JP4216985B2 - Starch molasses purification method - Google Patents

Starch molasses purification method Download PDF

Info

Publication number
JP4216985B2
JP4216985B2 JP2000040917A JP2000040917A JP4216985B2 JP 4216985 B2 JP4216985 B2 JP 4216985B2 JP 2000040917 A JP2000040917 A JP 2000040917A JP 2000040917 A JP2000040917 A JP 2000040917A JP 4216985 B2 JP4216985 B2 JP 4216985B2
Authority
JP
Japan
Prior art keywords
exchange resin
sugar solution
basic anion
type
anion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000040917A
Other languages
Japanese (ja)
Other versions
JP2001231600A (en
Inventor
友二 浅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2000040917A priority Critical patent/JP4216985B2/en
Publication of JP2001231600A publication Critical patent/JP2001231600A/en
Application granted granted Critical
Publication of JP4216985B2 publication Critical patent/JP4216985B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Saccharide Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、イオン交換樹脂を用いたデンプン糖液の精製法に関し、さらに詳述すると、処理糖液のpHの安定性に優れ、水あめの精製に特に好適に使用することができるデンプン糖液精製法に関する。
【0002】
【従来の技術】
デンプンを酸又は酵素で加水分解すると、その分解条件によって種々のデンプン糖(デンプンを原料として製造された糖類の総称)が得られる。デンプンの加水分解工程は液化と糖化の2工程に分けられ、デンプンの糖化によってデンプン糖液が得られるが、このデンプン糖液中には様々な不純物が含まれている。そのため、これら不純物除去を目的として、デンプンの糖化工程の後にはデンプン糖液の精製が行われる。
【0003】
デンプン糖液を精製する場合、炭酸飽充、粒状活性炭濾過、骨炭濾過等の精製工程の後処理として、脱塩を目的としたイオン交換処理が行われる。このイオン交換処理システムは、一般に、強酸性カチオン交換樹脂と弱塩基性アニオン交換樹脂を用いた複床式の前脱塩システムと、強酸性カチオン交換樹脂とII形強塩基性アニオン交換樹脂を用いた混床式の仕上げ脱塩システムとによって構成され、前脱塩システムで原糖液中の塩類、色素、その他の不純物の大部分を除去し、仕上げ脱塩システムで仕上げの脱塩、脱色、pH調整を行っている。この脱塩処理は工業的に広く使用されており、高純度の糖液が得られる点で、糖液の精製処理法として優れた方法である。これは、混床層を用いた仕上げ脱塩がうまく働いているためである。
【0004】
また、前述した従来の脱塩処理では、仕上げ脱塩システムで強塩基性アニオン交換樹脂を使用しているので、ブドウ糖などの異性化が生じやすい。そのため、本発明者は、従来の脱塩処理に比べて異性化が起こりにくいシステムとして、単床式強酸性カチオン交換樹脂塔(前段)と、弱塩基性アニオン交換樹脂及び強酸性カチオン交換樹脂を用いた混床式イオン交換樹脂塔(後段)とを組み合わせたイオン交換処理システムを新たに開発した。このイオン交換処理システムでは、上記混床式イオン交換樹脂塔の後段に、強酸性カチオン交換樹脂とII形強塩基性アニオン交換樹脂を用いた混床式の小型の仕上げ脱塩システムをさらに設置することもある。
【0005】
上記イオン交換樹脂を用いた各種のデンプン糖液精製システムは、ブドウ糖、水あめ、マルトースなどの種々のデンプン糖液の精製に使用されている。
【0006】
【発明が解決しようとする課題】
イオン交換樹脂を用いたデンプン糖液精製システムに要求される性能は、脱塩性能、脱色性能及び処理糖液のpHの安定性に優れ、かつ異性化反応(例えばブドウ糖の異性化)を生じさせにくいとともに、使用するイオン交換樹脂の安定性が高いことである。
【0007】
