 411 / I 211 is 1 or more, the average magnetic flux density is 1.75 or more.
[0053]
FIG. 2 shows the relationship of I 411 / I 211 to the in-plane anisotropy of the magnetic flux density in the obtained results. As shown in FIG. 2, there is a good correlation between the two, and in the region where I 411 / I 211 is 1 or more, the absolute value of the anisotropy index is 0.05 or less. I understand that.
[0054]
( Example 1 )
Steel having the chemical composition shown in Table 3 is manufactured in the converter-RH-continuous casting process, and the obtained slab is heated to 1150 ° C. and then hot-rolled to obtain hot-rolled sheets of various thicknesses. It was.
[0055]
[Table 3]
Figure 0004218077
[0056]
After pickling these hot-rolled sheets, the thickness is reduced to 0.5 mm by cold rolling at various rolling reductions or cold rolling twice at 900 ° C. for 1 minute intermediate annealing, Continuous annealing was performed at 850 ° C. for 1 minute, and a known inorganic-organic composite insulating coating was applied to the surface. Prior to cold rolling, box annealing was carried out at 850 ° C. for 2 hours, except for some. The degree of integration of each crystal plane of the obtained product steel plate was measured by the same method as described in Example 1, and (I 411 + I 200 ) / (I 211 + I 222 ) was measured. Further, the magnetic properties in the rolling direction and other three directions were measured by the same method as described in Example 1, and the average value in the plate surface and the in-plane anisotropy were obtained from these measured values.
[0057]
Table 3 shows the measurement results. In the test numbers 31 to 36, (I 411 + I 200 ) / (I 211 + I 222 ) of the product steel plate is 0.75 or more, and the magnetic properties of the iron plate and the magnetic flux density are good in-plane average values. In addition, the in-plane anisotropy of the magnetic flux density was extremely good with an absolute value of 0.003 or less. On the other hand, in the test numbers 37 to 41, since the crystal structure of the cold-rolled base metal is not preferable, (I 411 + I 200 ) / (I 211 + I 222 ) of the product steel sheet becomes small, and excellent magnetic properties are obtained. I couldn't.
[0058]
(Example 2 )
A slab having the same chemical composition as that used in Preliminary Test 3 was hot-rolled under various hot-rolling conditions to obtain a hot-rolled steel plate in which the crystal structure of the hot-rolled plate was variously changed. Using these steel sheets as the base material, the magnetic properties and texture of the steel sheets obtained by cold rolling, annealing and insulating coating under the same conditions as described in the preliminary test 3 are the same as those described in the preliminary test 1. It measured by the method of.
[0059]
FIG. 3 shows the relationship of (I 411 / + I 200 ) / (I 211 + I 222 ) of the product steel plate to the average magnetic flux density among the obtained results. As shown in FIG. 3, there is a good correlation between the two, and the average magnetic flux density is 1.75 in the region where (I 411 + I 200 ) / (I 211 + I 222 ) is 0.75 or more. It turns out that the above favorable characteristics are shown.
[0060]
(Example 3 )
A slab having the same chemical composition as described in Test No. 32 of Example 1 is heated to 1120 ° C., and the rolling reduction during hot rolling is changed to change the average crystal grain size and the coefficient of variation of the grain size distribution. Hot-rolled sheets with various changes were prepared, and these were cold-rolled at a reduction ratio in the range of 83 to 88% to a final sheet thickness of 0.5 mm, annealed at 800 ° C. for 1 minute, and surface insulation coating Was given.
[0061]
Obtained in the same manner as described from the product steel sheet in the preliminary test 2 were taken rolling direction other veneer magnetometric specimen three directions of stress relief annealing in the same manner as described in the preliminary test 2 Was given. The crystal structure of the hot-rolled sheet was examined with an image processing device for a plate thickness cross section parallel to the rolling direction, and the variation coefficient of the average crystal grain size and grain size distribution of each sample was obtained. The texture and magnetic properties of the test pieces of the product steel plate were measured by the same method as described in the preliminary test 1.
[0062]
Table 4 shows the crystal structure of the hot-rolled sheet, (I 411 + I 200 ) / (I 211 + I 222 ), and the average magnetic property and anisotropy of the sheet surface.
[0063]
[Table 4]
Figure 0004218077
[0064]
As can be seen from Table 4, a hot-rolled sheet having an average crystal grain size of 60 μm or more and a coefficient of variation of the crystal grain size distribution of 80% or less was produced from a cold-rolled base material, and the magnetic characteristics in test numbers 42 to 47 The in-plane average value and the in-plane anisotropy of the magnetic flux density were both good. However, in the test numbers 48 to 50 in which the crystal structure of the hot-rolled sheet was not preferable, (I 411 + I 200 ) / (I 211 + I 222 ) of the product steel sheet was less than 0.75, and the magnetic properties were not preferable.
[0065]
【The invention's effect】
The steel sheet of the present invention has a low average iron loss in the plate surface and a high magnetic flux density, and also has a very small anisotropy of the magnetic flux density in the plate surface. It is extremely suitable as a steel plate. Moreover, since the steel plate of this invention can be manufactured without using a special alloy addition and equipment, it can supply a highly efficient non-oriented electrical steel plate efficiently and economically.
[Brief description of the drawings]
FIG. 1 is a graph showing the influence of product texture on average magnetic flux density.
FIG. 2 is a graph showing the effect of product texture on the in-plane anisotropy of magnetic flux density.
FIG. 3 is another graph showing the effect of product texture on average magnetic flux density.