しかしながら、処理するデンプン糖液の種類によって重視される要求項目は異なる。例えば、ブドウ糖やマルトースは製品純度が大切であるため、これらの精製処理では異性化の抑制と脱塩性能が重視される。これに対し、水あめは多種の糖類の混合物であるため、製品純度はそれほど重要ではなく、その精製処理では脱色性能と処理糖液のpHの安定性が重視される。したがって、デンプン糖液の種類に応じた精製システムを構成することが望ましいが、従来のデンプン糖液精製システムは、異性化の抑制が重視されるブドウ糖精製システムを基本として開発されているため、脱色性能と処理糖液のpHの安定性が重視される水あめの処理に最適なシステムとは言い難いものであった。
【0008】
また、イオン交換樹脂を用いたデンプン糖液精製システムでは、仕上げ脱塩システムによる処理が処理糖液の品質に大きく影響する。この場合、仕上げ脱塩システムとして、従来は強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂を用いた混床式システムが一般に使用されているが、この仕上げ脱塩システムは、通液するにしたがって強塩基性アニオン交換樹脂が弱塩基化した場合、処理糖液のpHが酸性側になり、処理糖液のpHの安定性が悪くなるものであった。
【0009】
本発明は、前述した事情に鑑みてなされたもので、処理糖液のpHの安定性に優れ、特に水あめの精製、とりわけ水あめの仕上げ脱塩処理に好適に使用することができるデンプン糖液精製法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者は、前記目的を達成するために鋭意検討を行った結果、I 強塩基性アニオン交換樹脂と、デンプン糖の精製には従来用いられていなかった弱酸性カチオン交換樹脂とを混合したイオン交換樹脂層にデンプン糖液を通液した場合、強塩基性アニオン交換樹脂と強酸性カチオン交換樹脂とを混合したイオン交換樹脂層を用いた場合に比べ、脱塩性能が若干低下する反面、処理糖液のpHの安定性が向上することを見出した。
【0011】
また、前述したように、強塩基性アニオン交換樹脂と強酸性カチオン交換樹脂とを混合したイオン交換樹脂層は、通液するにしたがって強塩基性アニオン交換樹脂が弱塩基化した場合、処理糖液のpHが酸性側になり、処理糖液のpHの安定性が悪くなるものであったが、本発明者は、I 強塩基性アニオン交換樹脂と弱酸性カチオン交換樹脂とを混合したイオン交換樹脂層を用いた場合には、かかる問題は生じないことを知見した。
【0012】
本発明は、上記知見に基づいてなされたもので、I 強塩基性アニオン交換樹脂と弱酸性カチオン交換樹脂とを混合したイオン交換樹脂層にデンプン糖液を通液することを特徴とするデンプン糖液精製法を提供する。
【0013】
以下、本発明につきさらに詳しく説明する。本発明で用いるI 強塩基性アニオン交換樹脂及び弱酸性カチオン交換樹脂の種類に限定はなく、処理の目的等に応じて適宜選択すればよい。具体的には、I 強塩基性アニオン交換樹脂としてはアンバーライト(登録商標、以下同じ)IRA402BL、IRA401、IRA440B、XT5007、IRA400、IRA900、IRA904、ダイヤイオン(登録商標、以下同じ)SA10A、SA11A、PA306、PA308等を用いることができ、弱酸性カチオン交換樹脂としてはアンバーライトIRC76、IRC50、ダイヤイオンWK10、WK20等を用いることができる。
【0014】
また、本発明に用いるイオン交換樹脂層におけるI 強塩基性アニオン交換樹脂と弱酸性カチオン交換樹脂との混合比は、Cl形としたときのI 強塩基性アニオン交換樹脂とH形としたときの弱酸性カチオン交換樹脂との容量比で1:0.2〜4.0、特に1:0.3〜1.0とすることが適当である。上記弱酸性カチオン交換樹脂の割合が0.2未満であると処理糖液のpHがアルカリ性側に振れることがあり、4.0を超えると処理糖液のpHが極端な酸性側に振れることがある。
【0015】
本発明において、強塩基性アニオン交換樹脂としては I形強塩基性アニオン交換樹脂を用いる。これは、I形強塩基性アニオン交換樹脂は、II形強塩基性アニオン交換樹脂に比べて弱塩基化しにくいため、I形強塩基性アニオン交換樹脂を用いた場合、II形強塩基性アニオン交換樹脂を用いた場合に比べて処理糖液のpHが安定した脱塩処理を行うことができるからである。なお、I形強塩基性アニオン交換樹脂は、II形強塩基性アニオン交換樹脂に比べてブドウ糖の異性化率が高いとされ、デンプン糖液の脱塩処理には使用すべきでないとされてきたものである。
【0016】
また、上記I形強塩基性アニオン交換樹脂としては、ゲル型のものを用いることが好ましい。これは、ゲル型のI形強塩基性アニオン交換樹脂は、ポーラス型(MR型を含む)のI形強塩基性アニオン交換樹脂よりも異性化を生じさせにくいからである。なお、ゲル型のI形強塩基性アニオン交換樹脂としてはアンバーライトIRA402BL、IRA400、IRA440B、XT5007、ダイヤイオンSA10A、SA11A等を挙げることができる。
【0017】
本発明においてI形強塩基性アニオン交換樹脂を用いた場合、I形強塩基性アニオン交換樹脂はII形強塩基性アニオン交換樹脂に比べて耐熱性が高いため、通液温度を高くすることにより菌の増殖を抑制できるとともに、再生温度を高くしてアニオン交換樹脂からの色素の脱着を良くすることにより脱色性能を向上させることができる。この場合、通液温度は40〜80℃、特に55〜65℃とすることが適当である。
【0018】
しかし、通液温度を高くすると異性化率は通液温度が低い場合よりも上昇するので、高温での通液が適さないデンプン糖液もある。本発明者の検討では、異性化しやすいブドウ糖の割合が多い、DEが50を超えるデンプン糖液は、高温での通液には適さなかった。したがって、高温で通液するデンプン糖液は、DEが50以下のデンプン糖液とすることが適当である。DE(dextrose equivalent の略語)とは、還元糖を測定してグルコースとしてあらわし、固形分に対する百分率を求めた値であり、糖化率を意味する。
【0019】
上述したDEが50以下のデンプン糖液として、具体的には水あめを挙げることができる。したがって、本発明においてI形強塩基性アニオン交換樹脂を使用し、かつ通液温度を40〜80℃とした場合、低温で通液する場合に比べて水あめをより効果的に精製することが可能となる。水あめの精製では異性化の抑制は重視されないので、通液温度を高くして異性化率が高くなっても問題はない。
【0020】
【発明の実施の形態】
図1は本発明を用いたデンプン糖液精製システムの一例を示すフロー図である。図1のシステムにおいて、2は単床式強酸性カチオン交換樹脂塔、4は弱塩基性アニオン交換樹脂及び強酸性カチオン交換樹脂を用いた混床式イオン交換樹脂塔、6はI 強塩基性アニオン交換樹脂及び弱酸性カチオン交換樹脂を用いた本発明による混床式イオン交換樹脂塔(仕上げ脱塩システム)を示す。
【0021】
この場合、単床式強酸性カチオン交換樹脂塔2及び混床式イオン交換樹脂塔4の強酸性カチオン交換樹脂としてはアンバーライト200CT、IR120B、IR124、IR118、ダイヤイオンSK1B、SK102、PK208、PK212等を用いることができ、混床式イオン交換樹脂塔4の弱塩基性アニオン交換樹脂としてはアンバーライトXE583、IRA67、IRA96SB、ダイヤイオンWA10、WA20、WA30等を用いることができる。
【0022】
前述したように、I 強塩基性アニオン交換樹脂及び弱酸性カチオン交換樹脂を用いた本発明による混床式仕上げ脱塩システム6は、強酸性カチオン交換樹脂とII形強塩基性アニオン交換樹脂を用いた従来の混床式仕上げ脱塩システムに比べ、脱塩性能は若干低下する。しかし、本実施形態のように、本発明による混床式仕上げ脱塩システム6の前段に、単床式強酸性カチオン交換樹脂塔2と、弱塩基性アニオン交換樹脂及び強酸性カチオン交換樹脂を用いた混床式イオン交換樹脂塔4とを組み合わせた脱塩システムを設置することにより、従来のイオン交換処理システム、すなわち強酸性カチオン交換樹脂と弱塩基性アニオン交換樹脂を用いた複床式の前脱塩システムと、強酸性カチオン交換樹脂とII形強塩基性アニオン交換樹脂を用いた混床式の仕上げ脱塩システムとを組み合わせたシステムと同等の脱塩性能を得ることができる。ただし、従来のイオン交換処理システムにおいて、後段の仕上げ脱塩システムに代えて、I 強塩基性アニオン交換樹脂及び弱酸性カチオン交換樹脂を用いた本発明による仕上げ脱塩システムを設置してもよい。
【0023】
【実施例】
以下、本発明を実施例に基づいて具体的に示す。この場合、下記実施例、実験例、比較例では、単床式強酸性カチオン交換樹脂塔と、弱塩基性アニオン交換樹脂及び強酸性カチオン交換樹脂を用いた混床式イオン交換樹脂塔とをこの順で設置した脱塩システムで予め処理を行った水あめ液を原糖液とした。原糖液の性状を表1に示す。
【0024】
(実施例1)
上記原糖液を、I形強塩基性アニオン交換樹脂(アンバーライトIRA−402BL)100mlと、弱酸性カチオン交換樹脂(アンバーライトIRC−76)50mlとを充填した混床式イオン交換樹脂塔(樹脂カラム)に通液した。この際、上記I形強塩基性アニオン交換樹脂としては、新品のイオン交換基が弱塩基化していないものを用いた。通液条件は、通液温度35℃、通液量1000ml/hとした。1000ml通液した時の処理糖液の性状を表1に示す。
【0025】
(実施例2)
I形強塩基性アニオン交換樹脂として、精製糖工場の脱塩システムで152サイクル使用しイオン交換基が弱塩基化しているものを用いたこと以外は、実施例1と同様にして原糖液の処理を行った。1000ml通液した時の処理糖液の性状を表1に示す。
【0026】
(実験例)
上記原糖液を、I形強塩基性アニオン交換樹脂(アンバーライトIRA−402BL)100mlと、強酸性カチオン交換樹脂(アンバーライト200CT)50mlとを充填した混床式イオン交換樹脂塔(樹脂カラム)に通液した。この際、上記I形強塩基性アニオン交換樹脂としては、新品のイオン交換基が弱塩基化していないものを用いた。通液条件は、通液温度35℃、通液量1000ml/hとした。1000ml通液した時の処理糖液の性状を表1に示す。
【0027】
(比較例)
I形強塩基性アニオン交換樹脂として、精製糖工場の脱塩システムで152サイクル使用しイオン交換基が弱塩基化しているものを用いたこと以外は、実験例と同様にして原糖液の処理を行った。1000ml通液した時の処理糖液の性状を表1に示す。
【0028】
【表1】