Claims (2)

化学組成が重量%で、C:0.005%以下、Si:0〜4.0%、sol.Al:0〜4.0%、Mn:0.05〜4.0%、P:0.15%以下、S:0.035%以下、残部がFeおよび不可避的不純物からなる化学組成を有する鋼であって、鋼板面に平行な{411}面、{200}面、{211}面、および{222}面の集積度が、下記式の関係を満たすものであることを特徴とする無方向性電磁鋼板。
(I411 +I200 )/(I211 +I222)≧0.75
ただし、I411 、I200 、I211 およびI222は、それぞれ鋼板面に平行な{411}面、{200}面、{211}面および{222}面の集積度を表す。
The chemical composition is% by weight, C: 0.005% or less, Si: 0 to 4.0%, sol. Steel having a chemical composition in which Al: 0 to 4.0%, Mn: 0.05 to 4.0%, P: 0.15% or less, S: 0.035% or less, the balance being Fe and inevitable impurities a is, parallel to the steel sheet surface {411} plane, {200} plane, {211} plane, and {222} plane of the integration degree, you wherein a satisfies the following relationship type continuously Oriented electrical steel sheet.
(I 411 + I 200 ) / (I 211 + I 222 ) ≧ 0.75
However, I 411 , I 200 , I 211, and I 222 represent the degree of integration of {411} plane, {200} plane, {211} plane, and {222} plane parallel to the steel plate surface, respectively.
請求項1に記載の化学組成を有し、平均結晶粒径が60μm以上で、結晶粒径の変動係数が80%以下である熱延鋼板を圧下率80%以上で冷間圧延し、焼鈍することを特徴とする請求項に記載の無方向性電磁鋼板の製造方法。A hot rolled steel sheet having the chemical composition according to claim 1 and having an average crystal grain size of 60 μm or more and a coefficient of variation of crystal grain size of 80% or less is cold-rolled at a reduction rate of 80% or more and annealed. The manufacturing method of the non-oriented electrical steel sheet according to claim 1 .
JP17574298A 1998-02-26 1998-06-23 Non-oriented electrical steel sheet and manufacturing method thereof Expired - Lifetime JP4218077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17574298A JP4218077B2 (en) 1998-02-26 1998-06-23 Non-oriented electrical steel sheet and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4495098 1998-02-26
JP10-44950 1998-02-26
JP17574298A JP4218077B2 (en) 1998-02-26 1998-06-23 Non-oriented electrical steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11310857A JPH11310857A (en) 1999-11-09
JP4218077B2 true JP4218077B2 (en) 2009-02-04

Family

ID=26384915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17574298A Expired - Lifetime JP4218077B2 (en) 1998-02-26 1998-06-23 Non-oriented electrical steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4218077B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021205880A1 (en) 2020-04-10 2021-10-14 日本製鉄株式会社 Non-oriented electrical steel sheet, core, cold-rolled steel sheet, method for manufacturing non-oriented electrical steel sheet, and method for manufacturing cold-rolled steel sheet
WO2022211016A1 (en) 2021-04-02 2022-10-06 日本製鉄株式会社 Non-oriented electromagnetic steel sheet
WO2022211007A1 (en) 2021-04-02 2022-10-06 日本製鉄株式会社 Non-oriented electrical steel sheet
WO2022210998A1 (en) 2021-04-02 2022-10-06 日本製鉄株式会社 Non-oriented electric steel sheet