Figure 0004216985
【0029】
表1の結果より、本発明によれば、I 強塩基性アニオン交換樹脂が弱塩基化した場合でも、処理糖液のpHを好適範囲である4.5〜6.5の間で安定させつつ脱塩処理を行うことができることが確認された。これに対し、実験例と比較例との比較からわかるように、強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂を用いた混床式システムは、強塩基性アニオン交換樹脂が弱塩基化した場合には、処理糖液のpHが4.5より低くなり、処理糖液のpHの安定性が悪くなるものであった。また、実施例1、2では異性化はほとんど起こらなかった。
【0030】
【発明の効果】
以上のように、本発明に係るデンプン糖液精製法は、処理糖液のpHの安定性に優れ、特に水あめの精製、とりわけ水あめの仕上げ脱塩処理に好適に使用することができるものである。
【図面の簡単な説明】
【図1】本発明を用いたデンプン糖液精製システムの一例を示すフロー図である。
【符号の説明】
2 単床式強酸性カチオン交換樹脂塔
4 弱塩基性アニオン交換樹脂及び強酸性カチオン交換樹脂を用いた混床式イオン交換樹脂塔
I 強塩基性アニオン交換樹脂及び弱酸性カチオン交換樹脂を用いた混床式イオン交換樹脂塔[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for purifying starch sugar liquor using an ion exchange resin, and more specifically, starch sugar liquor purification which is excellent in pH stability of treated sugar liquor and can be particularly suitably used for purification of starch syrup. Regarding the law.
[0002]
[Prior art]
When starch is hydrolyzed with an acid or an enzyme, various starch sugars (a general term for sugars produced using starch as a raw material) are obtained depending on the degradation conditions. The starch hydrolysis process is divided into two steps, liquefaction and saccharification, and starch saccharification is obtained by saccharification of starch, and this starch saccharification contains various impurities. Therefore, for the purpose of removing these impurities, the starch sugar solution is purified after the starch saccharification step.
[0003]
When the starch sugar solution is purified, an ion exchange treatment for desalting is performed as a post-treatment such as carbonation saturation, granular activated carbon filtration, and bone charcoal filtration. This ion exchange treatment system generally uses a double bed type pre-desalting system using a strongly acidic cation exchange resin and a weakly basic anion exchange resin, and a strongly acidic cation exchange resin and a type II strongly basic anion exchange resin. The mixed-bed type finishing desalination system was used to remove most of the salts, pigments and other impurities in the raw sugar solution with the pre-desalting system, and the finishing desalination system to finish the desalting, decolorization, The pH is adjusted. This desalting treatment is widely used industrially and is an excellent method for purifying a sugar solution in that a high-purity sugar solution can be obtained. This is because finishing desalination using a mixed bed layer works well.
[0004]
Moreover, in the conventional desalting treatment described above, isomerization of glucose or the like is likely to occur because a strong base anion exchange resin is used in the finishing desalting system. Therefore, the present inventor used a single-bed type strongly acidic cation exchange resin tower (previous stage), a weakly basic anion exchange resin and a strongly acidic cation exchange resin as a system in which isomerization hardly occurs compared to conventional desalting treatment. We have newly developed an ion exchange treatment system in combination with the mixed-bed ion exchange resin tower (second stage) used. In this ion exchange treatment system, a small mixed bed type desalination system using a strongly acidic cation exchange resin and a type II strong basic anion exchange resin is further installed at the subsequent stage of the mixed bed ion exchange resin tower. Sometimes.
[0005]
Various starch sugar liquid purification systems using the ion exchange resin are used for purifying various starch sugar liquids such as glucose, starch syrup and maltose.
[0006]
[Problems to be solved by the invention]
The performance required for a starch sugar solution purification system using an ion exchange resin is excellent in desalting performance, decolorization performance and pH stability of the processed sugar solution, and causes an isomerization reaction (eg, glucose isomerization). It is difficult and the stability of the ion exchange resin used is high.
[0007]
However, the required items differ depending on the type of starch sugar solution to be processed. For example, since product purity is important for glucose and maltose, suppression of isomerization and desalination performance are important in these purification processes. On the other hand, since candy is a mixture of various sugars, the product purity is not so important, and in the purification process, decolorization performance and pH stability of the processed sugar solution are emphasized. Therefore, it is desirable to construct a purification system according to the type of starch sugar solution, but the conventional starch sugar solution purification system has been developed based on a glucose purification system where emphasis is placed on suppression of isomerization. It was difficult to say that the system is optimal for the treatment of starch candy, where performance and pH stability of the treated sugar solution are important.
[0008]
Further, in a starch sugar solution purification system using an ion exchange resin, the treatment by the finishing desalting system greatly affects the quality of the treated sugar solution. In this case, a mixed bed type system using a strongly acidic cation exchange resin and a strongly basic anion exchange resin is generally used as a final desalting system. When the strongly basic anion exchange resin was weakly basified, the pH of the treated sugar solution was on the acidic side, and the pH stability of the treated sugar solution was poor.
[0009]
The present invention has been made in view of the above-mentioned circumstances, and is excellent in the stability of the pH of the processed sugar solution, and in particular, refined starch solution that can be suitably used for purification of starch syrup, particularly finishing desalination treatment of starch candy. The purpose is to provide the law.
[0010]
[Means for Solving the Problems]
The present inventor has conducted extensive studies to achieve the above object, and mixed with I-type strongly basic anion exchange resin and a weakly acid cation exchange resin which has not been used conventionally for purification of starch sugars When the starch sugar solution is passed through the ion exchange resin layer, the desalting performance is slightly reduced compared to the case of using an ion exchange resin layer in which a strongly basic anion exchange resin and a strong acid cation exchange resin are mixed, It has been found that the pH stability of the treated sugar solution is improved.
[0011]
In addition, as described above, the ion exchange resin layer obtained by mixing the strongly basic anion exchange resin and the strongly acidic cation exchange resin is processed sugar solution when the strongly basic anion exchange resin is weakly basified as it passes through. pH is acidic side, but the stability of the pH of the treated sugar solution was made worse, the present inventor has ion-exchange of a mixture of I type strongly basic anion exchange resin and a weakly acid cation exchange resin It was found that such a problem does not occur when a resin layer is used.
[0012]
The present invention has been made based on the above findings, starch, characterized in that the liquid permeability of starch sugar solution to an ion exchange resin layer of a mixture of I type strongly basic anion exchange resin and a weakly acid cation exchange resin A sugar solution purification method is provided.
[0013]
Hereinafter, the present invention will be described in more detail. Limited to the type of I type strongly basic anion exchange resins and weakly acidic cation exchange resin used in the present invention is not, it may be appropriately selected depending on the purpose or the like of the processing. Specifically, as the I -type strongly basic anion exchange resin, Amberlite (registered trademark, hereinafter the same) IRA402BL, IRA401, IRA440B, XT5007, IRA400, IRA900, IRA904, Diaion (registered trademark, the same below) SA10A, SA11A PA306, PA308, etc., and Amberlite IRC76, IRC50, Diaion WK10, WK20, etc. can be used as weakly acidic cation exchange resins.
[0014]
In addition, the mixing ratio of the I -type strongly basic anion exchange resin and the weakly acidic cation exchange resin in the ion exchange resin layer used in the present invention is the I -type strongly basic anion exchange resin and the H-type when the Cl-type is used. It is appropriate that the volume ratio with the weakly acidic cation exchange resin is 1: 0.2 to 4.0, particularly 1: 0.3 to 1.0. If the ratio of the weakly acidic cation exchange resin is less than 0.2, the pH of the treated sugar solution may swing to the alkaline side, and if it exceeds 4.0, the pH of the treated sugar solution may swing to the extremely acidic side. is there.
[0015]
In the present invention, the strongly basic anion exchange resin, Ru using the I-type strongly basic anion exchange resin. This is because Form I strongly basic anion exchange resin is less susceptible to weak base formation than Form II strongly basic anion exchange resin. This is because a desalting treatment in which the pH of the treated sugar solution is stable as compared with the case of using a resin can be performed. In addition, Form I strongly basic anion exchange resin is said to have a higher isomerization rate of glucose than Form II strongly basic anion exchange resin, and it has been said that it should not be used for desalting treatment of starch sugar solution. Is.
[0016]
Moreover, as said I-type strong basic anion exchange resin, it is preferable to use a gel type thing. This is because gel type I strongly basic anion exchange resins are less likely to cause isomerization than porous type (including MR type) I type strongly basic anion exchange resins. Examples of the gel type I-type strongly basic anion exchange resin include Amberlite IRA402BL, IRA400, IRA440B, XT5007, Diaion SA10A, SA11A and the like.
[0017]
In the present invention, when a type I strong basic anion exchange resin is used, the type I strong basic anion exchange resin has higher heat resistance than the type II strong basic anion exchange resin. The growth of bacteria can be suppressed, and the decolorization performance can be improved by increasing the regeneration temperature and improving the desorption of the dye from the anion exchange resin. In this case, the liquid passing temperature is suitably 40 to 80 ° C, particularly 55 to 65 ° C.
[0018]
However, since the isomerization rate increases when the liquid passing temperature is increased as compared with the case where the liquid passing temperature is low, there are some starch sugar solutions that are not suitable for passing at high temperatures. According to the study of the present inventor, a starch sugar solution having a DE ratio of more than 50, which has a high proportion of easily isomerized glucose, was not suitable for passing at a high temperature. Therefore, it is appropriate that the starch sugar solution that passes at a high temperature is a starch sugar solution having a DE of 50 or less. DE (abbreviation for dextrose equivalent) is a value obtained by measuring a reducing sugar and expressing it as glucose, and obtaining a percentage with respect to a solid content, and means a saccharification rate.
[0019]
Specific examples of starch sugar solutions having a DE of 50 or less include starch syrup. Therefore, in the present invention, when using a type I strongly basic anion exchange resin and the liquid passing temperature is 40 to 80 ° C., it is possible to purify the starch candy more effectively than when passing at a low temperature. It becomes. In the purification of starch syrup, suppression of isomerization is not emphasized, so there is no problem even if the isomerization rate is increased by raising the liquid passing temperature.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a flowchart showing an example of a starch sugar solution purification system using the present invention. In the system of FIG. 1, 2 is a single-bed type strongly acidic cation exchange resin tower, 4 is a mixed bed type ion exchange resin tower using a weakly basic anion exchange resin and a strong acid cation exchange resin, and 6 is a form I strong basicity. 1 shows a mixed bed ion exchange resin tower (finishing desalination system) according to the present invention using an anion exchange resin and a weakly acidic cation exchange resin.