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200756A (en) * 2004-01-19 2005-07-28 Sumitomo Metal Ind Ltd Method for producing non-oriented silicon steel sheet
JP4586741B2 (en) * 2006-02-16 2010-11-24 Jfeスチール株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
JP6057082B2 (en) 2013-03-13 2017-01-11 Jfeスチール株式会社 Non-oriented electrical steel sheet with excellent magnetic properties
JP5995002B2 (en) 2013-08-20 2016-09-21 Jfeスチール株式会社 High magnetic flux density non-oriented electrical steel sheet and motor
KR101650406B1 (en) * 2014-12-24 2016-08-23 주식회사 포스코 Non-oriented electrical steel sheets and method for manufacturing the same
JP6515323B2 (en) * 2015-02-06 2019-05-22 日本製鉄株式会社 Non-oriented electrical steel sheet
JP6651759B2 (en) * 2015-09-16 2020-02-19 日本製鉄株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
KR102278897B1 (en) * 2019-12-19 2021-07-16 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
WO2024070489A1 (en) * 2022-09-30 2024-04-04 日本製鉄株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing non-oriented electromagnetic steel sheet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021205880A1 (en) 2020-04-10 2021-10-14 日本製鉄株式会社 Non-oriented electrical steel sheet, core, cold-rolled steel sheet, method for manufacturing non-oriented electrical steel sheet, and method for manufacturing cold-rolled steel sheet
KR20220142512A (en) 2020-04-10 2022-10-21 닛폰세이테츠 가부시키가이샤 Non-oriented electrical steel sheet, core, cold-rolled steel sheet, non-oriented electrical steel sheet manufacturing method and cold-rolled steel sheet manufacturing method
WO2022211016A1 (en) 2021-04-02 2022-10-06 日本製鉄株式会社 Non-oriented electromagnetic steel sheet
WO2022211007A1 (en) 2021-04-02 2022-10-06 日本製鉄株式会社 Non-oriented electrical steel sheet
WO2022210998A1 (en) 2021-04-02 2022-10-06 日本製鉄株式会社 Non-oriented electric steel sheet
KR20230118709A (en) 2021-04-02 2023-08-11 닛폰세이테츠 가부시키가이샤 non-oriented electrical steel
KR20230118706A (en) 2021-04-02 2023-08-11 닛폰세이테츠 가부시키가이샤 non-oriented electrical steel
US11942246B2 (en) 2021-04-02 2024-03-26 Nippon Steel Corporation Non-oriented electrical steel sheet

Also Published As

Publication number Publication date
JPH11310857A (en) 1999-11-09

Similar Documents

Publication Publication Date Title
RU2318883C2 (en) Non-oriented electrical steel strip continuous casting method
JP4023183B2 (en) Non-oriented electrical steel sheet for rotating machine and manufacturing method thereof
JP2006501361A5 (en)
JP4218077B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP3888033B2 (en) Method for producing non-oriented electrical steel sheet
JP2008127659A (en) Non-oriented electromagnetic steel sheet with less anisotropy
JP4358550B2 (en) Method for producing non-oriented electrical steel sheet with excellent rolling direction and perpendicular magnetic properties in the plate surface
WO2019225529A1 (en) Non-oriented electromagnetic steel sheet and method for manufacturing same
JP2970423B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP3239988B2 (en) High-strength non-oriented electrical steel sheet excellent in magnetic properties and method for producing the same
JP4303431B2 (en) Ultra high magnetic flux density non-oriented electrical steel sheet and manufacturing method thereof
JP3375998B2 (en) Manufacturing method of non-oriented electrical steel sheet
KR19990023587A (en) Electronic steel sheet with excellent magnetic properties and its manufacturing method
JP7245325B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JPH06228645A (en) Production of silicon steel sheet for compact stationary device
JP3533655B2 (en) Method for producing low-grade electrical steel sheet with small magnetic anisotropy and low-grade electrical steel sheet with small magnetic anisotropy
JP2874564B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JP4258854B2 (en) Manufacturing method of electrical steel sheet
JP7184226B1 (en) Rotating electric machine, stator core and rotor core set, method for manufacturing rotating electric machine, method for manufacturing non-oriented electrical steel sheet, method for manufacturing rotor and stator of rotating electrical machine, and set of non-oriented electrical steel sheet
JPH04224624A (en) Manufacture of silicon steel sheet excellent in magnetic property
WO2023282072A1 (en) Non-oriented electrical steel plate and manufacturing method thereof
JP3178270B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP7288215B2 (en) Non-oriented electrical steel sheet
JPH0657332A (en) Manufacture of non-oriented silicon steel sheet having high magnetic flux density and low iron loss
JP3022074B2 (en) Manufacturing method of non-oriented electrical steel sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081103

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term