[0021]
In this case, Amberlite 200CT, IR120B, IR124, IR118, Diaion SK1B, SK102, PK208, PK212, etc. are used as the strong acid cation exchange resins of the single bed type strongly acidic cation exchange resin tower 2 and the mixed bed type ion exchange resin tower 4. Amberlite XE583, IRA67, IRA96SB, Diaion WA10, WA20, WA30, etc. can be used as the weakly basic anion exchange resin of the mixed bed type ion exchange resin tower 4.
[0022]
As described above, mixed bed finishing desalination system 6 according to the present invention using the I-type strongly basic anion exchange resins and weakly acidic cation exchange resin, a strongly acidic cation exchange resin and form II strongly basic anion exchange resin Compared to the conventional mixed bed type finishing desalination system used, the desalination performance is slightly reduced. However, as in the present embodiment, the single bed type strongly acidic cation exchange resin tower 2, the weakly basic anion exchange resin and the strong acid cation exchange resin are used in the preceding stage of the mixed bed type finishing desalination system 6 according to the present invention. By installing a desalination system in combination with the mixed bed type ion exchange resin tower 4, a conventional ion exchange treatment system, that is, a double bed type using a strong acid cation exchange resin and a weakly basic anion exchange resin, is used. Desalination performance equivalent to a system combining a desalination system and a mixed bed type finishing desalination system using a strongly acidic cation exchange resin and a type II strongly basic anion exchange resin can be obtained. However, in the conventional ion exchange treatment system, in place of the subsequent finishing desalination system may be installed finishing desalination system according to the present invention using I-shaped strongly basic anion exchange resins and weakly acidic cation exchange resin .
[0023]
【Example】
Hereinafter, the present invention will be specifically described based on examples. In this case, in the following examples, experimental examples, and comparative examples, a single bed type strongly acidic cation exchange resin tower and a mixed bed type ion exchange resin tower using a weakly basic anion exchange resin and a strong acid cation exchange resin are used. The starch syrup was previously treated with a desalting system installed in this order as a raw sugar solution. Table 1 shows the properties of the raw sugar solution.
[0024]
Example 1
A mixed bed ion exchange resin tower (resin) filled with 100 ml of the above-mentioned raw sugar solution with 100 ml of form I strongly basic anion exchange resin (Amberlite IRA-402BL) and 50 ml of weak acid cation exchange resin (Amberlite IRC-76) Column). At this time, as the I-type strongly basic anion exchange resin, a new ion exchange group that was not weakly basified was used. The liquid flow conditions were a liquid flow temperature of 35 ° C. and a liquid flow rate of 1000 ml / h. Table 1 shows the properties of the treated sugar solution when 1000 ml was passed.
[0025]
(Example 2)
The raw sugar solution was prepared in the same manner as in Example 1 except that the I-type strongly basic anion exchange resin used was 152 cycles in the desalination system of a refined sugar factory and the ion exchange group was weakly basified. Processed. Table 1 shows the properties of the treated sugar solution when 1000 ml was passed.
[0026]
(Experimental example)
Mixed-bed ion exchange resin tower (resin column) packed with 100 ml of the above-mentioned raw sugar solution with 100 ml of form I strongly basic anion exchange resin (Amberlite IRA-402BL) and 50 ml of strongly acidic cation exchange resin (Amberlite 200CT) The liquid was passed through. At this time, as the I-type strongly basic anion exchange resin, a new ion exchange group that was not weakly basified was used. The liquid flow conditions were a liquid flow temperature of 35 ° C. and a liquid flow rate of 1000 ml / h. Table 1 shows the properties of the treated sugar solution when 1000 ml was passed.
[0027]
(Comparative example)
Treatment of the raw sugar solution in the same manner as in the experimental example, except that the I-type strongly basic anion exchange resin was used for 152 cycles in the desalination system of a refined sugar factory and the ion exchange group was weakly basified Went. Table 1 shows the properties of the treated sugar solution when 1000 ml was passed.
[0028]
[Table 1]
Figure 0004216985
[0029]
From the results of Table 1, according to the present invention, even if the I-strong base anion exchange resin is a weak base of, to stabilize the pH of the treated sugar solution between a preferred range 4.5 to 6.5 It was confirmed that the desalting treatment can be performed. On the other hand, as can be seen from the comparison between the experimental example and the comparative example, the mixed bed system using the strongly acidic cation exchange resin and the strongly basic anion exchange resin is used when the strongly basic anion exchange resin is weakly basified. In this case, the pH of the treated sugar solution was lower than 4.5, and the pH stability of the treated sugar solution was deteriorated. In Examples 1 and 2, isomerization hardly occurred.
[0030]
【The invention's effect】
As described above, the starch sugar solution refining method according to the present invention is excellent in pH stability of the treated sugar solution, and can be suitably used particularly for the purification of starch syrup, especially the finish desalination treatment of starch candy. .
[Brief description of the drawings]
FIG. 1 is a flow diagram showing an example of a starch sugar solution purification system using the present invention.
[Explanation of symbols]
Use two single bed strongly acidic cation exchange resin tower 4 weakly basic anion exchange resin and a mixed bed ion exchange resin column 6 I-type strong base anion exchange resins and weakly acidic cation exchange resin using a strong acid cation exchange resin Mixed bed type ion exchange resin tower

Claims (5)

I 強塩基性アニオン交換樹脂と弱酸性カチオン交換樹脂とを混合したイオン交換樹脂層にデンプン糖液を通液することを特徴とするデンプン糖液精製法。Starch sugar solution purification method characterized by passing liquid starch sugar solution into the ion exchange resin layer of a mixture of I type strongly basic anion exchange resin and a weakly acid cation exchange resin. I 強塩基性アニオン交換樹脂と弱酸性カチオン交換樹脂との混合比を、Cl形としたときのI 強塩基性アニオン交換樹脂とH形としたときの弱酸性カチオン交換樹脂との容量比で1:0.2〜4.0とすることを特徴とする請求項1に記載のデンプン糖液精製法。Volume ratio of I -type strongly basic anion exchange resin and H-type weakly acidic cation exchange resin when the mixing ratio of I -type strongly basic anion exchange resin and weakly acidic cation exchange resin is Cl-type The starch sugar solution refining method according to claim 1, wherein the ratio is 1: 0.2 to 4.0. I形強塩基性アニオン交換樹脂としてゲル型のものを用いることを特徴とする請求項1又は2に記載のデンプン糖液精製法。The method for purifying starch sugar solution according to claim 1 or 2 , wherein a gel-type I-type strongly basic anion exchange resin is used. 通液温度を40〜80℃とすることを特徴とする請求項1〜3のいずれか1項に記載のデンプン糖液精製法。The method for purifying starch sugar solution according to any one of claims 1 to 3, wherein the liquid passing temperature is 40 to 80 ° C. 通液するデンプン糖液がDE(糖化率)50以下のデンプン糖液であることを特徴とする請求項1〜のいずれか1項に記載のデンプン糖液精製法。The method for purifying a starch sugar solution according to any one of claims 1 to 4 , wherein the starch sugar solution to be passed is a starch sugar solution having a DE (saccharification rate) of 50 or less.
JP2000040917A 2000-02-18 2000-02-18 Starch molasses purification method Expired - Fee Related JP4216985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000040917A JP4216985B2 (en) 2000-02-18 2000-02-18 Starch molasses purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000040917A JP4216985B2 (en) 2000-02-18 2000-02-18 Starch molasses purification method

Publications (2)

Publication Number Publication Date
JP2001231600A JP2001231600A (en) 2001-08-28
JP4216985B2 true JP4216985B2 (en) 2009-01-28

Family

ID=18564229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000040917A Expired - Fee Related JP4216985B2 (en) 2000-02-18 2000-02-18 Starch molasses purification method

Country Status (1)

Country Link
JP (1) JP4216985B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015091909A (en) * 2013-11-08 2015-05-14 日本錬水株式会社 Method for purifying sugar lowered starch sugar solution

Also Published As

Publication number Publication date
JP2001231600A (en) 2001-08-28

Similar Documents

Publication Publication Date Title
JPH0585537B2 (en)
KR100463268B1 (en) Mixed-bed type sugar solution refining system and regeneration method for such apparatus
US5759826A (en) Process of preparing an organic acid
JP4216985B2 (en) Starch molasses purification method
JP4210396B2 (en) Starch sugar solution desalting method and desalting system
JP2001128700A (en) Method for purifying starch sugar solution
JPH0137997B2 (en)
JP2001247305A (en) Method for recovering boron
JP4313477B2 (en) Starch molasses purification method and purification system
JP4800931B2 (en) Sugar liquid purification method and purification apparatus
JPH0372900A (en) Method for purifying sucrose solution and treating equipment therefor
JP2005295916A (en) Method for purifying saccharide-containing solution
JPH0636749B2 (en) Method for purifying glucose solution or starch syrup
JP4210408B2 (en) Regeneration method of strongly acidic cation exchange resin tower of sugar liquid purification equipment
JP4294203B2 (en) Regeneration method of sugar liquid purification equipment
JP3150836B2 (en) Regeneration method of anion exchange column in high purity water production equipment
JP6942603B2 (en) Purified sugar manufacturing equipment and manufacturing method
JPH059079B2 (en)
CN114591362A (en) Novel process for preparing phytoacid
JPS5924663B2 (en) Solution processing method
KR20230092052A (en) Method for purifying sugar-containing solution by using weak basic anion exchange resin
JPH0227999A (en) Method for cleaning sugar liquid
JPH1175899A (en) Purification of sucrose solution
JPH10179200A (en) Purification of sugar solution of beet and purification apparatus
KR20220058760A (en) Method for purifying saccharide-containing solution using weakly basic anion exchange resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees